1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #define gf100_clk(p) container_of((p), struct gf100_clk, base)
25 #include "priv.h"
26 #include "pll.h"
27
28 #include <subdev/bios.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/timer.h>
31
32 struct gf100_clk_info {
33 u32 freq;
34 u32 ssel;
35 u32 mdiv;
36 u32 dsrc;
37 u32 ddiv;
38 u32 coef;
39 };
40
41 struct gf100_clk {
42 struct nvkm_clk base;
43 struct gf100_clk_info eng[16];
44 };
45
46 static u32 read_div(struct gf100_clk *, int, u32, u32);
47
48 static u32
read_vco(struct gf100_clk * clk,u32 dsrc)49 read_vco(struct gf100_clk *clk, u32 dsrc)
50 {
51 struct nvkm_device *device = clk->base.subdev.device;
52 u32 ssrc = nvkm_rd32(device, dsrc);
53 if (!(ssrc & 0x00000100))
54 return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
55 return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
56 }
57
58 static u32
read_pll(struct gf100_clk * clk,u32 pll)59 read_pll(struct gf100_clk *clk, u32 pll)
60 {
61 struct nvkm_device *device = clk->base.subdev.device;
62 u32 ctrl = nvkm_rd32(device, pll + 0x00);
63 u32 coef = nvkm_rd32(device, pll + 0x04);
64 u32 P = (coef & 0x003f0000) >> 16;
65 u32 N = (coef & 0x0000ff00) >> 8;
66 u32 M = (coef & 0x000000ff) >> 0;
67 u32 sclk;
68
69 if (!(ctrl & 0x00000001))
70 return 0;
71
72 switch (pll) {
73 case 0x00e800:
74 case 0x00e820:
75 sclk = device->crystal;
76 P = 1;
77 break;
78 case 0x132000:
79 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
80 break;
81 case 0x132020:
82 sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
83 break;
84 case 0x137000:
85 case 0x137020:
86 case 0x137040:
87 case 0x1370e0:
88 sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
89 break;
90 default:
91 return 0;
92 }
93
94 return sclk * N / M / P;
95 }
96
97 static u32
read_div(struct gf100_clk * clk,int doff,u32 dsrc,u32 dctl)98 read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
99 {
100 struct nvkm_device *device = clk->base.subdev.device;
101 u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
102 u32 sclk, sctl, sdiv = 2;
103
104 switch (ssrc & 0x00000003) {
105 case 0:
106 if ((ssrc & 0x00030000) != 0x00030000)
107 return device->crystal;
108 return 108000;
109 case 2:
110 return 100000;
111 case 3:
112 sclk = read_vco(clk, dsrc + (doff * 4));
113
114 /* Memclk has doff of 0 despite its alt. location */
115 if (doff <= 2) {
116 sctl = nvkm_rd32(device, dctl + (doff * 4));
117
118 if (sctl & 0x80000000) {
119 if (ssrc & 0x100)
120 sctl >>= 8;
121
122 sdiv = (sctl & 0x3f) + 2;
123 }
124 }
125
126 return (sclk * 2) / sdiv;
127 default:
128 return 0;
129 }
130 }
131
132 static u32
read_clk(struct gf100_clk * clk,int idx)133 read_clk(struct gf100_clk *clk, int idx)
134 {
135 struct nvkm_device *device = clk->base.subdev.device;
136 u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
137 u32 ssel = nvkm_rd32(device, 0x137100);
138 u32 sclk, sdiv;
139
140 if (ssel & (1 << idx)) {
141 if (idx < 7)
142 sclk = read_pll(clk, 0x137000 + (idx * 0x20));
143 else
144 sclk = read_pll(clk, 0x1370e0);
145 sdiv = ((sctl & 0x00003f00) >> 8) + 2;
146 } else {
147 sclk = read_div(clk, idx, 0x137160, 0x1371d0);
148 sdiv = ((sctl & 0x0000003f) >> 0) + 2;
149 }
150
151 if (sctl & 0x80000000)
152 return (sclk * 2) / sdiv;
153
154 return sclk;
155 }
156
157 static int
gf100_clk_read(struct nvkm_clk * base,enum nv_clk_src src)158 gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
159 {
160 struct gf100_clk *clk = gf100_clk(base);
161 struct nvkm_subdev *subdev = &clk->base.subdev;
162 struct nvkm_device *device = subdev->device;
163
164 switch (src) {
165 case nv_clk_src_crystal:
166 return device->crystal;
167 case nv_clk_src_href:
168 return 100000;
169 case nv_clk_src_sppll0:
170 return read_pll(clk, 0x00e800);
171 case nv_clk_src_sppll1:
172 return read_pll(clk, 0x00e820);
173
174 case nv_clk_src_mpllsrcref:
175 return read_div(clk, 0, 0x137320, 0x137330);
176 case nv_clk_src_mpllsrc:
177 return read_pll(clk, 0x132020);
178 case nv_clk_src_mpll:
179 return read_pll(clk, 0x132000);
180 case nv_clk_src_mdiv:
181 return read_div(clk, 0, 0x137300, 0x137310);
182 case nv_clk_src_mem:
183 if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
184 return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
185 return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
186
187 case nv_clk_src_gpc:
188 return read_clk(clk, 0x00);
189 case nv_clk_src_rop:
190 return read_clk(clk, 0x01);
191 case nv_clk_src_hubk07:
192 return read_clk(clk, 0x02);
193 case nv_clk_src_hubk06:
194 return read_clk(clk, 0x07);
195 case nv_clk_src_hubk01:
196 return read_clk(clk, 0x08);
197 case nv_clk_src_copy:
198 return read_clk(clk, 0x09);
199 case nv_clk_src_pmu:
200 return read_clk(clk, 0x0c);
201 case nv_clk_src_vdec:
202 return read_clk(clk, 0x0e);
203 default:
204 nvkm_error(subdev, "invalid clock source %d\n", src);
205 return -EINVAL;
206 }
207 }
208
209 static u32
calc_div(struct gf100_clk * clk,int idx,u32 ref,u32 freq,u32 * ddiv)210 calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
211 {
212 u32 div = min((ref * 2) / freq, (u32)65);
213 if (div < 2)
214 div = 2;
215
216 *ddiv = div - 2;
217 return (ref * 2) / div;
218 }
219
220 static u32
calc_src(struct gf100_clk * clk,int idx,u32 freq,u32 * dsrc,u32 * ddiv)221 calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
222 {
223 u32 sclk;
224
225 /* use one of the fixed frequencies if possible */
226 *ddiv = 0x00000000;
227 switch (freq) {
228 case 27000:
229 case 108000:
230 *dsrc = 0x00000000;
231 if (freq == 108000)
232 *dsrc |= 0x00030000;
233 return freq;
234 case 100000:
235 *dsrc = 0x00000002;
236 return freq;
237 default:
238 *dsrc = 0x00000003;
239 break;
240 }
241
242 /* otherwise, calculate the closest divider */
243 sclk = read_vco(clk, 0x137160 + (idx * 4));
244 if (idx < 7)
245 sclk = calc_div(clk, idx, sclk, freq, ddiv);
246 return sclk;
247 }
248
249 static u32
calc_pll(struct gf100_clk * clk,int idx,u32 freq,u32 * coef)250 calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
251 {
252 struct nvkm_subdev *subdev = &clk->base.subdev;
253 struct nvkm_bios *bios = subdev->device->bios;
254 struct nvbios_pll limits;
255 int N, M, P, ret;
256
257 ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
258 if (ret)
259 return 0;
260
261 limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
262 if (!limits.refclk)
263 return 0;
264
265 ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
266 if (ret <= 0)
267 return 0;
268
269 *coef = (P << 16) | (N << 8) | M;
270 return ret;
271 }
272
273 static int
calc_clk(struct gf100_clk * clk,struct nvkm_cstate * cstate,int idx,int dom)274 calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
275 {
276 struct gf100_clk_info *info = &clk->eng[idx];
277 u32 freq = cstate->domain[dom];
278 u32 src0, div0, div1D, div1P = 0;
279 u32 clk0, clk1 = 0;
280
281 /* invalid clock domain */
282 if (!freq)
283 return 0;
284
285 /* first possible path, using only dividers */
286 clk0 = calc_src(clk, idx, freq, &src0, &div0);
287 clk0 = calc_div(clk, idx, clk0, freq, &div1D);
288
289 /* see if we can get any closer using PLLs */
290 if (clk0 != freq && (0x00004387 & (1 << idx))) {
291 if (idx <= 7)
292 clk1 = calc_pll(clk, idx, freq, &info->coef);
293 else
294 clk1 = cstate->domain[nv_clk_src_hubk06];
295 clk1 = calc_div(clk, idx, clk1, freq, &div1P);
296 }
297
298 /* select the method which gets closest to target freq */
299 if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
300 info->dsrc = src0;
301 if (div0) {
302 info->ddiv |= 0x80000000;
303 info->ddiv |= div0 << 8;
304 info->ddiv |= div0;
305 }
306 if (div1D) {
307 info->mdiv |= 0x80000000;
308 info->mdiv |= div1D;
309 }
310 info->ssel = info->coef = 0;
311 info->freq = clk0;
312 } else {
313 if (div1P) {
314 info->mdiv |= 0x80000000;
315 info->mdiv |= div1P << 8;
316 }
317 info->ssel = (1 << idx);
318 info->freq = clk1;
319 }
320
321 return 0;
322 }
323
324 static int
gf100_clk_calc(struct nvkm_clk * base,struct nvkm_cstate * cstate)325 gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
326 {
327 struct gf100_clk *clk = gf100_clk(base);
328 int ret;
329
330 if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
331 (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
332 (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
333 (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
334 (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
335 (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
336 (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
337 (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
338 return ret;
339
340 return 0;
341 }
342
343 static void
gf100_clk_prog_0(struct gf100_clk * clk,int idx)344 gf100_clk_prog_0(struct gf100_clk *clk, int idx)
345 {
346 struct gf100_clk_info *info = &clk->eng[idx];
347 struct nvkm_device *device = clk->base.subdev.device;
348 if (idx < 7 && !info->ssel) {
349 nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
350 nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
351 }
352 }
353
354 static void
gf100_clk_prog_1(struct gf100_clk * clk,int idx)355 gf100_clk_prog_1(struct gf100_clk *clk, int idx)
356 {
357 struct nvkm_device *device = clk->base.subdev.device;
358 nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
359 nvkm_msec(device, 2000,
360 if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
361 break;
362 );
363 }
364
365 static void
gf100_clk_prog_2(struct gf100_clk * clk,int idx)366 gf100_clk_prog_2(struct gf100_clk *clk, int idx)
367 {
368 struct gf100_clk_info *info = &clk->eng[idx];
369 struct nvkm_device *device = clk->base.subdev.device;
370 const u32 addr = 0x137000 + (idx * 0x20);
371 if (idx <= 7) {
372 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
373 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
374 if (info->coef) {
375 nvkm_wr32(device, addr + 0x04, info->coef);
376 nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
377
378 /* Test PLL lock */
379 nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
380 nvkm_msec(device, 2000,
381 if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
382 break;
383 );
384 nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
385
386 /* Enable sync mode */
387 nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
388 }
389 }
390 }
391
392 static void
gf100_clk_prog_3(struct gf100_clk * clk,int idx)393 gf100_clk_prog_3(struct gf100_clk *clk, int idx)
394 {
395 struct gf100_clk_info *info = &clk->eng[idx];
396 struct nvkm_device *device = clk->base.subdev.device;
397 if (info->ssel) {
398 nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
399 nvkm_msec(device, 2000,
400 u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
401 if (tmp == info->ssel)
402 break;
403 );
404 }
405 }
406
407 static void
gf100_clk_prog_4(struct gf100_clk * clk,int idx)408 gf100_clk_prog_4(struct gf100_clk *clk, int idx)
409 {
410 struct gf100_clk_info *info = &clk->eng[idx];
411 struct nvkm_device *device = clk->base.subdev.device;
412 nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
413 }
414
415 static int
gf100_clk_prog(struct nvkm_clk * base)416 gf100_clk_prog(struct nvkm_clk *base)
417 {
418 struct gf100_clk *clk = gf100_clk(base);
419 struct {
420 void (*exec)(struct gf100_clk *, int);
421 } stage[] = {
422 { gf100_clk_prog_0 }, /* div programming */
423 { gf100_clk_prog_1 }, /* select div mode */
424 { gf100_clk_prog_2 }, /* (maybe) program pll */
425 { gf100_clk_prog_3 }, /* (maybe) select pll mode */
426 { gf100_clk_prog_4 }, /* final divider */
427 };
428 int i, j;
429
430 for (i = 0; i < ARRAY_SIZE(stage); i++) {
431 for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
432 if (!clk->eng[j].freq)
433 continue;
434 stage[i].exec(clk, j);
435 }
436 }
437
438 return 0;
439 }
440
441 static void
gf100_clk_tidy(struct nvkm_clk * base)442 gf100_clk_tidy(struct nvkm_clk *base)
443 {
444 struct gf100_clk *clk = gf100_clk(base);
445 memset(clk->eng, 0x00, sizeof(clk->eng));
446 }
447
448 static const struct nvkm_clk_func
449 gf100_clk = {
450 .read = gf100_clk_read,
451 .calc = gf100_clk_calc,
452 .prog = gf100_clk_prog,
453 .tidy = gf100_clk_tidy,
454 .domains = {
455 { nv_clk_src_crystal, 0xff },
456 { nv_clk_src_href , 0xff },
457 { nv_clk_src_hubk06 , 0x00 },
458 { nv_clk_src_hubk01 , 0x01 },
459 { nv_clk_src_copy , 0x02 },
460 { nv_clk_src_gpc , 0x03, NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
461 { nv_clk_src_rop , 0x04 },
462 { nv_clk_src_mem , 0x05, 0, "memory", 1000 },
463 { nv_clk_src_vdec , 0x06 },
464 { nv_clk_src_pmu , 0x0a },
465 { nv_clk_src_hubk07 , 0x0b },
466 { nv_clk_src_max }
467 }
468 };
469
470 int
gf100_clk_new(struct nvkm_device * device,int index,struct nvkm_clk ** pclk)471 gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
472 {
473 struct gf100_clk *clk;
474
475 if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
476 return -ENOMEM;
477 *pclk = &clk->base;
478
479 return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
480 }
481