1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
no_page_table(struct vm_area_struct * vma,unsigned int flags)23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 /*
64  * FOLL_FORCE can write to even unwritable pte's, but only
65  * after we've gone through a COW cycle and they are dirty.
66  */
can_follow_write_pte(pte_t pte,unsigned int flags)67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 	return pte_write(pte) ||
70 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 		unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 	struct mm_struct *mm = vma->vm_mm;
77 	struct dev_pagemap *pgmap = NULL;
78 	struct page *page;
79 	spinlock_t *ptl;
80 	pte_t *ptep, pte;
81 
82 retry:
83 	if (unlikely(pmd_bad(*pmd)))
84 		return no_page_table(vma, flags);
85 
86 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 	pte = *ptep;
88 	if (!pte_present(pte)) {
89 		swp_entry_t entry;
90 		/*
91 		 * KSM's break_ksm() relies upon recognizing a ksm page
92 		 * even while it is being migrated, so for that case we
93 		 * need migration_entry_wait().
94 		 */
95 		if (likely(!(flags & FOLL_MIGRATION)))
96 			goto no_page;
97 		if (pte_none(pte))
98 			goto no_page;
99 		entry = pte_to_swp_entry(pte);
100 		if (!is_migration_entry(entry))
101 			goto no_page;
102 		pte_unmap_unlock(ptep, ptl);
103 		migration_entry_wait(mm, pmd, address);
104 		goto retry;
105 	}
106 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 		goto no_page;
108 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 		pte_unmap_unlock(ptep, ptl);
110 		return NULL;
111 	}
112 
113 	page = vm_normal_page(vma, address, pte);
114 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 		/*
116 		 * Only return device mapping pages in the FOLL_GET case since
117 		 * they are only valid while holding the pgmap reference.
118 		 */
119 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 		if (pgmap)
121 			page = pte_page(pte);
122 		else
123 			goto no_page;
124 	} else if (unlikely(!page)) {
125 		if (flags & FOLL_DUMP) {
126 			/* Avoid special (like zero) pages in core dumps */
127 			page = ERR_PTR(-EFAULT);
128 			goto out;
129 		}
130 
131 		if (is_zero_pfn(pte_pfn(pte))) {
132 			page = pte_page(pte);
133 		} else {
134 			int ret;
135 
136 			ret = follow_pfn_pte(vma, address, ptep, flags);
137 			page = ERR_PTR(ret);
138 			goto out;
139 		}
140 	}
141 
142 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 		int ret;
144 		get_page(page);
145 		pte_unmap_unlock(ptep, ptl);
146 		lock_page(page);
147 		ret = split_huge_page(page);
148 		unlock_page(page);
149 		put_page(page);
150 		if (ret)
151 			return ERR_PTR(ret);
152 		goto retry;
153 	}
154 
155 	if (flags & FOLL_GET) {
156 		get_page(page);
157 
158 		/* drop the pgmap reference now that we hold the page */
159 		if (pgmap) {
160 			put_dev_pagemap(pgmap);
161 			pgmap = NULL;
162 		}
163 	}
164 	if (flags & FOLL_TOUCH) {
165 		if ((flags & FOLL_WRITE) &&
166 		    !pte_dirty(pte) && !PageDirty(page))
167 			set_page_dirty(page);
168 		/*
169 		 * pte_mkyoung() would be more correct here, but atomic care
170 		 * is needed to avoid losing the dirty bit: it is easier to use
171 		 * mark_page_accessed().
172 		 */
173 		mark_page_accessed(page);
174 	}
175 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 		/* Do not mlock pte-mapped THP */
177 		if (PageTransCompound(page))
178 			goto out;
179 
180 		/*
181 		 * The preliminary mapping check is mainly to avoid the
182 		 * pointless overhead of lock_page on the ZERO_PAGE
183 		 * which might bounce very badly if there is contention.
184 		 *
185 		 * If the page is already locked, we don't need to
186 		 * handle it now - vmscan will handle it later if and
187 		 * when it attempts to reclaim the page.
188 		 */
189 		if (page->mapping && trylock_page(page)) {
190 			lru_add_drain();  /* push cached pages to LRU */
191 			/*
192 			 * Because we lock page here, and migration is
193 			 * blocked by the pte's page reference, and we
194 			 * know the page is still mapped, we don't even
195 			 * need to check for file-cache page truncation.
196 			 */
197 			mlock_vma_page(page);
198 			unlock_page(page);
199 		}
200 	}
201 out:
202 	pte_unmap_unlock(ptep, ptl);
203 	return page;
204 no_page:
205 	pte_unmap_unlock(ptep, ptl);
206 	if (!pte_none(pte))
207 		return NULL;
208 	return no_page_table(vma, flags);
209 }
210 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,unsigned int * page_mask)211 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
212 				    unsigned long address, pud_t *pudp,
213 				    unsigned int flags, unsigned int *page_mask)
214 {
215 	pmd_t *pmd, pmdval;
216 	spinlock_t *ptl;
217 	struct page *page;
218 	struct mm_struct *mm = vma->vm_mm;
219 
220 	pmd = pmd_offset(pudp, address);
221 	/*
222 	 * The READ_ONCE() will stabilize the pmdval in a register or
223 	 * on the stack so that it will stop changing under the code.
224 	 */
225 	pmdval = READ_ONCE(*pmd);
226 	if (pmd_none(pmdval))
227 		return no_page_table(vma, flags);
228 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
229 		page = follow_huge_pmd(mm, address, pmd, flags);
230 		if (page)
231 			return page;
232 		return no_page_table(vma, flags);
233 	}
234 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
235 		page = follow_huge_pd(vma, address,
236 				      __hugepd(pmd_val(pmdval)), flags,
237 				      PMD_SHIFT);
238 		if (page)
239 			return page;
240 		return no_page_table(vma, flags);
241 	}
242 retry:
243 	if (!pmd_present(pmdval)) {
244 		if (likely(!(flags & FOLL_MIGRATION)))
245 			return no_page_table(vma, flags);
246 		VM_BUG_ON(thp_migration_supported() &&
247 				  !is_pmd_migration_entry(pmdval));
248 		if (is_pmd_migration_entry(pmdval))
249 			pmd_migration_entry_wait(mm, pmd);
250 		pmdval = READ_ONCE(*pmd);
251 		/*
252 		 * MADV_DONTNEED may convert the pmd to null because
253 		 * mmap_sem is held in read mode
254 		 */
255 		if (pmd_none(pmdval))
256 			return no_page_table(vma, flags);
257 		goto retry;
258 	}
259 	if (pmd_devmap(pmdval)) {
260 		ptl = pmd_lock(mm, pmd);
261 		page = follow_devmap_pmd(vma, address, pmd, flags);
262 		spin_unlock(ptl);
263 		if (page)
264 			return page;
265 	}
266 	if (likely(!pmd_trans_huge(pmdval)))
267 		return follow_page_pte(vma, address, pmd, flags);
268 
269 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
270 		return no_page_table(vma, flags);
271 
272 retry_locked:
273 	ptl = pmd_lock(mm, pmd);
274 	if (unlikely(pmd_none(*pmd))) {
275 		spin_unlock(ptl);
276 		return no_page_table(vma, flags);
277 	}
278 	if (unlikely(!pmd_present(*pmd))) {
279 		spin_unlock(ptl);
280 		if (likely(!(flags & FOLL_MIGRATION)))
281 			return no_page_table(vma, flags);
282 		pmd_migration_entry_wait(mm, pmd);
283 		goto retry_locked;
284 	}
285 	if (unlikely(!pmd_trans_huge(*pmd))) {
286 		spin_unlock(ptl);
287 		return follow_page_pte(vma, address, pmd, flags);
288 	}
289 	if (flags & FOLL_SPLIT) {
290 		int ret;
291 		page = pmd_page(*pmd);
292 		if (is_huge_zero_page(page)) {
293 			spin_unlock(ptl);
294 			ret = 0;
295 			split_huge_pmd(vma, pmd, address);
296 			if (pmd_trans_unstable(pmd))
297 				ret = -EBUSY;
298 		} else {
299 			get_page(page);
300 			spin_unlock(ptl);
301 			lock_page(page);
302 			ret = split_huge_page(page);
303 			unlock_page(page);
304 			put_page(page);
305 			if (pmd_none(*pmd))
306 				return no_page_table(vma, flags);
307 		}
308 
309 		return ret ? ERR_PTR(ret) :
310 			follow_page_pte(vma, address, pmd, flags);
311 	}
312 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
313 	spin_unlock(ptl);
314 	*page_mask = HPAGE_PMD_NR - 1;
315 	return page;
316 }
317 
318 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,unsigned int * page_mask)319 static struct page *follow_pud_mask(struct vm_area_struct *vma,
320 				    unsigned long address, p4d_t *p4dp,
321 				    unsigned int flags, unsigned int *page_mask)
322 {
323 	pud_t *pud;
324 	spinlock_t *ptl;
325 	struct page *page;
326 	struct mm_struct *mm = vma->vm_mm;
327 
328 	pud = pud_offset(p4dp, address);
329 	if (pud_none(*pud))
330 		return no_page_table(vma, flags);
331 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
332 		page = follow_huge_pud(mm, address, pud, flags);
333 		if (page)
334 			return page;
335 		return no_page_table(vma, flags);
336 	}
337 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
338 		page = follow_huge_pd(vma, address,
339 				      __hugepd(pud_val(*pud)), flags,
340 				      PUD_SHIFT);
341 		if (page)
342 			return page;
343 		return no_page_table(vma, flags);
344 	}
345 	if (pud_devmap(*pud)) {
346 		ptl = pud_lock(mm, pud);
347 		page = follow_devmap_pud(vma, address, pud, flags);
348 		spin_unlock(ptl);
349 		if (page)
350 			return page;
351 	}
352 	if (unlikely(pud_bad(*pud)))
353 		return no_page_table(vma, flags);
354 
355 	return follow_pmd_mask(vma, address, pud, flags, page_mask);
356 }
357 
358 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,unsigned int * page_mask)359 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
360 				    unsigned long address, pgd_t *pgdp,
361 				    unsigned int flags, unsigned int *page_mask)
362 {
363 	p4d_t *p4d;
364 	struct page *page;
365 
366 	p4d = p4d_offset(pgdp, address);
367 	if (p4d_none(*p4d))
368 		return no_page_table(vma, flags);
369 	BUILD_BUG_ON(p4d_huge(*p4d));
370 	if (unlikely(p4d_bad(*p4d)))
371 		return no_page_table(vma, flags);
372 
373 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
374 		page = follow_huge_pd(vma, address,
375 				      __hugepd(p4d_val(*p4d)), flags,
376 				      P4D_SHIFT);
377 		if (page)
378 			return page;
379 		return no_page_table(vma, flags);
380 	}
381 	return follow_pud_mask(vma, address, p4d, flags, page_mask);
382 }
383 
384 /**
385  * follow_page_mask - look up a page descriptor from a user-virtual address
386  * @vma: vm_area_struct mapping @address
387  * @address: virtual address to look up
388  * @flags: flags modifying lookup behaviour
389  * @page_mask: on output, *page_mask is set according to the size of the page
390  *
391  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
392  *
393  * Returns the mapped (struct page *), %NULL if no mapping exists, or
394  * an error pointer if there is a mapping to something not represented
395  * by a page descriptor (see also vm_normal_page()).
396  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)397 struct page *follow_page_mask(struct vm_area_struct *vma,
398 			      unsigned long address, unsigned int flags,
399 			      unsigned int *page_mask)
400 {
401 	pgd_t *pgd;
402 	struct page *page;
403 	struct mm_struct *mm = vma->vm_mm;
404 
405 	*page_mask = 0;
406 
407 	/* make this handle hugepd */
408 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
409 	if (!IS_ERR(page)) {
410 		BUG_ON(flags & FOLL_GET);
411 		return page;
412 	}
413 
414 	pgd = pgd_offset(mm, address);
415 
416 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
417 		return no_page_table(vma, flags);
418 
419 	if (pgd_huge(*pgd)) {
420 		page = follow_huge_pgd(mm, address, pgd, flags);
421 		if (page)
422 			return page;
423 		return no_page_table(vma, flags);
424 	}
425 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
426 		page = follow_huge_pd(vma, address,
427 				      __hugepd(pgd_val(*pgd)), flags,
428 				      PGDIR_SHIFT);
429 		if (page)
430 			return page;
431 		return no_page_table(vma, flags);
432 	}
433 
434 	return follow_p4d_mask(vma, address, pgd, flags, page_mask);
435 }
436 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)437 static int get_gate_page(struct mm_struct *mm, unsigned long address,
438 		unsigned int gup_flags, struct vm_area_struct **vma,
439 		struct page **page)
440 {
441 	pgd_t *pgd;
442 	p4d_t *p4d;
443 	pud_t *pud;
444 	pmd_t *pmd;
445 	pte_t *pte;
446 	int ret = -EFAULT;
447 
448 	/* user gate pages are read-only */
449 	if (gup_flags & FOLL_WRITE)
450 		return -EFAULT;
451 	if (address > TASK_SIZE)
452 		pgd = pgd_offset_k(address);
453 	else
454 		pgd = pgd_offset_gate(mm, address);
455 	BUG_ON(pgd_none(*pgd));
456 	p4d = p4d_offset(pgd, address);
457 	BUG_ON(p4d_none(*p4d));
458 	pud = pud_offset(p4d, address);
459 	BUG_ON(pud_none(*pud));
460 	pmd = pmd_offset(pud, address);
461 	if (!pmd_present(*pmd))
462 		return -EFAULT;
463 	VM_BUG_ON(pmd_trans_huge(*pmd));
464 	pte = pte_offset_map(pmd, address);
465 	if (pte_none(*pte))
466 		goto unmap;
467 	*vma = get_gate_vma(mm);
468 	if (!page)
469 		goto out;
470 	*page = vm_normal_page(*vma, address, *pte);
471 	if (!*page) {
472 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
473 			goto unmap;
474 		*page = pte_page(*pte);
475 
476 		/*
477 		 * This should never happen (a device public page in the gate
478 		 * area).
479 		 */
480 		if (is_device_public_page(*page))
481 			goto unmap;
482 	}
483 	get_page(*page);
484 out:
485 	ret = 0;
486 unmap:
487 	pte_unmap(pte);
488 	return ret;
489 }
490 
491 /*
492  * mmap_sem must be held on entry.  If @nonblocking != NULL and
493  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
494  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
495  */
faultin_page(struct task_struct * tsk,struct vm_area_struct * vma,unsigned long address,unsigned int * flags,int * nonblocking)496 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
497 		unsigned long address, unsigned int *flags, int *nonblocking)
498 {
499 	unsigned int fault_flags = 0;
500 	vm_fault_t ret;
501 
502 	/* mlock all present pages, but do not fault in new pages */
503 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
504 		return -ENOENT;
505 	if (*flags & FOLL_WRITE)
506 		fault_flags |= FAULT_FLAG_WRITE;
507 	if (*flags & FOLL_REMOTE)
508 		fault_flags |= FAULT_FLAG_REMOTE;
509 	if (nonblocking)
510 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
511 	if (*flags & FOLL_NOWAIT)
512 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
513 	if (*flags & FOLL_TRIED) {
514 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
515 		fault_flags |= FAULT_FLAG_TRIED;
516 	}
517 
518 	ret = handle_mm_fault(vma, address, fault_flags);
519 	if (ret & VM_FAULT_ERROR) {
520 		int err = vm_fault_to_errno(ret, *flags);
521 
522 		if (err)
523 			return err;
524 		BUG();
525 	}
526 
527 	if (tsk) {
528 		if (ret & VM_FAULT_MAJOR)
529 			tsk->maj_flt++;
530 		else
531 			tsk->min_flt++;
532 	}
533 
534 	if (ret & VM_FAULT_RETRY) {
535 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
536 			*nonblocking = 0;
537 		return -EBUSY;
538 	}
539 
540 	/*
541 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
542 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
543 	 * can thus safely do subsequent page lookups as if they were reads.
544 	 * But only do so when looping for pte_write is futile: in some cases
545 	 * userspace may also be wanting to write to the gotten user page,
546 	 * which a read fault here might prevent (a readonly page might get
547 	 * reCOWed by userspace write).
548 	 */
549 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
550 		*flags |= FOLL_COW;
551 	return 0;
552 }
553 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)554 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
555 {
556 	vm_flags_t vm_flags = vma->vm_flags;
557 	int write = (gup_flags & FOLL_WRITE);
558 	int foreign = (gup_flags & FOLL_REMOTE);
559 
560 	if (vm_flags & (VM_IO | VM_PFNMAP))
561 		return -EFAULT;
562 
563 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
564 		return -EFAULT;
565 
566 	if (write) {
567 		if (!(vm_flags & VM_WRITE)) {
568 			if (!(gup_flags & FOLL_FORCE))
569 				return -EFAULT;
570 			/*
571 			 * We used to let the write,force case do COW in a
572 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
573 			 * set a breakpoint in a read-only mapping of an
574 			 * executable, without corrupting the file (yet only
575 			 * when that file had been opened for writing!).
576 			 * Anon pages in shared mappings are surprising: now
577 			 * just reject it.
578 			 */
579 			if (!is_cow_mapping(vm_flags))
580 				return -EFAULT;
581 		}
582 	} else if (!(vm_flags & VM_READ)) {
583 		if (!(gup_flags & FOLL_FORCE))
584 			return -EFAULT;
585 		/*
586 		 * Is there actually any vma we can reach here which does not
587 		 * have VM_MAYREAD set?
588 		 */
589 		if (!(vm_flags & VM_MAYREAD))
590 			return -EFAULT;
591 	}
592 	/*
593 	 * gups are always data accesses, not instruction
594 	 * fetches, so execute=false here
595 	 */
596 	if (!arch_vma_access_permitted(vma, write, false, foreign))
597 		return -EFAULT;
598 	return 0;
599 }
600 
601 /**
602  * __get_user_pages() - pin user pages in memory
603  * @tsk:	task_struct of target task
604  * @mm:		mm_struct of target mm
605  * @start:	starting user address
606  * @nr_pages:	number of pages from start to pin
607  * @gup_flags:	flags modifying pin behaviour
608  * @pages:	array that receives pointers to the pages pinned.
609  *		Should be at least nr_pages long. Or NULL, if caller
610  *		only intends to ensure the pages are faulted in.
611  * @vmas:	array of pointers to vmas corresponding to each page.
612  *		Or NULL if the caller does not require them.
613  * @nonblocking: whether waiting for disk IO or mmap_sem contention
614  *
615  * Returns number of pages pinned. This may be fewer than the number
616  * requested. If nr_pages is 0 or negative, returns 0. If no pages
617  * were pinned, returns -errno. Each page returned must be released
618  * with a put_page() call when it is finished with. vmas will only
619  * remain valid while mmap_sem is held.
620  *
621  * Must be called with mmap_sem held.  It may be released.  See below.
622  *
623  * __get_user_pages walks a process's page tables and takes a reference to
624  * each struct page that each user address corresponds to at a given
625  * instant. That is, it takes the page that would be accessed if a user
626  * thread accesses the given user virtual address at that instant.
627  *
628  * This does not guarantee that the page exists in the user mappings when
629  * __get_user_pages returns, and there may even be a completely different
630  * page there in some cases (eg. if mmapped pagecache has been invalidated
631  * and subsequently re faulted). However it does guarantee that the page
632  * won't be freed completely. And mostly callers simply care that the page
633  * contains data that was valid *at some point in time*. Typically, an IO
634  * or similar operation cannot guarantee anything stronger anyway because
635  * locks can't be held over the syscall boundary.
636  *
637  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
638  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
639  * appropriate) must be called after the page is finished with, and
640  * before put_page is called.
641  *
642  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
643  * or mmap_sem contention, and if waiting is needed to pin all pages,
644  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
645  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
646  * this case.
647  *
648  * A caller using such a combination of @nonblocking and @gup_flags
649  * must therefore hold the mmap_sem for reading only, and recognize
650  * when it's been released.  Otherwise, it must be held for either
651  * reading or writing and will not be released.
652  *
653  * In most cases, get_user_pages or get_user_pages_fast should be used
654  * instead of __get_user_pages. __get_user_pages should be used only if
655  * you need some special @gup_flags.
656  */
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * nonblocking)657 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
658 		unsigned long start, unsigned long nr_pages,
659 		unsigned int gup_flags, struct page **pages,
660 		struct vm_area_struct **vmas, int *nonblocking)
661 {
662 	long i = 0;
663 	unsigned int page_mask;
664 	struct vm_area_struct *vma = NULL;
665 
666 	if (!nr_pages)
667 		return 0;
668 
669 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
670 
671 	/*
672 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
673 	 * fault information is unrelated to the reference behaviour of a task
674 	 * using the address space
675 	 */
676 	if (!(gup_flags & FOLL_FORCE))
677 		gup_flags |= FOLL_NUMA;
678 
679 	do {
680 		struct page *page;
681 		unsigned int foll_flags = gup_flags;
682 		unsigned int page_increm;
683 
684 		/* first iteration or cross vma bound */
685 		if (!vma || start >= vma->vm_end) {
686 			vma = find_extend_vma(mm, start);
687 			if (!vma && in_gate_area(mm, start)) {
688 				int ret;
689 				ret = get_gate_page(mm, start & PAGE_MASK,
690 						gup_flags, &vma,
691 						pages ? &pages[i] : NULL);
692 				if (ret)
693 					return i ? : ret;
694 				page_mask = 0;
695 				goto next_page;
696 			}
697 
698 			if (!vma || check_vma_flags(vma, gup_flags))
699 				return i ? : -EFAULT;
700 			if (is_vm_hugetlb_page(vma)) {
701 				i = follow_hugetlb_page(mm, vma, pages, vmas,
702 						&start, &nr_pages, i,
703 						gup_flags, nonblocking);
704 				continue;
705 			}
706 		}
707 retry:
708 		/*
709 		 * If we have a pending SIGKILL, don't keep faulting pages and
710 		 * potentially allocating memory.
711 		 */
712 		if (unlikely(fatal_signal_pending(current)))
713 			return i ? i : -ERESTARTSYS;
714 		cond_resched();
715 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
716 		if (!page) {
717 			int ret;
718 			ret = faultin_page(tsk, vma, start, &foll_flags,
719 					nonblocking);
720 			switch (ret) {
721 			case 0:
722 				goto retry;
723 			case -EFAULT:
724 			case -ENOMEM:
725 			case -EHWPOISON:
726 				return i ? i : ret;
727 			case -EBUSY:
728 				return i;
729 			case -ENOENT:
730 				goto next_page;
731 			}
732 			BUG();
733 		} else if (PTR_ERR(page) == -EEXIST) {
734 			/*
735 			 * Proper page table entry exists, but no corresponding
736 			 * struct page.
737 			 */
738 			goto next_page;
739 		} else if (IS_ERR(page)) {
740 			return i ? i : PTR_ERR(page);
741 		}
742 		if (pages) {
743 			pages[i] = page;
744 			flush_anon_page(vma, page, start);
745 			flush_dcache_page(page);
746 			page_mask = 0;
747 		}
748 next_page:
749 		if (vmas) {
750 			vmas[i] = vma;
751 			page_mask = 0;
752 		}
753 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
754 		if (page_increm > nr_pages)
755 			page_increm = nr_pages;
756 		i += page_increm;
757 		start += page_increm * PAGE_SIZE;
758 		nr_pages -= page_increm;
759 	} while (nr_pages);
760 	return i;
761 }
762 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)763 static bool vma_permits_fault(struct vm_area_struct *vma,
764 			      unsigned int fault_flags)
765 {
766 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
767 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
768 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
769 
770 	if (!(vm_flags & vma->vm_flags))
771 		return false;
772 
773 	/*
774 	 * The architecture might have a hardware protection
775 	 * mechanism other than read/write that can deny access.
776 	 *
777 	 * gup always represents data access, not instruction
778 	 * fetches, so execute=false here:
779 	 */
780 	if (!arch_vma_access_permitted(vma, write, false, foreign))
781 		return false;
782 
783 	return true;
784 }
785 
786 /*
787  * fixup_user_fault() - manually resolve a user page fault
788  * @tsk:	the task_struct to use for page fault accounting, or
789  *		NULL if faults are not to be recorded.
790  * @mm:		mm_struct of target mm
791  * @address:	user address
792  * @fault_flags:flags to pass down to handle_mm_fault()
793  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
794  *		does not allow retry
795  *
796  * This is meant to be called in the specific scenario where for locking reasons
797  * we try to access user memory in atomic context (within a pagefault_disable()
798  * section), this returns -EFAULT, and we want to resolve the user fault before
799  * trying again.
800  *
801  * Typically this is meant to be used by the futex code.
802  *
803  * The main difference with get_user_pages() is that this function will
804  * unconditionally call handle_mm_fault() which will in turn perform all the
805  * necessary SW fixup of the dirty and young bits in the PTE, while
806  * get_user_pages() only guarantees to update these in the struct page.
807  *
808  * This is important for some architectures where those bits also gate the
809  * access permission to the page because they are maintained in software.  On
810  * such architectures, gup() will not be enough to make a subsequent access
811  * succeed.
812  *
813  * This function will not return with an unlocked mmap_sem. So it has not the
814  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
815  */
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)816 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
817 		     unsigned long address, unsigned int fault_flags,
818 		     bool *unlocked)
819 {
820 	struct vm_area_struct *vma;
821 	vm_fault_t ret, major = 0;
822 
823 	if (unlocked)
824 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
825 
826 retry:
827 	vma = find_extend_vma(mm, address);
828 	if (!vma || address < vma->vm_start)
829 		return -EFAULT;
830 
831 	if (!vma_permits_fault(vma, fault_flags))
832 		return -EFAULT;
833 
834 	ret = handle_mm_fault(vma, address, fault_flags);
835 	major |= ret & VM_FAULT_MAJOR;
836 	if (ret & VM_FAULT_ERROR) {
837 		int err = vm_fault_to_errno(ret, 0);
838 
839 		if (err)
840 			return err;
841 		BUG();
842 	}
843 
844 	if (ret & VM_FAULT_RETRY) {
845 		down_read(&mm->mmap_sem);
846 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
847 			*unlocked = true;
848 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
849 			fault_flags |= FAULT_FLAG_TRIED;
850 			goto retry;
851 		}
852 	}
853 
854 	if (tsk) {
855 		if (major)
856 			tsk->maj_flt++;
857 		else
858 			tsk->min_flt++;
859 	}
860 	return 0;
861 }
862 EXPORT_SYMBOL_GPL(fixup_user_fault);
863 
__get_user_pages_locked(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)864 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
865 						struct mm_struct *mm,
866 						unsigned long start,
867 						unsigned long nr_pages,
868 						struct page **pages,
869 						struct vm_area_struct **vmas,
870 						int *locked,
871 						unsigned int flags)
872 {
873 	long ret, pages_done;
874 	bool lock_dropped;
875 
876 	if (locked) {
877 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
878 		BUG_ON(vmas);
879 		/* check caller initialized locked */
880 		BUG_ON(*locked != 1);
881 	}
882 
883 	if (pages)
884 		flags |= FOLL_GET;
885 
886 	pages_done = 0;
887 	lock_dropped = false;
888 	for (;;) {
889 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
890 				       vmas, locked);
891 		if (!locked)
892 			/* VM_FAULT_RETRY couldn't trigger, bypass */
893 			return ret;
894 
895 		/* VM_FAULT_RETRY cannot return errors */
896 		if (!*locked) {
897 			BUG_ON(ret < 0);
898 			BUG_ON(ret >= nr_pages);
899 		}
900 
901 		if (!pages)
902 			/* If it's a prefault don't insist harder */
903 			return ret;
904 
905 		if (ret > 0) {
906 			nr_pages -= ret;
907 			pages_done += ret;
908 			if (!nr_pages)
909 				break;
910 		}
911 		if (*locked) {
912 			/*
913 			 * VM_FAULT_RETRY didn't trigger or it was a
914 			 * FOLL_NOWAIT.
915 			 */
916 			if (!pages_done)
917 				pages_done = ret;
918 			break;
919 		}
920 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
921 		pages += ret;
922 		start += ret << PAGE_SHIFT;
923 
924 		/*
925 		 * Repeat on the address that fired VM_FAULT_RETRY
926 		 * without FAULT_FLAG_ALLOW_RETRY but with
927 		 * FAULT_FLAG_TRIED.
928 		 */
929 		*locked = 1;
930 		lock_dropped = true;
931 		down_read(&mm->mmap_sem);
932 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
933 				       pages, NULL, NULL);
934 		if (ret != 1) {
935 			BUG_ON(ret > 1);
936 			if (!pages_done)
937 				pages_done = ret;
938 			break;
939 		}
940 		nr_pages--;
941 		pages_done++;
942 		if (!nr_pages)
943 			break;
944 		pages++;
945 		start += PAGE_SIZE;
946 	}
947 	if (lock_dropped && *locked) {
948 		/*
949 		 * We must let the caller know we temporarily dropped the lock
950 		 * and so the critical section protected by it was lost.
951 		 */
952 		up_read(&mm->mmap_sem);
953 		*locked = 0;
954 	}
955 	return pages_done;
956 }
957 
958 /*
959  * We can leverage the VM_FAULT_RETRY functionality in the page fault
960  * paths better by using either get_user_pages_locked() or
961  * get_user_pages_unlocked().
962  *
963  * get_user_pages_locked() is suitable to replace the form:
964  *
965  *      down_read(&mm->mmap_sem);
966  *      do_something()
967  *      get_user_pages(tsk, mm, ..., pages, NULL);
968  *      up_read(&mm->mmap_sem);
969  *
970  *  to:
971  *
972  *      int locked = 1;
973  *      down_read(&mm->mmap_sem);
974  *      do_something()
975  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
976  *      if (locked)
977  *          up_read(&mm->mmap_sem);
978  */
get_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)979 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
980 			   unsigned int gup_flags, struct page **pages,
981 			   int *locked)
982 {
983 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
984 				       pages, NULL, locked,
985 				       gup_flags | FOLL_TOUCH);
986 }
987 EXPORT_SYMBOL(get_user_pages_locked);
988 
989 /*
990  * get_user_pages_unlocked() is suitable to replace the form:
991  *
992  *      down_read(&mm->mmap_sem);
993  *      get_user_pages(tsk, mm, ..., pages, NULL);
994  *      up_read(&mm->mmap_sem);
995  *
996  *  with:
997  *
998  *      get_user_pages_unlocked(tsk, mm, ..., pages);
999  *
1000  * It is functionally equivalent to get_user_pages_fast so
1001  * get_user_pages_fast should be used instead if specific gup_flags
1002  * (e.g. FOLL_FORCE) are not required.
1003  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1004 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1005 			     struct page **pages, unsigned int gup_flags)
1006 {
1007 	struct mm_struct *mm = current->mm;
1008 	int locked = 1;
1009 	long ret;
1010 
1011 	down_read(&mm->mmap_sem);
1012 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1013 				      &locked, gup_flags | FOLL_TOUCH);
1014 	if (locked)
1015 		up_read(&mm->mmap_sem);
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(get_user_pages_unlocked);
1019 
1020 /*
1021  * get_user_pages_remote() - pin user pages in memory
1022  * @tsk:	the task_struct to use for page fault accounting, or
1023  *		NULL if faults are not to be recorded.
1024  * @mm:		mm_struct of target mm
1025  * @start:	starting user address
1026  * @nr_pages:	number of pages from start to pin
1027  * @gup_flags:	flags modifying lookup behaviour
1028  * @pages:	array that receives pointers to the pages pinned.
1029  *		Should be at least nr_pages long. Or NULL, if caller
1030  *		only intends to ensure the pages are faulted in.
1031  * @vmas:	array of pointers to vmas corresponding to each page.
1032  *		Or NULL if the caller does not require them.
1033  * @locked:	pointer to lock flag indicating whether lock is held and
1034  *		subsequently whether VM_FAULT_RETRY functionality can be
1035  *		utilised. Lock must initially be held.
1036  *
1037  * Returns number of pages pinned. This may be fewer than the number
1038  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1039  * were pinned, returns -errno. Each page returned must be released
1040  * with a put_page() call when it is finished with. vmas will only
1041  * remain valid while mmap_sem is held.
1042  *
1043  * Must be called with mmap_sem held for read or write.
1044  *
1045  * get_user_pages walks a process's page tables and takes a reference to
1046  * each struct page that each user address corresponds to at a given
1047  * instant. That is, it takes the page that would be accessed if a user
1048  * thread accesses the given user virtual address at that instant.
1049  *
1050  * This does not guarantee that the page exists in the user mappings when
1051  * get_user_pages returns, and there may even be a completely different
1052  * page there in some cases (eg. if mmapped pagecache has been invalidated
1053  * and subsequently re faulted). However it does guarantee that the page
1054  * won't be freed completely. And mostly callers simply care that the page
1055  * contains data that was valid *at some point in time*. Typically, an IO
1056  * or similar operation cannot guarantee anything stronger anyway because
1057  * locks can't be held over the syscall boundary.
1058  *
1059  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1060  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1061  * be called after the page is finished with, and before put_page is called.
1062  *
1063  * get_user_pages is typically used for fewer-copy IO operations, to get a
1064  * handle on the memory by some means other than accesses via the user virtual
1065  * addresses. The pages may be submitted for DMA to devices or accessed via
1066  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1067  * use the correct cache flushing APIs.
1068  *
1069  * See also get_user_pages_fast, for performance critical applications.
1070  *
1071  * get_user_pages should be phased out in favor of
1072  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1073  * should use get_user_pages because it cannot pass
1074  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1075  */
get_user_pages_remote(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1076 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1077 		unsigned long start, unsigned long nr_pages,
1078 		unsigned int gup_flags, struct page **pages,
1079 		struct vm_area_struct **vmas, int *locked)
1080 {
1081 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1082 				       locked,
1083 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1084 }
1085 EXPORT_SYMBOL(get_user_pages_remote);
1086 
1087 /*
1088  * This is the same as get_user_pages_remote(), just with a
1089  * less-flexible calling convention where we assume that the task
1090  * and mm being operated on are the current task's and don't allow
1091  * passing of a locked parameter.  We also obviously don't pass
1092  * FOLL_REMOTE in here.
1093  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1094 long get_user_pages(unsigned long start, unsigned long nr_pages,
1095 		unsigned int gup_flags, struct page **pages,
1096 		struct vm_area_struct **vmas)
1097 {
1098 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1099 				       pages, vmas, NULL,
1100 				       gup_flags | FOLL_TOUCH);
1101 }
1102 EXPORT_SYMBOL(get_user_pages);
1103 
1104 #ifdef CONFIG_FS_DAX
1105 /*
1106  * This is the same as get_user_pages() in that it assumes we are
1107  * operating on the current task's mm, but it goes further to validate
1108  * that the vmas associated with the address range are suitable for
1109  * longterm elevated page reference counts. For example, filesystem-dax
1110  * mappings are subject to the lifetime enforced by the filesystem and
1111  * we need guarantees that longterm users like RDMA and V4L2 only
1112  * establish mappings that have a kernel enforced revocation mechanism.
1113  *
1114  * "longterm" == userspace controlled elevated page count lifetime.
1115  * Contrast this to iov_iter_get_pages() usages which are transient.
1116  */
get_user_pages_longterm(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas_arg)1117 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1118 		unsigned int gup_flags, struct page **pages,
1119 		struct vm_area_struct **vmas_arg)
1120 {
1121 	struct vm_area_struct **vmas = vmas_arg;
1122 	struct vm_area_struct *vma_prev = NULL;
1123 	long rc, i;
1124 
1125 	if (!pages)
1126 		return -EINVAL;
1127 
1128 	if (!vmas) {
1129 		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1130 			       GFP_KERNEL);
1131 		if (!vmas)
1132 			return -ENOMEM;
1133 	}
1134 
1135 	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1136 
1137 	for (i = 0; i < rc; i++) {
1138 		struct vm_area_struct *vma = vmas[i];
1139 
1140 		if (vma == vma_prev)
1141 			continue;
1142 
1143 		vma_prev = vma;
1144 
1145 		if (vma_is_fsdax(vma))
1146 			break;
1147 	}
1148 
1149 	/*
1150 	 * Either get_user_pages() failed, or the vma validation
1151 	 * succeeded, in either case we don't need to put_page() before
1152 	 * returning.
1153 	 */
1154 	if (i >= rc)
1155 		goto out;
1156 
1157 	for (i = 0; i < rc; i++)
1158 		put_page(pages[i]);
1159 	rc = -EOPNOTSUPP;
1160 out:
1161 	if (vmas != vmas_arg)
1162 		kfree(vmas);
1163 	return rc;
1164 }
1165 EXPORT_SYMBOL(get_user_pages_longterm);
1166 #endif /* CONFIG_FS_DAX */
1167 
1168 /**
1169  * populate_vma_page_range() -  populate a range of pages in the vma.
1170  * @vma:   target vma
1171  * @start: start address
1172  * @end:   end address
1173  * @nonblocking:
1174  *
1175  * This takes care of mlocking the pages too if VM_LOCKED is set.
1176  *
1177  * return 0 on success, negative error code on error.
1178  *
1179  * vma->vm_mm->mmap_sem must be held.
1180  *
1181  * If @nonblocking is NULL, it may be held for read or write and will
1182  * be unperturbed.
1183  *
1184  * If @nonblocking is non-NULL, it must held for read only and may be
1185  * released.  If it's released, *@nonblocking will be set to 0.
1186  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * nonblocking)1187 long populate_vma_page_range(struct vm_area_struct *vma,
1188 		unsigned long start, unsigned long end, int *nonblocking)
1189 {
1190 	struct mm_struct *mm = vma->vm_mm;
1191 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1192 	int gup_flags;
1193 
1194 	VM_BUG_ON(start & ~PAGE_MASK);
1195 	VM_BUG_ON(end   & ~PAGE_MASK);
1196 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1197 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1198 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1199 
1200 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1201 	if (vma->vm_flags & VM_LOCKONFAULT)
1202 		gup_flags &= ~FOLL_POPULATE;
1203 	/*
1204 	 * We want to touch writable mappings with a write fault in order
1205 	 * to break COW, except for shared mappings because these don't COW
1206 	 * and we would not want to dirty them for nothing.
1207 	 */
1208 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1209 		gup_flags |= FOLL_WRITE;
1210 
1211 	/*
1212 	 * We want mlock to succeed for regions that have any permissions
1213 	 * other than PROT_NONE.
1214 	 */
1215 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1216 		gup_flags |= FOLL_FORCE;
1217 
1218 	/*
1219 	 * We made sure addr is within a VMA, so the following will
1220 	 * not result in a stack expansion that recurses back here.
1221 	 */
1222 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1223 				NULL, NULL, nonblocking);
1224 }
1225 
1226 /*
1227  * __mm_populate - populate and/or mlock pages within a range of address space.
1228  *
1229  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1230  * flags. VMAs must be already marked with the desired vm_flags, and
1231  * mmap_sem must not be held.
1232  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1233 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1234 {
1235 	struct mm_struct *mm = current->mm;
1236 	unsigned long end, nstart, nend;
1237 	struct vm_area_struct *vma = NULL;
1238 	int locked = 0;
1239 	long ret = 0;
1240 
1241 	end = start + len;
1242 
1243 	for (nstart = start; nstart < end; nstart = nend) {
1244 		/*
1245 		 * We want to fault in pages for [nstart; end) address range.
1246 		 * Find first corresponding VMA.
1247 		 */
1248 		if (!locked) {
1249 			locked = 1;
1250 			down_read(&mm->mmap_sem);
1251 			vma = find_vma(mm, nstart);
1252 		} else if (nstart >= vma->vm_end)
1253 			vma = vma->vm_next;
1254 		if (!vma || vma->vm_start >= end)
1255 			break;
1256 		/*
1257 		 * Set [nstart; nend) to intersection of desired address
1258 		 * range with the first VMA. Also, skip undesirable VMA types.
1259 		 */
1260 		nend = min(end, vma->vm_end);
1261 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1262 			continue;
1263 		if (nstart < vma->vm_start)
1264 			nstart = vma->vm_start;
1265 		/*
1266 		 * Now fault in a range of pages. populate_vma_page_range()
1267 		 * double checks the vma flags, so that it won't mlock pages
1268 		 * if the vma was already munlocked.
1269 		 */
1270 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1271 		if (ret < 0) {
1272 			if (ignore_errors) {
1273 				ret = 0;
1274 				continue;	/* continue at next VMA */
1275 			}
1276 			break;
1277 		}
1278 		nend = nstart + ret * PAGE_SIZE;
1279 		ret = 0;
1280 	}
1281 	if (locked)
1282 		up_read(&mm->mmap_sem);
1283 	return ret;	/* 0 or negative error code */
1284 }
1285 
1286 /**
1287  * get_dump_page() - pin user page in memory while writing it to core dump
1288  * @addr: user address
1289  *
1290  * Returns struct page pointer of user page pinned for dump,
1291  * to be freed afterwards by put_page().
1292  *
1293  * Returns NULL on any kind of failure - a hole must then be inserted into
1294  * the corefile, to preserve alignment with its headers; and also returns
1295  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1296  * allowing a hole to be left in the corefile to save diskspace.
1297  *
1298  * Called without mmap_sem, but after all other threads have been killed.
1299  */
1300 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1301 struct page *get_dump_page(unsigned long addr)
1302 {
1303 	struct vm_area_struct *vma;
1304 	struct page *page;
1305 
1306 	if (__get_user_pages(current, current->mm, addr, 1,
1307 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1308 			     NULL) < 1)
1309 		return NULL;
1310 	flush_cache_page(vma, addr, page_to_pfn(page));
1311 	return page;
1312 }
1313 #endif /* CONFIG_ELF_CORE */
1314 
1315 /*
1316  * Generic Fast GUP
1317  *
1318  * get_user_pages_fast attempts to pin user pages by walking the page
1319  * tables directly and avoids taking locks. Thus the walker needs to be
1320  * protected from page table pages being freed from under it, and should
1321  * block any THP splits.
1322  *
1323  * One way to achieve this is to have the walker disable interrupts, and
1324  * rely on IPIs from the TLB flushing code blocking before the page table
1325  * pages are freed. This is unsuitable for architectures that do not need
1326  * to broadcast an IPI when invalidating TLBs.
1327  *
1328  * Another way to achieve this is to batch up page table containing pages
1329  * belonging to more than one mm_user, then rcu_sched a callback to free those
1330  * pages. Disabling interrupts will allow the fast_gup walker to both block
1331  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1332  * (which is a relatively rare event). The code below adopts this strategy.
1333  *
1334  * Before activating this code, please be aware that the following assumptions
1335  * are currently made:
1336  *
1337  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1338  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1339  *
1340  *  *) ptes can be read atomically by the architecture.
1341  *
1342  *  *) access_ok is sufficient to validate userspace address ranges.
1343  *
1344  * The last two assumptions can be relaxed by the addition of helper functions.
1345  *
1346  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1347  */
1348 #ifdef CONFIG_HAVE_GENERIC_GUP
1349 
1350 #ifndef gup_get_pte
1351 /*
1352  * We assume that the PTE can be read atomically. If this is not the case for
1353  * your architecture, please provide the helper.
1354  */
gup_get_pte(pte_t * ptep)1355 static inline pte_t gup_get_pte(pte_t *ptep)
1356 {
1357 	return READ_ONCE(*ptep);
1358 }
1359 #endif
1360 
undo_dev_pagemap(int * nr,int nr_start,struct page ** pages)1361 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1362 {
1363 	while ((*nr) - nr_start) {
1364 		struct page *page = pages[--(*nr)];
1365 
1366 		ClearPageReferenced(page);
1367 		put_page(page);
1368 	}
1369 }
1370 
1371 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1372 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1373 			 int write, struct page **pages, int *nr)
1374 {
1375 	struct dev_pagemap *pgmap = NULL;
1376 	int nr_start = *nr, ret = 0;
1377 	pte_t *ptep, *ptem;
1378 
1379 	ptem = ptep = pte_offset_map(&pmd, addr);
1380 	do {
1381 		pte_t pte = gup_get_pte(ptep);
1382 		struct page *head, *page;
1383 
1384 		/*
1385 		 * Similar to the PMD case below, NUMA hinting must take slow
1386 		 * path using the pte_protnone check.
1387 		 */
1388 		if (pte_protnone(pte))
1389 			goto pte_unmap;
1390 
1391 		if (!pte_access_permitted(pte, write))
1392 			goto pte_unmap;
1393 
1394 		if (pte_devmap(pte)) {
1395 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1396 			if (unlikely(!pgmap)) {
1397 				undo_dev_pagemap(nr, nr_start, pages);
1398 				goto pte_unmap;
1399 			}
1400 		} else if (pte_special(pte))
1401 			goto pte_unmap;
1402 
1403 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1404 		page = pte_page(pte);
1405 		head = compound_head(page);
1406 
1407 		if (!page_cache_get_speculative(head))
1408 			goto pte_unmap;
1409 
1410 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1411 			put_page(head);
1412 			goto pte_unmap;
1413 		}
1414 
1415 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1416 
1417 		SetPageReferenced(page);
1418 		pages[*nr] = page;
1419 		(*nr)++;
1420 
1421 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1422 
1423 	ret = 1;
1424 
1425 pte_unmap:
1426 	if (pgmap)
1427 		put_dev_pagemap(pgmap);
1428 	pte_unmap(ptem);
1429 	return ret;
1430 }
1431 #else
1432 
1433 /*
1434  * If we can't determine whether or not a pte is special, then fail immediately
1435  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1436  * to be special.
1437  *
1438  * For a futex to be placed on a THP tail page, get_futex_key requires a
1439  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1440  * useful to have gup_huge_pmd even if we can't operate on ptes.
1441  */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1442 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1443 			 int write, struct page **pages, int *nr)
1444 {
1445 	return 0;
1446 }
1447 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1448 
1449 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1450 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1451 		unsigned long end, struct page **pages, int *nr)
1452 {
1453 	int nr_start = *nr;
1454 	struct dev_pagemap *pgmap = NULL;
1455 
1456 	do {
1457 		struct page *page = pfn_to_page(pfn);
1458 
1459 		pgmap = get_dev_pagemap(pfn, pgmap);
1460 		if (unlikely(!pgmap)) {
1461 			undo_dev_pagemap(nr, nr_start, pages);
1462 			return 0;
1463 		}
1464 		SetPageReferenced(page);
1465 		pages[*nr] = page;
1466 		get_page(page);
1467 		(*nr)++;
1468 		pfn++;
1469 	} while (addr += PAGE_SIZE, addr != end);
1470 
1471 	if (pgmap)
1472 		put_dev_pagemap(pgmap);
1473 	return 1;
1474 }
1475 
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1476 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1477 		unsigned long end, struct page **pages, int *nr)
1478 {
1479 	unsigned long fault_pfn;
1480 	int nr_start = *nr;
1481 
1482 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1483 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1484 		return 0;
1485 
1486 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1487 		undo_dev_pagemap(nr, nr_start, pages);
1488 		return 0;
1489 	}
1490 	return 1;
1491 }
1492 
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1493 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1494 		unsigned long end, struct page **pages, int *nr)
1495 {
1496 	unsigned long fault_pfn;
1497 	int nr_start = *nr;
1498 
1499 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1500 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1501 		return 0;
1502 
1503 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1504 		undo_dev_pagemap(nr, nr_start, pages);
1505 		return 0;
1506 	}
1507 	return 1;
1508 }
1509 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1510 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1511 		unsigned long end, struct page **pages, int *nr)
1512 {
1513 	BUILD_BUG();
1514 	return 0;
1515 }
1516 
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,struct page ** pages,int * nr)1517 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1518 		unsigned long end, struct page **pages, int *nr)
1519 {
1520 	BUILD_BUG();
1521 	return 0;
1522 }
1523 #endif
1524 
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1525 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1526 		unsigned long end, int write, struct page **pages, int *nr)
1527 {
1528 	struct page *head, *page;
1529 	int refs;
1530 
1531 	if (!pmd_access_permitted(orig, write))
1532 		return 0;
1533 
1534 	if (pmd_devmap(orig))
1535 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1536 
1537 	refs = 0;
1538 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1539 	do {
1540 		pages[*nr] = page;
1541 		(*nr)++;
1542 		page++;
1543 		refs++;
1544 	} while (addr += PAGE_SIZE, addr != end);
1545 
1546 	head = compound_head(pmd_page(orig));
1547 	if (!page_cache_add_speculative(head, refs)) {
1548 		*nr -= refs;
1549 		return 0;
1550 	}
1551 
1552 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1553 		*nr -= refs;
1554 		while (refs--)
1555 			put_page(head);
1556 		return 0;
1557 	}
1558 
1559 	SetPageReferenced(head);
1560 	return 1;
1561 }
1562 
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1563 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1564 		unsigned long end, int write, struct page **pages, int *nr)
1565 {
1566 	struct page *head, *page;
1567 	int refs;
1568 
1569 	if (!pud_access_permitted(orig, write))
1570 		return 0;
1571 
1572 	if (pud_devmap(orig))
1573 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1574 
1575 	refs = 0;
1576 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1577 	do {
1578 		pages[*nr] = page;
1579 		(*nr)++;
1580 		page++;
1581 		refs++;
1582 	} while (addr += PAGE_SIZE, addr != end);
1583 
1584 	head = compound_head(pud_page(orig));
1585 	if (!page_cache_add_speculative(head, refs)) {
1586 		*nr -= refs;
1587 		return 0;
1588 	}
1589 
1590 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1591 		*nr -= refs;
1592 		while (refs--)
1593 			put_page(head);
1594 		return 0;
1595 	}
1596 
1597 	SetPageReferenced(head);
1598 	return 1;
1599 }
1600 
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1601 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1602 			unsigned long end, int write,
1603 			struct page **pages, int *nr)
1604 {
1605 	int refs;
1606 	struct page *head, *page;
1607 
1608 	if (!pgd_access_permitted(orig, write))
1609 		return 0;
1610 
1611 	BUILD_BUG_ON(pgd_devmap(orig));
1612 	refs = 0;
1613 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1614 	do {
1615 		pages[*nr] = page;
1616 		(*nr)++;
1617 		page++;
1618 		refs++;
1619 	} while (addr += PAGE_SIZE, addr != end);
1620 
1621 	head = compound_head(pgd_page(orig));
1622 	if (!page_cache_add_speculative(head, refs)) {
1623 		*nr -= refs;
1624 		return 0;
1625 	}
1626 
1627 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1628 		*nr -= refs;
1629 		while (refs--)
1630 			put_page(head);
1631 		return 0;
1632 	}
1633 
1634 	SetPageReferenced(head);
1635 	return 1;
1636 }
1637 
gup_pmd_range(pud_t pud,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1638 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1639 		int write, struct page **pages, int *nr)
1640 {
1641 	unsigned long next;
1642 	pmd_t *pmdp;
1643 
1644 	pmdp = pmd_offset(&pud, addr);
1645 	do {
1646 		pmd_t pmd = READ_ONCE(*pmdp);
1647 
1648 		next = pmd_addr_end(addr, end);
1649 		if (!pmd_present(pmd))
1650 			return 0;
1651 
1652 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1653 			/*
1654 			 * NUMA hinting faults need to be handled in the GUP
1655 			 * slowpath for accounting purposes and so that they
1656 			 * can be serialised against THP migration.
1657 			 */
1658 			if (pmd_protnone(pmd))
1659 				return 0;
1660 
1661 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1662 				pages, nr))
1663 				return 0;
1664 
1665 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1666 			/*
1667 			 * architecture have different format for hugetlbfs
1668 			 * pmd format and THP pmd format
1669 			 */
1670 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1671 					 PMD_SHIFT, next, write, pages, nr))
1672 				return 0;
1673 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1674 			return 0;
1675 	} while (pmdp++, addr = next, addr != end);
1676 
1677 	return 1;
1678 }
1679 
gup_pud_range(p4d_t p4d,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1680 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1681 			 int write, struct page **pages, int *nr)
1682 {
1683 	unsigned long next;
1684 	pud_t *pudp;
1685 
1686 	pudp = pud_offset(&p4d, addr);
1687 	do {
1688 		pud_t pud = READ_ONCE(*pudp);
1689 
1690 		next = pud_addr_end(addr, end);
1691 		if (pud_none(pud))
1692 			return 0;
1693 		if (unlikely(pud_huge(pud))) {
1694 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1695 					  pages, nr))
1696 				return 0;
1697 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1698 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1699 					 PUD_SHIFT, next, write, pages, nr))
1700 				return 0;
1701 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1702 			return 0;
1703 	} while (pudp++, addr = next, addr != end);
1704 
1705 	return 1;
1706 }
1707 
gup_p4d_range(pgd_t pgd,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1708 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1709 			 int write, struct page **pages, int *nr)
1710 {
1711 	unsigned long next;
1712 	p4d_t *p4dp;
1713 
1714 	p4dp = p4d_offset(&pgd, addr);
1715 	do {
1716 		p4d_t p4d = READ_ONCE(*p4dp);
1717 
1718 		next = p4d_addr_end(addr, end);
1719 		if (p4d_none(p4d))
1720 			return 0;
1721 		BUILD_BUG_ON(p4d_huge(p4d));
1722 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1723 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1724 					 P4D_SHIFT, next, write, pages, nr))
1725 				return 0;
1726 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1727 			return 0;
1728 	} while (p4dp++, addr = next, addr != end);
1729 
1730 	return 1;
1731 }
1732 
gup_pgd_range(unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)1733 static void gup_pgd_range(unsigned long addr, unsigned long end,
1734 		int write, struct page **pages, int *nr)
1735 {
1736 	unsigned long next;
1737 	pgd_t *pgdp;
1738 
1739 	pgdp = pgd_offset(current->mm, addr);
1740 	do {
1741 		pgd_t pgd = READ_ONCE(*pgdp);
1742 
1743 		next = pgd_addr_end(addr, end);
1744 		if (pgd_none(pgd))
1745 			return;
1746 		if (unlikely(pgd_huge(pgd))) {
1747 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1748 					  pages, nr))
1749 				return;
1750 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1751 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1752 					 PGDIR_SHIFT, next, write, pages, nr))
1753 				return;
1754 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1755 			return;
1756 	} while (pgdp++, addr = next, addr != end);
1757 }
1758 
1759 #ifndef gup_fast_permitted
1760 /*
1761  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1762  * we need to fall back to the slow version:
1763  */
gup_fast_permitted(unsigned long start,int nr_pages,int write)1764 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1765 {
1766 	unsigned long len, end;
1767 
1768 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1769 	end = start + len;
1770 	return end >= start;
1771 }
1772 #endif
1773 
1774 /*
1775  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1776  * the regular GUP.
1777  * Note a difference with get_user_pages_fast: this always returns the
1778  * number of pages pinned, 0 if no pages were pinned.
1779  */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)1780 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1781 			  struct page **pages)
1782 {
1783 	unsigned long addr, len, end;
1784 	unsigned long flags;
1785 	int nr = 0;
1786 
1787 	start &= PAGE_MASK;
1788 	addr = start;
1789 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1790 	end = start + len;
1791 
1792 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1793 					(void __user *)start, len)))
1794 		return 0;
1795 
1796 	/*
1797 	 * Disable interrupts.  We use the nested form as we can already have
1798 	 * interrupts disabled by get_futex_key.
1799 	 *
1800 	 * With interrupts disabled, we block page table pages from being
1801 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1802 	 * for more details.
1803 	 *
1804 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1805 	 * block IPIs that come from THPs splitting.
1806 	 */
1807 
1808 	if (gup_fast_permitted(start, nr_pages, write)) {
1809 		local_irq_save(flags);
1810 		gup_pgd_range(addr, end, write, pages, &nr);
1811 		local_irq_restore(flags);
1812 	}
1813 
1814 	return nr;
1815 }
1816 
1817 /**
1818  * get_user_pages_fast() - pin user pages in memory
1819  * @start:	starting user address
1820  * @nr_pages:	number of pages from start to pin
1821  * @write:	whether pages will be written to
1822  * @pages:	array that receives pointers to the pages pinned.
1823  *		Should be at least nr_pages long.
1824  *
1825  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1826  * If not successful, it will fall back to taking the lock and
1827  * calling get_user_pages().
1828  *
1829  * Returns number of pages pinned. This may be fewer than the number
1830  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1831  * were pinned, returns -errno.
1832  */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)1833 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1834 			struct page **pages)
1835 {
1836 	unsigned long addr, len, end;
1837 	int nr = 0, ret = 0;
1838 
1839 	start &= PAGE_MASK;
1840 	addr = start;
1841 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1842 	end = start + len;
1843 
1844 	if (nr_pages <= 0)
1845 		return 0;
1846 
1847 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1848 					(void __user *)start, len)))
1849 		return -EFAULT;
1850 
1851 	if (gup_fast_permitted(start, nr_pages, write)) {
1852 		local_irq_disable();
1853 		gup_pgd_range(addr, end, write, pages, &nr);
1854 		local_irq_enable();
1855 		ret = nr;
1856 	}
1857 
1858 	if (nr < nr_pages) {
1859 		/* Try to get the remaining pages with get_user_pages */
1860 		start += nr << PAGE_SHIFT;
1861 		pages += nr;
1862 
1863 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1864 				write ? FOLL_WRITE : 0);
1865 
1866 		/* Have to be a bit careful with return values */
1867 		if (nr > 0) {
1868 			if (ret < 0)
1869 				ret = nr;
1870 			else
1871 				ret += nr;
1872 		}
1873 	}
1874 
1875 	return ret;
1876 }
1877 
1878 #endif /* CONFIG_HAVE_GENERIC_GUP */
1879