1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
38 
39 #include "kasan.h"
40 #include "../slab.h"
41 
in_irqentry_text(unsigned long ptr)42 static inline int in_irqentry_text(unsigned long ptr)
43 {
44 	return (ptr >= (unsigned long)&__irqentry_text_start &&
45 		ptr < (unsigned long)&__irqentry_text_end) ||
46 		(ptr >= (unsigned long)&__softirqentry_text_start &&
47 		 ptr < (unsigned long)&__softirqentry_text_end);
48 }
49 
filter_irq_stacks(unsigned long * entries,unsigned int nr_entries)50 static inline unsigned int filter_irq_stacks(unsigned long *entries,
51 					     unsigned int nr_entries)
52 {
53 	unsigned int i;
54 
55 	for (i = 0; i < nr_entries; i++) {
56 		if (in_irqentry_text(entries[i])) {
57 			/* Include the irqentry function into the stack. */
58 			return i + 1;
59 		}
60 	}
61 	return nr_entries;
62 }
63 
save_stack(gfp_t flags)64 static inline depot_stack_handle_t save_stack(gfp_t flags)
65 {
66 	unsigned long entries[KASAN_STACK_DEPTH];
67 	unsigned int nr_entries;
68 
69 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
70 	nr_entries = filter_irq_stacks(entries, nr_entries);
71 	return stack_depot_save(entries, nr_entries, flags);
72 }
73 
set_track(struct kasan_track * track,gfp_t flags)74 static inline void set_track(struct kasan_track *track, gfp_t flags)
75 {
76 	track->pid = current->pid;
77 	track->stack = save_stack(flags);
78 }
79 
kasan_enable_current(void)80 void kasan_enable_current(void)
81 {
82 	current->kasan_depth++;
83 }
84 
kasan_disable_current(void)85 void kasan_disable_current(void)
86 {
87 	current->kasan_depth--;
88 }
89 
__kasan_check_read(const volatile void * p,unsigned int size)90 bool __kasan_check_read(const volatile void *p, unsigned int size)
91 {
92 	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
93 }
94 EXPORT_SYMBOL(__kasan_check_read);
95 
__kasan_check_write(const volatile void * p,unsigned int size)96 bool __kasan_check_write(const volatile void *p, unsigned int size)
97 {
98 	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
99 }
100 EXPORT_SYMBOL(__kasan_check_write);
101 
102 #undef memset
memset(void * addr,int c,size_t len)103 void *memset(void *addr, int c, size_t len)
104 {
105 	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
106 
107 	return __memset(addr, c, len);
108 }
109 
110 #undef memmove
memmove(void * dest,const void * src,size_t len)111 void *memmove(void *dest, const void *src, size_t len)
112 {
113 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
114 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
115 
116 	return __memmove(dest, src, len);
117 }
118 
119 #undef memcpy
memcpy(void * dest,const void * src,size_t len)120 void *memcpy(void *dest, const void *src, size_t len)
121 {
122 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
123 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
124 
125 	return __memcpy(dest, src, len);
126 }
127 
128 /*
129  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
130  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
131  */
kasan_poison_shadow(const void * address,size_t size,u8 value)132 void kasan_poison_shadow(const void *address, size_t size, u8 value)
133 {
134 	void *shadow_start, *shadow_end;
135 
136 	/*
137 	 * Perform shadow offset calculation based on untagged address, as
138 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
139 	 * addresses to this function.
140 	 */
141 	address = reset_tag(address);
142 
143 	shadow_start = kasan_mem_to_shadow(address);
144 	shadow_end = kasan_mem_to_shadow(address + size);
145 
146 	__memset(shadow_start, value, shadow_end - shadow_start);
147 }
148 
kasan_unpoison_shadow(const void * address,size_t size)149 void kasan_unpoison_shadow(const void *address, size_t size)
150 {
151 	u8 tag = get_tag(address);
152 
153 	/*
154 	 * Perform shadow offset calculation based on untagged address, as
155 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
156 	 * addresses to this function.
157 	 */
158 	address = reset_tag(address);
159 
160 	kasan_poison_shadow(address, size, tag);
161 
162 	if (size & KASAN_SHADOW_MASK) {
163 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
164 
165 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
166 			*shadow = tag;
167 		else
168 			*shadow = size & KASAN_SHADOW_MASK;
169 	}
170 }
171 
__kasan_unpoison_stack(struct task_struct * task,const void * sp)172 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
173 {
174 	void *base = task_stack_page(task);
175 	size_t size = sp - base;
176 
177 	kasan_unpoison_shadow(base, size);
178 }
179 
180 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)181 void kasan_unpoison_task_stack(struct task_struct *task)
182 {
183 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
184 }
185 
186 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)187 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
188 {
189 	/*
190 	 * Calculate the task stack base address.  Avoid using 'current'
191 	 * because this function is called by early resume code which hasn't
192 	 * yet set up the percpu register (%gs).
193 	 */
194 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
195 
196 	kasan_unpoison_shadow(base, watermark - base);
197 }
198 
199 /*
200  * Clear all poison for the region between the current SP and a provided
201  * watermark value, as is sometimes required prior to hand-crafted asm function
202  * returns in the middle of functions.
203  */
kasan_unpoison_stack_above_sp_to(const void * watermark)204 void kasan_unpoison_stack_above_sp_to(const void *watermark)
205 {
206 	const void *sp = __builtin_frame_address(0);
207 	size_t size = watermark - sp;
208 
209 	if (WARN_ON(sp > watermark))
210 		return;
211 	kasan_unpoison_shadow(sp, size);
212 }
213 
kasan_alloc_pages(struct page * page,unsigned int order)214 void kasan_alloc_pages(struct page *page, unsigned int order)
215 {
216 	u8 tag;
217 	unsigned long i;
218 
219 	if (unlikely(PageHighMem(page)))
220 		return;
221 
222 	tag = random_tag();
223 	for (i = 0; i < (1 << order); i++)
224 		page_kasan_tag_set(page + i, tag);
225 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
226 }
227 
kasan_free_pages(struct page * page,unsigned int order)228 void kasan_free_pages(struct page *page, unsigned int order)
229 {
230 	if (likely(!PageHighMem(page)))
231 		kasan_poison_shadow(page_address(page),
232 				PAGE_SIZE << order,
233 				KASAN_FREE_PAGE);
234 }
235 
236 /*
237  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
238  * For larger allocations larger redzones are used.
239  */
optimal_redzone(unsigned int object_size)240 static inline unsigned int optimal_redzone(unsigned int object_size)
241 {
242 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
243 		return 0;
244 
245 	return
246 		object_size <= 64        - 16   ? 16 :
247 		object_size <= 128       - 32   ? 32 :
248 		object_size <= 512       - 64   ? 64 :
249 		object_size <= 4096      - 128  ? 128 :
250 		object_size <= (1 << 14) - 256  ? 256 :
251 		object_size <= (1 << 15) - 512  ? 512 :
252 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
253 }
254 
kasan_cache_create(struct kmem_cache * cache,unsigned int * size,slab_flags_t * flags)255 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
256 			slab_flags_t *flags)
257 {
258 	unsigned int orig_size = *size;
259 	unsigned int redzone_size;
260 	int redzone_adjust;
261 
262 	/* Add alloc meta. */
263 	cache->kasan_info.alloc_meta_offset = *size;
264 	*size += sizeof(struct kasan_alloc_meta);
265 
266 	/* Add free meta. */
267 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
268 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
269 	     cache->object_size < sizeof(struct kasan_free_meta))) {
270 		cache->kasan_info.free_meta_offset = *size;
271 		*size += sizeof(struct kasan_free_meta);
272 	}
273 
274 	redzone_size = optimal_redzone(cache->object_size);
275 	redzone_adjust = redzone_size -	(*size - cache->object_size);
276 	if (redzone_adjust > 0)
277 		*size += redzone_adjust;
278 
279 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
280 			max(*size, cache->object_size + redzone_size));
281 
282 	/*
283 	 * If the metadata doesn't fit, don't enable KASAN at all.
284 	 */
285 	if (*size <= cache->kasan_info.alloc_meta_offset ||
286 			*size <= cache->kasan_info.free_meta_offset) {
287 		cache->kasan_info.alloc_meta_offset = 0;
288 		cache->kasan_info.free_meta_offset = 0;
289 		*size = orig_size;
290 		return;
291 	}
292 
293 	*flags |= SLAB_KASAN;
294 }
295 
kasan_metadata_size(struct kmem_cache * cache)296 size_t kasan_metadata_size(struct kmem_cache *cache)
297 {
298 	return (cache->kasan_info.alloc_meta_offset ?
299 		sizeof(struct kasan_alloc_meta) : 0) +
300 		(cache->kasan_info.free_meta_offset ?
301 		sizeof(struct kasan_free_meta) : 0);
302 }
303 
get_alloc_info(struct kmem_cache * cache,const void * object)304 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
305 					const void *object)
306 {
307 	return (void *)object + cache->kasan_info.alloc_meta_offset;
308 }
309 
get_free_info(struct kmem_cache * cache,const void * object)310 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
311 				      const void *object)
312 {
313 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
314 	return (void *)object + cache->kasan_info.free_meta_offset;
315 }
316 
317 
kasan_set_free_info(struct kmem_cache * cache,void * object,u8 tag)318 static void kasan_set_free_info(struct kmem_cache *cache,
319 		void *object, u8 tag)
320 {
321 	struct kasan_alloc_meta *alloc_meta;
322 	u8 idx = 0;
323 
324 	alloc_meta = get_alloc_info(cache, object);
325 
326 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
327 	idx = alloc_meta->free_track_idx;
328 	alloc_meta->free_pointer_tag[idx] = tag;
329 	alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
330 #endif
331 
332 	set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
333 }
334 
kasan_poison_slab(struct page * page)335 void kasan_poison_slab(struct page *page)
336 {
337 	unsigned long i;
338 
339 	for (i = 0; i < compound_nr(page); i++)
340 		page_kasan_tag_reset(page + i);
341 	kasan_poison_shadow(page_address(page), page_size(page),
342 			KASAN_KMALLOC_REDZONE);
343 }
344 
kasan_unpoison_object_data(struct kmem_cache * cache,void * object)345 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
346 {
347 	kasan_unpoison_shadow(object, cache->object_size);
348 }
349 
kasan_poison_object_data(struct kmem_cache * cache,void * object)350 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
351 {
352 	kasan_poison_shadow(object,
353 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
354 			KASAN_KMALLOC_REDZONE);
355 }
356 
357 /*
358  * This function assigns a tag to an object considering the following:
359  * 1. A cache might have a constructor, which might save a pointer to a slab
360  *    object somewhere (e.g. in the object itself). We preassign a tag for
361  *    each object in caches with constructors during slab creation and reuse
362  *    the same tag each time a particular object is allocated.
363  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
364  *    accessed after being freed. We preassign tags for objects in these
365  *    caches as well.
366  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
367  *    is stored as an array of indexes instead of a linked list. Assign tags
368  *    based on objects indexes, so that objects that are next to each other
369  *    get different tags.
370  */
assign_tag(struct kmem_cache * cache,const void * object,bool init,bool keep_tag)371 static u8 assign_tag(struct kmem_cache *cache, const void *object,
372 			bool init, bool keep_tag)
373 {
374 	/*
375 	 * 1. When an object is kmalloc()'ed, two hooks are called:
376 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
377 	 *    tag only in the first one.
378 	 * 2. We reuse the same tag for krealloc'ed objects.
379 	 */
380 	if (keep_tag)
381 		return get_tag(object);
382 
383 	/*
384 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
385 	 * set, assign a tag when the object is being allocated (init == false).
386 	 */
387 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
388 		return init ? KASAN_TAG_KERNEL : random_tag();
389 
390 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
391 #ifdef CONFIG_SLAB
392 	/* For SLAB assign tags based on the object index in the freelist. */
393 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
394 #else
395 	/*
396 	 * For SLUB assign a random tag during slab creation, otherwise reuse
397 	 * the already assigned tag.
398 	 */
399 	return init ? random_tag() : get_tag(object);
400 #endif
401 }
402 
kasan_init_slab_obj(struct kmem_cache * cache,const void * object)403 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
404 						const void *object)
405 {
406 	struct kasan_alloc_meta *alloc_info;
407 
408 	if (!(cache->flags & SLAB_KASAN))
409 		return (void *)object;
410 
411 	alloc_info = get_alloc_info(cache, object);
412 	__memset(alloc_info, 0, sizeof(*alloc_info));
413 
414 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
415 		object = set_tag(object,
416 				assign_tag(cache, object, true, false));
417 
418 	return (void *)object;
419 }
420 
shadow_invalid(u8 tag,s8 shadow_byte)421 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
422 {
423 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
424 		return shadow_byte < 0 ||
425 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
426 
427 	/* else CONFIG_KASAN_SW_TAGS: */
428 	if ((u8)shadow_byte == KASAN_TAG_INVALID)
429 		return true;
430 	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
431 		return true;
432 
433 	return false;
434 }
435 
__kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool quarantine)436 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
437 			      unsigned long ip, bool quarantine)
438 {
439 	s8 shadow_byte;
440 	u8 tag;
441 	void *tagged_object;
442 	unsigned long rounded_up_size;
443 
444 	tag = get_tag(object);
445 	tagged_object = object;
446 	object = reset_tag(object);
447 
448 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
449 	    object)) {
450 		kasan_report_invalid_free(tagged_object, ip);
451 		return true;
452 	}
453 
454 	/* RCU slabs could be legally used after free within the RCU period */
455 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
456 		return false;
457 
458 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
459 	if (shadow_invalid(tag, shadow_byte)) {
460 		kasan_report_invalid_free(tagged_object, ip);
461 		return true;
462 	}
463 
464 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
465 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
466 
467 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
468 			unlikely(!(cache->flags & SLAB_KASAN)))
469 		return false;
470 
471 	kasan_set_free_info(cache, object, tag);
472 
473 	quarantine_put(get_free_info(cache, object), cache);
474 
475 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
476 }
477 
kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip)478 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
479 {
480 	return __kasan_slab_free(cache, object, ip, true);
481 }
482 
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags,bool keep_tag)483 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
484 				size_t size, gfp_t flags, bool keep_tag)
485 {
486 	unsigned long redzone_start;
487 	unsigned long redzone_end;
488 	u8 tag = 0xff;
489 
490 	if (gfpflags_allow_blocking(flags))
491 		quarantine_reduce();
492 
493 	if (unlikely(object == NULL))
494 		return NULL;
495 
496 	redzone_start = round_up((unsigned long)(object + size),
497 				KASAN_SHADOW_SCALE_SIZE);
498 	redzone_end = round_up((unsigned long)object + cache->object_size,
499 				KASAN_SHADOW_SCALE_SIZE);
500 
501 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
502 		tag = assign_tag(cache, object, false, keep_tag);
503 
504 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
505 	kasan_unpoison_shadow(set_tag(object, tag), size);
506 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
507 		KASAN_KMALLOC_REDZONE);
508 
509 	if (cache->flags & SLAB_KASAN)
510 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
511 
512 	return set_tag(object, tag);
513 }
514 
kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags)515 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
516 					gfp_t flags)
517 {
518 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
519 }
520 
kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)521 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
522 				size_t size, gfp_t flags)
523 {
524 	return __kasan_kmalloc(cache, object, size, flags, true);
525 }
526 EXPORT_SYMBOL(kasan_kmalloc);
527 
kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)528 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
529 						gfp_t flags)
530 {
531 	struct page *page;
532 	unsigned long redzone_start;
533 	unsigned long redzone_end;
534 
535 	if (gfpflags_allow_blocking(flags))
536 		quarantine_reduce();
537 
538 	if (unlikely(ptr == NULL))
539 		return NULL;
540 
541 	page = virt_to_page(ptr);
542 	redzone_start = round_up((unsigned long)(ptr + size),
543 				KASAN_SHADOW_SCALE_SIZE);
544 	redzone_end = (unsigned long)ptr + page_size(page);
545 
546 	kasan_unpoison_shadow(ptr, size);
547 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
548 		KASAN_PAGE_REDZONE);
549 
550 	return (void *)ptr;
551 }
552 
kasan_krealloc(const void * object,size_t size,gfp_t flags)553 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
554 {
555 	struct page *page;
556 
557 	if (unlikely(object == ZERO_SIZE_PTR))
558 		return (void *)object;
559 
560 	page = virt_to_head_page(object);
561 
562 	if (unlikely(!PageSlab(page)))
563 		return kasan_kmalloc_large(object, size, flags);
564 	else
565 		return __kasan_kmalloc(page->slab_cache, object, size,
566 						flags, true);
567 }
568 
kasan_poison_kfree(void * ptr,unsigned long ip)569 void kasan_poison_kfree(void *ptr, unsigned long ip)
570 {
571 	struct page *page;
572 
573 	page = virt_to_head_page(ptr);
574 
575 	if (unlikely(!PageSlab(page))) {
576 		if (ptr != page_address(page)) {
577 			kasan_report_invalid_free(ptr, ip);
578 			return;
579 		}
580 		kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
581 	} else {
582 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
583 	}
584 }
585 
kasan_kfree_large(void * ptr,unsigned long ip)586 void kasan_kfree_large(void *ptr, unsigned long ip)
587 {
588 	if (ptr != page_address(virt_to_head_page(ptr)))
589 		kasan_report_invalid_free(ptr, ip);
590 	/* The object will be poisoned by page_alloc. */
591 }
592 
kasan_module_alloc(void * addr,size_t size)593 int kasan_module_alloc(void *addr, size_t size)
594 {
595 	void *ret;
596 	size_t scaled_size;
597 	size_t shadow_size;
598 	unsigned long shadow_start;
599 
600 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
601 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
602 	shadow_size = round_up(scaled_size, PAGE_SIZE);
603 
604 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
605 		return -EINVAL;
606 
607 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
608 			shadow_start + shadow_size,
609 			GFP_KERNEL,
610 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
611 			__builtin_return_address(0));
612 
613 	if (ret) {
614 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
615 		find_vm_area(addr)->flags |= VM_KASAN;
616 		kmemleak_ignore(ret);
617 		return 0;
618 	}
619 
620 	return -ENOMEM;
621 }
622 
kasan_free_shadow(const struct vm_struct * vm)623 void kasan_free_shadow(const struct vm_struct *vm)
624 {
625 	if (vm->flags & VM_KASAN)
626 		vfree(kasan_mem_to_shadow(vm->addr));
627 }
628 
629 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
630 
kasan_report(unsigned long addr,size_t size,bool is_write,unsigned long ip)631 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
632 {
633 	unsigned long flags = user_access_save();
634 	__kasan_report(addr, size, is_write, ip);
635 	user_access_restore(flags);
636 }
637 
638 #ifdef CONFIG_MEMORY_HOTPLUG
shadow_mapped(unsigned long addr)639 static bool shadow_mapped(unsigned long addr)
640 {
641 	pgd_t *pgd = pgd_offset_k(addr);
642 	p4d_t *p4d;
643 	pud_t *pud;
644 	pmd_t *pmd;
645 	pte_t *pte;
646 
647 	if (pgd_none(*pgd))
648 		return false;
649 	p4d = p4d_offset(pgd, addr);
650 	if (p4d_none(*p4d))
651 		return false;
652 	pud = pud_offset(p4d, addr);
653 	if (pud_none(*pud))
654 		return false;
655 
656 	/*
657 	 * We can't use pud_large() or pud_huge(), the first one is
658 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
659 	 * pud_bad(), if pud is bad then it's bad because it's huge.
660 	 */
661 	if (pud_bad(*pud))
662 		return true;
663 	pmd = pmd_offset(pud, addr);
664 	if (pmd_none(*pmd))
665 		return false;
666 
667 	if (pmd_bad(*pmd))
668 		return true;
669 	pte = pte_offset_kernel(pmd, addr);
670 	return !pte_none(*pte);
671 }
672 
kasan_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)673 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
674 			unsigned long action, void *data)
675 {
676 	struct memory_notify *mem_data = data;
677 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
678 	unsigned long shadow_end, shadow_size;
679 
680 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
681 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
682 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
683 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
684 	shadow_end = shadow_start + shadow_size;
685 
686 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
687 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
688 		return NOTIFY_BAD;
689 
690 	switch (action) {
691 	case MEM_GOING_ONLINE: {
692 		void *ret;
693 
694 		/*
695 		 * If shadow is mapped already than it must have been mapped
696 		 * during the boot. This could happen if we onlining previously
697 		 * offlined memory.
698 		 */
699 		if (shadow_mapped(shadow_start))
700 			return NOTIFY_OK;
701 
702 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
703 					shadow_end, GFP_KERNEL,
704 					PAGE_KERNEL, VM_NO_GUARD,
705 					pfn_to_nid(mem_data->start_pfn),
706 					__builtin_return_address(0));
707 		if (!ret)
708 			return NOTIFY_BAD;
709 
710 		kmemleak_ignore(ret);
711 		return NOTIFY_OK;
712 	}
713 	case MEM_CANCEL_ONLINE:
714 	case MEM_OFFLINE: {
715 		struct vm_struct *vm;
716 
717 		/*
718 		 * shadow_start was either mapped during boot by kasan_init()
719 		 * or during memory online by __vmalloc_node_range().
720 		 * In the latter case we can use vfree() to free shadow.
721 		 * Non-NULL result of the find_vm_area() will tell us if
722 		 * that was the second case.
723 		 *
724 		 * Currently it's not possible to free shadow mapped
725 		 * during boot by kasan_init(). It's because the code
726 		 * to do that hasn't been written yet. So we'll just
727 		 * leak the memory.
728 		 */
729 		vm = find_vm_area((void *)shadow_start);
730 		if (vm)
731 			vfree((void *)shadow_start);
732 	}
733 	}
734 
735 	return NOTIFY_OK;
736 }
737 
kasan_memhotplug_init(void)738 static int __init kasan_memhotplug_init(void)
739 {
740 	hotplug_memory_notifier(kasan_mem_notifier, 0);
741 
742 	return 0;
743 }
744 
745 core_initcall(kasan_memhotplug_init);
746 #endif
747