1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 #include <asm/frame.h>
46
47 #include "process.h"
48
49 /*
50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
52 * so they are allowed to end up in the .data..cacheline_aligned
53 * section. Since TSS's are completely CPU-local, we want them
54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 .x86_tss = {
58 /*
59 * .sp0 is only used when entering ring 0 from a lower
60 * privilege level. Since the init task never runs anything
61 * but ring 0 code, there is no need for a valid value here.
62 * Poison it.
63 */
64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65
66 /*
67 * .sp1 is cpu_current_top_of_stack. The init task never
68 * runs user code, but cpu_current_top_of_stack should still
69 * be well defined before the first context switch.
70 */
71 .sp1 = TOP_OF_INIT_STACK,
72
73 #ifdef CONFIG_X86_32
74 .ss0 = __KERNEL_DS,
75 .ss1 = __KERNEL_CS,
76 #endif
77 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
78 },
79 };
80 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81
82 DEFINE_PER_CPU(bool, __tss_limit_invalid);
83 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84
85 /*
86 * this gets called so that we can store lazy state into memory and copy the
87 * current task into the new thread.
88 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 dst->thread.vm86 = NULL;
94 #endif
95
96 return fpu__copy(dst, src);
97 }
98
99 /*
100 * Free thread data structures etc..
101 */
exit_thread(struct task_struct * tsk)102 void exit_thread(struct task_struct *tsk)
103 {
104 struct thread_struct *t = &tsk->thread;
105 struct fpu *fpu = &t->fpu;
106
107 if (test_thread_flag(TIF_IO_BITMAP))
108 io_bitmap_exit(tsk);
109
110 free_vm86(t);
111
112 fpu__drop(fpu);
113 }
114
set_new_tls(struct task_struct * p,unsigned long tls)115 static int set_new_tls(struct task_struct *p, unsigned long tls)
116 {
117 struct user_desc __user *utls = (struct user_desc __user *)tls;
118
119 if (in_ia32_syscall())
120 return do_set_thread_area(p, -1, utls, 0);
121 else
122 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123 }
124
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)125 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126 struct task_struct *p, unsigned long tls)
127 {
128 struct inactive_task_frame *frame;
129 struct fork_frame *fork_frame;
130 struct pt_regs *childregs;
131 int ret = 0;
132
133 childregs = task_pt_regs(p);
134 fork_frame = container_of(childregs, struct fork_frame, regs);
135 frame = &fork_frame->frame;
136
137 frame->bp = encode_frame_pointer(childregs);
138 frame->ret_addr = (unsigned long) ret_from_fork;
139 p->thread.sp = (unsigned long) fork_frame;
140 p->thread.io_bitmap = NULL;
141 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143 #ifdef CONFIG_X86_64
144 current_save_fsgs();
145 p->thread.fsindex = current->thread.fsindex;
146 p->thread.fsbase = current->thread.fsbase;
147 p->thread.gsindex = current->thread.gsindex;
148 p->thread.gsbase = current->thread.gsbase;
149
150 savesegment(es, p->thread.es);
151 savesegment(ds, p->thread.ds);
152 #else
153 p->thread.sp0 = (unsigned long) (childregs + 1);
154 /*
155 * Clear all status flags including IF and set fixed bit. 64bit
156 * does not have this initialization as the frame does not contain
157 * flags. The flags consistency (especially vs. AC) is there
158 * ensured via objtool, which lacks 32bit support.
159 */
160 frame->flags = X86_EFLAGS_FIXED;
161 #endif
162
163 /* Kernel thread ? */
164 if (unlikely(p->flags & PF_KTHREAD)) {
165 memset(childregs, 0, sizeof(struct pt_regs));
166 kthread_frame_init(frame, sp, arg);
167 return 0;
168 }
169
170 frame->bx = 0;
171 *childregs = *current_pt_regs();
172 childregs->ax = 0;
173 if (sp)
174 childregs->sp = sp;
175
176 #ifdef CONFIG_X86_32
177 task_user_gs(p) = get_user_gs(current_pt_regs());
178 #endif
179
180 /* Set a new TLS for the child thread? */
181 if (clone_flags & CLONE_SETTLS)
182 ret = set_new_tls(p, tls);
183
184 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
185 io_bitmap_share(p);
186
187 return ret;
188 }
189
flush_thread(void)190 void flush_thread(void)
191 {
192 struct task_struct *tsk = current;
193
194 flush_ptrace_hw_breakpoint(tsk);
195 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
196
197 fpu__clear_all(&tsk->thread.fpu);
198 }
199
disable_TSC(void)200 void disable_TSC(void)
201 {
202 preempt_disable();
203 if (!test_and_set_thread_flag(TIF_NOTSC))
204 /*
205 * Must flip the CPU state synchronously with
206 * TIF_NOTSC in the current running context.
207 */
208 cr4_set_bits(X86_CR4_TSD);
209 preempt_enable();
210 }
211
enable_TSC(void)212 static void enable_TSC(void)
213 {
214 preempt_disable();
215 if (test_and_clear_thread_flag(TIF_NOTSC))
216 /*
217 * Must flip the CPU state synchronously with
218 * TIF_NOTSC in the current running context.
219 */
220 cr4_clear_bits(X86_CR4_TSD);
221 preempt_enable();
222 }
223
get_tsc_mode(unsigned long adr)224 int get_tsc_mode(unsigned long adr)
225 {
226 unsigned int val;
227
228 if (test_thread_flag(TIF_NOTSC))
229 val = PR_TSC_SIGSEGV;
230 else
231 val = PR_TSC_ENABLE;
232
233 return put_user(val, (unsigned int __user *)adr);
234 }
235
set_tsc_mode(unsigned int val)236 int set_tsc_mode(unsigned int val)
237 {
238 if (val == PR_TSC_SIGSEGV)
239 disable_TSC();
240 else if (val == PR_TSC_ENABLE)
241 enable_TSC();
242 else
243 return -EINVAL;
244
245 return 0;
246 }
247
248 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
249
set_cpuid_faulting(bool on)250 static void set_cpuid_faulting(bool on)
251 {
252 u64 msrval;
253
254 msrval = this_cpu_read(msr_misc_features_shadow);
255 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
256 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
257 this_cpu_write(msr_misc_features_shadow, msrval);
258 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259 }
260
disable_cpuid(void)261 static void disable_cpuid(void)
262 {
263 preempt_disable();
264 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
265 /*
266 * Must flip the CPU state synchronously with
267 * TIF_NOCPUID in the current running context.
268 */
269 set_cpuid_faulting(true);
270 }
271 preempt_enable();
272 }
273
enable_cpuid(void)274 static void enable_cpuid(void)
275 {
276 preempt_disable();
277 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
278 /*
279 * Must flip the CPU state synchronously with
280 * TIF_NOCPUID in the current running context.
281 */
282 set_cpuid_faulting(false);
283 }
284 preempt_enable();
285 }
286
get_cpuid_mode(void)287 static int get_cpuid_mode(void)
288 {
289 return !test_thread_flag(TIF_NOCPUID);
290 }
291
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)292 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
293 {
294 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
295 return -ENODEV;
296
297 if (cpuid_enabled)
298 enable_cpuid();
299 else
300 disable_cpuid();
301
302 return 0;
303 }
304
305 /*
306 * Called immediately after a successful exec.
307 */
arch_setup_new_exec(void)308 void arch_setup_new_exec(void)
309 {
310 /* If cpuid was previously disabled for this task, re-enable it. */
311 if (test_thread_flag(TIF_NOCPUID))
312 enable_cpuid();
313
314 /*
315 * Don't inherit TIF_SSBD across exec boundary when
316 * PR_SPEC_DISABLE_NOEXEC is used.
317 */
318 if (test_thread_flag(TIF_SSBD) &&
319 task_spec_ssb_noexec(current)) {
320 clear_thread_flag(TIF_SSBD);
321 task_clear_spec_ssb_disable(current);
322 task_clear_spec_ssb_noexec(current);
323 speculation_ctrl_update(task_thread_info(current)->flags);
324 }
325 }
326
327 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)328 static inline void switch_to_bitmap(unsigned long tifp)
329 {
330 /*
331 * Invalidate I/O bitmap if the previous task used it. This prevents
332 * any possible leakage of an active I/O bitmap.
333 *
334 * If the next task has an I/O bitmap it will handle it on exit to
335 * user mode.
336 */
337 if (tifp & _TIF_IO_BITMAP)
338 tss_invalidate_io_bitmap();
339 }
340
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)341 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
342 {
343 /*
344 * Copy at least the byte range of the incoming tasks bitmap which
345 * covers the permitted I/O ports.
346 *
347 * If the previous task which used an I/O bitmap had more bits
348 * permitted, then the copy needs to cover those as well so they
349 * get turned off.
350 */
351 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
352 max(tss->io_bitmap.prev_max, iobm->max));
353
354 /*
355 * Store the new max and the sequence number of this bitmap
356 * and a pointer to the bitmap itself.
357 */
358 tss->io_bitmap.prev_max = iobm->max;
359 tss->io_bitmap.prev_sequence = iobm->sequence;
360 }
361
362 /**
363 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
364 */
native_tss_update_io_bitmap(void)365 void native_tss_update_io_bitmap(void)
366 {
367 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
368 struct thread_struct *t = ¤t->thread;
369 u16 *base = &tss->x86_tss.io_bitmap_base;
370
371 if (!test_thread_flag(TIF_IO_BITMAP)) {
372 native_tss_invalidate_io_bitmap();
373 return;
374 }
375
376 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
377 *base = IO_BITMAP_OFFSET_VALID_ALL;
378 } else {
379 struct io_bitmap *iobm = t->io_bitmap;
380
381 /*
382 * Only copy bitmap data when the sequence number differs. The
383 * update time is accounted to the incoming task.
384 */
385 if (tss->io_bitmap.prev_sequence != iobm->sequence)
386 tss_copy_io_bitmap(tss, iobm);
387
388 /* Enable the bitmap */
389 *base = IO_BITMAP_OFFSET_VALID_MAP;
390 }
391
392 /*
393 * Make sure that the TSS limit is covering the IO bitmap. It might have
394 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
395 * access from user space to trigger a #GP because tbe bitmap is outside
396 * the TSS limit.
397 */
398 refresh_tss_limit();
399 }
400 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)401 static inline void switch_to_bitmap(unsigned long tifp) { }
402 #endif
403
404 #ifdef CONFIG_SMP
405
406 struct ssb_state {
407 struct ssb_state *shared_state;
408 raw_spinlock_t lock;
409 unsigned int disable_state;
410 unsigned long local_state;
411 };
412
413 #define LSTATE_SSB 0
414
415 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
416
speculative_store_bypass_ht_init(void)417 void speculative_store_bypass_ht_init(void)
418 {
419 struct ssb_state *st = this_cpu_ptr(&ssb_state);
420 unsigned int this_cpu = smp_processor_id();
421 unsigned int cpu;
422
423 st->local_state = 0;
424
425 /*
426 * Shared state setup happens once on the first bringup
427 * of the CPU. It's not destroyed on CPU hotunplug.
428 */
429 if (st->shared_state)
430 return;
431
432 raw_spin_lock_init(&st->lock);
433
434 /*
435 * Go over HT siblings and check whether one of them has set up the
436 * shared state pointer already.
437 */
438 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
439 if (cpu == this_cpu)
440 continue;
441
442 if (!per_cpu(ssb_state, cpu).shared_state)
443 continue;
444
445 /* Link it to the state of the sibling: */
446 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
447 return;
448 }
449
450 /*
451 * First HT sibling to come up on the core. Link shared state of
452 * the first HT sibling to itself. The siblings on the same core
453 * which come up later will see the shared state pointer and link
454 * themself to the state of this CPU.
455 */
456 st->shared_state = st;
457 }
458
459 /*
460 * Logic is: First HT sibling enables SSBD for both siblings in the core
461 * and last sibling to disable it, disables it for the whole core. This how
462 * MSR_SPEC_CTRL works in "hardware":
463 *
464 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
465 */
amd_set_core_ssb_state(unsigned long tifn)466 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
467 {
468 struct ssb_state *st = this_cpu_ptr(&ssb_state);
469 u64 msr = x86_amd_ls_cfg_base;
470
471 if (!static_cpu_has(X86_FEATURE_ZEN)) {
472 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
473 wrmsrl(MSR_AMD64_LS_CFG, msr);
474 return;
475 }
476
477 if (tifn & _TIF_SSBD) {
478 /*
479 * Since this can race with prctl(), block reentry on the
480 * same CPU.
481 */
482 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
483 return;
484
485 msr |= x86_amd_ls_cfg_ssbd_mask;
486
487 raw_spin_lock(&st->shared_state->lock);
488 /* First sibling enables SSBD: */
489 if (!st->shared_state->disable_state)
490 wrmsrl(MSR_AMD64_LS_CFG, msr);
491 st->shared_state->disable_state++;
492 raw_spin_unlock(&st->shared_state->lock);
493 } else {
494 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
495 return;
496
497 raw_spin_lock(&st->shared_state->lock);
498 st->shared_state->disable_state--;
499 if (!st->shared_state->disable_state)
500 wrmsrl(MSR_AMD64_LS_CFG, msr);
501 raw_spin_unlock(&st->shared_state->lock);
502 }
503 }
504 #else
amd_set_core_ssb_state(unsigned long tifn)505 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
506 {
507 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
508
509 wrmsrl(MSR_AMD64_LS_CFG, msr);
510 }
511 #endif
512
amd_set_ssb_virt_state(unsigned long tifn)513 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
514 {
515 /*
516 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
517 * so ssbd_tif_to_spec_ctrl() just works.
518 */
519 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
520 }
521
522 /*
523 * Update the MSRs managing speculation control, during context switch.
524 *
525 * tifp: Previous task's thread flags
526 * tifn: Next task's thread flags
527 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)528 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
529 unsigned long tifn)
530 {
531 unsigned long tif_diff = tifp ^ tifn;
532 u64 msr = x86_spec_ctrl_base;
533 bool updmsr = false;
534
535 lockdep_assert_irqs_disabled();
536
537 /* Handle change of TIF_SSBD depending on the mitigation method. */
538 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
539 if (tif_diff & _TIF_SSBD)
540 amd_set_ssb_virt_state(tifn);
541 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
542 if (tif_diff & _TIF_SSBD)
543 amd_set_core_ssb_state(tifn);
544 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
545 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
546 updmsr |= !!(tif_diff & _TIF_SSBD);
547 msr |= ssbd_tif_to_spec_ctrl(tifn);
548 }
549
550 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
551 if (IS_ENABLED(CONFIG_SMP) &&
552 static_branch_unlikely(&switch_to_cond_stibp)) {
553 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
554 msr |= stibp_tif_to_spec_ctrl(tifn);
555 }
556
557 if (updmsr)
558 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
559 }
560
speculation_ctrl_update_tif(struct task_struct * tsk)561 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
562 {
563 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
564 if (task_spec_ssb_disable(tsk))
565 set_tsk_thread_flag(tsk, TIF_SSBD);
566 else
567 clear_tsk_thread_flag(tsk, TIF_SSBD);
568
569 if (task_spec_ib_disable(tsk))
570 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
571 else
572 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
573 }
574 /* Return the updated threadinfo flags*/
575 return task_thread_info(tsk)->flags;
576 }
577
speculation_ctrl_update(unsigned long tif)578 void speculation_ctrl_update(unsigned long tif)
579 {
580 unsigned long flags;
581
582 /* Forced update. Make sure all relevant TIF flags are different */
583 local_irq_save(flags);
584 __speculation_ctrl_update(~tif, tif);
585 local_irq_restore(flags);
586 }
587
588 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)589 void speculation_ctrl_update_current(void)
590 {
591 preempt_disable();
592 speculation_ctrl_update(speculation_ctrl_update_tif(current));
593 preempt_enable();
594 }
595
cr4_toggle_bits_irqsoff(unsigned long mask)596 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
597 {
598 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
599
600 newval = cr4 ^ mask;
601 if (newval != cr4) {
602 this_cpu_write(cpu_tlbstate.cr4, newval);
603 __write_cr4(newval);
604 }
605 }
606
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)607 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
608 {
609 unsigned long tifp, tifn;
610
611 tifn = READ_ONCE(task_thread_info(next_p)->flags);
612 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
613
614 switch_to_bitmap(tifp);
615
616 propagate_user_return_notify(prev_p, next_p);
617
618 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619 arch_has_block_step()) {
620 unsigned long debugctl, msk;
621
622 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623 debugctl &= ~DEBUGCTLMSR_BTF;
624 msk = tifn & _TIF_BLOCKSTEP;
625 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
627 }
628
629 if ((tifp ^ tifn) & _TIF_NOTSC)
630 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
631
632 if ((tifp ^ tifn) & _TIF_NOCPUID)
633 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
634
635 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636 __speculation_ctrl_update(tifp, tifn);
637 } else {
638 speculation_ctrl_update_tif(prev_p);
639 tifn = speculation_ctrl_update_tif(next_p);
640
641 /* Enforce MSR update to ensure consistent state */
642 __speculation_ctrl_update(~tifn, tifn);
643 }
644
645 if ((tifp ^ tifn) & _TIF_SLD)
646 switch_to_sld(tifn);
647 }
648
649 /*
650 * Idle related variables and functions
651 */
652 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653 EXPORT_SYMBOL(boot_option_idle_override);
654
655 static void (*x86_idle)(void);
656
657 #ifndef CONFIG_SMP
play_dead(void)658 static inline void play_dead(void)
659 {
660 BUG();
661 }
662 #endif
663
arch_cpu_idle_enter(void)664 void arch_cpu_idle_enter(void)
665 {
666 tsc_verify_tsc_adjust(false);
667 local_touch_nmi();
668 }
669
arch_cpu_idle_dead(void)670 void arch_cpu_idle_dead(void)
671 {
672 play_dead();
673 }
674
675 /*
676 * Called from the generic idle code.
677 */
arch_cpu_idle(void)678 void arch_cpu_idle(void)
679 {
680 x86_idle();
681 }
682
683 /*
684 * We use this if we don't have any better idle routine..
685 */
default_idle(void)686 void __cpuidle default_idle(void)
687 {
688 raw_safe_halt();
689 }
690 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
691 EXPORT_SYMBOL(default_idle);
692 #endif
693
694 #ifdef CONFIG_XEN
xen_set_default_idle(void)695 bool xen_set_default_idle(void)
696 {
697 bool ret = !!x86_idle;
698
699 x86_idle = default_idle;
700
701 return ret;
702 }
703 #endif
704
stop_this_cpu(void * dummy)705 void stop_this_cpu(void *dummy)
706 {
707 local_irq_disable();
708 /*
709 * Remove this CPU:
710 */
711 set_cpu_online(smp_processor_id(), false);
712 disable_local_APIC();
713 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
714
715 /*
716 * Use wbinvd on processors that support SME. This provides support
717 * for performing a successful kexec when going from SME inactive
718 * to SME active (or vice-versa). The cache must be cleared so that
719 * if there are entries with the same physical address, both with and
720 * without the encryption bit, they don't race each other when flushed
721 * and potentially end up with the wrong entry being committed to
722 * memory.
723 */
724 if (boot_cpu_has(X86_FEATURE_SME))
725 native_wbinvd();
726 for (;;) {
727 /*
728 * Use native_halt() so that memory contents don't change
729 * (stack usage and variables) after possibly issuing the
730 * native_wbinvd() above.
731 */
732 native_halt();
733 }
734 }
735
736 /*
737 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
738 * states (local apic timer and TSC stop).
739 *
740 * XXX this function is completely buggered vs RCU and tracing.
741 */
amd_e400_idle(void)742 static void amd_e400_idle(void)
743 {
744 /*
745 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
746 * gets set after static_cpu_has() places have been converted via
747 * alternatives.
748 */
749 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
750 default_idle();
751 return;
752 }
753
754 tick_broadcast_enter();
755
756 default_idle();
757
758 /*
759 * The switch back from broadcast mode needs to be called with
760 * interrupts disabled.
761 */
762 raw_local_irq_disable();
763 tick_broadcast_exit();
764 raw_local_irq_enable();
765 }
766
767 /*
768 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
769 * We can't rely on cpuidle installing MWAIT, because it will not load
770 * on systems that support only C1 -- so the boot default must be MWAIT.
771 *
772 * Some AMD machines are the opposite, they depend on using HALT.
773 *
774 * So for default C1, which is used during boot until cpuidle loads,
775 * use MWAIT-C1 on Intel HW that has it, else use HALT.
776 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)777 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
778 {
779 if (c->x86_vendor != X86_VENDOR_INTEL)
780 return 0;
781
782 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
783 return 0;
784
785 return 1;
786 }
787
788 /*
789 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
790 * with interrupts enabled and no flags, which is backwards compatible with the
791 * original MWAIT implementation.
792 */
mwait_idle(void)793 static __cpuidle void mwait_idle(void)
794 {
795 if (!current_set_polling_and_test()) {
796 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
797 mb(); /* quirk */
798 clflush((void *)¤t_thread_info()->flags);
799 mb(); /* quirk */
800 }
801
802 __monitor((void *)¤t_thread_info()->flags, 0, 0);
803 if (!need_resched())
804 __sti_mwait(0, 0);
805 else
806 raw_local_irq_enable();
807 } else {
808 raw_local_irq_enable();
809 }
810 __current_clr_polling();
811 }
812
select_idle_routine(const struct cpuinfo_x86 * c)813 void select_idle_routine(const struct cpuinfo_x86 *c)
814 {
815 #ifdef CONFIG_SMP
816 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
817 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
818 #endif
819 if (x86_idle || boot_option_idle_override == IDLE_POLL)
820 return;
821
822 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
823 pr_info("using AMD E400 aware idle routine\n");
824 x86_idle = amd_e400_idle;
825 } else if (prefer_mwait_c1_over_halt(c)) {
826 pr_info("using mwait in idle threads\n");
827 x86_idle = mwait_idle;
828 } else
829 x86_idle = default_idle;
830 }
831
amd_e400_c1e_apic_setup(void)832 void amd_e400_c1e_apic_setup(void)
833 {
834 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
835 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
836 local_irq_disable();
837 tick_broadcast_force();
838 local_irq_enable();
839 }
840 }
841
arch_post_acpi_subsys_init(void)842 void __init arch_post_acpi_subsys_init(void)
843 {
844 u32 lo, hi;
845
846 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
847 return;
848
849 /*
850 * AMD E400 detection needs to happen after ACPI has been enabled. If
851 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
852 * MSR_K8_INT_PENDING_MSG.
853 */
854 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
855 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
856 return;
857
858 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
859
860 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
861 mark_tsc_unstable("TSC halt in AMD C1E");
862 pr_info("System has AMD C1E enabled\n");
863 }
864
idle_setup(char * str)865 static int __init idle_setup(char *str)
866 {
867 if (!str)
868 return -EINVAL;
869
870 if (!strcmp(str, "poll")) {
871 pr_info("using polling idle threads\n");
872 boot_option_idle_override = IDLE_POLL;
873 cpu_idle_poll_ctrl(true);
874 } else if (!strcmp(str, "halt")) {
875 /*
876 * When the boot option of idle=halt is added, halt is
877 * forced to be used for CPU idle. In such case CPU C2/C3
878 * won't be used again.
879 * To continue to load the CPU idle driver, don't touch
880 * the boot_option_idle_override.
881 */
882 x86_idle = default_idle;
883 boot_option_idle_override = IDLE_HALT;
884 } else if (!strcmp(str, "nomwait")) {
885 /*
886 * If the boot option of "idle=nomwait" is added,
887 * it means that mwait will be disabled for CPU C2/C3
888 * states. In such case it won't touch the variable
889 * of boot_option_idle_override.
890 */
891 boot_option_idle_override = IDLE_NOMWAIT;
892 } else
893 return -1;
894
895 return 0;
896 }
897 early_param("idle", idle_setup);
898
arch_align_stack(unsigned long sp)899 unsigned long arch_align_stack(unsigned long sp)
900 {
901 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
902 sp -= get_random_int() % 8192;
903 return sp & ~0xf;
904 }
905
arch_randomize_brk(struct mm_struct * mm)906 unsigned long arch_randomize_brk(struct mm_struct *mm)
907 {
908 return randomize_page(mm->brk, 0x02000000);
909 }
910
911 /*
912 * Called from fs/proc with a reference on @p to find the function
913 * which called into schedule(). This needs to be done carefully
914 * because the task might wake up and we might look at a stack
915 * changing under us.
916 */
get_wchan(struct task_struct * p)917 unsigned long get_wchan(struct task_struct *p)
918 {
919 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
920 int count = 0;
921
922 if (p == current || p->state == TASK_RUNNING)
923 return 0;
924
925 if (!try_get_task_stack(p))
926 return 0;
927
928 start = (unsigned long)task_stack_page(p);
929 if (!start)
930 goto out;
931
932 /*
933 * Layout of the stack page:
934 *
935 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
936 * PADDING
937 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
938 * stack
939 * ----------- bottom = start
940 *
941 * The tasks stack pointer points at the location where the
942 * framepointer is stored. The data on the stack is:
943 * ... IP FP ... IP FP
944 *
945 * We need to read FP and IP, so we need to adjust the upper
946 * bound by another unsigned long.
947 */
948 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
949 top -= 2 * sizeof(unsigned long);
950 bottom = start;
951
952 sp = READ_ONCE(p->thread.sp);
953 if (sp < bottom || sp > top)
954 goto out;
955
956 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
957 do {
958 if (fp < bottom || fp > top)
959 goto out;
960 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
961 if (!in_sched_functions(ip)) {
962 ret = ip;
963 goto out;
964 }
965 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
966 } while (count++ < 16 && p->state != TASK_RUNNING);
967
968 out:
969 put_task_stack(p);
970 return ret;
971 }
972
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)973 long do_arch_prctl_common(struct task_struct *task, int option,
974 unsigned long cpuid_enabled)
975 {
976 switch (option) {
977 case ARCH_GET_CPUID:
978 return get_cpuid_mode();
979 case ARCH_SET_CPUID:
980 return set_cpuid_mode(task, cpuid_enabled);
981 }
982
983 return -EINVAL;
984 }
985