1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "mes_api_def.h"
39 #include "kfd_debug.h"
40 
41 /* Size of the per-pipe EOP queue */
42 #define CIK_HPD_EOP_BYTES_LOG2 11
43 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
44 
45 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
46 				  u32 pasid, unsigned int vmid);
47 
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param,
51 				uint32_t grace_period);
52 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period,
56 				bool reset);
57 
58 static int map_queues_cpsch(struct device_queue_manager *dqm);
59 
60 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 
63 static inline void deallocate_hqd(struct device_queue_manager *dqm,
64 				struct queue *q);
65 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
66 static int allocate_sdma_queue(struct device_queue_manager *dqm,
67 				struct queue *q, const uint32_t *restore_sdma_id);
68 static void kfd_process_hw_exception(struct work_struct *work);
69 
70 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)71 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
72 {
73 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
74 		return KFD_MQD_TYPE_SDMA;
75 	return KFD_MQD_TYPE_CP;
76 }
77 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)78 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
79 {
80 	int i;
81 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
82 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
83 
84 	/* queue is available for KFD usage if bit is 1 */
85 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
86 		if (test_bit(pipe_offset + i,
87 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
88 			return true;
89 	return false;
90 }
91 
get_cp_queues_num(struct device_queue_manager * dqm)92 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
93 {
94 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
95 				KGD_MAX_QUEUES);
96 }
97 
get_queues_per_pipe(struct device_queue_manager * dqm)98 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
99 {
100 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
101 }
102 
get_pipes_per_mec(struct device_queue_manager * dqm)103 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
106 }
107 
get_num_all_sdma_engines(struct device_queue_manager * dqm)108 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
109 {
110 	return kfd_get_num_sdma_engines(dqm->dev) +
111 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
112 }
113 
get_num_sdma_queues(struct device_queue_manager * dqm)114 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
115 {
116 	return kfd_get_num_sdma_engines(dqm->dev) *
117 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
118 }
119 
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)120 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
121 {
122 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
123 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
124 }
125 
init_sdma_bitmaps(struct device_queue_manager * dqm)126 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
127 {
128 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
129 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
130 
131 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
132 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
133 
134 	/* Mask out the reserved queues */
135 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
136 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
137 		      KFD_MAX_SDMA_QUEUES);
138 }
139 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)140 void program_sh_mem_settings(struct device_queue_manager *dqm,
141 					struct qcm_process_device *qpd)
142 {
143 	uint32_t xcc_mask = dqm->dev->xcc_mask;
144 	int xcc_id;
145 
146 	for_each_inst(xcc_id, xcc_mask)
147 		dqm->dev->kfd2kgd->program_sh_mem_settings(
148 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
149 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
150 			qpd->sh_mem_bases, xcc_id);
151 }
152 
kfd_hws_hang(struct device_queue_manager * dqm)153 static void kfd_hws_hang(struct device_queue_manager *dqm)
154 {
155 	/*
156 	 * Issue a GPU reset if HWS is unresponsive
157 	 */
158 	dqm->is_hws_hang = true;
159 
160 	/* It's possible we're detecting a HWS hang in the
161 	 * middle of a GPU reset. No need to schedule another
162 	 * reset in this case.
163 	 */
164 	if (!dqm->is_resetting)
165 		schedule_work(&dqm->hw_exception_work);
166 }
167 
convert_to_mes_queue_type(int queue_type)168 static int convert_to_mes_queue_type(int queue_type)
169 {
170 	int mes_queue_type;
171 
172 	switch (queue_type) {
173 	case KFD_QUEUE_TYPE_COMPUTE:
174 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
175 		break;
176 	case KFD_QUEUE_TYPE_SDMA:
177 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
178 		break;
179 	default:
180 		WARN(1, "Invalid queue type %d", queue_type);
181 		mes_queue_type = -EINVAL;
182 		break;
183 	}
184 
185 	return mes_queue_type;
186 }
187 
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)188 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
189 			 struct qcm_process_device *qpd)
190 {
191 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
192 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
193 	struct mes_add_queue_input queue_input;
194 	int r, queue_type;
195 	uint64_t wptr_addr_off;
196 
197 	if (dqm->is_hws_hang)
198 		return -EIO;
199 
200 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
201 	queue_input.process_id = qpd->pqm->process->pasid;
202 	queue_input.page_table_base_addr =  qpd->page_table_base;
203 	queue_input.process_va_start = 0;
204 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
205 	/* MES unit for quantum is 100ns */
206 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
207 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
208 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
209 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
210 	queue_input.inprocess_gang_priority = q->properties.priority;
211 	queue_input.gang_global_priority_level =
212 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
213 	queue_input.doorbell_offset = q->properties.doorbell_off;
214 	queue_input.mqd_addr = q->gart_mqd_addr;
215 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
216 
217 	if (q->wptr_bo) {
218 		wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
219 		queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->wptr_bo) + wptr_addr_off;
220 	}
221 
222 	queue_input.is_kfd_process = 1;
223 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
224 	queue_input.queue_size = q->properties.queue_size >> 2;
225 
226 	queue_input.paging = false;
227 	queue_input.tba_addr = qpd->tba_addr;
228 	queue_input.tma_addr = qpd->tma_addr;
229 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
230 	queue_input.skip_process_ctx_clear = qpd->pqm->process->debug_trap_enabled ||
231 					     kfd_dbg_has_ttmps_always_setup(q->device);
232 
233 	queue_type = convert_to_mes_queue_type(q->properties.type);
234 	if (queue_type < 0) {
235 		pr_err("Queue type not supported with MES, queue:%d\n",
236 				q->properties.type);
237 		return -EINVAL;
238 	}
239 	queue_input.queue_type = (uint32_t)queue_type;
240 
241 	queue_input.exclusively_scheduled = q->properties.is_gws;
242 
243 	amdgpu_mes_lock(&adev->mes);
244 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
245 	amdgpu_mes_unlock(&adev->mes);
246 	if (r) {
247 		pr_err("failed to add hardware queue to MES, doorbell=0x%x\n",
248 			q->properties.doorbell_off);
249 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
250 		kfd_hws_hang(dqm);
251 	}
252 
253 	return r;
254 }
255 
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)256 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
257 			struct qcm_process_device *qpd)
258 {
259 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
260 	int r;
261 	struct mes_remove_queue_input queue_input;
262 
263 	if (dqm->is_hws_hang)
264 		return -EIO;
265 
266 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
267 	queue_input.doorbell_offset = q->properties.doorbell_off;
268 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
269 
270 	amdgpu_mes_lock(&adev->mes);
271 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
272 	amdgpu_mes_unlock(&adev->mes);
273 
274 	if (r) {
275 		pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n",
276 			q->properties.doorbell_off);
277 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
278 		kfd_hws_hang(dqm);
279 	}
280 
281 	return r;
282 }
283 
remove_all_queues_mes(struct device_queue_manager * dqm)284 static int remove_all_queues_mes(struct device_queue_manager *dqm)
285 {
286 	struct device_process_node *cur;
287 	struct qcm_process_device *qpd;
288 	struct queue *q;
289 	int retval = 0;
290 
291 	list_for_each_entry(cur, &dqm->queues, list) {
292 		qpd = cur->qpd;
293 		list_for_each_entry(q, &qpd->queues_list, list) {
294 			if (q->properties.is_active) {
295 				retval = remove_queue_mes(dqm, q, qpd);
296 				if (retval) {
297 					pr_err("%s: Failed to remove queue %d for dev %d",
298 						__func__,
299 						q->properties.queue_id,
300 						dqm->dev->id);
301 					return retval;
302 				}
303 			}
304 		}
305 	}
306 
307 	return retval;
308 }
309 
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)310 static void increment_queue_count(struct device_queue_manager *dqm,
311 				  struct qcm_process_device *qpd,
312 				  struct queue *q)
313 {
314 	dqm->active_queue_count++;
315 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
316 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
317 		dqm->active_cp_queue_count++;
318 
319 	if (q->properties.is_gws) {
320 		dqm->gws_queue_count++;
321 		qpd->mapped_gws_queue = true;
322 	}
323 }
324 
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)325 static void decrement_queue_count(struct device_queue_manager *dqm,
326 				  struct qcm_process_device *qpd,
327 				  struct queue *q)
328 {
329 	dqm->active_queue_count--;
330 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
331 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
332 		dqm->active_cp_queue_count--;
333 
334 	if (q->properties.is_gws) {
335 		dqm->gws_queue_count--;
336 		qpd->mapped_gws_queue = false;
337 	}
338 }
339 
340 /*
341  * Allocate a doorbell ID to this queue.
342  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
343  */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)344 static int allocate_doorbell(struct qcm_process_device *qpd,
345 			     struct queue *q,
346 			     uint32_t const *restore_id)
347 {
348 	struct kfd_node *dev = qpd->dqm->dev;
349 
350 	if (!KFD_IS_SOC15(dev)) {
351 		/* On pre-SOC15 chips we need to use the queue ID to
352 		 * preserve the user mode ABI.
353 		 */
354 
355 		if (restore_id && *restore_id != q->properties.queue_id)
356 			return -EINVAL;
357 
358 		q->doorbell_id = q->properties.queue_id;
359 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
360 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
361 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
362 		 * doorbell assignments based on the engine and queue id.
363 		 * The doobell index distance between RLC (2*i) and (2*i+1)
364 		 * for a SDMA engine is 512.
365 		 */
366 
367 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
368 
369 		/*
370 		 * q->properties.sdma_engine_id corresponds to the virtual
371 		 * sdma engine number. However, for doorbell allocation,
372 		 * we need the physical sdma engine id in order to get the
373 		 * correct doorbell offset.
374 		 */
375 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
376 					       get_num_all_sdma_engines(qpd->dqm) +
377 					       q->properties.sdma_engine_id]
378 						+ (q->properties.sdma_queue_id & 1)
379 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
380 						+ (q->properties.sdma_queue_id >> 1);
381 
382 		if (restore_id && *restore_id != valid_id)
383 			return -EINVAL;
384 		q->doorbell_id = valid_id;
385 	} else {
386 		/* For CP queues on SOC15 */
387 		if (restore_id) {
388 			/* make sure that ID is free  */
389 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
390 				return -EINVAL;
391 
392 			q->doorbell_id = *restore_id;
393 		} else {
394 			/* or reserve a free doorbell ID */
395 			unsigned int found;
396 
397 			found = find_first_zero_bit(qpd->doorbell_bitmap,
398 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
399 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
400 				pr_debug("No doorbells available");
401 				return -EBUSY;
402 			}
403 			set_bit(found, qpd->doorbell_bitmap);
404 			q->doorbell_id = found;
405 		}
406 	}
407 
408 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
409 								  qpd->proc_doorbells,
410 								  q->doorbell_id);
411 	return 0;
412 }
413 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)414 static void deallocate_doorbell(struct qcm_process_device *qpd,
415 				struct queue *q)
416 {
417 	unsigned int old;
418 	struct kfd_node *dev = qpd->dqm->dev;
419 
420 	if (!KFD_IS_SOC15(dev) ||
421 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
422 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
423 		return;
424 
425 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
426 	WARN_ON(!old);
427 }
428 
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)429 static void program_trap_handler_settings(struct device_queue_manager *dqm,
430 				struct qcm_process_device *qpd)
431 {
432 	uint32_t xcc_mask = dqm->dev->xcc_mask;
433 	int xcc_id;
434 
435 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
436 		for_each_inst(xcc_id, xcc_mask)
437 			dqm->dev->kfd2kgd->program_trap_handler_settings(
438 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
439 				qpd->tma_addr, xcc_id);
440 }
441 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)442 static int allocate_vmid(struct device_queue_manager *dqm,
443 			struct qcm_process_device *qpd,
444 			struct queue *q)
445 {
446 	int allocated_vmid = -1, i;
447 
448 	for (i = dqm->dev->vm_info.first_vmid_kfd;
449 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
450 		if (!dqm->vmid_pasid[i]) {
451 			allocated_vmid = i;
452 			break;
453 		}
454 	}
455 
456 	if (allocated_vmid < 0) {
457 		pr_err("no more vmid to allocate\n");
458 		return -ENOSPC;
459 	}
460 
461 	pr_debug("vmid allocated: %d\n", allocated_vmid);
462 
463 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
464 
465 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
466 
467 	qpd->vmid = allocated_vmid;
468 	q->properties.vmid = allocated_vmid;
469 
470 	program_sh_mem_settings(dqm, qpd);
471 
472 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
473 		program_trap_handler_settings(dqm, qpd);
474 
475 	/* qpd->page_table_base is set earlier when register_process()
476 	 * is called, i.e. when the first queue is created.
477 	 */
478 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
479 			qpd->vmid,
480 			qpd->page_table_base);
481 	/* invalidate the VM context after pasid and vmid mapping is set up */
482 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
483 
484 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
485 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
486 				qpd->sh_hidden_private_base, qpd->vmid);
487 
488 	return 0;
489 }
490 
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)491 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
492 				struct qcm_process_device *qpd)
493 {
494 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
495 	int ret;
496 
497 	if (!qpd->ib_kaddr)
498 		return -ENOMEM;
499 
500 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
501 	if (ret)
502 		return ret;
503 
504 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
505 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
506 				pmf->release_mem_size / sizeof(uint32_t));
507 }
508 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)509 static void deallocate_vmid(struct device_queue_manager *dqm,
510 				struct qcm_process_device *qpd,
511 				struct queue *q)
512 {
513 	/* On GFX v7, CP doesn't flush TC at dequeue */
514 	if (q->device->adev->asic_type == CHIP_HAWAII)
515 		if (flush_texture_cache_nocpsch(q->device, qpd))
516 			pr_err("Failed to flush TC\n");
517 
518 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
519 
520 	/* Release the vmid mapping */
521 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
522 	dqm->vmid_pasid[qpd->vmid] = 0;
523 
524 	qpd->vmid = 0;
525 	q->properties.vmid = 0;
526 }
527 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)528 static int create_queue_nocpsch(struct device_queue_manager *dqm,
529 				struct queue *q,
530 				struct qcm_process_device *qpd,
531 				const struct kfd_criu_queue_priv_data *qd,
532 				const void *restore_mqd, const void *restore_ctl_stack)
533 {
534 	struct mqd_manager *mqd_mgr;
535 	int retval;
536 
537 	dqm_lock(dqm);
538 
539 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
540 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
541 				dqm->total_queue_count);
542 		retval = -EPERM;
543 		goto out_unlock;
544 	}
545 
546 	if (list_empty(&qpd->queues_list)) {
547 		retval = allocate_vmid(dqm, qpd, q);
548 		if (retval)
549 			goto out_unlock;
550 	}
551 	q->properties.vmid = qpd->vmid;
552 	/*
553 	 * Eviction state logic: mark all queues as evicted, even ones
554 	 * not currently active. Restoring inactive queues later only
555 	 * updates the is_evicted flag but is a no-op otherwise.
556 	 */
557 	q->properties.is_evicted = !!qpd->evicted;
558 
559 	q->properties.tba_addr = qpd->tba_addr;
560 	q->properties.tma_addr = qpd->tma_addr;
561 
562 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
563 			q->properties.type)];
564 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
565 		retval = allocate_hqd(dqm, q);
566 		if (retval)
567 			goto deallocate_vmid;
568 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
569 			q->pipe, q->queue);
570 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
571 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
572 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
573 		if (retval)
574 			goto deallocate_vmid;
575 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
576 	}
577 
578 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
579 	if (retval)
580 		goto out_deallocate_hqd;
581 
582 	/* Temporarily release dqm lock to avoid a circular lock dependency */
583 	dqm_unlock(dqm);
584 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
585 	dqm_lock(dqm);
586 
587 	if (!q->mqd_mem_obj) {
588 		retval = -ENOMEM;
589 		goto out_deallocate_doorbell;
590 	}
591 
592 	if (qd)
593 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
594 				     &q->properties, restore_mqd, restore_ctl_stack,
595 				     qd->ctl_stack_size);
596 	else
597 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
598 					&q->gart_mqd_addr, &q->properties);
599 
600 	if (q->properties.is_active) {
601 		if (!dqm->sched_running) {
602 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
603 			goto add_queue_to_list;
604 		}
605 
606 		if (WARN(q->process->mm != current->mm,
607 					"should only run in user thread"))
608 			retval = -EFAULT;
609 		else
610 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
611 					q->queue, &q->properties, current->mm);
612 		if (retval)
613 			goto out_free_mqd;
614 	}
615 
616 add_queue_to_list:
617 	list_add(&q->list, &qpd->queues_list);
618 	qpd->queue_count++;
619 	if (q->properties.is_active)
620 		increment_queue_count(dqm, qpd, q);
621 
622 	/*
623 	 * Unconditionally increment this counter, regardless of the queue's
624 	 * type or whether the queue is active.
625 	 */
626 	dqm->total_queue_count++;
627 	pr_debug("Total of %d queues are accountable so far\n",
628 			dqm->total_queue_count);
629 	goto out_unlock;
630 
631 out_free_mqd:
632 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
633 out_deallocate_doorbell:
634 	deallocate_doorbell(qpd, q);
635 out_deallocate_hqd:
636 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
637 		deallocate_hqd(dqm, q);
638 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
639 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
640 		deallocate_sdma_queue(dqm, q);
641 deallocate_vmid:
642 	if (list_empty(&qpd->queues_list))
643 		deallocate_vmid(dqm, qpd, q);
644 out_unlock:
645 	dqm_unlock(dqm);
646 	return retval;
647 }
648 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)649 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
650 {
651 	bool set;
652 	int pipe, bit, i;
653 
654 	set = false;
655 
656 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
657 			i < get_pipes_per_mec(dqm);
658 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
659 
660 		if (!is_pipe_enabled(dqm, 0, pipe))
661 			continue;
662 
663 		if (dqm->allocated_queues[pipe] != 0) {
664 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
665 			dqm->allocated_queues[pipe] &= ~(1 << bit);
666 			q->pipe = pipe;
667 			q->queue = bit;
668 			set = true;
669 			break;
670 		}
671 	}
672 
673 	if (!set)
674 		return -EBUSY;
675 
676 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
677 	/* horizontal hqd allocation */
678 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
679 
680 	return 0;
681 }
682 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)683 static inline void deallocate_hqd(struct device_queue_manager *dqm,
684 				struct queue *q)
685 {
686 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
687 }
688 
689 #define SQ_IND_CMD_CMD_KILL		0x00000003
690 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
691 
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)692 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
693 {
694 	int status = 0;
695 	unsigned int vmid;
696 	uint16_t queried_pasid;
697 	union SQ_CMD_BITS reg_sq_cmd;
698 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
699 	struct kfd_process_device *pdd;
700 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
701 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
702 	uint32_t xcc_mask = dev->xcc_mask;
703 	int xcc_id;
704 
705 	reg_sq_cmd.u32All = 0;
706 	reg_gfx_index.u32All = 0;
707 
708 	pr_debug("Killing all process wavefronts\n");
709 
710 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
711 		pr_err("no vmid pasid mapping supported \n");
712 		return -EOPNOTSUPP;
713 	}
714 
715 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
716 	 * ATC_VMID15_PASID_MAPPING
717 	 * to check which VMID the current process is mapped to.
718 	 */
719 
720 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
721 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
722 				(dev->adev, vmid, &queried_pasid);
723 
724 		if (status && queried_pasid == p->pasid) {
725 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
726 					vmid, p->pasid);
727 			break;
728 		}
729 	}
730 
731 	if (vmid > last_vmid_to_scan) {
732 		pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
733 		return -EFAULT;
734 	}
735 
736 	/* taking the VMID for that process on the safe way using PDD */
737 	pdd = kfd_get_process_device_data(dev, p);
738 	if (!pdd)
739 		return -EFAULT;
740 
741 	reg_gfx_index.bits.sh_broadcast_writes = 1;
742 	reg_gfx_index.bits.se_broadcast_writes = 1;
743 	reg_gfx_index.bits.instance_broadcast_writes = 1;
744 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
745 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
746 	reg_sq_cmd.bits.vm_id = vmid;
747 
748 	for_each_inst(xcc_id, xcc_mask)
749 		dev->kfd2kgd->wave_control_execute(
750 			dev->adev, reg_gfx_index.u32All,
751 			reg_sq_cmd.u32All, xcc_id);
752 
753 	return 0;
754 }
755 
756 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
757  * to avoid asynchronized access
758  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)759 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
760 				struct qcm_process_device *qpd,
761 				struct queue *q)
762 {
763 	int retval;
764 	struct mqd_manager *mqd_mgr;
765 
766 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
767 			q->properties.type)];
768 
769 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
770 		deallocate_hqd(dqm, q);
771 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
772 		deallocate_sdma_queue(dqm, q);
773 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
774 		deallocate_sdma_queue(dqm, q);
775 	else {
776 		pr_debug("q->properties.type %d is invalid\n",
777 				q->properties.type);
778 		return -EINVAL;
779 	}
780 	dqm->total_queue_count--;
781 
782 	deallocate_doorbell(qpd, q);
783 
784 	if (!dqm->sched_running) {
785 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
786 		return 0;
787 	}
788 
789 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
790 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
791 				KFD_UNMAP_LATENCY_MS,
792 				q->pipe, q->queue);
793 	if (retval == -ETIME)
794 		qpd->reset_wavefronts = true;
795 
796 	list_del(&q->list);
797 	if (list_empty(&qpd->queues_list)) {
798 		if (qpd->reset_wavefronts) {
799 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
800 					dqm->dev);
801 			/* dbgdev_wave_reset_wavefronts has to be called before
802 			 * deallocate_vmid(), i.e. when vmid is still in use.
803 			 */
804 			dbgdev_wave_reset_wavefronts(dqm->dev,
805 					qpd->pqm->process);
806 			qpd->reset_wavefronts = false;
807 		}
808 
809 		deallocate_vmid(dqm, qpd, q);
810 	}
811 	qpd->queue_count--;
812 	if (q->properties.is_active)
813 		decrement_queue_count(dqm, qpd, q);
814 
815 	return retval;
816 }
817 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)818 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
819 				struct qcm_process_device *qpd,
820 				struct queue *q)
821 {
822 	int retval;
823 	uint64_t sdma_val = 0;
824 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
825 	struct mqd_manager *mqd_mgr =
826 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
827 
828 	/* Get the SDMA queue stats */
829 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
830 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
831 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
832 							&sdma_val);
833 		if (retval)
834 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
835 				q->properties.queue_id);
836 	}
837 
838 	dqm_lock(dqm);
839 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
840 	if (!retval)
841 		pdd->sdma_past_activity_counter += sdma_val;
842 	dqm_unlock(dqm);
843 
844 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
845 
846 	return retval;
847 }
848 
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)849 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
850 			struct mqd_update_info *minfo)
851 {
852 	int retval = 0;
853 	struct mqd_manager *mqd_mgr;
854 	struct kfd_process_device *pdd;
855 	bool prev_active = false;
856 
857 	dqm_lock(dqm);
858 	pdd = kfd_get_process_device_data(q->device, q->process);
859 	if (!pdd) {
860 		retval = -ENODEV;
861 		goto out_unlock;
862 	}
863 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
864 			q->properties.type)];
865 
866 	/* Save previous activity state for counters */
867 	prev_active = q->properties.is_active;
868 
869 	/* Make sure the queue is unmapped before updating the MQD */
870 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
871 		if (!dqm->dev->kfd->shared_resources.enable_mes)
872 			retval = unmap_queues_cpsch(dqm,
873 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
874 		else if (prev_active)
875 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
876 
877 		if (retval) {
878 			pr_err("unmap queue failed\n");
879 			goto out_unlock;
880 		}
881 	} else if (prev_active &&
882 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
883 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
884 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
885 
886 		if (!dqm->sched_running) {
887 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
888 			goto out_unlock;
889 		}
890 
891 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
892 				(dqm->dev->kfd->cwsr_enabled ?
893 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
894 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
895 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
896 		if (retval) {
897 			pr_err("destroy mqd failed\n");
898 			goto out_unlock;
899 		}
900 	}
901 
902 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
903 
904 	/*
905 	 * check active state vs. the previous state and modify
906 	 * counter accordingly. map_queues_cpsch uses the
907 	 * dqm->active_queue_count to determine whether a new runlist must be
908 	 * uploaded.
909 	 */
910 	if (q->properties.is_active && !prev_active) {
911 		increment_queue_count(dqm, &pdd->qpd, q);
912 	} else if (!q->properties.is_active && prev_active) {
913 		decrement_queue_count(dqm, &pdd->qpd, q);
914 	} else if (q->gws && !q->properties.is_gws) {
915 		if (q->properties.is_active) {
916 			dqm->gws_queue_count++;
917 			pdd->qpd.mapped_gws_queue = true;
918 		}
919 		q->properties.is_gws = true;
920 	} else if (!q->gws && q->properties.is_gws) {
921 		if (q->properties.is_active) {
922 			dqm->gws_queue_count--;
923 			pdd->qpd.mapped_gws_queue = false;
924 		}
925 		q->properties.is_gws = false;
926 	}
927 
928 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
929 		if (!dqm->dev->kfd->shared_resources.enable_mes)
930 			retval = map_queues_cpsch(dqm);
931 		else if (q->properties.is_active)
932 			retval = add_queue_mes(dqm, q, &pdd->qpd);
933 	} else if (q->properties.is_active &&
934 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
935 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
936 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
937 		if (WARN(q->process->mm != current->mm,
938 			 "should only run in user thread"))
939 			retval = -EFAULT;
940 		else
941 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
942 						   q->pipe, q->queue,
943 						   &q->properties, current->mm);
944 	}
945 
946 out_unlock:
947 	dqm_unlock(dqm);
948 	return retval;
949 }
950 
951 /* suspend_single_queue does not lock the dqm like the
952  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
953  * lock the dqm before calling, and unlock after calling.
954  *
955  * The reason we don't lock the dqm is because this function may be
956  * called on multiple queues in a loop, so rather than locking/unlocking
957  * multiple times, we will just keep the dqm locked for all of the calls.
958  */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)959 static int suspend_single_queue(struct device_queue_manager *dqm,
960 				      struct kfd_process_device *pdd,
961 				      struct queue *q)
962 {
963 	bool is_new;
964 
965 	if (q->properties.is_suspended)
966 		return 0;
967 
968 	pr_debug("Suspending PASID %u queue [%i]\n",
969 			pdd->process->pasid,
970 			q->properties.queue_id);
971 
972 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
973 
974 	if (is_new || q->properties.is_being_destroyed) {
975 		pr_debug("Suspend: skip %s queue id %i\n",
976 				is_new ? "new" : "destroyed",
977 				q->properties.queue_id);
978 		return -EBUSY;
979 	}
980 
981 	q->properties.is_suspended = true;
982 	if (q->properties.is_active) {
983 		if (dqm->dev->kfd->shared_resources.enable_mes) {
984 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
985 
986 			if (r)
987 				return r;
988 		}
989 
990 		decrement_queue_count(dqm, &pdd->qpd, q);
991 		q->properties.is_active = false;
992 	}
993 
994 	return 0;
995 }
996 
997 /* resume_single_queue does not lock the dqm like the functions
998  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
999  * lock the dqm before calling, and unlock after calling.
1000  *
1001  * The reason we don't lock the dqm is because this function may be
1002  * called on multiple queues in a loop, so rather than locking/unlocking
1003  * multiple times, we will just keep the dqm locked for all of the calls.
1004  */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1005 static int resume_single_queue(struct device_queue_manager *dqm,
1006 				      struct qcm_process_device *qpd,
1007 				      struct queue *q)
1008 {
1009 	struct kfd_process_device *pdd;
1010 
1011 	if (!q->properties.is_suspended)
1012 		return 0;
1013 
1014 	pdd = qpd_to_pdd(qpd);
1015 
1016 	pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1017 			    pdd->process->pasid,
1018 			    q->properties.queue_id);
1019 
1020 	q->properties.is_suspended = false;
1021 
1022 	if (QUEUE_IS_ACTIVE(q->properties)) {
1023 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1024 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1025 
1026 			if (r)
1027 				return r;
1028 		}
1029 
1030 		q->properties.is_active = true;
1031 		increment_queue_count(dqm, qpd, q);
1032 	}
1033 
1034 	return 0;
1035 }
1036 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1037 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1038 					struct qcm_process_device *qpd)
1039 {
1040 	struct queue *q;
1041 	struct mqd_manager *mqd_mgr;
1042 	struct kfd_process_device *pdd;
1043 	int retval, ret = 0;
1044 
1045 	dqm_lock(dqm);
1046 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1047 		goto out;
1048 
1049 	pdd = qpd_to_pdd(qpd);
1050 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1051 			    pdd->process->pasid);
1052 
1053 	pdd->last_evict_timestamp = get_jiffies_64();
1054 	/* Mark all queues as evicted. Deactivate all active queues on
1055 	 * the qpd.
1056 	 */
1057 	list_for_each_entry(q, &qpd->queues_list, list) {
1058 		q->properties.is_evicted = true;
1059 		if (!q->properties.is_active)
1060 			continue;
1061 
1062 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1063 				q->properties.type)];
1064 		q->properties.is_active = false;
1065 		decrement_queue_count(dqm, qpd, q);
1066 
1067 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1068 			continue;
1069 
1070 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1071 				(dqm->dev->kfd->cwsr_enabled ?
1072 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1073 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1074 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1075 		if (retval && !ret)
1076 			/* Return the first error, but keep going to
1077 			 * maintain a consistent eviction state
1078 			 */
1079 			ret = retval;
1080 	}
1081 
1082 out:
1083 	dqm_unlock(dqm);
1084 	return ret;
1085 }
1086 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1087 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1088 				      struct qcm_process_device *qpd)
1089 {
1090 	struct queue *q;
1091 	struct kfd_process_device *pdd;
1092 	int retval = 0;
1093 
1094 	dqm_lock(dqm);
1095 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1096 		goto out;
1097 
1098 	pdd = qpd_to_pdd(qpd);
1099 
1100 	/* The debugger creates processes that temporarily have not acquired
1101 	 * all VMs for all devices and has no VMs itself.
1102 	 * Skip queue eviction on process eviction.
1103 	 */
1104 	if (!pdd->drm_priv)
1105 		goto out;
1106 
1107 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1108 			    pdd->process->pasid);
1109 
1110 	/* Mark all queues as evicted. Deactivate all active queues on
1111 	 * the qpd.
1112 	 */
1113 	list_for_each_entry(q, &qpd->queues_list, list) {
1114 		q->properties.is_evicted = true;
1115 		if (!q->properties.is_active)
1116 			continue;
1117 
1118 		q->properties.is_active = false;
1119 		decrement_queue_count(dqm, qpd, q);
1120 
1121 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1122 			retval = remove_queue_mes(dqm, q, qpd);
1123 			if (retval) {
1124 				pr_err("Failed to evict queue %d\n",
1125 					q->properties.queue_id);
1126 				goto out;
1127 			}
1128 		}
1129 	}
1130 	pdd->last_evict_timestamp = get_jiffies_64();
1131 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1132 		retval = execute_queues_cpsch(dqm,
1133 					      qpd->is_debug ?
1134 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1135 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1136 					      USE_DEFAULT_GRACE_PERIOD);
1137 
1138 out:
1139 	dqm_unlock(dqm);
1140 	return retval;
1141 }
1142 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1143 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1144 					  struct qcm_process_device *qpd)
1145 {
1146 	struct mm_struct *mm = NULL;
1147 	struct queue *q;
1148 	struct mqd_manager *mqd_mgr;
1149 	struct kfd_process_device *pdd;
1150 	uint64_t pd_base;
1151 	uint64_t eviction_duration;
1152 	int retval, ret = 0;
1153 
1154 	pdd = qpd_to_pdd(qpd);
1155 	/* Retrieve PD base */
1156 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1157 
1158 	dqm_lock(dqm);
1159 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1160 		goto out;
1161 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1162 		qpd->evicted--;
1163 		goto out;
1164 	}
1165 
1166 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1167 			    pdd->process->pasid);
1168 
1169 	/* Update PD Base in QPD */
1170 	qpd->page_table_base = pd_base;
1171 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1172 
1173 	if (!list_empty(&qpd->queues_list)) {
1174 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1175 				dqm->dev->adev,
1176 				qpd->vmid,
1177 				qpd->page_table_base);
1178 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1179 	}
1180 
1181 	/* Take a safe reference to the mm_struct, which may otherwise
1182 	 * disappear even while the kfd_process is still referenced.
1183 	 */
1184 	mm = get_task_mm(pdd->process->lead_thread);
1185 	if (!mm) {
1186 		ret = -EFAULT;
1187 		goto out;
1188 	}
1189 
1190 	/* Remove the eviction flags. Activate queues that are not
1191 	 * inactive for other reasons.
1192 	 */
1193 	list_for_each_entry(q, &qpd->queues_list, list) {
1194 		q->properties.is_evicted = false;
1195 		if (!QUEUE_IS_ACTIVE(q->properties))
1196 			continue;
1197 
1198 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1199 				q->properties.type)];
1200 		q->properties.is_active = true;
1201 		increment_queue_count(dqm, qpd, q);
1202 
1203 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1204 			continue;
1205 
1206 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1207 				       q->queue, &q->properties, mm);
1208 		if (retval && !ret)
1209 			/* Return the first error, but keep going to
1210 			 * maintain a consistent eviction state
1211 			 */
1212 			ret = retval;
1213 	}
1214 	qpd->evicted = 0;
1215 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1216 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1217 out:
1218 	if (mm)
1219 		mmput(mm);
1220 	dqm_unlock(dqm);
1221 	return ret;
1222 }
1223 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1224 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1225 					struct qcm_process_device *qpd)
1226 {
1227 	struct queue *q;
1228 	struct kfd_process_device *pdd;
1229 	uint64_t eviction_duration;
1230 	int retval = 0;
1231 
1232 	pdd = qpd_to_pdd(qpd);
1233 
1234 	dqm_lock(dqm);
1235 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1236 		goto out;
1237 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1238 		qpd->evicted--;
1239 		goto out;
1240 	}
1241 
1242 	/* The debugger creates processes that temporarily have not acquired
1243 	 * all VMs for all devices and has no VMs itself.
1244 	 * Skip queue restore on process restore.
1245 	 */
1246 	if (!pdd->drm_priv)
1247 		goto vm_not_acquired;
1248 
1249 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1250 			    pdd->process->pasid);
1251 
1252 	/* Update PD Base in QPD */
1253 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1254 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1255 
1256 	/* activate all active queues on the qpd */
1257 	list_for_each_entry(q, &qpd->queues_list, list) {
1258 		q->properties.is_evicted = false;
1259 		if (!QUEUE_IS_ACTIVE(q->properties))
1260 			continue;
1261 
1262 		q->properties.is_active = true;
1263 		increment_queue_count(dqm, &pdd->qpd, q);
1264 
1265 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1266 			retval = add_queue_mes(dqm, q, qpd);
1267 			if (retval) {
1268 				pr_err("Failed to restore queue %d\n",
1269 					q->properties.queue_id);
1270 				goto out;
1271 			}
1272 		}
1273 	}
1274 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1275 		retval = execute_queues_cpsch(dqm,
1276 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1277 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1278 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1279 vm_not_acquired:
1280 	qpd->evicted = 0;
1281 out:
1282 	dqm_unlock(dqm);
1283 	return retval;
1284 }
1285 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1286 static int register_process(struct device_queue_manager *dqm,
1287 					struct qcm_process_device *qpd)
1288 {
1289 	struct device_process_node *n;
1290 	struct kfd_process_device *pdd;
1291 	uint64_t pd_base;
1292 	int retval;
1293 
1294 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1295 	if (!n)
1296 		return -ENOMEM;
1297 
1298 	n->qpd = qpd;
1299 
1300 	pdd = qpd_to_pdd(qpd);
1301 	/* Retrieve PD base */
1302 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1303 
1304 	dqm_lock(dqm);
1305 	list_add(&n->list, &dqm->queues);
1306 
1307 	/* Update PD Base in QPD */
1308 	qpd->page_table_base = pd_base;
1309 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1310 
1311 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1312 
1313 	dqm->processes_count++;
1314 
1315 	dqm_unlock(dqm);
1316 
1317 	/* Outside the DQM lock because under the DQM lock we can't do
1318 	 * reclaim or take other locks that others hold while reclaiming.
1319 	 */
1320 	kfd_inc_compute_active(dqm->dev);
1321 
1322 	return retval;
1323 }
1324 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1325 static int unregister_process(struct device_queue_manager *dqm,
1326 					struct qcm_process_device *qpd)
1327 {
1328 	int retval;
1329 	struct device_process_node *cur, *next;
1330 
1331 	pr_debug("qpd->queues_list is %s\n",
1332 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1333 
1334 	retval = 0;
1335 	dqm_lock(dqm);
1336 
1337 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1338 		if (qpd == cur->qpd) {
1339 			list_del(&cur->list);
1340 			kfree(cur);
1341 			dqm->processes_count--;
1342 			goto out;
1343 		}
1344 	}
1345 	/* qpd not found in dqm list */
1346 	retval = 1;
1347 out:
1348 	dqm_unlock(dqm);
1349 
1350 	/* Outside the DQM lock because under the DQM lock we can't do
1351 	 * reclaim or take other locks that others hold while reclaiming.
1352 	 */
1353 	if (!retval)
1354 		kfd_dec_compute_active(dqm->dev);
1355 
1356 	return retval;
1357 }
1358 
1359 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1360 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1361 			unsigned int vmid)
1362 {
1363 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1364 	int xcc_id, ret;
1365 
1366 	for_each_inst(xcc_id, xcc_mask) {
1367 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1368 			dqm->dev->adev, pasid, vmid, xcc_id);
1369 		if (ret)
1370 			break;
1371 	}
1372 
1373 	return ret;
1374 }
1375 
init_interrupts(struct device_queue_manager * dqm)1376 static void init_interrupts(struct device_queue_manager *dqm)
1377 {
1378 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1379 	unsigned int i, xcc_id;
1380 
1381 	for_each_inst(xcc_id, xcc_mask) {
1382 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1383 			if (is_pipe_enabled(dqm, 0, i)) {
1384 				dqm->dev->kfd2kgd->init_interrupts(
1385 					dqm->dev->adev, i, xcc_id);
1386 			}
1387 		}
1388 	}
1389 }
1390 
initialize_nocpsch(struct device_queue_manager * dqm)1391 static int initialize_nocpsch(struct device_queue_manager *dqm)
1392 {
1393 	int pipe, queue;
1394 
1395 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1396 
1397 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1398 					sizeof(unsigned int), GFP_KERNEL);
1399 	if (!dqm->allocated_queues)
1400 		return -ENOMEM;
1401 
1402 	mutex_init(&dqm->lock_hidden);
1403 	INIT_LIST_HEAD(&dqm->queues);
1404 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1405 	dqm->active_cp_queue_count = 0;
1406 	dqm->gws_queue_count = 0;
1407 
1408 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1409 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1410 
1411 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1412 			if (test_bit(pipe_offset + queue,
1413 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1414 				dqm->allocated_queues[pipe] |= 1 << queue;
1415 	}
1416 
1417 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1418 
1419 	init_sdma_bitmaps(dqm);
1420 
1421 	return 0;
1422 }
1423 
uninitialize(struct device_queue_manager * dqm)1424 static void uninitialize(struct device_queue_manager *dqm)
1425 {
1426 	int i;
1427 
1428 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1429 
1430 	kfree(dqm->allocated_queues);
1431 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1432 		kfree(dqm->mqd_mgrs[i]);
1433 	mutex_destroy(&dqm->lock_hidden);
1434 }
1435 
start_nocpsch(struct device_queue_manager * dqm)1436 static int start_nocpsch(struct device_queue_manager *dqm)
1437 {
1438 	int r = 0;
1439 
1440 	pr_info("SW scheduler is used");
1441 	init_interrupts(dqm);
1442 
1443 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1444 		r = pm_init(&dqm->packet_mgr, dqm);
1445 	if (!r)
1446 		dqm->sched_running = true;
1447 
1448 	return r;
1449 }
1450 
stop_nocpsch(struct device_queue_manager * dqm)1451 static int stop_nocpsch(struct device_queue_manager *dqm)
1452 {
1453 	dqm_lock(dqm);
1454 	if (!dqm->sched_running) {
1455 		dqm_unlock(dqm);
1456 		return 0;
1457 	}
1458 
1459 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1460 		pm_uninit(&dqm->packet_mgr, false);
1461 	dqm->sched_running = false;
1462 	dqm_unlock(dqm);
1463 
1464 	return 0;
1465 }
1466 
pre_reset(struct device_queue_manager * dqm)1467 static void pre_reset(struct device_queue_manager *dqm)
1468 {
1469 	dqm_lock(dqm);
1470 	dqm->is_resetting = true;
1471 	dqm_unlock(dqm);
1472 }
1473 
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1474 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1475 				struct queue *q, const uint32_t *restore_sdma_id)
1476 {
1477 	int bit;
1478 
1479 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1480 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1481 			pr_err("No more SDMA queue to allocate\n");
1482 			return -ENOMEM;
1483 		}
1484 
1485 		if (restore_sdma_id) {
1486 			/* Re-use existing sdma_id */
1487 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1488 				pr_err("SDMA queue already in use\n");
1489 				return -EBUSY;
1490 			}
1491 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1492 			q->sdma_id = *restore_sdma_id;
1493 		} else {
1494 			/* Find first available sdma_id */
1495 			bit = find_first_bit(dqm->sdma_bitmap,
1496 					     get_num_sdma_queues(dqm));
1497 			clear_bit(bit, dqm->sdma_bitmap);
1498 			q->sdma_id = bit;
1499 		}
1500 
1501 		q->properties.sdma_engine_id =
1502 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1503 		q->properties.sdma_queue_id = q->sdma_id /
1504 				kfd_get_num_sdma_engines(dqm->dev);
1505 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1506 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1507 			pr_err("No more XGMI SDMA queue to allocate\n");
1508 			return -ENOMEM;
1509 		}
1510 		if (restore_sdma_id) {
1511 			/* Re-use existing sdma_id */
1512 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1513 				pr_err("SDMA queue already in use\n");
1514 				return -EBUSY;
1515 			}
1516 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1517 			q->sdma_id = *restore_sdma_id;
1518 		} else {
1519 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1520 					     get_num_xgmi_sdma_queues(dqm));
1521 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1522 			q->sdma_id = bit;
1523 		}
1524 		/* sdma_engine_id is sdma id including
1525 		 * both PCIe-optimized SDMAs and XGMI-
1526 		 * optimized SDMAs. The calculation below
1527 		 * assumes the first N engines are always
1528 		 * PCIe-optimized ones
1529 		 */
1530 		q->properties.sdma_engine_id =
1531 			kfd_get_num_sdma_engines(dqm->dev) +
1532 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1533 		q->properties.sdma_queue_id = q->sdma_id /
1534 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1535 	}
1536 
1537 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1538 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1539 
1540 	return 0;
1541 }
1542 
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1543 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1544 				struct queue *q)
1545 {
1546 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1547 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1548 			return;
1549 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1550 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1551 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1552 			return;
1553 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1554 	}
1555 }
1556 
1557 /*
1558  * Device Queue Manager implementation for cp scheduler
1559  */
1560 
set_sched_resources(struct device_queue_manager * dqm)1561 static int set_sched_resources(struct device_queue_manager *dqm)
1562 {
1563 	int i, mec;
1564 	struct scheduling_resources res;
1565 
1566 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1567 
1568 	res.queue_mask = 0;
1569 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1570 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1571 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1572 
1573 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1574 			continue;
1575 
1576 		/* only acquire queues from the first MEC */
1577 		if (mec > 0)
1578 			continue;
1579 
1580 		/* This situation may be hit in the future if a new HW
1581 		 * generation exposes more than 64 queues. If so, the
1582 		 * definition of res.queue_mask needs updating
1583 		 */
1584 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1585 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1586 			break;
1587 		}
1588 
1589 		res.queue_mask |= 1ull
1590 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1591 				dqm->dev->adev, i);
1592 	}
1593 	res.gws_mask = ~0ull;
1594 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1595 
1596 	pr_debug("Scheduling resources:\n"
1597 			"vmid mask: 0x%8X\n"
1598 			"queue mask: 0x%8llX\n",
1599 			res.vmid_mask, res.queue_mask);
1600 
1601 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1602 }
1603 
initialize_cpsch(struct device_queue_manager * dqm)1604 static int initialize_cpsch(struct device_queue_manager *dqm)
1605 {
1606 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1607 
1608 	mutex_init(&dqm->lock_hidden);
1609 	INIT_LIST_HEAD(&dqm->queues);
1610 	dqm->active_queue_count = dqm->processes_count = 0;
1611 	dqm->active_cp_queue_count = 0;
1612 	dqm->gws_queue_count = 0;
1613 	dqm->active_runlist = false;
1614 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1615 	dqm->trap_debug_vmid = 0;
1616 
1617 	init_sdma_bitmaps(dqm);
1618 
1619 	if (dqm->dev->kfd2kgd->get_iq_wait_times)
1620 		dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1621 					&dqm->wait_times,
1622 					ffs(dqm->dev->xcc_mask) - 1);
1623 	return 0;
1624 }
1625 
start_cpsch(struct device_queue_manager * dqm)1626 static int start_cpsch(struct device_queue_manager *dqm)
1627 {
1628 	int retval;
1629 
1630 	retval = 0;
1631 
1632 	dqm_lock(dqm);
1633 
1634 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1635 		retval = pm_init(&dqm->packet_mgr, dqm);
1636 		if (retval)
1637 			goto fail_packet_manager_init;
1638 
1639 		retval = set_sched_resources(dqm);
1640 		if (retval)
1641 			goto fail_set_sched_resources;
1642 	}
1643 	pr_debug("Allocating fence memory\n");
1644 
1645 	/* allocate fence memory on the gart */
1646 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1647 					&dqm->fence_mem);
1648 
1649 	if (retval)
1650 		goto fail_allocate_vidmem;
1651 
1652 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1653 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1654 
1655 	init_interrupts(dqm);
1656 
1657 	/* clear hang status when driver try to start the hw scheduler */
1658 	dqm->is_hws_hang = false;
1659 	dqm->is_resetting = false;
1660 	dqm->sched_running = true;
1661 
1662 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1663 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1664 
1665 	/* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */
1666 	if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu &&
1667 	    (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) {
1668 		uint32_t reg_offset = 0;
1669 		uint32_t grace_period = 1;
1670 
1671 		retval = pm_update_grace_period(&dqm->packet_mgr,
1672 						grace_period);
1673 		if (retval)
1674 			pr_err("Setting grace timeout failed\n");
1675 		else if (dqm->dev->kfd2kgd->build_grace_period_packet_info)
1676 			/* Update dqm->wait_times maintained in software */
1677 			dqm->dev->kfd2kgd->build_grace_period_packet_info(
1678 					dqm->dev->adev,	dqm->wait_times,
1679 					grace_period, &reg_offset,
1680 					&dqm->wait_times);
1681 	}
1682 
1683 	dqm_unlock(dqm);
1684 
1685 	return 0;
1686 fail_allocate_vidmem:
1687 fail_set_sched_resources:
1688 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1689 		pm_uninit(&dqm->packet_mgr, false);
1690 fail_packet_manager_init:
1691 	dqm_unlock(dqm);
1692 	return retval;
1693 }
1694 
stop_cpsch(struct device_queue_manager * dqm)1695 static int stop_cpsch(struct device_queue_manager *dqm)
1696 {
1697 	bool hanging;
1698 
1699 	dqm_lock(dqm);
1700 	if (!dqm->sched_running) {
1701 		dqm_unlock(dqm);
1702 		return 0;
1703 	}
1704 
1705 	if (!dqm->is_hws_hang) {
1706 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1707 			unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1708 		else
1709 			remove_all_queues_mes(dqm);
1710 	}
1711 
1712 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1713 	dqm->sched_running = false;
1714 
1715 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1716 		pm_release_ib(&dqm->packet_mgr);
1717 
1718 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1719 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1720 		pm_uninit(&dqm->packet_mgr, hanging);
1721 	dqm_unlock(dqm);
1722 
1723 	return 0;
1724 }
1725 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1726 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1727 					struct kernel_queue *kq,
1728 					struct qcm_process_device *qpd)
1729 {
1730 	dqm_lock(dqm);
1731 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1732 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1733 				dqm->total_queue_count);
1734 		dqm_unlock(dqm);
1735 		return -EPERM;
1736 	}
1737 
1738 	/*
1739 	 * Unconditionally increment this counter, regardless of the queue's
1740 	 * type or whether the queue is active.
1741 	 */
1742 	dqm->total_queue_count++;
1743 	pr_debug("Total of %d queues are accountable so far\n",
1744 			dqm->total_queue_count);
1745 
1746 	list_add(&kq->list, &qpd->priv_queue_list);
1747 	increment_queue_count(dqm, qpd, kq->queue);
1748 	qpd->is_debug = true;
1749 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1750 			USE_DEFAULT_GRACE_PERIOD);
1751 	dqm_unlock(dqm);
1752 
1753 	return 0;
1754 }
1755 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1756 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1757 					struct kernel_queue *kq,
1758 					struct qcm_process_device *qpd)
1759 {
1760 	dqm_lock(dqm);
1761 	list_del(&kq->list);
1762 	decrement_queue_count(dqm, qpd, kq->queue);
1763 	qpd->is_debug = false;
1764 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1765 			USE_DEFAULT_GRACE_PERIOD);
1766 	/*
1767 	 * Unconditionally decrement this counter, regardless of the queue's
1768 	 * type.
1769 	 */
1770 	dqm->total_queue_count--;
1771 	pr_debug("Total of %d queues are accountable so far\n",
1772 			dqm->total_queue_count);
1773 	dqm_unlock(dqm);
1774 }
1775 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1776 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1777 			struct qcm_process_device *qpd,
1778 			const struct kfd_criu_queue_priv_data *qd,
1779 			const void *restore_mqd, const void *restore_ctl_stack)
1780 {
1781 	int retval;
1782 	struct mqd_manager *mqd_mgr;
1783 
1784 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1785 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1786 				dqm->total_queue_count);
1787 		retval = -EPERM;
1788 		goto out;
1789 	}
1790 
1791 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1792 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1793 		dqm_lock(dqm);
1794 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1795 		dqm_unlock(dqm);
1796 		if (retval)
1797 			goto out;
1798 	}
1799 
1800 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1801 	if (retval)
1802 		goto out_deallocate_sdma_queue;
1803 
1804 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1805 			q->properties.type)];
1806 
1807 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1808 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1809 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1810 	q->properties.tba_addr = qpd->tba_addr;
1811 	q->properties.tma_addr = qpd->tma_addr;
1812 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1813 	if (!q->mqd_mem_obj) {
1814 		retval = -ENOMEM;
1815 		goto out_deallocate_doorbell;
1816 	}
1817 
1818 	dqm_lock(dqm);
1819 	/*
1820 	 * Eviction state logic: mark all queues as evicted, even ones
1821 	 * not currently active. Restoring inactive queues later only
1822 	 * updates the is_evicted flag but is a no-op otherwise.
1823 	 */
1824 	q->properties.is_evicted = !!qpd->evicted;
1825 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
1826 				  kfd_dbg_has_cwsr_workaround(q->device);
1827 
1828 	if (qd)
1829 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1830 				     &q->properties, restore_mqd, restore_ctl_stack,
1831 				     qd->ctl_stack_size);
1832 	else
1833 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1834 					&q->gart_mqd_addr, &q->properties);
1835 
1836 	list_add(&q->list, &qpd->queues_list);
1837 	qpd->queue_count++;
1838 
1839 	if (q->properties.is_active) {
1840 		increment_queue_count(dqm, qpd, q);
1841 
1842 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1843 			retval = execute_queues_cpsch(dqm,
1844 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1845 		else
1846 			retval = add_queue_mes(dqm, q, qpd);
1847 		if (retval)
1848 			goto cleanup_queue;
1849 	}
1850 
1851 	/*
1852 	 * Unconditionally increment this counter, regardless of the queue's
1853 	 * type or whether the queue is active.
1854 	 */
1855 	dqm->total_queue_count++;
1856 
1857 	pr_debug("Total of %d queues are accountable so far\n",
1858 			dqm->total_queue_count);
1859 
1860 	dqm_unlock(dqm);
1861 	return retval;
1862 
1863 cleanup_queue:
1864 	qpd->queue_count--;
1865 	list_del(&q->list);
1866 	if (q->properties.is_active)
1867 		decrement_queue_count(dqm, qpd, q);
1868 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1869 	dqm_unlock(dqm);
1870 out_deallocate_doorbell:
1871 	deallocate_doorbell(qpd, q);
1872 out_deallocate_sdma_queue:
1873 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1874 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1875 		dqm_lock(dqm);
1876 		deallocate_sdma_queue(dqm, q);
1877 		dqm_unlock(dqm);
1878 	}
1879 out:
1880 	return retval;
1881 }
1882 
amdkfd_fence_wait_timeout(uint64_t * fence_addr,uint64_t fence_value,unsigned int timeout_ms)1883 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1884 				uint64_t fence_value,
1885 				unsigned int timeout_ms)
1886 {
1887 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1888 
1889 	while (*fence_addr != fence_value) {
1890 		if (time_after(jiffies, end_jiffies)) {
1891 			pr_err("qcm fence wait loop timeout expired\n");
1892 			/* In HWS case, this is used to halt the driver thread
1893 			 * in order not to mess up CP states before doing
1894 			 * scandumps for FW debugging.
1895 			 */
1896 			while (halt_if_hws_hang)
1897 				schedule();
1898 
1899 			return -ETIME;
1900 		}
1901 		schedule();
1902 	}
1903 
1904 	return 0;
1905 }
1906 
1907 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1908 static int map_queues_cpsch(struct device_queue_manager *dqm)
1909 {
1910 	int retval;
1911 
1912 	if (!dqm->sched_running)
1913 		return 0;
1914 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1915 		return 0;
1916 	if (dqm->active_runlist)
1917 		return 0;
1918 
1919 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1920 	pr_debug("%s sent runlist\n", __func__);
1921 	if (retval) {
1922 		pr_err("failed to execute runlist\n");
1923 		return retval;
1924 	}
1925 	dqm->active_runlist = true;
1926 
1927 	return retval;
1928 }
1929 
1930 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)1931 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1932 				enum kfd_unmap_queues_filter filter,
1933 				uint32_t filter_param,
1934 				uint32_t grace_period,
1935 				bool reset)
1936 {
1937 	int retval = 0;
1938 	struct mqd_manager *mqd_mgr;
1939 
1940 	if (!dqm->sched_running)
1941 		return 0;
1942 	if (dqm->is_hws_hang || dqm->is_resetting)
1943 		return -EIO;
1944 	if (!dqm->active_runlist)
1945 		return retval;
1946 
1947 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1948 		retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
1949 		if (retval)
1950 			return retval;
1951 	}
1952 
1953 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1954 	if (retval)
1955 		return retval;
1956 
1957 	*dqm->fence_addr = KFD_FENCE_INIT;
1958 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1959 				KFD_FENCE_COMPLETED);
1960 	/* should be timed out */
1961 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1962 				queue_preemption_timeout_ms);
1963 	if (retval) {
1964 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1965 		kfd_hws_hang(dqm);
1966 		return retval;
1967 	}
1968 
1969 	/* In the current MEC firmware implementation, if compute queue
1970 	 * doesn't response to the preemption request in time, HIQ will
1971 	 * abandon the unmap request without returning any timeout error
1972 	 * to driver. Instead, MEC firmware will log the doorbell of the
1973 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1974 	 * To make sure the queue unmap was successful, driver need to
1975 	 * check those fields
1976 	 */
1977 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1978 	if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1979 		pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1980 		while (halt_if_hws_hang)
1981 			schedule();
1982 		return -ETIME;
1983 	}
1984 
1985 	/* We need to reset the grace period value for this device */
1986 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1987 		if (pm_update_grace_period(&dqm->packet_mgr,
1988 					USE_DEFAULT_GRACE_PERIOD))
1989 			pr_err("Failed to reset grace period\n");
1990 	}
1991 
1992 	pm_release_ib(&dqm->packet_mgr);
1993 	dqm->active_runlist = false;
1994 
1995 	return retval;
1996 }
1997 
1998 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)1999 static int reset_queues_cpsch(struct device_queue_manager *dqm,
2000 			uint16_t pasid)
2001 {
2002 	int retval;
2003 
2004 	dqm_lock(dqm);
2005 
2006 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2007 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2008 
2009 	dqm_unlock(dqm);
2010 	return retval;
2011 }
2012 
2013 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2014 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2015 				enum kfd_unmap_queues_filter filter,
2016 				uint32_t filter_param,
2017 				uint32_t grace_period)
2018 {
2019 	int retval;
2020 
2021 	if (dqm->is_hws_hang)
2022 		return -EIO;
2023 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2024 	if (retval)
2025 		return retval;
2026 
2027 	return map_queues_cpsch(dqm);
2028 }
2029 
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2030 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2031 				 struct queue *q)
2032 {
2033 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2034 								q->process);
2035 	int ret = 0;
2036 
2037 	if (pdd->qpd.is_debug)
2038 		return ret;
2039 
2040 	q->properties.is_being_destroyed = true;
2041 
2042 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2043 		dqm_unlock(dqm);
2044 		mutex_unlock(&q->process->mutex);
2045 		ret = wait_event_interruptible(dqm->destroy_wait,
2046 						!q->properties.is_suspended);
2047 
2048 		mutex_lock(&q->process->mutex);
2049 		dqm_lock(dqm);
2050 	}
2051 
2052 	return ret;
2053 }
2054 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2055 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2056 				struct qcm_process_device *qpd,
2057 				struct queue *q)
2058 {
2059 	int retval;
2060 	struct mqd_manager *mqd_mgr;
2061 	uint64_t sdma_val = 0;
2062 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2063 
2064 	/* Get the SDMA queue stats */
2065 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2066 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2067 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2068 							&sdma_val);
2069 		if (retval)
2070 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
2071 				q->properties.queue_id);
2072 	}
2073 
2074 	/* remove queue from list to prevent rescheduling after preemption */
2075 	dqm_lock(dqm);
2076 
2077 	retval = wait_on_destroy_queue(dqm, q);
2078 
2079 	if (retval) {
2080 		dqm_unlock(dqm);
2081 		return retval;
2082 	}
2083 
2084 	if (qpd->is_debug) {
2085 		/*
2086 		 * error, currently we do not allow to destroy a queue
2087 		 * of a currently debugged process
2088 		 */
2089 		retval = -EBUSY;
2090 		goto failed_try_destroy_debugged_queue;
2091 
2092 	}
2093 
2094 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2095 			q->properties.type)];
2096 
2097 	deallocate_doorbell(qpd, q);
2098 
2099 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2100 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2101 		deallocate_sdma_queue(dqm, q);
2102 		pdd->sdma_past_activity_counter += sdma_val;
2103 	}
2104 
2105 	list_del(&q->list);
2106 	qpd->queue_count--;
2107 	if (q->properties.is_active) {
2108 		decrement_queue_count(dqm, qpd, q);
2109 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2110 			retval = execute_queues_cpsch(dqm,
2111 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2112 						      USE_DEFAULT_GRACE_PERIOD);
2113 			if (retval == -ETIME)
2114 				qpd->reset_wavefronts = true;
2115 		} else {
2116 			retval = remove_queue_mes(dqm, q, qpd);
2117 		}
2118 	}
2119 
2120 	/*
2121 	 * Unconditionally decrement this counter, regardless of the queue's
2122 	 * type
2123 	 */
2124 	dqm->total_queue_count--;
2125 	pr_debug("Total of %d queues are accountable so far\n",
2126 			dqm->total_queue_count);
2127 
2128 	dqm_unlock(dqm);
2129 
2130 	/*
2131 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2132 	 * circular locking
2133 	 */
2134 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2135 				qpd->pqm->process, q->device,
2136 				-1, false, NULL, 0);
2137 
2138 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2139 
2140 	return retval;
2141 
2142 failed_try_destroy_debugged_queue:
2143 
2144 	dqm_unlock(dqm);
2145 	return retval;
2146 }
2147 
2148 /*
2149  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2150  * stay in user mode.
2151  */
2152 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2153 /* APE1 limit is inclusive and 64K aligned. */
2154 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2155 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)2156 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2157 				   struct qcm_process_device *qpd,
2158 				   enum cache_policy default_policy,
2159 				   enum cache_policy alternate_policy,
2160 				   void __user *alternate_aperture_base,
2161 				   uint64_t alternate_aperture_size)
2162 {
2163 	bool retval = true;
2164 
2165 	if (!dqm->asic_ops.set_cache_memory_policy)
2166 		return retval;
2167 
2168 	dqm_lock(dqm);
2169 
2170 	if (alternate_aperture_size == 0) {
2171 		/* base > limit disables APE1 */
2172 		qpd->sh_mem_ape1_base = 1;
2173 		qpd->sh_mem_ape1_limit = 0;
2174 	} else {
2175 		/*
2176 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2177 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
2178 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2179 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2180 		 * Verify that the base and size parameters can be
2181 		 * represented in this format and convert them.
2182 		 * Additionally restrict APE1 to user-mode addresses.
2183 		 */
2184 
2185 		uint64_t base = (uintptr_t)alternate_aperture_base;
2186 		uint64_t limit = base + alternate_aperture_size - 1;
2187 
2188 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2189 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2190 			retval = false;
2191 			goto out;
2192 		}
2193 
2194 		qpd->sh_mem_ape1_base = base >> 16;
2195 		qpd->sh_mem_ape1_limit = limit >> 16;
2196 	}
2197 
2198 	retval = dqm->asic_ops.set_cache_memory_policy(
2199 			dqm,
2200 			qpd,
2201 			default_policy,
2202 			alternate_policy,
2203 			alternate_aperture_base,
2204 			alternate_aperture_size);
2205 
2206 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2207 		program_sh_mem_settings(dqm, qpd);
2208 
2209 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2210 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2211 		qpd->sh_mem_ape1_limit);
2212 
2213 out:
2214 	dqm_unlock(dqm);
2215 	return retval;
2216 }
2217 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2218 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2219 		struct qcm_process_device *qpd)
2220 {
2221 	struct queue *q;
2222 	struct device_process_node *cur, *next_dpn;
2223 	int retval = 0;
2224 	bool found = false;
2225 
2226 	dqm_lock(dqm);
2227 
2228 	/* Clear all user mode queues */
2229 	while (!list_empty(&qpd->queues_list)) {
2230 		struct mqd_manager *mqd_mgr;
2231 		int ret;
2232 
2233 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2234 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2235 				q->properties.type)];
2236 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2237 		if (ret)
2238 			retval = ret;
2239 		dqm_unlock(dqm);
2240 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2241 		dqm_lock(dqm);
2242 	}
2243 
2244 	/* Unregister process */
2245 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2246 		if (qpd == cur->qpd) {
2247 			list_del(&cur->list);
2248 			kfree(cur);
2249 			dqm->processes_count--;
2250 			found = true;
2251 			break;
2252 		}
2253 	}
2254 
2255 	dqm_unlock(dqm);
2256 
2257 	/* Outside the DQM lock because under the DQM lock we can't do
2258 	 * reclaim or take other locks that others hold while reclaiming.
2259 	 */
2260 	if (found)
2261 		kfd_dec_compute_active(dqm->dev);
2262 
2263 	return retval;
2264 }
2265 
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2266 static int get_wave_state(struct device_queue_manager *dqm,
2267 			  struct queue *q,
2268 			  void __user *ctl_stack,
2269 			  u32 *ctl_stack_used_size,
2270 			  u32 *save_area_used_size)
2271 {
2272 	struct mqd_manager *mqd_mgr;
2273 
2274 	dqm_lock(dqm);
2275 
2276 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2277 
2278 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2279 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2280 	    !mqd_mgr->get_wave_state) {
2281 		dqm_unlock(dqm);
2282 		return -EINVAL;
2283 	}
2284 
2285 	dqm_unlock(dqm);
2286 
2287 	/*
2288 	 * get_wave_state is outside the dqm lock to prevent circular locking
2289 	 * and the queue should be protected against destruction by the process
2290 	 * lock.
2291 	 */
2292 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2293 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2294 }
2295 
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2296 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2297 			const struct queue *q,
2298 			u32 *mqd_size,
2299 			u32 *ctl_stack_size)
2300 {
2301 	struct mqd_manager *mqd_mgr;
2302 	enum KFD_MQD_TYPE mqd_type =
2303 			get_mqd_type_from_queue_type(q->properties.type);
2304 
2305 	dqm_lock(dqm);
2306 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2307 	*mqd_size = mqd_mgr->mqd_size;
2308 	*ctl_stack_size = 0;
2309 
2310 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2311 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2312 
2313 	dqm_unlock(dqm);
2314 }
2315 
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2316 static int checkpoint_mqd(struct device_queue_manager *dqm,
2317 			  const struct queue *q,
2318 			  void *mqd,
2319 			  void *ctl_stack)
2320 {
2321 	struct mqd_manager *mqd_mgr;
2322 	int r = 0;
2323 	enum KFD_MQD_TYPE mqd_type =
2324 			get_mqd_type_from_queue_type(q->properties.type);
2325 
2326 	dqm_lock(dqm);
2327 
2328 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2329 		r = -EINVAL;
2330 		goto dqm_unlock;
2331 	}
2332 
2333 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2334 	if (!mqd_mgr->checkpoint_mqd) {
2335 		r = -EOPNOTSUPP;
2336 		goto dqm_unlock;
2337 	}
2338 
2339 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2340 
2341 dqm_unlock:
2342 	dqm_unlock(dqm);
2343 	return r;
2344 }
2345 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2346 static int process_termination_cpsch(struct device_queue_manager *dqm,
2347 		struct qcm_process_device *qpd)
2348 {
2349 	int retval;
2350 	struct queue *q;
2351 	struct kernel_queue *kq, *kq_next;
2352 	struct mqd_manager *mqd_mgr;
2353 	struct device_process_node *cur, *next_dpn;
2354 	enum kfd_unmap_queues_filter filter =
2355 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2356 	bool found = false;
2357 
2358 	retval = 0;
2359 
2360 	dqm_lock(dqm);
2361 
2362 	/* Clean all kernel queues */
2363 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2364 		list_del(&kq->list);
2365 		decrement_queue_count(dqm, qpd, kq->queue);
2366 		qpd->is_debug = false;
2367 		dqm->total_queue_count--;
2368 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2369 	}
2370 
2371 	/* Clear all user mode queues */
2372 	list_for_each_entry(q, &qpd->queues_list, list) {
2373 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2374 			deallocate_sdma_queue(dqm, q);
2375 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2376 			deallocate_sdma_queue(dqm, q);
2377 
2378 		if (q->properties.is_active) {
2379 			decrement_queue_count(dqm, qpd, q);
2380 
2381 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2382 				retval = remove_queue_mes(dqm, q, qpd);
2383 				if (retval)
2384 					pr_err("Failed to remove queue %d\n",
2385 						q->properties.queue_id);
2386 			}
2387 		}
2388 
2389 		dqm->total_queue_count--;
2390 	}
2391 
2392 	/* Unregister process */
2393 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2394 		if (qpd == cur->qpd) {
2395 			list_del(&cur->list);
2396 			kfree(cur);
2397 			dqm->processes_count--;
2398 			found = true;
2399 			break;
2400 		}
2401 	}
2402 
2403 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2404 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2405 
2406 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
2407 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2408 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2409 		qpd->reset_wavefronts = false;
2410 	}
2411 
2412 	/* Lastly, free mqd resources.
2413 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2414 	 */
2415 	while (!list_empty(&qpd->queues_list)) {
2416 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2417 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2418 				q->properties.type)];
2419 		list_del(&q->list);
2420 		qpd->queue_count--;
2421 		dqm_unlock(dqm);
2422 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2423 		dqm_lock(dqm);
2424 	}
2425 	dqm_unlock(dqm);
2426 
2427 	/* Outside the DQM lock because under the DQM lock we can't do
2428 	 * reclaim or take other locks that others hold while reclaiming.
2429 	 */
2430 	if (found)
2431 		kfd_dec_compute_active(dqm->dev);
2432 
2433 	return retval;
2434 }
2435 
init_mqd_managers(struct device_queue_manager * dqm)2436 static int init_mqd_managers(struct device_queue_manager *dqm)
2437 {
2438 	int i, j;
2439 	struct mqd_manager *mqd_mgr;
2440 
2441 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2442 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2443 		if (!mqd_mgr) {
2444 			pr_err("mqd manager [%d] initialization failed\n", i);
2445 			goto out_free;
2446 		}
2447 		dqm->mqd_mgrs[i] = mqd_mgr;
2448 	}
2449 
2450 	return 0;
2451 
2452 out_free:
2453 	for (j = 0; j < i; j++) {
2454 		kfree(dqm->mqd_mgrs[j]);
2455 		dqm->mqd_mgrs[j] = NULL;
2456 	}
2457 
2458 	return -ENOMEM;
2459 }
2460 
2461 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2462 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2463 {
2464 	int retval;
2465 	struct kfd_node *dev = dqm->dev;
2466 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2467 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2468 		get_num_all_sdma_engines(dqm) *
2469 		dev->kfd->device_info.num_sdma_queues_per_engine +
2470 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2471 		NUM_XCC(dqm->dev->xcc_mask));
2472 
2473 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2474 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2475 		(void *)&(mem_obj->cpu_ptr), false);
2476 
2477 	return retval;
2478 }
2479 
device_queue_manager_init(struct kfd_node * dev)2480 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2481 {
2482 	struct device_queue_manager *dqm;
2483 
2484 	pr_debug("Loading device queue manager\n");
2485 
2486 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2487 	if (!dqm)
2488 		return NULL;
2489 
2490 	switch (dev->adev->asic_type) {
2491 	/* HWS is not available on Hawaii. */
2492 	case CHIP_HAWAII:
2493 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2494 	 * available on Tonga.
2495 	 *
2496 	 * FIXME: This argument also applies to Kaveri.
2497 	 */
2498 	case CHIP_TONGA:
2499 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2500 		break;
2501 	default:
2502 		dqm->sched_policy = sched_policy;
2503 		break;
2504 	}
2505 
2506 	dqm->dev = dev;
2507 	switch (dqm->sched_policy) {
2508 	case KFD_SCHED_POLICY_HWS:
2509 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2510 		/* initialize dqm for cp scheduling */
2511 		dqm->ops.create_queue = create_queue_cpsch;
2512 		dqm->ops.initialize = initialize_cpsch;
2513 		dqm->ops.start = start_cpsch;
2514 		dqm->ops.stop = stop_cpsch;
2515 		dqm->ops.pre_reset = pre_reset;
2516 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2517 		dqm->ops.update_queue = update_queue;
2518 		dqm->ops.register_process = register_process;
2519 		dqm->ops.unregister_process = unregister_process;
2520 		dqm->ops.uninitialize = uninitialize;
2521 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2522 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2523 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2524 		dqm->ops.process_termination = process_termination_cpsch;
2525 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2526 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2527 		dqm->ops.get_wave_state = get_wave_state;
2528 		dqm->ops.reset_queues = reset_queues_cpsch;
2529 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2530 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2531 		break;
2532 	case KFD_SCHED_POLICY_NO_HWS:
2533 		/* initialize dqm for no cp scheduling */
2534 		dqm->ops.start = start_nocpsch;
2535 		dqm->ops.stop = stop_nocpsch;
2536 		dqm->ops.pre_reset = pre_reset;
2537 		dqm->ops.create_queue = create_queue_nocpsch;
2538 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2539 		dqm->ops.update_queue = update_queue;
2540 		dqm->ops.register_process = register_process;
2541 		dqm->ops.unregister_process = unregister_process;
2542 		dqm->ops.initialize = initialize_nocpsch;
2543 		dqm->ops.uninitialize = uninitialize;
2544 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2545 		dqm->ops.process_termination = process_termination_nocpsch;
2546 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2547 		dqm->ops.restore_process_queues =
2548 			restore_process_queues_nocpsch;
2549 		dqm->ops.get_wave_state = get_wave_state;
2550 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2551 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2552 		break;
2553 	default:
2554 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
2555 		goto out_free;
2556 	}
2557 
2558 	switch (dev->adev->asic_type) {
2559 	case CHIP_KAVERI:
2560 	case CHIP_HAWAII:
2561 		device_queue_manager_init_cik(&dqm->asic_ops);
2562 		break;
2563 
2564 	case CHIP_CARRIZO:
2565 	case CHIP_TONGA:
2566 	case CHIP_FIJI:
2567 	case CHIP_POLARIS10:
2568 	case CHIP_POLARIS11:
2569 	case CHIP_POLARIS12:
2570 	case CHIP_VEGAM:
2571 		device_queue_manager_init_vi(&dqm->asic_ops);
2572 		break;
2573 
2574 	default:
2575 		if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2576 			device_queue_manager_init_v11(&dqm->asic_ops);
2577 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2578 			device_queue_manager_init_v10(&dqm->asic_ops);
2579 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2580 			device_queue_manager_init_v9(&dqm->asic_ops);
2581 		else {
2582 			WARN(1, "Unexpected ASIC family %u",
2583 			     dev->adev->asic_type);
2584 			goto out_free;
2585 		}
2586 	}
2587 
2588 	if (init_mqd_managers(dqm))
2589 		goto out_free;
2590 
2591 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2592 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
2593 		goto out_free;
2594 	}
2595 
2596 	if (!dqm->ops.initialize(dqm)) {
2597 		init_waitqueue_head(&dqm->destroy_wait);
2598 		return dqm;
2599 	}
2600 
2601 out_free:
2602 	kfree(dqm);
2603 	return NULL;
2604 }
2605 
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)2606 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2607 				    struct kfd_mem_obj *mqd)
2608 {
2609 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2610 
2611 	amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2612 }
2613 
device_queue_manager_uninit(struct device_queue_manager * dqm)2614 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2615 {
2616 	dqm->ops.stop(dqm);
2617 	dqm->ops.uninitialize(dqm);
2618 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2619 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2620 	kfree(dqm);
2621 }
2622 
kfd_dqm_evict_pasid(struct device_queue_manager * dqm,u32 pasid)2623 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2624 {
2625 	struct kfd_process_device *pdd;
2626 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2627 	int ret = 0;
2628 
2629 	if (!p)
2630 		return -EINVAL;
2631 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2632 	pdd = kfd_get_process_device_data(dqm->dev, p);
2633 	if (pdd)
2634 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2635 	kfd_unref_process(p);
2636 
2637 	return ret;
2638 }
2639 
kfd_process_hw_exception(struct work_struct * work)2640 static void kfd_process_hw_exception(struct work_struct *work)
2641 {
2642 	struct device_queue_manager *dqm = container_of(work,
2643 			struct device_queue_manager, hw_exception_work);
2644 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2645 }
2646 
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2647 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
2648 				struct qcm_process_device *qpd)
2649 {
2650 	int r;
2651 	int updated_vmid_mask;
2652 
2653 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2654 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2655 		return -EINVAL;
2656 	}
2657 
2658 	dqm_lock(dqm);
2659 
2660 	if (dqm->trap_debug_vmid != 0) {
2661 		pr_err("Trap debug id already reserved\n");
2662 		r = -EBUSY;
2663 		goto out_unlock;
2664 	}
2665 
2666 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2667 			USE_DEFAULT_GRACE_PERIOD, false);
2668 	if (r)
2669 		goto out_unlock;
2670 
2671 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2672 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
2673 
2674 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2675 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
2676 	r = set_sched_resources(dqm);
2677 	if (r)
2678 		goto out_unlock;
2679 
2680 	r = map_queues_cpsch(dqm);
2681 	if (r)
2682 		goto out_unlock;
2683 
2684 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
2685 
2686 out_unlock:
2687 	dqm_unlock(dqm);
2688 	return r;
2689 }
2690 
2691 /*
2692  * Releases vmid for the trap debugger
2693  */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2694 int release_debug_trap_vmid(struct device_queue_manager *dqm,
2695 			struct qcm_process_device *qpd)
2696 {
2697 	int r;
2698 	int updated_vmid_mask;
2699 	uint32_t trap_debug_vmid;
2700 
2701 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2702 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2703 		return -EINVAL;
2704 	}
2705 
2706 	dqm_lock(dqm);
2707 	trap_debug_vmid = dqm->trap_debug_vmid;
2708 	if (dqm->trap_debug_vmid == 0) {
2709 		pr_err("Trap debug id is not reserved\n");
2710 		r = -EINVAL;
2711 		goto out_unlock;
2712 	}
2713 
2714 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2715 			USE_DEFAULT_GRACE_PERIOD, false);
2716 	if (r)
2717 		goto out_unlock;
2718 
2719 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2720 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
2721 
2722 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2723 	dqm->trap_debug_vmid = 0;
2724 	r = set_sched_resources(dqm);
2725 	if (r)
2726 		goto out_unlock;
2727 
2728 	r = map_queues_cpsch(dqm);
2729 	if (r)
2730 		goto out_unlock;
2731 
2732 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
2733 
2734 out_unlock:
2735 	dqm_unlock(dqm);
2736 	return r;
2737 }
2738 
2739 #define QUEUE_NOT_FOUND		-1
2740 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)2741 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
2742 {
2743 	int i;
2744 
2745 	for (i = 0; i < num_queues; i++)
2746 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
2747 }
2748 
2749 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)2750 static int q_array_get_index(unsigned int queue_id,
2751 		uint32_t num_queues,
2752 		uint32_t *queue_ids)
2753 {
2754 	int i;
2755 
2756 	for (i = 0; i < num_queues; i++)
2757 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
2758 			return i;
2759 
2760 	return QUEUE_NOT_FOUND;
2761 }
2762 
2763 struct copy_context_work_handler_workarea {
2764 	struct work_struct copy_context_work;
2765 	struct kfd_process *p;
2766 };
2767 
copy_context_work_handler(struct work_struct * work)2768 static void copy_context_work_handler (struct work_struct *work)
2769 {
2770 	struct copy_context_work_handler_workarea *workarea;
2771 	struct mqd_manager *mqd_mgr;
2772 	struct queue *q;
2773 	struct mm_struct *mm;
2774 	struct kfd_process *p;
2775 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
2776 	int i;
2777 
2778 	workarea = container_of(work,
2779 			struct copy_context_work_handler_workarea,
2780 			copy_context_work);
2781 
2782 	p = workarea->p;
2783 	mm = get_task_mm(p->lead_thread);
2784 
2785 	if (!mm)
2786 		return;
2787 
2788 	kthread_use_mm(mm);
2789 	for (i = 0; i < p->n_pdds; i++) {
2790 		struct kfd_process_device *pdd = p->pdds[i];
2791 		struct device_queue_manager *dqm = pdd->dev->dqm;
2792 		struct qcm_process_device *qpd = &pdd->qpd;
2793 
2794 		list_for_each_entry(q, &qpd->queues_list, list) {
2795 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2796 
2797 			/* We ignore the return value from get_wave_state
2798 			 * because
2799 			 * i) right now, it always returns 0, and
2800 			 * ii) if we hit an error, we would continue to the
2801 			 *      next queue anyway.
2802 			 */
2803 			mqd_mgr->get_wave_state(mqd_mgr,
2804 					q->mqd,
2805 					&q->properties,
2806 					(void __user *)	q->properties.ctx_save_restore_area_address,
2807 					&tmp_ctl_stack_used_size,
2808 					&tmp_save_area_used_size);
2809 		}
2810 	}
2811 	kthread_unuse_mm(mm);
2812 	mmput(mm);
2813 }
2814 
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)2815 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
2816 {
2817 	size_t array_size = num_queues * sizeof(uint32_t);
2818 
2819 	if (!usr_queue_id_array)
2820 		return NULL;
2821 
2822 	return memdup_user(usr_queue_id_array, array_size);
2823 }
2824 
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)2825 int resume_queues(struct kfd_process *p,
2826 		uint32_t num_queues,
2827 		uint32_t *usr_queue_id_array)
2828 {
2829 	uint32_t *queue_ids = NULL;
2830 	int total_resumed = 0;
2831 	int i;
2832 
2833 	if (usr_queue_id_array) {
2834 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2835 
2836 		if (IS_ERR(queue_ids))
2837 			return PTR_ERR(queue_ids);
2838 
2839 		/* mask all queues as invalid.  unmask per successful request */
2840 		q_array_invalidate(num_queues, queue_ids);
2841 	}
2842 
2843 	for (i = 0; i < p->n_pdds; i++) {
2844 		struct kfd_process_device *pdd = p->pdds[i];
2845 		struct device_queue_manager *dqm = pdd->dev->dqm;
2846 		struct qcm_process_device *qpd = &pdd->qpd;
2847 		struct queue *q;
2848 		int r, per_device_resumed = 0;
2849 
2850 		dqm_lock(dqm);
2851 
2852 		/* unmask queues that resume or already resumed as valid */
2853 		list_for_each_entry(q, &qpd->queues_list, list) {
2854 			int q_idx = QUEUE_NOT_FOUND;
2855 
2856 			if (queue_ids)
2857 				q_idx = q_array_get_index(
2858 						q->properties.queue_id,
2859 						num_queues,
2860 						queue_ids);
2861 
2862 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
2863 				int err = resume_single_queue(dqm, &pdd->qpd, q);
2864 
2865 				if (queue_ids) {
2866 					if (!err) {
2867 						queue_ids[q_idx] &=
2868 							~KFD_DBG_QUEUE_INVALID_MASK;
2869 					} else {
2870 						queue_ids[q_idx] |=
2871 							KFD_DBG_QUEUE_ERROR_MASK;
2872 						break;
2873 					}
2874 				}
2875 
2876 				if (dqm->dev->kfd->shared_resources.enable_mes) {
2877 					wake_up_all(&dqm->destroy_wait);
2878 					if (!err)
2879 						total_resumed++;
2880 				} else {
2881 					per_device_resumed++;
2882 				}
2883 			}
2884 		}
2885 
2886 		if (!per_device_resumed) {
2887 			dqm_unlock(dqm);
2888 			continue;
2889 		}
2890 
2891 		r = execute_queues_cpsch(dqm,
2892 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
2893 					0,
2894 					USE_DEFAULT_GRACE_PERIOD);
2895 		if (r) {
2896 			pr_err("Failed to resume process queues\n");
2897 			if (queue_ids) {
2898 				list_for_each_entry(q, &qpd->queues_list, list) {
2899 					int q_idx = q_array_get_index(
2900 							q->properties.queue_id,
2901 							num_queues,
2902 							queue_ids);
2903 
2904 					/* mask queue as error on resume fail */
2905 					if (q_idx != QUEUE_NOT_FOUND)
2906 						queue_ids[q_idx] |=
2907 							KFD_DBG_QUEUE_ERROR_MASK;
2908 				}
2909 			}
2910 		} else {
2911 			wake_up_all(&dqm->destroy_wait);
2912 			total_resumed += per_device_resumed;
2913 		}
2914 
2915 		dqm_unlock(dqm);
2916 	}
2917 
2918 	if (queue_ids) {
2919 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
2920 				num_queues * sizeof(uint32_t)))
2921 			pr_err("copy_to_user failed on queue resume\n");
2922 
2923 		kfree(queue_ids);
2924 	}
2925 
2926 	return total_resumed;
2927 }
2928 
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)2929 int suspend_queues(struct kfd_process *p,
2930 			uint32_t num_queues,
2931 			uint32_t grace_period,
2932 			uint64_t exception_clear_mask,
2933 			uint32_t *usr_queue_id_array)
2934 {
2935 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2936 	int total_suspended = 0;
2937 	int i;
2938 
2939 	if (IS_ERR(queue_ids))
2940 		return PTR_ERR(queue_ids);
2941 
2942 	/* mask all queues as invalid.  umask on successful request */
2943 	q_array_invalidate(num_queues, queue_ids);
2944 
2945 	for (i = 0; i < p->n_pdds; i++) {
2946 		struct kfd_process_device *pdd = p->pdds[i];
2947 		struct device_queue_manager *dqm = pdd->dev->dqm;
2948 		struct qcm_process_device *qpd = &pdd->qpd;
2949 		struct queue *q;
2950 		int r, per_device_suspended = 0;
2951 
2952 		mutex_lock(&p->event_mutex);
2953 		dqm_lock(dqm);
2954 
2955 		/* unmask queues that suspend or already suspended */
2956 		list_for_each_entry(q, &qpd->queues_list, list) {
2957 			int q_idx = q_array_get_index(q->properties.queue_id,
2958 							num_queues,
2959 							queue_ids);
2960 
2961 			if (q_idx != QUEUE_NOT_FOUND) {
2962 				int err = suspend_single_queue(dqm, pdd, q);
2963 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
2964 
2965 				if (!err) {
2966 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
2967 					if (exception_clear_mask && is_mes)
2968 						q->properties.exception_status &=
2969 							~exception_clear_mask;
2970 
2971 					if (is_mes)
2972 						total_suspended++;
2973 					else
2974 						per_device_suspended++;
2975 				} else if (err != -EBUSY) {
2976 					r = err;
2977 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
2978 					break;
2979 				}
2980 			}
2981 		}
2982 
2983 		if (!per_device_suspended) {
2984 			dqm_unlock(dqm);
2985 			mutex_unlock(&p->event_mutex);
2986 			if (total_suspended)
2987 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
2988 			continue;
2989 		}
2990 
2991 		r = execute_queues_cpsch(dqm,
2992 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2993 			grace_period);
2994 
2995 		if (r)
2996 			pr_err("Failed to suspend process queues.\n");
2997 		else
2998 			total_suspended += per_device_suspended;
2999 
3000 		list_for_each_entry(q, &qpd->queues_list, list) {
3001 			int q_idx = q_array_get_index(q->properties.queue_id,
3002 						num_queues, queue_ids);
3003 
3004 			if (q_idx == QUEUE_NOT_FOUND)
3005 				continue;
3006 
3007 			/* mask queue as error on suspend fail */
3008 			if (r)
3009 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3010 			else if (exception_clear_mask)
3011 				q->properties.exception_status &=
3012 							~exception_clear_mask;
3013 		}
3014 
3015 		dqm_unlock(dqm);
3016 		mutex_unlock(&p->event_mutex);
3017 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3018 	}
3019 
3020 	if (total_suspended) {
3021 		struct copy_context_work_handler_workarea copy_context_worker;
3022 
3023 		INIT_WORK_ONSTACK(
3024 				&copy_context_worker.copy_context_work,
3025 				copy_context_work_handler);
3026 
3027 		copy_context_worker.p = p;
3028 
3029 		schedule_work(&copy_context_worker.copy_context_work);
3030 
3031 
3032 		flush_work(&copy_context_worker.copy_context_work);
3033 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3034 	}
3035 
3036 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3037 			num_queues * sizeof(uint32_t)))
3038 		pr_err("copy_to_user failed on queue suspend\n");
3039 
3040 	kfree(queue_ids);
3041 
3042 	return total_suspended;
3043 }
3044 
set_queue_type_for_user(struct queue_properties * q_props)3045 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3046 {
3047 	switch (q_props->type) {
3048 	case KFD_QUEUE_TYPE_COMPUTE:
3049 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3050 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3051 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3052 	case KFD_QUEUE_TYPE_SDMA:
3053 		return KFD_IOC_QUEUE_TYPE_SDMA;
3054 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3055 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3056 	default:
3057 		WARN_ONCE(true, "queue type not recognized!");
3058 		return 0xffffffff;
3059 	};
3060 }
3061 
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3062 void set_queue_snapshot_entry(struct queue *q,
3063 			      uint64_t exception_clear_mask,
3064 			      struct kfd_queue_snapshot_entry *qss_entry)
3065 {
3066 	qss_entry->ring_base_address = q->properties.queue_address;
3067 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3068 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3069 	qss_entry->ctx_save_restore_address =
3070 				q->properties.ctx_save_restore_area_address;
3071 	qss_entry->ctx_save_restore_area_size =
3072 				q->properties.ctx_save_restore_area_size;
3073 	qss_entry->exception_status = q->properties.exception_status;
3074 	qss_entry->queue_id = q->properties.queue_id;
3075 	qss_entry->gpu_id = q->device->id;
3076 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3077 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3078 	q->properties.exception_status &= ~exception_clear_mask;
3079 }
3080 
debug_lock_and_unmap(struct device_queue_manager * dqm)3081 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3082 {
3083 	int r;
3084 
3085 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3086 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3087 		return -EINVAL;
3088 	}
3089 
3090 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3091 		return 0;
3092 
3093 	dqm_lock(dqm);
3094 
3095 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3096 	if (r)
3097 		dqm_unlock(dqm);
3098 
3099 	return r;
3100 }
3101 
debug_map_and_unlock(struct device_queue_manager * dqm)3102 int debug_map_and_unlock(struct device_queue_manager *dqm)
3103 {
3104 	int r;
3105 
3106 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3107 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3108 		return -EINVAL;
3109 	}
3110 
3111 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3112 		return 0;
3113 
3114 	r = map_queues_cpsch(dqm);
3115 
3116 	dqm_unlock(dqm);
3117 
3118 	return r;
3119 }
3120 
debug_refresh_runlist(struct device_queue_manager * dqm)3121 int debug_refresh_runlist(struct device_queue_manager *dqm)
3122 {
3123 	int r = debug_lock_and_unmap(dqm);
3124 
3125 	if (r)
3126 		return r;
3127 
3128 	return debug_map_and_unlock(dqm);
3129 }
3130 
3131 #if defined(CONFIG_DEBUG_FS)
3132 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3133 static void seq_reg_dump(struct seq_file *m,
3134 			 uint32_t (*dump)[2], uint32_t n_regs)
3135 {
3136 	uint32_t i, count;
3137 
3138 	for (i = 0, count = 0; i < n_regs; i++) {
3139 		if (count == 0 ||
3140 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3141 			seq_printf(m, "%s    %08x: %08x",
3142 				   i ? "\n" : "",
3143 				   dump[i][0], dump[i][1]);
3144 			count = 7;
3145 		} else {
3146 			seq_printf(m, " %08x", dump[i][1]);
3147 			count--;
3148 		}
3149 	}
3150 
3151 	seq_puts(m, "\n");
3152 }
3153 
dqm_debugfs_hqds(struct seq_file * m,void * data)3154 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3155 {
3156 	struct device_queue_manager *dqm = data;
3157 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3158 	uint32_t (*dump)[2], n_regs;
3159 	int pipe, queue;
3160 	int r = 0, xcc_id;
3161 	uint32_t sdma_engine_start;
3162 
3163 	if (!dqm->sched_running) {
3164 		seq_puts(m, " Device is stopped\n");
3165 		return 0;
3166 	}
3167 
3168 	for_each_inst(xcc_id, xcc_mask) {
3169 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3170 						KFD_CIK_HIQ_PIPE,
3171 						KFD_CIK_HIQ_QUEUE, &dump,
3172 						&n_regs, xcc_id);
3173 		if (!r) {
3174 			seq_printf(
3175 				m,
3176 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3177 				xcc_id,
3178 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3179 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3180 				KFD_CIK_HIQ_QUEUE);
3181 			seq_reg_dump(m, dump, n_regs);
3182 
3183 			kfree(dump);
3184 		}
3185 
3186 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3187 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3188 
3189 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3190 				if (!test_bit(pipe_offset + queue,
3191 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3192 					continue;
3193 
3194 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3195 								pipe, queue,
3196 								&dump, &n_regs,
3197 								xcc_id);
3198 				if (r)
3199 					break;
3200 
3201 				seq_printf(m,
3202 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3203 					   xcc_id, pipe, queue);
3204 				seq_reg_dump(m, dump, n_regs);
3205 
3206 				kfree(dump);
3207 			}
3208 		}
3209 	}
3210 
3211 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3212 	for (pipe = sdma_engine_start;
3213 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3214 	     pipe++) {
3215 		for (queue = 0;
3216 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3217 		     queue++) {
3218 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3219 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3220 			if (r)
3221 				break;
3222 
3223 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3224 				  pipe, queue);
3225 			seq_reg_dump(m, dump, n_regs);
3226 
3227 			kfree(dump);
3228 		}
3229 	}
3230 
3231 	return r;
3232 }
3233 
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3234 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3235 {
3236 	int r = 0;
3237 
3238 	dqm_lock(dqm);
3239 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3240 	if (r) {
3241 		dqm_unlock(dqm);
3242 		return r;
3243 	}
3244 	dqm->active_runlist = true;
3245 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3246 				0, USE_DEFAULT_GRACE_PERIOD);
3247 	dqm_unlock(dqm);
3248 
3249 	return r;
3250 }
3251 
3252 #endif
3253