1 /*
2 * Copyright 2013 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #define gf100_ram(p) container_of((p), struct gf100_ram, base)
25 #include "ram.h"
26 #include "ramfuc.h"
27
28 #include <core/option.h>
29 #include <subdev/bios.h>
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios/rammap.h>
32 #include <subdev/bios/timing.h>
33 #include <subdev/clk.h>
34 #include <subdev/clk/pll.h>
35
36 struct gf100_ramfuc {
37 struct ramfuc base;
38
39 struct ramfuc_reg r_0x10fe20;
40 struct ramfuc_reg r_0x10fe24;
41 struct ramfuc_reg r_0x137320;
42 struct ramfuc_reg r_0x137330;
43
44 struct ramfuc_reg r_0x132000;
45 struct ramfuc_reg r_0x132004;
46 struct ramfuc_reg r_0x132100;
47
48 struct ramfuc_reg r_0x137390;
49
50 struct ramfuc_reg r_0x10f290;
51 struct ramfuc_reg r_0x10f294;
52 struct ramfuc_reg r_0x10f298;
53 struct ramfuc_reg r_0x10f29c;
54 struct ramfuc_reg r_0x10f2a0;
55
56 struct ramfuc_reg r_0x10f300;
57 struct ramfuc_reg r_0x10f338;
58 struct ramfuc_reg r_0x10f340;
59 struct ramfuc_reg r_0x10f344;
60 struct ramfuc_reg r_0x10f348;
61
62 struct ramfuc_reg r_0x10f910;
63 struct ramfuc_reg r_0x10f914;
64
65 struct ramfuc_reg r_0x100b0c;
66 struct ramfuc_reg r_0x10f050;
67 struct ramfuc_reg r_0x10f090;
68 struct ramfuc_reg r_0x10f200;
69 struct ramfuc_reg r_0x10f210;
70 struct ramfuc_reg r_0x10f310;
71 struct ramfuc_reg r_0x10f314;
72 struct ramfuc_reg r_0x10f610;
73 struct ramfuc_reg r_0x10f614;
74 struct ramfuc_reg r_0x10f800;
75 struct ramfuc_reg r_0x10f808;
76 struct ramfuc_reg r_0x10f824;
77 struct ramfuc_reg r_0x10f830;
78 struct ramfuc_reg r_0x10f988;
79 struct ramfuc_reg r_0x10f98c;
80 struct ramfuc_reg r_0x10f990;
81 struct ramfuc_reg r_0x10f998;
82 struct ramfuc_reg r_0x10f9b0;
83 struct ramfuc_reg r_0x10f9b4;
84 struct ramfuc_reg r_0x10fb04;
85 struct ramfuc_reg r_0x10fb08;
86 struct ramfuc_reg r_0x137300;
87 struct ramfuc_reg r_0x137310;
88 struct ramfuc_reg r_0x137360;
89 struct ramfuc_reg r_0x1373ec;
90 struct ramfuc_reg r_0x1373f0;
91 struct ramfuc_reg r_0x1373f8;
92
93 struct ramfuc_reg r_0x61c140;
94 struct ramfuc_reg r_0x611200;
95
96 struct ramfuc_reg r_0x13d8f4;
97 };
98
99 struct gf100_ram {
100 struct nvkm_ram base;
101 struct gf100_ramfuc fuc;
102 struct nvbios_pll refpll;
103 struct nvbios_pll mempll;
104 };
105
106 static void
gf100_ram_train(struct gf100_ramfuc * fuc,u32 magic)107 gf100_ram_train(struct gf100_ramfuc *fuc, u32 magic)
108 {
109 struct gf100_ram *ram = container_of(fuc, typeof(*ram), fuc);
110 struct nvkm_fb *fb = ram->base.fb;
111 struct nvkm_device *device = fb->subdev.device;
112 u32 part = nvkm_rd32(device, 0x022438), i;
113 u32 mask = nvkm_rd32(device, 0x022554);
114 u32 addr = 0x110974;
115
116 ram_wr32(fuc, 0x10f910, magic);
117 ram_wr32(fuc, 0x10f914, magic);
118
119 for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
120 if (mask & (1 << i))
121 continue;
122 ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
123 }
124 }
125
126 int
gf100_ram_calc(struct nvkm_ram * base,u32 freq)127 gf100_ram_calc(struct nvkm_ram *base, u32 freq)
128 {
129 struct gf100_ram *ram = gf100_ram(base);
130 struct gf100_ramfuc *fuc = &ram->fuc;
131 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
132 struct nvkm_device *device = subdev->device;
133 struct nvkm_clk *clk = device->clk;
134 struct nvkm_bios *bios = device->bios;
135 struct nvbios_ramcfg cfg;
136 u8 ver, cnt, len, strap;
137 struct {
138 u32 data;
139 u8 size;
140 } rammap, ramcfg, timing;
141 int ref, div, out;
142 int from, mode;
143 int N1, M1, P;
144 int ret;
145
146 /* lookup memory config data relevant to the target frequency */
147 rammap.data = nvbios_rammapEm(bios, freq / 1000, &ver, &rammap.size,
148 &cnt, &ramcfg.size, &cfg);
149 if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
150 nvkm_error(subdev, "invalid/missing rammap entry\n");
151 return -EINVAL;
152 }
153
154 /* locate specific data set for the attached memory */
155 strap = nvbios_ramcfg_index(subdev);
156 if (strap >= cnt) {
157 nvkm_error(subdev, "invalid ramcfg strap\n");
158 return -EINVAL;
159 }
160
161 ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
162 if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
163 nvkm_error(subdev, "invalid/missing ramcfg entry\n");
164 return -EINVAL;
165 }
166
167 /* lookup memory timings, if bios says they're present */
168 strap = nvbios_rd08(bios, ramcfg.data + 0x01);
169 if (strap != 0xff) {
170 timing.data = nvbios_timingEe(bios, strap, &ver, &timing.size,
171 &cnt, &len);
172 if (!timing.data || ver != 0x10 || timing.size < 0x19) {
173 nvkm_error(subdev, "invalid/missing timing entry\n");
174 return -EINVAL;
175 }
176 } else {
177 timing.data = 0;
178 }
179
180 ret = ram_init(fuc, ram->base.fb);
181 if (ret)
182 return ret;
183
184 /* determine current mclk configuration */
185 from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
186
187 /* determine target mclk configuration */
188 if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
189 ref = nvkm_clk_read(clk, nv_clk_src_sppll0);
190 else
191 ref = nvkm_clk_read(clk, nv_clk_src_sppll1);
192 div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
193 out = (ref * 2) / (div + 2);
194 mode = freq != out;
195
196 ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
197
198 if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
199 ram_nuke(fuc, 0x132000);
200 ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
201 ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
202 }
203
204 if (mode == 1) {
205 ram_nuke(fuc, 0x10fe20);
206 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
207 ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
208 }
209
210 // 0x00020034 // 0x0000000a
211 ram_wr32(fuc, 0x132100, 0x00000001);
212
213 if (mode == 1 && from == 0) {
214 /* calculate refpll */
215 ret = gt215_pll_calc(subdev, &ram->refpll, ram->mempll.refclk,
216 &N1, NULL, &M1, &P);
217 if (ret <= 0) {
218 nvkm_error(subdev, "unable to calc refpll\n");
219 return ret ? ret : -ERANGE;
220 }
221
222 ram_wr32(fuc, 0x10fe20, 0x20010000);
223 ram_wr32(fuc, 0x137320, 0x00000003);
224 ram_wr32(fuc, 0x137330, 0x81200006);
225 ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
226 ram_wr32(fuc, 0x10fe20, 0x20010001);
227 ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
228
229 /* calculate mempll */
230 ret = gt215_pll_calc(subdev, &ram->mempll, freq,
231 &N1, NULL, &M1, &P);
232 if (ret <= 0) {
233 nvkm_error(subdev, "unable to calc refpll\n");
234 return ret ? ret : -ERANGE;
235 }
236
237 ram_wr32(fuc, 0x10fe20, 0x20010005);
238 ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
239 ram_wr32(fuc, 0x132000, 0x18010101);
240 ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
241 } else
242 if (mode == 0) {
243 ram_wr32(fuc, 0x137300, 0x00000003);
244 }
245
246 if (from == 0) {
247 ram_nuke(fuc, 0x10fb04);
248 ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
249 ram_nuke(fuc, 0x10fb08);
250 ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
251 ram_wr32(fuc, 0x10f988, 0x2004ff00);
252 ram_wr32(fuc, 0x10f98c, 0x003fc040);
253 ram_wr32(fuc, 0x10f990, 0x20012001);
254 ram_wr32(fuc, 0x10f998, 0x00011a00);
255 ram_wr32(fuc, 0x13d8f4, 0x00000000);
256 } else {
257 ram_wr32(fuc, 0x10f988, 0x20010000);
258 ram_wr32(fuc, 0x10f98c, 0x00000000);
259 ram_wr32(fuc, 0x10f990, 0x20012001);
260 ram_wr32(fuc, 0x10f998, 0x00010a00);
261 }
262
263 if (from == 0) {
264 // 0x00020039 // 0x000000ba
265 }
266
267 // 0x0002003a // 0x00000002
268 ram_wr32(fuc, 0x100b0c, 0x00080012);
269 // 0x00030014 // 0x00000000 // 0x02b5f070
270 // 0x00030014 // 0x00010000 // 0x02b5f070
271 ram_wr32(fuc, 0x611200, 0x00003300);
272 // 0x00020034 // 0x0000000a
273 // 0x00030020 // 0x00000001 // 0x00000000
274
275 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
276 ram_wr32(fuc, 0x10f210, 0x00000000);
277 ram_nsec(fuc, 1000);
278 if (mode == 0)
279 gf100_ram_train(fuc, 0x000c1001);
280 ram_wr32(fuc, 0x10f310, 0x00000001);
281 ram_nsec(fuc, 1000);
282 ram_wr32(fuc, 0x10f090, 0x00000061);
283 ram_wr32(fuc, 0x10f090, 0xc000007f);
284 ram_nsec(fuc, 1000);
285
286 if (from == 0) {
287 ram_wr32(fuc, 0x10f824, 0x00007fd4);
288 } else {
289 ram_wr32(fuc, 0x1373ec, 0x00020404);
290 }
291
292 if (mode == 0) {
293 ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
294 ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
295 ram_wr32(fuc, 0x10f830, 0x41500010);
296 ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
297 ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
298 ram_wr32(fuc, 0x10f050, 0xff000090);
299 ram_wr32(fuc, 0x1373ec, 0x00020f0f);
300 ram_wr32(fuc, 0x1373f0, 0x00000003);
301 ram_wr32(fuc, 0x137310, 0x81201616);
302 ram_wr32(fuc, 0x132100, 0x00000001);
303 // 0x00020039 // 0x000000ba
304 ram_wr32(fuc, 0x10f830, 0x00300017);
305 ram_wr32(fuc, 0x1373f0, 0x00000001);
306 ram_wr32(fuc, 0x10f824, 0x00007e77);
307 ram_wr32(fuc, 0x132000, 0x18030001);
308 ram_wr32(fuc, 0x10f090, 0x4000007e);
309 ram_nsec(fuc, 2000);
310 ram_wr32(fuc, 0x10f314, 0x00000001);
311 ram_wr32(fuc, 0x10f210, 0x80000000);
312 ram_wr32(fuc, 0x10f338, 0x00300220);
313 ram_wr32(fuc, 0x10f300, 0x0000011d);
314 ram_nsec(fuc, 1000);
315 ram_wr32(fuc, 0x10f290, 0x02060505);
316 ram_wr32(fuc, 0x10f294, 0x34208288);
317 ram_wr32(fuc, 0x10f298, 0x44050411);
318 ram_wr32(fuc, 0x10f29c, 0x0000114c);
319 ram_wr32(fuc, 0x10f2a0, 0x42e10069);
320 ram_wr32(fuc, 0x10f614, 0x40044f77);
321 ram_wr32(fuc, 0x10f610, 0x40044f77);
322 ram_wr32(fuc, 0x10f344, 0x00600009);
323 ram_nsec(fuc, 1000);
324 ram_wr32(fuc, 0x10f348, 0x00700008);
325 ram_wr32(fuc, 0x61c140, 0x19240000);
326 ram_wr32(fuc, 0x10f830, 0x00300017);
327 gf100_ram_train(fuc, 0x80021001);
328 gf100_ram_train(fuc, 0x80081001);
329 ram_wr32(fuc, 0x10f340, 0x00500004);
330 ram_nsec(fuc, 1000);
331 ram_wr32(fuc, 0x10f830, 0x01300017);
332 ram_wr32(fuc, 0x10f830, 0x00300017);
333 // 0x00030020 // 0x00000000 // 0x00000000
334 // 0x00020034 // 0x0000000b
335 ram_wr32(fuc, 0x100b0c, 0x00080028);
336 ram_wr32(fuc, 0x611200, 0x00003330);
337 } else {
338 ram_wr32(fuc, 0x10f800, 0x00001800);
339 ram_wr32(fuc, 0x13d8f4, 0x00000000);
340 ram_wr32(fuc, 0x1373ec, 0x00020404);
341 ram_wr32(fuc, 0x1373f0, 0x00000003);
342 ram_wr32(fuc, 0x10f830, 0x40700010);
343 ram_wr32(fuc, 0x10f830, 0x40500010);
344 ram_wr32(fuc, 0x13d8f4, 0x00000000);
345 ram_wr32(fuc, 0x1373f8, 0x00000000);
346 ram_wr32(fuc, 0x132100, 0x00000101);
347 ram_wr32(fuc, 0x137310, 0x89201616);
348 ram_wr32(fuc, 0x10f050, 0xff000090);
349 ram_wr32(fuc, 0x1373ec, 0x00030404);
350 ram_wr32(fuc, 0x1373f0, 0x00000002);
351 // 0x00020039 // 0x00000011
352 ram_wr32(fuc, 0x132100, 0x00000001);
353 ram_wr32(fuc, 0x1373f8, 0x00002000);
354 ram_nsec(fuc, 2000);
355 ram_wr32(fuc, 0x10f808, 0x7aaa0050);
356 ram_wr32(fuc, 0x10f830, 0x00500010);
357 ram_wr32(fuc, 0x10f200, 0x00ce1000);
358 ram_wr32(fuc, 0x10f090, 0x4000007e);
359 ram_nsec(fuc, 2000);
360 ram_wr32(fuc, 0x10f314, 0x00000001);
361 ram_wr32(fuc, 0x10f210, 0x80000000);
362 ram_wr32(fuc, 0x10f338, 0x00300200);
363 ram_wr32(fuc, 0x10f300, 0x0000084d);
364 ram_nsec(fuc, 1000);
365 ram_wr32(fuc, 0x10f290, 0x0b343825);
366 ram_wr32(fuc, 0x10f294, 0x3483028e);
367 ram_wr32(fuc, 0x10f298, 0x440c0600);
368 ram_wr32(fuc, 0x10f29c, 0x0000214c);
369 ram_wr32(fuc, 0x10f2a0, 0x42e20069);
370 ram_wr32(fuc, 0x10f200, 0x00ce0000);
371 ram_wr32(fuc, 0x10f614, 0x60044e77);
372 ram_wr32(fuc, 0x10f610, 0x60044e77);
373 ram_wr32(fuc, 0x10f340, 0x00500000);
374 ram_nsec(fuc, 1000);
375 ram_wr32(fuc, 0x10f344, 0x00600228);
376 ram_nsec(fuc, 1000);
377 ram_wr32(fuc, 0x10f348, 0x00700000);
378 ram_wr32(fuc, 0x13d8f4, 0x00000000);
379 ram_wr32(fuc, 0x61c140, 0x09a40000);
380
381 gf100_ram_train(fuc, 0x800e1008);
382
383 ram_nsec(fuc, 1000);
384 ram_wr32(fuc, 0x10f800, 0x00001804);
385 // 0x00030020 // 0x00000000 // 0x00000000
386 // 0x00020034 // 0x0000000b
387 ram_wr32(fuc, 0x13d8f4, 0x00000000);
388 ram_wr32(fuc, 0x100b0c, 0x00080028);
389 ram_wr32(fuc, 0x611200, 0x00003330);
390 ram_nsec(fuc, 100000);
391 ram_wr32(fuc, 0x10f9b0, 0x05313f41);
392 ram_wr32(fuc, 0x10f9b4, 0x00002f50);
393
394 gf100_ram_train(fuc, 0x010c1001);
395 }
396
397 ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
398 // 0x00020016 // 0x00000000
399
400 if (mode == 0)
401 ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
402
403 return 0;
404 }
405
406 int
gf100_ram_prog(struct nvkm_ram * base)407 gf100_ram_prog(struct nvkm_ram *base)
408 {
409 struct gf100_ram *ram = gf100_ram(base);
410 struct nvkm_device *device = ram->base.fb->subdev.device;
411 ram_exec(&ram->fuc, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
412 return 0;
413 }
414
415 void
gf100_ram_tidy(struct nvkm_ram * base)416 gf100_ram_tidy(struct nvkm_ram *base)
417 {
418 struct gf100_ram *ram = gf100_ram(base);
419 ram_exec(&ram->fuc, false);
420 }
421
422 int
gf100_ram_init(struct nvkm_ram * base)423 gf100_ram_init(struct nvkm_ram *base)
424 {
425 static const u8 train0[] = {
426 0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
427 0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
428 };
429 static const u32 train1[] = {
430 0x00000000, 0xffffffff,
431 0x55555555, 0xaaaaaaaa,
432 0x33333333, 0xcccccccc,
433 0xf0f0f0f0, 0x0f0f0f0f,
434 0x00ff00ff, 0xff00ff00,
435 0x0000ffff, 0xffff0000,
436 };
437 struct gf100_ram *ram = gf100_ram(base);
438 struct nvkm_device *device = ram->base.fb->subdev.device;
439 int i;
440
441 switch (ram->base.type) {
442 case NVKM_RAM_TYPE_GDDR5:
443 break;
444 default:
445 return 0;
446 }
447
448 /* prepare for ddr link training, and load training patterns */
449 for (i = 0; i < 0x30; i++) {
450 nvkm_wr32(device, 0x10f968, 0x00000000 | (i << 8));
451 nvkm_wr32(device, 0x10f96c, 0x00000000 | (i << 8));
452 nvkm_wr32(device, 0x10f920, 0x00000100 | train0[i % 12]);
453 nvkm_wr32(device, 0x10f924, 0x00000100 | train0[i % 12]);
454 nvkm_wr32(device, 0x10f918, train1[i % 12]);
455 nvkm_wr32(device, 0x10f91c, train1[i % 12]);
456 nvkm_wr32(device, 0x10f920, 0x00000000 | train0[i % 12]);
457 nvkm_wr32(device, 0x10f924, 0x00000000 | train0[i % 12]);
458 nvkm_wr32(device, 0x10f918, train1[i % 12]);
459 nvkm_wr32(device, 0x10f91c, train1[i % 12]);
460 }
461
462 return 0;
463 }
464
465 u32
gf100_ram_probe_fbpa_amount(struct nvkm_device * device,int fbpa)466 gf100_ram_probe_fbpa_amount(struct nvkm_device *device, int fbpa)
467 {
468 return nvkm_rd32(device, 0x11020c + (fbpa * 0x1000));
469 }
470
471 u32
gf100_ram_probe_fbp_amount(const struct nvkm_ram_func * func,u32 fbpao,struct nvkm_device * device,int fbp,int * pltcs)472 gf100_ram_probe_fbp_amount(const struct nvkm_ram_func *func, u32 fbpao,
473 struct nvkm_device *device, int fbp, int *pltcs)
474 {
475 if (!(fbpao & BIT(fbp))) {
476 *pltcs = 1;
477 return func->probe_fbpa_amount(device, fbp);
478 }
479 return 0;
480 }
481
482 u32
gf100_ram_probe_fbp(const struct nvkm_ram_func * func,struct nvkm_device * device,int fbp,int * pltcs)483 gf100_ram_probe_fbp(const struct nvkm_ram_func *func,
484 struct nvkm_device *device, int fbp, int *pltcs)
485 {
486 u32 fbpao = nvkm_rd32(device, 0x022554);
487 return func->probe_fbp_amount(func, fbpao, device, fbp, pltcs);
488 }
489
490 int
gf100_ram_ctor(const struct nvkm_ram_func * func,struct nvkm_fb * fb,struct nvkm_ram * ram)491 gf100_ram_ctor(const struct nvkm_ram_func *func, struct nvkm_fb *fb,
492 struct nvkm_ram *ram)
493 {
494 struct nvkm_subdev *subdev = &fb->subdev;
495 struct nvkm_device *device = subdev->device;
496 struct nvkm_bios *bios = device->bios;
497 const u32 rsvd_head = ( 256 * 1024); /* vga memory */
498 const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
499 enum nvkm_ram_type type = nvkm_fb_bios_memtype(bios);
500 u32 fbps = nvkm_rd32(device, 0x022438);
501 u64 total = 0, lcomm = ~0, lower, ubase, usize;
502 int ret, fbp, ltcs, ltcn = 0;
503
504 nvkm_debug(subdev, "%d FBP(s)\n", fbps);
505 for (fbp = 0; fbp < fbps; fbp++) {
506 u32 size = func->probe_fbp(func, device, fbp, <cs);
507 if (size) {
508 nvkm_debug(subdev, "FBP %d: %4d MiB, %d LTC(s)\n",
509 fbp, size, ltcs);
510 lcomm = min(lcomm, (u64)(size / ltcs) << 20);
511 total += (u64) size << 20;
512 ltcn += ltcs;
513 } else {
514 nvkm_debug(subdev, "FBP %d: disabled\n", fbp);
515 }
516 }
517
518 lower = lcomm * ltcn;
519 ubase = lcomm + func->upper;
520 usize = total - lower;
521
522 nvkm_debug(subdev, "Lower: %4lld MiB @ %010llx\n", lower >> 20, 0ULL);
523 nvkm_debug(subdev, "Upper: %4lld MiB @ %010llx\n", usize >> 20, ubase);
524 nvkm_debug(subdev, "Total: %4lld MiB\n", total >> 20);
525
526 ret = nvkm_ram_ctor(func, fb, type, total, ram);
527 if (ret)
528 return ret;
529
530 nvkm_mm_fini(&ram->vram);
531
532 /* Some GPUs are in what's known as a "mixed memory" configuration.
533 *
534 * This is either where some FBPs have more memory than the others,
535 * or where LTCs have been disabled on a FBP.
536 */
537 if (lower != total) {
538 /* The common memory amount is addressed normally. */
539 ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
540 rsvd_head >> NVKM_RAM_MM_SHIFT,
541 (lower - rsvd_head) >> NVKM_RAM_MM_SHIFT, 1);
542 if (ret)
543 return ret;
544
545 /* And the rest is much higher in the physical address
546 * space, and may not be usable for certain operations.
547 */
548 ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_MIXED,
549 ubase >> NVKM_RAM_MM_SHIFT,
550 (usize - rsvd_tail) >> NVKM_RAM_MM_SHIFT, 1);
551 if (ret)
552 return ret;
553 } else {
554 /* GPUs without mixed-memory are a lot nicer... */
555 ret = nvkm_mm_init(&ram->vram, NVKM_RAM_MM_NORMAL,
556 rsvd_head >> NVKM_RAM_MM_SHIFT,
557 (total - rsvd_head - rsvd_tail) >>
558 NVKM_RAM_MM_SHIFT, 1);
559 if (ret)
560 return ret;
561 }
562
563 return 0;
564 }
565
566 int
gf100_ram_new_(const struct nvkm_ram_func * func,struct nvkm_fb * fb,struct nvkm_ram ** pram)567 gf100_ram_new_(const struct nvkm_ram_func *func,
568 struct nvkm_fb *fb, struct nvkm_ram **pram)
569 {
570 struct nvkm_subdev *subdev = &fb->subdev;
571 struct nvkm_bios *bios = subdev->device->bios;
572 struct gf100_ram *ram;
573 int ret;
574
575 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
576 return -ENOMEM;
577 *pram = &ram->base;
578
579 ret = gf100_ram_ctor(func, fb, &ram->base);
580 if (ret)
581 return ret;
582
583 ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
584 if (ret) {
585 nvkm_error(subdev, "mclk refpll data not found\n");
586 return ret;
587 }
588
589 ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
590 if (ret) {
591 nvkm_error(subdev, "mclk pll data not found\n");
592 return ret;
593 }
594
595 ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
596 ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
597 ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
598 ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
599
600 ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
601 ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
602 ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
603
604 ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
605
606 ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
607 ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
608 ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
609 ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
610 ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
611
612 ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
613 ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
614 ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
615 ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
616 ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
617
618 ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
619 ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
620
621 ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
622 ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
623 ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
624 ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
625 ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
626 ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
627 ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
628 ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
629 ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
630 ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
631 ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
632 ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
633 ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
634 ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
635 ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
636 ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
637 ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
638 ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
639 ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
640 ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
641 ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
642 ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
643 ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
644 ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
645 ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
646 ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
647 ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
648
649 ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
650 ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
651
652 ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
653 return 0;
654 }
655
656 static const struct nvkm_ram_func
657 gf100_ram = {
658 .upper = 0x0200000000,
659 .probe_fbp = gf100_ram_probe_fbp,
660 .probe_fbp_amount = gf100_ram_probe_fbp_amount,
661 .probe_fbpa_amount = gf100_ram_probe_fbpa_amount,
662 .init = gf100_ram_init,
663 .calc = gf100_ram_calc,
664 .prog = gf100_ram_prog,
665 .tidy = gf100_ram_tidy,
666 };
667
668 int
gf100_ram_new(struct nvkm_fb * fb,struct nvkm_ram ** pram)669 gf100_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
670 {
671 return gf100_ram_new_(&gf100_ram, fb, pram);
672 }
673