1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * FDT related Helper functions used by the EFI stub on multiple
4  * architectures. This should be #included by the EFI stub
5  * implementation files.
6  *
7  * Copyright 2013 Linaro Limited; author Roy Franz
8  */
9 
10 #include <linux/efi.h>
11 #include <linux/libfdt.h>
12 #include <asm/efi.h>
13 
14 #include "efistub.h"
15 
16 #define EFI_DT_ADDR_CELLS_DEFAULT 2
17 #define EFI_DT_SIZE_CELLS_DEFAULT 2
18 
fdt_update_cell_size(void * fdt)19 static void fdt_update_cell_size(void *fdt)
20 {
21 	int offset;
22 
23 	offset = fdt_path_offset(fdt, "/");
24 	/* Set the #address-cells and #size-cells values for an empty tree */
25 
26 	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
27 	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
28 }
29 
update_fdt(void * orig_fdt,unsigned long orig_fdt_size,void * fdt,int new_fdt_size,char * cmdline_ptr,u64 initrd_addr,u64 initrd_size)30 static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
31 			       void *fdt, int new_fdt_size, char *cmdline_ptr,
32 			       u64 initrd_addr, u64 initrd_size)
33 {
34 	int node, num_rsv;
35 	int status;
36 	u32 fdt_val32;
37 	u64 fdt_val64;
38 
39 	/* Do some checks on provided FDT, if it exists: */
40 	if (orig_fdt) {
41 		if (fdt_check_header(orig_fdt)) {
42 			efi_err("Device Tree header not valid!\n");
43 			return EFI_LOAD_ERROR;
44 		}
45 		/*
46 		 * We don't get the size of the FDT if we get if from a
47 		 * configuration table:
48 		 */
49 		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
50 			efi_err("Truncated device tree! foo!\n");
51 			return EFI_LOAD_ERROR;
52 		}
53 	}
54 
55 	if (orig_fdt) {
56 		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
57 	} else {
58 		status = fdt_create_empty_tree(fdt, new_fdt_size);
59 		if (status == 0) {
60 			/*
61 			 * Any failure from the following function is
62 			 * non-critical:
63 			 */
64 			fdt_update_cell_size(fdt);
65 		}
66 	}
67 
68 	if (status != 0)
69 		goto fdt_set_fail;
70 
71 	/*
72 	 * Delete all memory reserve map entries. When booting via UEFI,
73 	 * kernel will use the UEFI memory map to find reserved regions.
74 	 */
75 	num_rsv = fdt_num_mem_rsv(fdt);
76 	while (num_rsv-- > 0)
77 		fdt_del_mem_rsv(fdt, num_rsv);
78 
79 	node = fdt_subnode_offset(fdt, 0, "chosen");
80 	if (node < 0) {
81 		node = fdt_add_subnode(fdt, 0, "chosen");
82 		if (node < 0) {
83 			/* 'node' is an error code when negative: */
84 			status = node;
85 			goto fdt_set_fail;
86 		}
87 	}
88 
89 	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
90 		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
91 				     strlen(cmdline_ptr) + 1);
92 		if (status)
93 			goto fdt_set_fail;
94 	}
95 
96 	/* Set initrd address/end in device tree, if present */
97 	if (initrd_size != 0) {
98 		u64 initrd_image_end;
99 		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
100 
101 		status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
102 		if (status)
103 			goto fdt_set_fail;
104 
105 		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
106 		status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
107 		if (status)
108 			goto fdt_set_fail;
109 	}
110 
111 	/* Add FDT entries for EFI runtime services in chosen node. */
112 	node = fdt_subnode_offset(fdt, 0, "chosen");
113 	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
114 
115 	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
116 	if (status)
117 		goto fdt_set_fail;
118 
119 	fdt_val64 = U64_MAX; /* placeholder */
120 
121 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
122 	if (status)
123 		goto fdt_set_fail;
124 
125 	fdt_val32 = U32_MAX; /* placeholder */
126 
127 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
128 	if (status)
129 		goto fdt_set_fail;
130 
131 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
132 	if (status)
133 		goto fdt_set_fail;
134 
135 	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
136 	if (status)
137 		goto fdt_set_fail;
138 
139 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
140 		efi_status_t efi_status;
141 
142 		efi_status = efi_get_random_bytes(sizeof(fdt_val64),
143 						  (u8 *)&fdt_val64);
144 		if (efi_status == EFI_SUCCESS) {
145 			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
146 			if (status)
147 				goto fdt_set_fail;
148 		}
149 	}
150 
151 	/* Shrink the FDT back to its minimum size: */
152 	fdt_pack(fdt);
153 
154 	return EFI_SUCCESS;
155 
156 fdt_set_fail:
157 	if (status == -FDT_ERR_NOSPACE)
158 		return EFI_BUFFER_TOO_SMALL;
159 
160 	return EFI_LOAD_ERROR;
161 }
162 
update_fdt_memmap(void * fdt,struct efi_boot_memmap * map)163 static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
164 {
165 	int node = fdt_path_offset(fdt, "/chosen");
166 	u64 fdt_val64;
167 	u32 fdt_val32;
168 	int err;
169 
170 	if (node < 0)
171 		return EFI_LOAD_ERROR;
172 
173 	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
174 
175 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
176 	if (err)
177 		return EFI_LOAD_ERROR;
178 
179 	fdt_val32 = cpu_to_fdt32(*map->map_size);
180 
181 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
182 	if (err)
183 		return EFI_LOAD_ERROR;
184 
185 	fdt_val32 = cpu_to_fdt32(*map->desc_size);
186 
187 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
188 	if (err)
189 		return EFI_LOAD_ERROR;
190 
191 	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
192 
193 	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
194 	if (err)
195 		return EFI_LOAD_ERROR;
196 
197 	return EFI_SUCCESS;
198 }
199 
200 struct exit_boot_struct {
201 	efi_memory_desc_t	*runtime_map;
202 	int			*runtime_entry_count;
203 	void			*new_fdt_addr;
204 };
205 
exit_boot_func(struct efi_boot_memmap * map,void * priv)206 static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
207 				   void *priv)
208 {
209 	struct exit_boot_struct *p = priv;
210 	/*
211 	 * Update the memory map with virtual addresses. The function will also
212 	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
213 	 * entries so that we can pass it straight to SetVirtualAddressMap()
214 	 */
215 	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
216 			p->runtime_map, p->runtime_entry_count);
217 
218 	return update_fdt_memmap(p->new_fdt_addr, map);
219 }
220 
221 #ifndef MAX_FDT_SIZE
222 # define MAX_FDT_SIZE SZ_2M
223 #endif
224 
225 /*
226  * Allocate memory for a new FDT, then add EFI, commandline, and
227  * initrd related fields to the FDT.  This routine increases the
228  * FDT allocation size until the allocated memory is large
229  * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
230  * which are fixed at 4K bytes, so in most cases the first
231  * allocation should succeed.
232  * EFI boot services are exited at the end of this function.
233  * There must be no allocations between the get_memory_map()
234  * call and the exit_boot_services() call, so the exiting of
235  * boot services is very tightly tied to the creation of the FDT
236  * with the final memory map in it.
237  */
238 
allocate_new_fdt_and_exit_boot(void * handle,unsigned long * new_fdt_addr,unsigned long max_addr,u64 initrd_addr,u64 initrd_size,char * cmdline_ptr,unsigned long fdt_addr,unsigned long fdt_size)239 efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
240 					    unsigned long *new_fdt_addr,
241 					    unsigned long max_addr,
242 					    u64 initrd_addr, u64 initrd_size,
243 					    char *cmdline_ptr,
244 					    unsigned long fdt_addr,
245 					    unsigned long fdt_size)
246 {
247 	unsigned long map_size, desc_size, buff_size;
248 	u32 desc_ver;
249 	unsigned long mmap_key;
250 	efi_memory_desc_t *memory_map, *runtime_map;
251 	efi_status_t status;
252 	int runtime_entry_count;
253 	struct efi_boot_memmap map;
254 	struct exit_boot_struct priv;
255 
256 	map.map		= &runtime_map;
257 	map.map_size	= &map_size;
258 	map.desc_size	= &desc_size;
259 	map.desc_ver	= &desc_ver;
260 	map.key_ptr	= &mmap_key;
261 	map.buff_size	= &buff_size;
262 
263 	/*
264 	 * Get a copy of the current memory map that we will use to prepare
265 	 * the input for SetVirtualAddressMap(). We don't have to worry about
266 	 * subsequent allocations adding entries, since they could not affect
267 	 * the number of EFI_MEMORY_RUNTIME regions.
268 	 */
269 	status = efi_get_memory_map(&map);
270 	if (status != EFI_SUCCESS) {
271 		efi_err("Unable to retrieve UEFI memory map.\n");
272 		return status;
273 	}
274 
275 	efi_info("Exiting boot services and installing virtual address map...\n");
276 
277 	map.map = &memory_map;
278 	status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, max_addr);
279 	if (status != EFI_SUCCESS) {
280 		efi_err("Unable to allocate memory for new device tree.\n");
281 		goto fail;
282 	}
283 
284 	/*
285 	 * Now that we have done our final memory allocation (and free)
286 	 * we can get the memory map key needed for exit_boot_services().
287 	 */
288 	status = efi_get_memory_map(&map);
289 	if (status != EFI_SUCCESS)
290 		goto fail_free_new_fdt;
291 
292 	status = update_fdt((void *)fdt_addr, fdt_size,
293 			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
294 			    initrd_addr, initrd_size);
295 
296 	if (status != EFI_SUCCESS) {
297 		efi_err("Unable to construct new device tree.\n");
298 		goto fail_free_new_fdt;
299 	}
300 
301 	runtime_entry_count		= 0;
302 	priv.runtime_map		= runtime_map;
303 	priv.runtime_entry_count	= &runtime_entry_count;
304 	priv.new_fdt_addr		= (void *)*new_fdt_addr;
305 
306 	status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
307 
308 	if (status == EFI_SUCCESS) {
309 		efi_set_virtual_address_map_t *svam;
310 
311 		if (efi_novamap)
312 			return EFI_SUCCESS;
313 
314 		/* Install the new virtual address map */
315 		svam = efi_system_table->runtime->set_virtual_address_map;
316 		status = svam(runtime_entry_count * desc_size, desc_size,
317 			      desc_ver, runtime_map);
318 
319 		/*
320 		 * We are beyond the point of no return here, so if the call to
321 		 * SetVirtualAddressMap() failed, we need to signal that to the
322 		 * incoming kernel but proceed normally otherwise.
323 		 */
324 		if (status != EFI_SUCCESS) {
325 			int l;
326 
327 			/*
328 			 * Set the virtual address field of all
329 			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
330 			 * the incoming kernel that no virtual translation has
331 			 * been installed.
332 			 */
333 			for (l = 0; l < map_size; l += desc_size) {
334 				efi_memory_desc_t *p = (void *)memory_map + l;
335 
336 				if (p->attribute & EFI_MEMORY_RUNTIME)
337 					p->virt_addr = 0;
338 			}
339 		}
340 		return EFI_SUCCESS;
341 	}
342 
343 	efi_err("Exit boot services failed.\n");
344 
345 fail_free_new_fdt:
346 	efi_free(MAX_FDT_SIZE, *new_fdt_addr);
347 
348 fail:
349 	efi_system_table->boottime->free_pool(runtime_map);
350 
351 	return EFI_LOAD_ERROR;
352 }
353 
get_fdt(unsigned long * fdt_size)354 void *get_fdt(unsigned long *fdt_size)
355 {
356 	void *fdt;
357 
358 	fdt = get_efi_config_table(DEVICE_TREE_GUID);
359 
360 	if (!fdt)
361 		return NULL;
362 
363 	if (fdt_check_header(fdt) != 0) {
364 		efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
365 		return NULL;
366 	}
367 	*fdt_size = fdt_totalsize(fdt);
368 	return fdt;
369 }
370