1 /*
2 * Local APIC handling, local APIC timers
3 *
4 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
5 *
6 * Fixes
7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
8 * thanks to Eric Gilmore
9 * and Rolf G. Tews
10 * for testing these extensively.
11 * Maciej W. Rozycki : Various updates and fixes.
12 * Mikael Pettersson : Power Management for UP-APIC.
13 * Pavel Machek and
14 * Mikael Pettersson : PM converted to driver model.
15 */
16
17 #include <linux/perf_event.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/acpi_pmtmr.h>
21 #include <linux/clockchips.h>
22 #include <linux/interrupt.h>
23 #include <linux/bootmem.h>
24 #include <linux/ftrace.h>
25 #include <linux/ioport.h>
26 #include <linux/export.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/delay.h>
29 #include <linux/timex.h>
30 #include <linux/i8253.h>
31 #include <linux/dmar.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/dmi.h>
35 #include <linux/smp.h>
36 #include <linux/mm.h>
37
38 #include <asm/trace/irq_vectors.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/perf_event.h>
41 #include <asm/x86_init.h>
42 #include <asm/pgalloc.h>
43 #include <linux/atomic.h>
44 #include <asm/mpspec.h>
45 #include <asm/i8259.h>
46 #include <asm/proto.h>
47 #include <asm/apic.h>
48 #include <asm/io_apic.h>
49 #include <asm/desc.h>
50 #include <asm/hpet.h>
51 #include <asm/mtrr.h>
52 #include <asm/time.h>
53 #include <asm/smp.h>
54 #include <asm/mce.h>
55 #include <asm/tsc.h>
56 #include <asm/hypervisor.h>
57 #include <asm/cpu_device_id.h>
58 #include <asm/intel-family.h>
59 #include <asm/irq_regs.h>
60
61 unsigned int num_processors;
62
63 unsigned disabled_cpus;
64
65 /* Processor that is doing the boot up */
66 unsigned int boot_cpu_physical_apicid = -1U;
67 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid);
68
69 u8 boot_cpu_apic_version;
70
71 /*
72 * The highest APIC ID seen during enumeration.
73 */
74 static unsigned int max_physical_apicid;
75
76 /*
77 * Bitmask of physically existing CPUs:
78 */
79 physid_mask_t phys_cpu_present_map;
80
81 /*
82 * Processor to be disabled specified by kernel parameter
83 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to
84 * avoid undefined behaviour caused by sending INIT from AP to BSP.
85 */
86 static unsigned int disabled_cpu_apicid __read_mostly = BAD_APICID;
87
88 /*
89 * This variable controls which CPUs receive external NMIs. By default,
90 * external NMIs are delivered only to the BSP.
91 */
92 static int apic_extnmi = APIC_EXTNMI_BSP;
93
94 /*
95 * Map cpu index to physical APIC ID
96 */
97 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID);
98 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID);
99 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX);
100 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid);
101 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid);
102 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid);
103
104 #ifdef CONFIG_X86_32
105
106 /*
107 * On x86_32, the mapping between cpu and logical apicid may vary
108 * depending on apic in use. The following early percpu variable is
109 * used for the mapping. This is where the behaviors of x86_64 and 32
110 * actually diverge. Let's keep it ugly for now.
111 */
112 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID);
113
114 /* Local APIC was disabled by the BIOS and enabled by the kernel */
115 static int enabled_via_apicbase;
116
117 /*
118 * Handle interrupt mode configuration register (IMCR).
119 * This register controls whether the interrupt signals
120 * that reach the BSP come from the master PIC or from the
121 * local APIC. Before entering Symmetric I/O Mode, either
122 * the BIOS or the operating system must switch out of
123 * PIC Mode by changing the IMCR.
124 */
imcr_pic_to_apic(void)125 static inline void imcr_pic_to_apic(void)
126 {
127 /* select IMCR register */
128 outb(0x70, 0x22);
129 /* NMI and 8259 INTR go through APIC */
130 outb(0x01, 0x23);
131 }
132
imcr_apic_to_pic(void)133 static inline void imcr_apic_to_pic(void)
134 {
135 /* select IMCR register */
136 outb(0x70, 0x22);
137 /* NMI and 8259 INTR go directly to BSP */
138 outb(0x00, 0x23);
139 }
140 #endif
141
142 /*
143 * Knob to control our willingness to enable the local APIC.
144 *
145 * +1=force-enable
146 */
147 static int force_enable_local_apic __initdata;
148
149 /*
150 * APIC command line parameters
151 */
parse_lapic(char * arg)152 static int __init parse_lapic(char *arg)
153 {
154 if (IS_ENABLED(CONFIG_X86_32) && !arg)
155 force_enable_local_apic = 1;
156 else if (arg && !strncmp(arg, "notscdeadline", 13))
157 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
158 return 0;
159 }
160 early_param("lapic", parse_lapic);
161
162 #ifdef CONFIG_X86_64
163 static int apic_calibrate_pmtmr __initdata;
setup_apicpmtimer(char * s)164 static __init int setup_apicpmtimer(char *s)
165 {
166 apic_calibrate_pmtmr = 1;
167 notsc_setup(NULL);
168 return 0;
169 }
170 __setup("apicpmtimer", setup_apicpmtimer);
171 #endif
172
173 unsigned long mp_lapic_addr;
174 int disable_apic;
175 /* Disable local APIC timer from the kernel commandline or via dmi quirk */
176 static int disable_apic_timer __initdata;
177 /* Local APIC timer works in C2 */
178 int local_apic_timer_c2_ok;
179 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok);
180
181 /*
182 * Debug level, exported for io_apic.c
183 */
184 unsigned int apic_verbosity;
185
186 int pic_mode;
187
188 /* Have we found an MP table */
189 int smp_found_config;
190
191 static struct resource lapic_resource = {
192 .name = "Local APIC",
193 .flags = IORESOURCE_MEM | IORESOURCE_BUSY,
194 };
195
196 unsigned int lapic_timer_frequency = 0;
197
198 static void apic_pm_activate(void);
199
200 static unsigned long apic_phys;
201
202 /*
203 * Get the LAPIC version
204 */
lapic_get_version(void)205 static inline int lapic_get_version(void)
206 {
207 return GET_APIC_VERSION(apic_read(APIC_LVR));
208 }
209
210 /*
211 * Check, if the APIC is integrated or a separate chip
212 */
lapic_is_integrated(void)213 static inline int lapic_is_integrated(void)
214 {
215 return APIC_INTEGRATED(lapic_get_version());
216 }
217
218 /*
219 * Check, whether this is a modern or a first generation APIC
220 */
modern_apic(void)221 static int modern_apic(void)
222 {
223 /* AMD systems use old APIC versions, so check the CPU */
224 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
225 boot_cpu_data.x86 >= 0xf)
226 return 1;
227 return lapic_get_version() >= 0x14;
228 }
229
230 /*
231 * right after this call apic become NOOP driven
232 * so apic->write/read doesn't do anything
233 */
apic_disable(void)234 static void __init apic_disable(void)
235 {
236 pr_info("APIC: switched to apic NOOP\n");
237 apic = &apic_noop;
238 }
239
native_apic_wait_icr_idle(void)240 void native_apic_wait_icr_idle(void)
241 {
242 while (apic_read(APIC_ICR) & APIC_ICR_BUSY)
243 cpu_relax();
244 }
245
native_safe_apic_wait_icr_idle(void)246 u32 native_safe_apic_wait_icr_idle(void)
247 {
248 u32 send_status;
249 int timeout;
250
251 timeout = 0;
252 do {
253 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
254 if (!send_status)
255 break;
256 inc_irq_stat(icr_read_retry_count);
257 udelay(100);
258 } while (timeout++ < 1000);
259
260 return send_status;
261 }
262
native_apic_icr_write(u32 low,u32 id)263 void native_apic_icr_write(u32 low, u32 id)
264 {
265 unsigned long flags;
266
267 local_irq_save(flags);
268 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id));
269 apic_write(APIC_ICR, low);
270 local_irq_restore(flags);
271 }
272
native_apic_icr_read(void)273 u64 native_apic_icr_read(void)
274 {
275 u32 icr1, icr2;
276
277 icr2 = apic_read(APIC_ICR2);
278 icr1 = apic_read(APIC_ICR);
279
280 return icr1 | ((u64)icr2 << 32);
281 }
282
283 #ifdef CONFIG_X86_32
284 /**
285 * get_physical_broadcast - Get number of physical broadcast IDs
286 */
get_physical_broadcast(void)287 int get_physical_broadcast(void)
288 {
289 return modern_apic() ? 0xff : 0xf;
290 }
291 #endif
292
293 /**
294 * lapic_get_maxlvt - get the maximum number of local vector table entries
295 */
lapic_get_maxlvt(void)296 int lapic_get_maxlvt(void)
297 {
298 /*
299 * - we always have APIC integrated on 64bit mode
300 * - 82489DXs do not report # of LVT entries
301 */
302 return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2;
303 }
304
305 /*
306 * Local APIC timer
307 */
308
309 /* Clock divisor */
310 #define APIC_DIVISOR 16
311 #define TSC_DIVISOR 8
312
313 /*
314 * This function sets up the local APIC timer, with a timeout of
315 * 'clocks' APIC bus clock. During calibration we actually call
316 * this function twice on the boot CPU, once with a bogus timeout
317 * value, second time for real. The other (noncalibrating) CPUs
318 * call this function only once, with the real, calibrated value.
319 *
320 * We do reads before writes even if unnecessary, to get around the
321 * P5 APIC double write bug.
322 */
__setup_APIC_LVTT(unsigned int clocks,int oneshot,int irqen)323 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen)
324 {
325 unsigned int lvtt_value, tmp_value;
326
327 lvtt_value = LOCAL_TIMER_VECTOR;
328 if (!oneshot)
329 lvtt_value |= APIC_LVT_TIMER_PERIODIC;
330 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
331 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE;
332
333 if (!lapic_is_integrated())
334 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV);
335
336 if (!irqen)
337 lvtt_value |= APIC_LVT_MASKED;
338
339 apic_write(APIC_LVTT, lvtt_value);
340
341 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) {
342 /*
343 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode,
344 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized.
345 * According to Intel, MFENCE can do the serialization here.
346 */
347 asm volatile("mfence" : : : "memory");
348
349 printk_once(KERN_DEBUG "TSC deadline timer enabled\n");
350 return;
351 }
352
353 /*
354 * Divide PICLK by 16
355 */
356 tmp_value = apic_read(APIC_TDCR);
357 apic_write(APIC_TDCR,
358 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) |
359 APIC_TDR_DIV_16);
360
361 if (!oneshot)
362 apic_write(APIC_TMICT, clocks / APIC_DIVISOR);
363 }
364
365 /*
366 * Setup extended LVT, AMD specific
367 *
368 * Software should use the LVT offsets the BIOS provides. The offsets
369 * are determined by the subsystems using it like those for MCE
370 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts
371 * are supported. Beginning with family 10h at least 4 offsets are
372 * available.
373 *
374 * Since the offsets must be consistent for all cores, we keep track
375 * of the LVT offsets in software and reserve the offset for the same
376 * vector also to be used on other cores. An offset is freed by
377 * setting the entry to APIC_EILVT_MASKED.
378 *
379 * If the BIOS is right, there should be no conflicts. Otherwise a
380 * "[Firmware Bug]: ..." error message is generated. However, if
381 * software does not properly determines the offsets, it is not
382 * necessarily a BIOS bug.
383 */
384
385 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX];
386
eilvt_entry_is_changeable(unsigned int old,unsigned int new)387 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new)
388 {
389 return (old & APIC_EILVT_MASKED)
390 || (new == APIC_EILVT_MASKED)
391 || ((new & ~APIC_EILVT_MASKED) == old);
392 }
393
reserve_eilvt_offset(int offset,unsigned int new)394 static unsigned int reserve_eilvt_offset(int offset, unsigned int new)
395 {
396 unsigned int rsvd, vector;
397
398 if (offset >= APIC_EILVT_NR_MAX)
399 return ~0;
400
401 rsvd = atomic_read(&eilvt_offsets[offset]);
402 do {
403 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */
404 if (vector && !eilvt_entry_is_changeable(vector, new))
405 /* may not change if vectors are different */
406 return rsvd;
407 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new);
408 } while (rsvd != new);
409
410 rsvd &= ~APIC_EILVT_MASKED;
411 if (rsvd && rsvd != vector)
412 pr_info("LVT offset %d assigned for vector 0x%02x\n",
413 offset, rsvd);
414
415 return new;
416 }
417
418 /*
419 * If mask=1, the LVT entry does not generate interrupts while mask=0
420 * enables the vector. See also the BKDGs. Must be called with
421 * preemption disabled.
422 */
423
setup_APIC_eilvt(u8 offset,u8 vector,u8 msg_type,u8 mask)424 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask)
425 {
426 unsigned long reg = APIC_EILVTn(offset);
427 unsigned int new, old, reserved;
428
429 new = (mask << 16) | (msg_type << 8) | vector;
430 old = apic_read(reg);
431 reserved = reserve_eilvt_offset(offset, new);
432
433 if (reserved != new) {
434 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
435 "vector 0x%x, but the register is already in use for "
436 "vector 0x%x on another cpu\n",
437 smp_processor_id(), reg, offset, new, reserved);
438 return -EINVAL;
439 }
440
441 if (!eilvt_entry_is_changeable(old, new)) {
442 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for "
443 "vector 0x%x, but the register is already in use for "
444 "vector 0x%x on this cpu\n",
445 smp_processor_id(), reg, offset, new, old);
446 return -EBUSY;
447 }
448
449 apic_write(reg, new);
450
451 return 0;
452 }
453 EXPORT_SYMBOL_GPL(setup_APIC_eilvt);
454
455 /*
456 * Program the next event, relative to now
457 */
lapic_next_event(unsigned long delta,struct clock_event_device * evt)458 static int lapic_next_event(unsigned long delta,
459 struct clock_event_device *evt)
460 {
461 apic_write(APIC_TMICT, delta);
462 return 0;
463 }
464
lapic_next_deadline(unsigned long delta,struct clock_event_device * evt)465 static int lapic_next_deadline(unsigned long delta,
466 struct clock_event_device *evt)
467 {
468 u64 tsc;
469
470 tsc = rdtsc();
471 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR));
472 return 0;
473 }
474
lapic_timer_shutdown(struct clock_event_device * evt)475 static int lapic_timer_shutdown(struct clock_event_device *evt)
476 {
477 unsigned int v;
478
479 /* Lapic used as dummy for broadcast ? */
480 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
481 return 0;
482
483 v = apic_read(APIC_LVTT);
484 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
485 apic_write(APIC_LVTT, v);
486 apic_write(APIC_TMICT, 0);
487 return 0;
488 }
489
490 static inline int
lapic_timer_set_periodic_oneshot(struct clock_event_device * evt,bool oneshot)491 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot)
492 {
493 /* Lapic used as dummy for broadcast ? */
494 if (evt->features & CLOCK_EVT_FEAT_DUMMY)
495 return 0;
496
497 __setup_APIC_LVTT(lapic_timer_frequency, oneshot, 1);
498 return 0;
499 }
500
lapic_timer_set_periodic(struct clock_event_device * evt)501 static int lapic_timer_set_periodic(struct clock_event_device *evt)
502 {
503 return lapic_timer_set_periodic_oneshot(evt, false);
504 }
505
lapic_timer_set_oneshot(struct clock_event_device * evt)506 static int lapic_timer_set_oneshot(struct clock_event_device *evt)
507 {
508 return lapic_timer_set_periodic_oneshot(evt, true);
509 }
510
511 /*
512 * Local APIC timer broadcast function
513 */
lapic_timer_broadcast(const struct cpumask * mask)514 static void lapic_timer_broadcast(const struct cpumask *mask)
515 {
516 #ifdef CONFIG_SMP
517 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR);
518 #endif
519 }
520
521
522 /*
523 * The local apic timer can be used for any function which is CPU local.
524 */
525 static struct clock_event_device lapic_clockevent = {
526 .name = "lapic",
527 .features = CLOCK_EVT_FEAT_PERIODIC |
528 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP
529 | CLOCK_EVT_FEAT_DUMMY,
530 .shift = 32,
531 .set_state_shutdown = lapic_timer_shutdown,
532 .set_state_periodic = lapic_timer_set_periodic,
533 .set_state_oneshot = lapic_timer_set_oneshot,
534 .set_state_oneshot_stopped = lapic_timer_shutdown,
535 .set_next_event = lapic_next_event,
536 .broadcast = lapic_timer_broadcast,
537 .rating = 100,
538 .irq = -1,
539 };
540 static DEFINE_PER_CPU(struct clock_event_device, lapic_events);
541
542 #define DEADLINE_MODEL_MATCH_FUNC(model, func) \
543 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&func }
544
545 #define DEADLINE_MODEL_MATCH_REV(model, rev) \
546 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)rev }
547
hsx_deadline_rev(void)548 static u32 hsx_deadline_rev(void)
549 {
550 switch (boot_cpu_data.x86_stepping) {
551 case 0x02: return 0x3a; /* EP */
552 case 0x04: return 0x0f; /* EX */
553 }
554
555 return ~0U;
556 }
557
bdx_deadline_rev(void)558 static u32 bdx_deadline_rev(void)
559 {
560 switch (boot_cpu_data.x86_stepping) {
561 case 0x02: return 0x00000011;
562 case 0x03: return 0x0700000e;
563 case 0x04: return 0x0f00000c;
564 case 0x05: return 0x0e000003;
565 }
566
567 return ~0U;
568 }
569
skx_deadline_rev(void)570 static u32 skx_deadline_rev(void)
571 {
572 switch (boot_cpu_data.x86_stepping) {
573 case 0x03: return 0x01000136;
574 case 0x04: return 0x02000014;
575 }
576
577 if (boot_cpu_data.x86_stepping > 4)
578 return 0;
579
580 return ~0U;
581 }
582
583 static const struct x86_cpu_id deadline_match[] = {
584 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_HASWELL_X, hsx_deadline_rev),
585 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_X, 0x0b000020),
586 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_BROADWELL_XEON_D, bdx_deadline_rev),
587 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_SKYLAKE_X, skx_deadline_rev),
588
589 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_CORE, 0x22),
590 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_ULT, 0x20),
591 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_GT3E, 0x17),
592
593 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_CORE, 0x25),
594 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_GT3E, 0x17),
595
596 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_MOBILE, 0xb2),
597 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_DESKTOP, 0xb2),
598
599 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_MOBILE, 0x52),
600 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_DESKTOP, 0x52),
601
602 {},
603 };
604
apic_check_deadline_errata(void)605 static void apic_check_deadline_errata(void)
606 {
607 const struct x86_cpu_id *m;
608 u32 rev;
609
610 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER) ||
611 boot_cpu_has(X86_FEATURE_HYPERVISOR))
612 return;
613
614 m = x86_match_cpu(deadline_match);
615 if (!m)
616 return;
617
618 /*
619 * Function pointers will have the MSB set due to address layout,
620 * immediate revisions will not.
621 */
622 if ((long)m->driver_data < 0)
623 rev = ((u32 (*)(void))(m->driver_data))();
624 else
625 rev = (u32)m->driver_data;
626
627 if (boot_cpu_data.microcode >= rev)
628 return;
629
630 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
631 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; "
632 "please update microcode to version: 0x%x (or later)\n", rev);
633 }
634
635 /*
636 * Setup the local APIC timer for this CPU. Copy the initialized values
637 * of the boot CPU and register the clock event in the framework.
638 */
setup_APIC_timer(void)639 static void setup_APIC_timer(void)
640 {
641 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
642
643 if (this_cpu_has(X86_FEATURE_ARAT)) {
644 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP;
645 /* Make LAPIC timer preferrable over percpu HPET */
646 lapic_clockevent.rating = 150;
647 }
648
649 memcpy(levt, &lapic_clockevent, sizeof(*levt));
650 levt->cpumask = cpumask_of(smp_processor_id());
651
652 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
653 levt->name = "lapic-deadline";
654 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC |
655 CLOCK_EVT_FEAT_DUMMY);
656 levt->set_next_event = lapic_next_deadline;
657 clockevents_config_and_register(levt,
658 tsc_khz * (1000 / TSC_DIVISOR),
659 0xF, ~0UL);
660 } else
661 clockevents_register_device(levt);
662 }
663
664 /*
665 * Install the updated TSC frequency from recalibration at the TSC
666 * deadline clockevent devices.
667 */
__lapic_update_tsc_freq(void * info)668 static void __lapic_update_tsc_freq(void *info)
669 {
670 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
671
672 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER))
673 return;
674
675 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR));
676 }
677
lapic_update_tsc_freq(void)678 void lapic_update_tsc_freq(void)
679 {
680 /*
681 * The clockevent device's ->mult and ->shift can both be
682 * changed. In order to avoid races, schedule the frequency
683 * update code on each CPU.
684 */
685 on_each_cpu(__lapic_update_tsc_freq, NULL, 0);
686 }
687
688 /*
689 * In this functions we calibrate APIC bus clocks to the external timer.
690 *
691 * We want to do the calibration only once since we want to have local timer
692 * irqs syncron. CPUs connected by the same APIC bus have the very same bus
693 * frequency.
694 *
695 * This was previously done by reading the PIT/HPET and waiting for a wrap
696 * around to find out, that a tick has elapsed. I have a box, where the PIT
697 * readout is broken, so it never gets out of the wait loop again. This was
698 * also reported by others.
699 *
700 * Monitoring the jiffies value is inaccurate and the clockevents
701 * infrastructure allows us to do a simple substitution of the interrupt
702 * handler.
703 *
704 * The calibration routine also uses the pm_timer when possible, as the PIT
705 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes
706 * back to normal later in the boot process).
707 */
708
709 #define LAPIC_CAL_LOOPS (HZ/10)
710
711 static __initdata int lapic_cal_loops = -1;
712 static __initdata long lapic_cal_t1, lapic_cal_t2;
713 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2;
714 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
715 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
716
717 /*
718 * Temporary interrupt handler.
719 */
lapic_cal_handler(struct clock_event_device * dev)720 static void __init lapic_cal_handler(struct clock_event_device *dev)
721 {
722 unsigned long long tsc = 0;
723 long tapic = apic_read(APIC_TMCCT);
724 unsigned long pm = acpi_pm_read_early();
725
726 if (boot_cpu_has(X86_FEATURE_TSC))
727 tsc = rdtsc();
728
729 switch (lapic_cal_loops++) {
730 case 0:
731 lapic_cal_t1 = tapic;
732 lapic_cal_tsc1 = tsc;
733 lapic_cal_pm1 = pm;
734 lapic_cal_j1 = jiffies;
735 break;
736
737 case LAPIC_CAL_LOOPS:
738 lapic_cal_t2 = tapic;
739 lapic_cal_tsc2 = tsc;
740 if (pm < lapic_cal_pm1)
741 pm += ACPI_PM_OVRRUN;
742 lapic_cal_pm2 = pm;
743 lapic_cal_j2 = jiffies;
744 break;
745 }
746 }
747
748 static int __init
calibrate_by_pmtimer(long deltapm,long * delta,long * deltatsc)749 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc)
750 {
751 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10;
752 const long pm_thresh = pm_100ms / 100;
753 unsigned long mult;
754 u64 res;
755
756 #ifndef CONFIG_X86_PM_TIMER
757 return -1;
758 #endif
759
760 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm);
761
762 /* Check, if the PM timer is available */
763 if (!deltapm)
764 return -1;
765
766 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22);
767
768 if (deltapm > (pm_100ms - pm_thresh) &&
769 deltapm < (pm_100ms + pm_thresh)) {
770 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n");
771 return 0;
772 }
773
774 res = (((u64)deltapm) * mult) >> 22;
775 do_div(res, 1000000);
776 pr_warning("APIC calibration not consistent "
777 "with PM-Timer: %ldms instead of 100ms\n",(long)res);
778
779 /* Correct the lapic counter value */
780 res = (((u64)(*delta)) * pm_100ms);
781 do_div(res, deltapm);
782 pr_info("APIC delta adjusted to PM-Timer: "
783 "%lu (%ld)\n", (unsigned long)res, *delta);
784 *delta = (long)res;
785
786 /* Correct the tsc counter value */
787 if (boot_cpu_has(X86_FEATURE_TSC)) {
788 res = (((u64)(*deltatsc)) * pm_100ms);
789 do_div(res, deltapm);
790 apic_printk(APIC_VERBOSE, "TSC delta adjusted to "
791 "PM-Timer: %lu (%ld)\n",
792 (unsigned long)res, *deltatsc);
793 *deltatsc = (long)res;
794 }
795
796 return 0;
797 }
798
calibrate_APIC_clock(void)799 static int __init calibrate_APIC_clock(void)
800 {
801 struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
802 void (*real_handler)(struct clock_event_device *dev);
803 unsigned long deltaj;
804 long delta, deltatsc;
805 int pm_referenced = 0;
806
807 /**
808 * check if lapic timer has already been calibrated by platform
809 * specific routine, such as tsc calibration code. if so, we just fill
810 * in the clockevent structure and return.
811 */
812
813 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) {
814 return 0;
815 } else if (lapic_timer_frequency) {
816 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n",
817 lapic_timer_frequency);
818 lapic_clockevent.mult = div_sc(lapic_timer_frequency/APIC_DIVISOR,
819 TICK_NSEC, lapic_clockevent.shift);
820 lapic_clockevent.max_delta_ns =
821 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent);
822 lapic_clockevent.max_delta_ticks = 0x7FFFFF;
823 lapic_clockevent.min_delta_ns =
824 clockevent_delta2ns(0xF, &lapic_clockevent);
825 lapic_clockevent.min_delta_ticks = 0xF;
826 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
827 return 0;
828 }
829
830 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
831 "calibrating APIC timer ...\n");
832
833 local_irq_disable();
834
835 /* Replace the global interrupt handler */
836 real_handler = global_clock_event->event_handler;
837 global_clock_event->event_handler = lapic_cal_handler;
838
839 /*
840 * Setup the APIC counter to maximum. There is no way the lapic
841 * can underflow in the 100ms detection time frame
842 */
843 __setup_APIC_LVTT(0xffffffff, 0, 0);
844
845 /* Let the interrupts run */
846 local_irq_enable();
847
848 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
849 cpu_relax();
850
851 local_irq_disable();
852
853 /* Restore the real event handler */
854 global_clock_event->event_handler = real_handler;
855
856 /* Build delta t1-t2 as apic timer counts down */
857 delta = lapic_cal_t1 - lapic_cal_t2;
858 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
859
860 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1);
861
862 /* we trust the PM based calibration if possible */
863 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1,
864 &delta, &deltatsc);
865
866 /* Calculate the scaled math multiplication factor */
867 lapic_clockevent.mult = div_sc(delta, TICK_NSEC * LAPIC_CAL_LOOPS,
868 lapic_clockevent.shift);
869 lapic_clockevent.max_delta_ns =
870 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent);
871 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF;
872 lapic_clockevent.min_delta_ns =
873 clockevent_delta2ns(0xF, &lapic_clockevent);
874 lapic_clockevent.min_delta_ticks = 0xF;
875
876 lapic_timer_frequency = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS;
877
878 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta);
879 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult);
880 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n",
881 lapic_timer_frequency);
882
883 if (boot_cpu_has(X86_FEATURE_TSC)) {
884 apic_printk(APIC_VERBOSE, "..... CPU clock speed is "
885 "%ld.%04ld MHz.\n",
886 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ),
887 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ));
888 }
889
890 apic_printk(APIC_VERBOSE, "..... host bus clock speed is "
891 "%u.%04u MHz.\n",
892 lapic_timer_frequency / (1000000 / HZ),
893 lapic_timer_frequency % (1000000 / HZ));
894
895 /*
896 * Do a sanity check on the APIC calibration result
897 */
898 if (lapic_timer_frequency < (1000000 / HZ)) {
899 local_irq_enable();
900 pr_warning("APIC frequency too slow, disabling apic timer\n");
901 return -1;
902 }
903
904 levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
905
906 /*
907 * PM timer calibration failed or not turned on
908 * so lets try APIC timer based calibration
909 */
910 if (!pm_referenced) {
911 apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
912
913 /*
914 * Setup the apic timer manually
915 */
916 levt->event_handler = lapic_cal_handler;
917 lapic_timer_set_periodic(levt);
918 lapic_cal_loops = -1;
919
920 /* Let the interrupts run */
921 local_irq_enable();
922
923 while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
924 cpu_relax();
925
926 /* Stop the lapic timer */
927 local_irq_disable();
928 lapic_timer_shutdown(levt);
929
930 /* Jiffies delta */
931 deltaj = lapic_cal_j2 - lapic_cal_j1;
932 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj);
933
934 /* Check, if the jiffies result is consistent */
935 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2)
936 apic_printk(APIC_VERBOSE, "... jiffies result ok\n");
937 else
938 levt->features |= CLOCK_EVT_FEAT_DUMMY;
939 }
940 local_irq_enable();
941
942 if (levt->features & CLOCK_EVT_FEAT_DUMMY) {
943 pr_warning("APIC timer disabled due to verification failure\n");
944 return -1;
945 }
946
947 return 0;
948 }
949
950 /*
951 * Setup the boot APIC
952 *
953 * Calibrate and verify the result.
954 */
setup_boot_APIC_clock(void)955 void __init setup_boot_APIC_clock(void)
956 {
957 /*
958 * The local apic timer can be disabled via the kernel
959 * commandline or from the CPU detection code. Register the lapic
960 * timer as a dummy clock event source on SMP systems, so the
961 * broadcast mechanism is used. On UP systems simply ignore it.
962 */
963 if (disable_apic_timer) {
964 pr_info("Disabling APIC timer\n");
965 /* No broadcast on UP ! */
966 if (num_possible_cpus() > 1) {
967 lapic_clockevent.mult = 1;
968 setup_APIC_timer();
969 }
970 return;
971 }
972
973 if (calibrate_APIC_clock()) {
974 /* No broadcast on UP ! */
975 if (num_possible_cpus() > 1)
976 setup_APIC_timer();
977 return;
978 }
979
980 /*
981 * If nmi_watchdog is set to IO_APIC, we need the
982 * PIT/HPET going. Otherwise register lapic as a dummy
983 * device.
984 */
985 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY;
986
987 /* Setup the lapic or request the broadcast */
988 setup_APIC_timer();
989 amd_e400_c1e_apic_setup();
990 }
991
setup_secondary_APIC_clock(void)992 void setup_secondary_APIC_clock(void)
993 {
994 setup_APIC_timer();
995 amd_e400_c1e_apic_setup();
996 }
997
998 /*
999 * The guts of the apic timer interrupt
1000 */
local_apic_timer_interrupt(void)1001 static void local_apic_timer_interrupt(void)
1002 {
1003 struct clock_event_device *evt = this_cpu_ptr(&lapic_events);
1004
1005 /*
1006 * Normally we should not be here till LAPIC has been initialized but
1007 * in some cases like kdump, its possible that there is a pending LAPIC
1008 * timer interrupt from previous kernel's context and is delivered in
1009 * new kernel the moment interrupts are enabled.
1010 *
1011 * Interrupts are enabled early and LAPIC is setup much later, hence
1012 * its possible that when we get here evt->event_handler is NULL.
1013 * Check for event_handler being NULL and discard the interrupt as
1014 * spurious.
1015 */
1016 if (!evt->event_handler) {
1017 pr_warning("Spurious LAPIC timer interrupt on cpu %d\n",
1018 smp_processor_id());
1019 /* Switch it off */
1020 lapic_timer_shutdown(evt);
1021 return;
1022 }
1023
1024 /*
1025 * the NMI deadlock-detector uses this.
1026 */
1027 inc_irq_stat(apic_timer_irqs);
1028
1029 evt->event_handler(evt);
1030 }
1031
1032 /*
1033 * Local APIC timer interrupt. This is the most natural way for doing
1034 * local interrupts, but local timer interrupts can be emulated by
1035 * broadcast interrupts too. [in case the hw doesn't support APIC timers]
1036 *
1037 * [ if a single-CPU system runs an SMP kernel then we call the local
1038 * interrupt as well. Thus we cannot inline the local irq ... ]
1039 */
smp_apic_timer_interrupt(struct pt_regs * regs)1040 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs)
1041 {
1042 struct pt_regs *old_regs = set_irq_regs(regs);
1043
1044 /*
1045 * NOTE! We'd better ACK the irq immediately,
1046 * because timer handling can be slow.
1047 *
1048 * update_process_times() expects us to have done irq_enter().
1049 * Besides, if we don't timer interrupts ignore the global
1050 * interrupt lock, which is the WrongThing (tm) to do.
1051 */
1052 entering_ack_irq();
1053 trace_local_timer_entry(LOCAL_TIMER_VECTOR);
1054 local_apic_timer_interrupt();
1055 trace_local_timer_exit(LOCAL_TIMER_VECTOR);
1056 exiting_irq();
1057
1058 set_irq_regs(old_regs);
1059 }
1060
setup_profiling_timer(unsigned int multiplier)1061 int setup_profiling_timer(unsigned int multiplier)
1062 {
1063 return -EINVAL;
1064 }
1065
1066 /*
1067 * Local APIC start and shutdown
1068 */
1069
1070 /**
1071 * clear_local_APIC - shutdown the local APIC
1072 *
1073 * This is called, when a CPU is disabled and before rebooting, so the state of
1074 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS
1075 * leftovers during boot.
1076 */
clear_local_APIC(void)1077 void clear_local_APIC(void)
1078 {
1079 int maxlvt;
1080 u32 v;
1081
1082 /* APIC hasn't been mapped yet */
1083 if (!x2apic_mode && !apic_phys)
1084 return;
1085
1086 maxlvt = lapic_get_maxlvt();
1087 /*
1088 * Masking an LVT entry can trigger a local APIC error
1089 * if the vector is zero. Mask LVTERR first to prevent this.
1090 */
1091 if (maxlvt >= 3) {
1092 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */
1093 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED);
1094 }
1095 /*
1096 * Careful: we have to set masks only first to deassert
1097 * any level-triggered sources.
1098 */
1099 v = apic_read(APIC_LVTT);
1100 apic_write(APIC_LVTT, v | APIC_LVT_MASKED);
1101 v = apic_read(APIC_LVT0);
1102 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1103 v = apic_read(APIC_LVT1);
1104 apic_write(APIC_LVT1, v | APIC_LVT_MASKED);
1105 if (maxlvt >= 4) {
1106 v = apic_read(APIC_LVTPC);
1107 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED);
1108 }
1109
1110 /* lets not touch this if we didn't frob it */
1111 #ifdef CONFIG_X86_THERMAL_VECTOR
1112 if (maxlvt >= 5) {
1113 v = apic_read(APIC_LVTTHMR);
1114 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED);
1115 }
1116 #endif
1117 #ifdef CONFIG_X86_MCE_INTEL
1118 if (maxlvt >= 6) {
1119 v = apic_read(APIC_LVTCMCI);
1120 if (!(v & APIC_LVT_MASKED))
1121 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED);
1122 }
1123 #endif
1124
1125 /*
1126 * Clean APIC state for other OSs:
1127 */
1128 apic_write(APIC_LVTT, APIC_LVT_MASKED);
1129 apic_write(APIC_LVT0, APIC_LVT_MASKED);
1130 apic_write(APIC_LVT1, APIC_LVT_MASKED);
1131 if (maxlvt >= 3)
1132 apic_write(APIC_LVTERR, APIC_LVT_MASKED);
1133 if (maxlvt >= 4)
1134 apic_write(APIC_LVTPC, APIC_LVT_MASKED);
1135
1136 /* Integrated APIC (!82489DX) ? */
1137 if (lapic_is_integrated()) {
1138 if (maxlvt > 3)
1139 /* Clear ESR due to Pentium errata 3AP and 11AP */
1140 apic_write(APIC_ESR, 0);
1141 apic_read(APIC_ESR);
1142 }
1143 }
1144
1145 /**
1146 * disable_local_APIC - clear and disable the local APIC
1147 */
disable_local_APIC(void)1148 void disable_local_APIC(void)
1149 {
1150 unsigned int value;
1151
1152 /* APIC hasn't been mapped yet */
1153 if (!x2apic_mode && !apic_phys)
1154 return;
1155
1156 clear_local_APIC();
1157
1158 /*
1159 * Disable APIC (implies clearing of registers
1160 * for 82489DX!).
1161 */
1162 value = apic_read(APIC_SPIV);
1163 value &= ~APIC_SPIV_APIC_ENABLED;
1164 apic_write(APIC_SPIV, value);
1165
1166 #ifdef CONFIG_X86_32
1167 /*
1168 * When LAPIC was disabled by the BIOS and enabled by the kernel,
1169 * restore the disabled state.
1170 */
1171 if (enabled_via_apicbase) {
1172 unsigned int l, h;
1173
1174 rdmsr(MSR_IA32_APICBASE, l, h);
1175 l &= ~MSR_IA32_APICBASE_ENABLE;
1176 wrmsr(MSR_IA32_APICBASE, l, h);
1177 }
1178 #endif
1179 }
1180
1181 /*
1182 * If Linux enabled the LAPIC against the BIOS default disable it down before
1183 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and
1184 * not power-off. Additionally clear all LVT entries before disable_local_APIC
1185 * for the case where Linux didn't enable the LAPIC.
1186 */
lapic_shutdown(void)1187 void lapic_shutdown(void)
1188 {
1189 unsigned long flags;
1190
1191 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config())
1192 return;
1193
1194 local_irq_save(flags);
1195
1196 #ifdef CONFIG_X86_32
1197 if (!enabled_via_apicbase)
1198 clear_local_APIC();
1199 else
1200 #endif
1201 disable_local_APIC();
1202
1203
1204 local_irq_restore(flags);
1205 }
1206
1207 /**
1208 * sync_Arb_IDs - synchronize APIC bus arbitration IDs
1209 */
sync_Arb_IDs(void)1210 void __init sync_Arb_IDs(void)
1211 {
1212 /*
1213 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not
1214 * needed on AMD.
1215 */
1216 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1217 return;
1218
1219 /*
1220 * Wait for idle.
1221 */
1222 apic_wait_icr_idle();
1223
1224 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n");
1225 apic_write(APIC_ICR, APIC_DEST_ALLINC |
1226 APIC_INT_LEVELTRIG | APIC_DM_INIT);
1227 }
1228
1229 enum apic_intr_mode_id apic_intr_mode;
1230
apic_intr_mode_select(void)1231 static int __init apic_intr_mode_select(void)
1232 {
1233 /* Check kernel option */
1234 if (disable_apic) {
1235 pr_info("APIC disabled via kernel command line\n");
1236 return APIC_PIC;
1237 }
1238
1239 /* Check BIOS */
1240 #ifdef CONFIG_X86_64
1241 /* On 64-bit, the APIC must be integrated, Check local APIC only */
1242 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1243 disable_apic = 1;
1244 pr_info("APIC disabled by BIOS\n");
1245 return APIC_PIC;
1246 }
1247 #else
1248 /* On 32-bit, the APIC may be integrated APIC or 82489DX */
1249
1250 /* Neither 82489DX nor integrated APIC ? */
1251 if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) {
1252 disable_apic = 1;
1253 return APIC_PIC;
1254 }
1255
1256 /* If the BIOS pretends there is an integrated APIC ? */
1257 if (!boot_cpu_has(X86_FEATURE_APIC) &&
1258 APIC_INTEGRATED(boot_cpu_apic_version)) {
1259 disable_apic = 1;
1260 pr_err(FW_BUG "Local APIC %d not detected, force emulation\n",
1261 boot_cpu_physical_apicid);
1262 return APIC_PIC;
1263 }
1264 #endif
1265
1266 /* Check MP table or ACPI MADT configuration */
1267 if (!smp_found_config) {
1268 disable_ioapic_support();
1269 if (!acpi_lapic) {
1270 pr_info("APIC: ACPI MADT or MP tables are not detected\n");
1271 return APIC_VIRTUAL_WIRE_NO_CONFIG;
1272 }
1273 return APIC_VIRTUAL_WIRE;
1274 }
1275
1276 #ifdef CONFIG_SMP
1277 /* If SMP should be disabled, then really disable it! */
1278 if (!setup_max_cpus) {
1279 pr_info("APIC: SMP mode deactivated\n");
1280 return APIC_SYMMETRIC_IO_NO_ROUTING;
1281 }
1282
1283 if (read_apic_id() != boot_cpu_physical_apicid) {
1284 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1285 read_apic_id(), boot_cpu_physical_apicid);
1286 /* Or can we switch back to PIC here? */
1287 }
1288 #endif
1289
1290 return APIC_SYMMETRIC_IO;
1291 }
1292
1293 /*
1294 * An initial setup of the virtual wire mode.
1295 */
init_bsp_APIC(void)1296 void __init init_bsp_APIC(void)
1297 {
1298 unsigned int value;
1299
1300 /*
1301 * Don't do the setup now if we have a SMP BIOS as the
1302 * through-I/O-APIC virtual wire mode might be active.
1303 */
1304 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC))
1305 return;
1306
1307 /*
1308 * Do not trust the local APIC being empty at bootup.
1309 */
1310 clear_local_APIC();
1311
1312 /*
1313 * Enable APIC.
1314 */
1315 value = apic_read(APIC_SPIV);
1316 value &= ~APIC_VECTOR_MASK;
1317 value |= APIC_SPIV_APIC_ENABLED;
1318
1319 #ifdef CONFIG_X86_32
1320 /* This bit is reserved on P4/Xeon and should be cleared */
1321 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
1322 (boot_cpu_data.x86 == 15))
1323 value &= ~APIC_SPIV_FOCUS_DISABLED;
1324 else
1325 #endif
1326 value |= APIC_SPIV_FOCUS_DISABLED;
1327 value |= SPURIOUS_APIC_VECTOR;
1328 apic_write(APIC_SPIV, value);
1329
1330 /*
1331 * Set up the virtual wire mode.
1332 */
1333 apic_write(APIC_LVT0, APIC_DM_EXTINT);
1334 value = APIC_DM_NMI;
1335 if (!lapic_is_integrated()) /* 82489DX */
1336 value |= APIC_LVT_LEVEL_TRIGGER;
1337 if (apic_extnmi == APIC_EXTNMI_NONE)
1338 value |= APIC_LVT_MASKED;
1339 apic_write(APIC_LVT1, value);
1340 }
1341
1342 /* Init the interrupt delivery mode for the BSP */
apic_intr_mode_init(void)1343 void __init apic_intr_mode_init(void)
1344 {
1345 bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT);
1346
1347 apic_intr_mode = apic_intr_mode_select();
1348
1349 switch (apic_intr_mode) {
1350 case APIC_PIC:
1351 pr_info("APIC: Keep in PIC mode(8259)\n");
1352 return;
1353 case APIC_VIRTUAL_WIRE:
1354 pr_info("APIC: Switch to virtual wire mode setup\n");
1355 default_setup_apic_routing();
1356 break;
1357 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1358 pr_info("APIC: Switch to virtual wire mode setup with no configuration\n");
1359 upmode = true;
1360 default_setup_apic_routing();
1361 break;
1362 case APIC_SYMMETRIC_IO:
1363 pr_info("APIC: Switch to symmetric I/O mode setup\n");
1364 default_setup_apic_routing();
1365 break;
1366 case APIC_SYMMETRIC_IO_NO_ROUTING:
1367 pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n");
1368 break;
1369 }
1370
1371 apic_bsp_setup(upmode);
1372 }
1373
lapic_setup_esr(void)1374 static void lapic_setup_esr(void)
1375 {
1376 unsigned int oldvalue, value, maxlvt;
1377
1378 if (!lapic_is_integrated()) {
1379 pr_info("No ESR for 82489DX.\n");
1380 return;
1381 }
1382
1383 if (apic->disable_esr) {
1384 /*
1385 * Something untraceable is creating bad interrupts on
1386 * secondary quads ... for the moment, just leave the
1387 * ESR disabled - we can't do anything useful with the
1388 * errors anyway - mbligh
1389 */
1390 pr_info("Leaving ESR disabled.\n");
1391 return;
1392 }
1393
1394 maxlvt = lapic_get_maxlvt();
1395 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1396 apic_write(APIC_ESR, 0);
1397 oldvalue = apic_read(APIC_ESR);
1398
1399 /* enables sending errors */
1400 value = ERROR_APIC_VECTOR;
1401 apic_write(APIC_LVTERR, value);
1402
1403 /*
1404 * spec says clear errors after enabling vector.
1405 */
1406 if (maxlvt > 3)
1407 apic_write(APIC_ESR, 0);
1408 value = apic_read(APIC_ESR);
1409 if (value != oldvalue)
1410 apic_printk(APIC_VERBOSE, "ESR value before enabling "
1411 "vector: 0x%08x after: 0x%08x\n",
1412 oldvalue, value);
1413 }
1414
apic_pending_intr_clear(void)1415 static void apic_pending_intr_clear(void)
1416 {
1417 long long max_loops = cpu_khz ? cpu_khz : 1000000;
1418 unsigned long long tsc = 0, ntsc;
1419 unsigned int queued;
1420 unsigned long value;
1421 int i, j, acked = 0;
1422
1423 if (boot_cpu_has(X86_FEATURE_TSC))
1424 tsc = rdtsc();
1425 /*
1426 * After a crash, we no longer service the interrupts and a pending
1427 * interrupt from previous kernel might still have ISR bit set.
1428 *
1429 * Most probably by now CPU has serviced that pending interrupt and
1430 * it might not have done the ack_APIC_irq() because it thought,
1431 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it
1432 * does not clear the ISR bit and cpu thinks it has already serivced
1433 * the interrupt. Hence a vector might get locked. It was noticed
1434 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR.
1435 */
1436 do {
1437 queued = 0;
1438 for (i = APIC_ISR_NR - 1; i >= 0; i--)
1439 queued |= apic_read(APIC_IRR + i*0x10);
1440
1441 for (i = APIC_ISR_NR - 1; i >= 0; i--) {
1442 value = apic_read(APIC_ISR + i*0x10);
1443 for_each_set_bit(j, &value, 32) {
1444 ack_APIC_irq();
1445 acked++;
1446 }
1447 }
1448 if (acked > 256) {
1449 pr_err("LAPIC pending interrupts after %d EOI\n", acked);
1450 break;
1451 }
1452 if (queued) {
1453 if (boot_cpu_has(X86_FEATURE_TSC) && cpu_khz) {
1454 ntsc = rdtsc();
1455 max_loops = (cpu_khz << 10) - (ntsc - tsc);
1456 } else {
1457 max_loops--;
1458 }
1459 }
1460 } while (queued && max_loops > 0);
1461 WARN_ON(max_loops <= 0);
1462 }
1463
1464 /**
1465 * setup_local_APIC - setup the local APIC
1466 *
1467 * Used to setup local APIC while initializing BSP or bringing up APs.
1468 * Always called with preemption disabled.
1469 */
setup_local_APIC(void)1470 static void setup_local_APIC(void)
1471 {
1472 int cpu = smp_processor_id();
1473 unsigned int value;
1474 #ifdef CONFIG_X86_32
1475 int logical_apicid, ldr_apicid;
1476 #endif
1477
1478
1479 if (disable_apic) {
1480 disable_ioapic_support();
1481 return;
1482 }
1483
1484 #ifdef CONFIG_X86_32
1485 /* Pound the ESR really hard over the head with a big hammer - mbligh */
1486 if (lapic_is_integrated() && apic->disable_esr) {
1487 apic_write(APIC_ESR, 0);
1488 apic_write(APIC_ESR, 0);
1489 apic_write(APIC_ESR, 0);
1490 apic_write(APIC_ESR, 0);
1491 }
1492 #endif
1493 perf_events_lapic_init();
1494
1495 /*
1496 * Double-check whether this APIC is really registered.
1497 * This is meaningless in clustered apic mode, so we skip it.
1498 */
1499 BUG_ON(!apic->apic_id_registered());
1500
1501 /*
1502 * Intel recommends to set DFR, LDR and TPR before enabling
1503 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel
1504 * document number 292116). So here it goes...
1505 */
1506 apic->init_apic_ldr();
1507
1508 #ifdef CONFIG_X86_32
1509 /*
1510 * APIC LDR is initialized. If logical_apicid mapping was
1511 * initialized during get_smp_config(), make sure it matches the
1512 * actual value.
1513 */
1514 logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu);
1515 ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1516 WARN_ON(logical_apicid != BAD_APICID && logical_apicid != ldr_apicid);
1517 /* always use the value from LDR */
1518 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid;
1519 #endif
1520
1521 /*
1522 * Set Task Priority to 'accept all'. We never change this
1523 * later on.
1524 */
1525 value = apic_read(APIC_TASKPRI);
1526 value &= ~APIC_TPRI_MASK;
1527 apic_write(APIC_TASKPRI, value);
1528
1529 apic_pending_intr_clear();
1530
1531 /*
1532 * Now that we are all set up, enable the APIC
1533 */
1534 value = apic_read(APIC_SPIV);
1535 value &= ~APIC_VECTOR_MASK;
1536 /*
1537 * Enable APIC
1538 */
1539 value |= APIC_SPIV_APIC_ENABLED;
1540
1541 #ifdef CONFIG_X86_32
1542 /*
1543 * Some unknown Intel IO/APIC (or APIC) errata is biting us with
1544 * certain networking cards. If high frequency interrupts are
1545 * happening on a particular IOAPIC pin, plus the IOAPIC routing
1546 * entry is masked/unmasked at a high rate as well then sooner or
1547 * later IOAPIC line gets 'stuck', no more interrupts are received
1548 * from the device. If focus CPU is disabled then the hang goes
1549 * away, oh well :-(
1550 *
1551 * [ This bug can be reproduced easily with a level-triggered
1552 * PCI Ne2000 networking cards and PII/PIII processors, dual
1553 * BX chipset. ]
1554 */
1555 /*
1556 * Actually disabling the focus CPU check just makes the hang less
1557 * frequent as it makes the interrupt distributon model be more
1558 * like LRU than MRU (the short-term load is more even across CPUs).
1559 */
1560
1561 /*
1562 * - enable focus processor (bit==0)
1563 * - 64bit mode always use processor focus
1564 * so no need to set it
1565 */
1566 value &= ~APIC_SPIV_FOCUS_DISABLED;
1567 #endif
1568
1569 /*
1570 * Set spurious IRQ vector
1571 */
1572 value |= SPURIOUS_APIC_VECTOR;
1573 apic_write(APIC_SPIV, value);
1574
1575 /*
1576 * Set up LVT0, LVT1:
1577 *
1578 * set up through-local-APIC on the boot CPU's LINT0. This is not
1579 * strictly necessary in pure symmetric-IO mode, but sometimes
1580 * we delegate interrupts to the 8259A.
1581 */
1582 /*
1583 * TODO: set up through-local-APIC from through-I/O-APIC? --macro
1584 */
1585 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED;
1586 if (!cpu && (pic_mode || !value || skip_ioapic_setup)) {
1587 value = APIC_DM_EXTINT;
1588 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu);
1589 } else {
1590 value = APIC_DM_EXTINT | APIC_LVT_MASKED;
1591 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu);
1592 }
1593 apic_write(APIC_LVT0, value);
1594
1595 /*
1596 * Only the BSP sees the LINT1 NMI signal by default. This can be
1597 * modified by apic_extnmi= boot option.
1598 */
1599 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) ||
1600 apic_extnmi == APIC_EXTNMI_ALL)
1601 value = APIC_DM_NMI;
1602 else
1603 value = APIC_DM_NMI | APIC_LVT_MASKED;
1604
1605 /* Is 82489DX ? */
1606 if (!lapic_is_integrated())
1607 value |= APIC_LVT_LEVEL_TRIGGER;
1608 apic_write(APIC_LVT1, value);
1609
1610 #ifdef CONFIG_X86_MCE_INTEL
1611 /* Recheck CMCI information after local APIC is up on CPU #0 */
1612 if (!cpu)
1613 cmci_recheck();
1614 #endif
1615 }
1616
end_local_APIC_setup(void)1617 static void end_local_APIC_setup(void)
1618 {
1619 lapic_setup_esr();
1620
1621 #ifdef CONFIG_X86_32
1622 {
1623 unsigned int value;
1624 /* Disable the local apic timer */
1625 value = apic_read(APIC_LVTT);
1626 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR);
1627 apic_write(APIC_LVTT, value);
1628 }
1629 #endif
1630
1631 apic_pm_activate();
1632 }
1633
1634 /*
1635 * APIC setup function for application processors. Called from smpboot.c
1636 */
apic_ap_setup(void)1637 void apic_ap_setup(void)
1638 {
1639 setup_local_APIC();
1640 end_local_APIC_setup();
1641 }
1642
1643 #ifdef CONFIG_X86_X2APIC
1644 int x2apic_mode;
1645
1646 enum {
1647 X2APIC_OFF,
1648 X2APIC_ON,
1649 X2APIC_DISABLED,
1650 };
1651 static int x2apic_state;
1652
__x2apic_disable(void)1653 static void __x2apic_disable(void)
1654 {
1655 u64 msr;
1656
1657 if (!boot_cpu_has(X86_FEATURE_APIC))
1658 return;
1659
1660 rdmsrl(MSR_IA32_APICBASE, msr);
1661 if (!(msr & X2APIC_ENABLE))
1662 return;
1663 /* Disable xapic and x2apic first and then reenable xapic mode */
1664 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE));
1665 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE);
1666 printk_once(KERN_INFO "x2apic disabled\n");
1667 }
1668
__x2apic_enable(void)1669 static void __x2apic_enable(void)
1670 {
1671 u64 msr;
1672
1673 rdmsrl(MSR_IA32_APICBASE, msr);
1674 if (msr & X2APIC_ENABLE)
1675 return;
1676 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE);
1677 printk_once(KERN_INFO "x2apic enabled\n");
1678 }
1679
setup_nox2apic(char * str)1680 static int __init setup_nox2apic(char *str)
1681 {
1682 if (x2apic_enabled()) {
1683 int apicid = native_apic_msr_read(APIC_ID);
1684
1685 if (apicid >= 255) {
1686 pr_warning("Apicid: %08x, cannot enforce nox2apic\n",
1687 apicid);
1688 return 0;
1689 }
1690 pr_warning("x2apic already enabled.\n");
1691 __x2apic_disable();
1692 }
1693 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
1694 x2apic_state = X2APIC_DISABLED;
1695 x2apic_mode = 0;
1696 return 0;
1697 }
1698 early_param("nox2apic", setup_nox2apic);
1699
1700 /* Called from cpu_init() to enable x2apic on (secondary) cpus */
x2apic_setup(void)1701 void x2apic_setup(void)
1702 {
1703 /*
1704 * If x2apic is not in ON state, disable it if already enabled
1705 * from BIOS.
1706 */
1707 if (x2apic_state != X2APIC_ON) {
1708 __x2apic_disable();
1709 return;
1710 }
1711 __x2apic_enable();
1712 }
1713
x2apic_disable(void)1714 static __init void x2apic_disable(void)
1715 {
1716 u32 x2apic_id, state = x2apic_state;
1717
1718 x2apic_mode = 0;
1719 x2apic_state = X2APIC_DISABLED;
1720
1721 if (state != X2APIC_ON)
1722 return;
1723
1724 x2apic_id = read_apic_id();
1725 if (x2apic_id >= 255)
1726 panic("Cannot disable x2apic, id: %08x\n", x2apic_id);
1727
1728 __x2apic_disable();
1729 register_lapic_address(mp_lapic_addr);
1730 }
1731
x2apic_enable(void)1732 static __init void x2apic_enable(void)
1733 {
1734 if (x2apic_state != X2APIC_OFF)
1735 return;
1736
1737 x2apic_mode = 1;
1738 x2apic_state = X2APIC_ON;
1739 __x2apic_enable();
1740 }
1741
try_to_enable_x2apic(int remap_mode)1742 static __init void try_to_enable_x2apic(int remap_mode)
1743 {
1744 if (x2apic_state == X2APIC_DISABLED)
1745 return;
1746
1747 if (remap_mode != IRQ_REMAP_X2APIC_MODE) {
1748 /* IR is required if there is APIC ID > 255 even when running
1749 * under KVM
1750 */
1751 if (max_physical_apicid > 255 ||
1752 !x86_init.hyper.x2apic_available()) {
1753 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n");
1754 x2apic_disable();
1755 return;
1756 }
1757
1758 /*
1759 * without IR all CPUs can be addressed by IOAPIC/MSI
1760 * only in physical mode
1761 */
1762 x2apic_phys = 1;
1763 }
1764 x2apic_enable();
1765 }
1766
check_x2apic(void)1767 void __init check_x2apic(void)
1768 {
1769 if (x2apic_enabled()) {
1770 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n");
1771 x2apic_mode = 1;
1772 x2apic_state = X2APIC_ON;
1773 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) {
1774 x2apic_state = X2APIC_DISABLED;
1775 }
1776 }
1777 #else /* CONFIG_X86_X2APIC */
validate_x2apic(void)1778 static int __init validate_x2apic(void)
1779 {
1780 if (!apic_is_x2apic_enabled())
1781 return 0;
1782 /*
1783 * Checkme: Can we simply turn off x2apic here instead of panic?
1784 */
1785 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n");
1786 }
1787 early_initcall(validate_x2apic);
1788
try_to_enable_x2apic(int remap_mode)1789 static inline void try_to_enable_x2apic(int remap_mode) { }
__x2apic_enable(void)1790 static inline void __x2apic_enable(void) { }
1791 #endif /* !CONFIG_X86_X2APIC */
1792
enable_IR_x2apic(void)1793 void __init enable_IR_x2apic(void)
1794 {
1795 unsigned long flags;
1796 int ret, ir_stat;
1797
1798 if (skip_ioapic_setup) {
1799 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n");
1800 return;
1801 }
1802
1803 ir_stat = irq_remapping_prepare();
1804 if (ir_stat < 0 && !x2apic_supported())
1805 return;
1806
1807 ret = save_ioapic_entries();
1808 if (ret) {
1809 pr_info("Saving IO-APIC state failed: %d\n", ret);
1810 return;
1811 }
1812
1813 local_irq_save(flags);
1814 legacy_pic->mask_all();
1815 mask_ioapic_entries();
1816
1817 /* If irq_remapping_prepare() succeeded, try to enable it */
1818 if (ir_stat >= 0)
1819 ir_stat = irq_remapping_enable();
1820 /* ir_stat contains the remap mode or an error code */
1821 try_to_enable_x2apic(ir_stat);
1822
1823 if (ir_stat < 0)
1824 restore_ioapic_entries();
1825 legacy_pic->restore_mask();
1826 local_irq_restore(flags);
1827 }
1828
1829 #ifdef CONFIG_X86_64
1830 /*
1831 * Detect and enable local APICs on non-SMP boards.
1832 * Original code written by Keir Fraser.
1833 * On AMD64 we trust the BIOS - if it says no APIC it is likely
1834 * not correctly set up (usually the APIC timer won't work etc.)
1835 */
detect_init_APIC(void)1836 static int __init detect_init_APIC(void)
1837 {
1838 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1839 pr_info("No local APIC present\n");
1840 return -1;
1841 }
1842
1843 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1844 return 0;
1845 }
1846 #else
1847
apic_verify(void)1848 static int __init apic_verify(void)
1849 {
1850 u32 features, h, l;
1851
1852 /*
1853 * The APIC feature bit should now be enabled
1854 * in `cpuid'
1855 */
1856 features = cpuid_edx(1);
1857 if (!(features & (1 << X86_FEATURE_APIC))) {
1858 pr_warning("Could not enable APIC!\n");
1859 return -1;
1860 }
1861 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC);
1862 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE;
1863
1864 /* The BIOS may have set up the APIC at some other address */
1865 if (boot_cpu_data.x86 >= 6) {
1866 rdmsr(MSR_IA32_APICBASE, l, h);
1867 if (l & MSR_IA32_APICBASE_ENABLE)
1868 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE;
1869 }
1870
1871 pr_info("Found and enabled local APIC!\n");
1872 return 0;
1873 }
1874
apic_force_enable(unsigned long addr)1875 int __init apic_force_enable(unsigned long addr)
1876 {
1877 u32 h, l;
1878
1879 if (disable_apic)
1880 return -1;
1881
1882 /*
1883 * Some BIOSes disable the local APIC in the APIC_BASE
1884 * MSR. This can only be done in software for Intel P6 or later
1885 * and AMD K7 (Model > 1) or later.
1886 */
1887 if (boot_cpu_data.x86 >= 6) {
1888 rdmsr(MSR_IA32_APICBASE, l, h);
1889 if (!(l & MSR_IA32_APICBASE_ENABLE)) {
1890 pr_info("Local APIC disabled by BIOS -- reenabling.\n");
1891 l &= ~MSR_IA32_APICBASE_BASE;
1892 l |= MSR_IA32_APICBASE_ENABLE | addr;
1893 wrmsr(MSR_IA32_APICBASE, l, h);
1894 enabled_via_apicbase = 1;
1895 }
1896 }
1897 return apic_verify();
1898 }
1899
1900 /*
1901 * Detect and initialize APIC
1902 */
detect_init_APIC(void)1903 static int __init detect_init_APIC(void)
1904 {
1905 /* Disabled by kernel option? */
1906 if (disable_apic)
1907 return -1;
1908
1909 switch (boot_cpu_data.x86_vendor) {
1910 case X86_VENDOR_AMD:
1911 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) ||
1912 (boot_cpu_data.x86 >= 15))
1913 break;
1914 goto no_apic;
1915 case X86_VENDOR_INTEL:
1916 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 ||
1917 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC)))
1918 break;
1919 goto no_apic;
1920 default:
1921 goto no_apic;
1922 }
1923
1924 if (!boot_cpu_has(X86_FEATURE_APIC)) {
1925 /*
1926 * Over-ride BIOS and try to enable the local APIC only if
1927 * "lapic" specified.
1928 */
1929 if (!force_enable_local_apic) {
1930 pr_info("Local APIC disabled by BIOS -- "
1931 "you can enable it with \"lapic\"\n");
1932 return -1;
1933 }
1934 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE))
1935 return -1;
1936 } else {
1937 if (apic_verify())
1938 return -1;
1939 }
1940
1941 apic_pm_activate();
1942
1943 return 0;
1944
1945 no_apic:
1946 pr_info("No local APIC present or hardware disabled\n");
1947 return -1;
1948 }
1949 #endif
1950
1951 /**
1952 * init_apic_mappings - initialize APIC mappings
1953 */
init_apic_mappings(void)1954 void __init init_apic_mappings(void)
1955 {
1956 unsigned int new_apicid;
1957
1958 apic_check_deadline_errata();
1959
1960 if (x2apic_mode) {
1961 boot_cpu_physical_apicid = read_apic_id();
1962 return;
1963 }
1964
1965 /* If no local APIC can be found return early */
1966 if (!smp_found_config && detect_init_APIC()) {
1967 /* lets NOP'ify apic operations */
1968 pr_info("APIC: disable apic facility\n");
1969 apic_disable();
1970 } else {
1971 apic_phys = mp_lapic_addr;
1972
1973 /*
1974 * If the system has ACPI MADT tables or MP info, the LAPIC
1975 * address is already registered.
1976 */
1977 if (!acpi_lapic && !smp_found_config)
1978 register_lapic_address(apic_phys);
1979 }
1980
1981 /*
1982 * Fetch the APIC ID of the BSP in case we have a
1983 * default configuration (or the MP table is broken).
1984 */
1985 new_apicid = read_apic_id();
1986 if (boot_cpu_physical_apicid != new_apicid) {
1987 boot_cpu_physical_apicid = new_apicid;
1988 /*
1989 * yeah -- we lie about apic_version
1990 * in case if apic was disabled via boot option
1991 * but it's not a problem for SMP compiled kernel
1992 * since apic_intr_mode_select is prepared for such
1993 * a case and disable smp mode
1994 */
1995 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
1996 }
1997 }
1998
register_lapic_address(unsigned long address)1999 void __init register_lapic_address(unsigned long address)
2000 {
2001 mp_lapic_addr = address;
2002
2003 if (!x2apic_mode) {
2004 set_fixmap_nocache(FIX_APIC_BASE, address);
2005 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n",
2006 APIC_BASE, address);
2007 }
2008 if (boot_cpu_physical_apicid == -1U) {
2009 boot_cpu_physical_apicid = read_apic_id();
2010 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR));
2011 }
2012 }
2013
2014 /*
2015 * Local APIC interrupts
2016 */
2017
2018 /*
2019 * This interrupt should _never_ happen with our APIC/SMP architecture
2020 */
smp_spurious_interrupt(struct pt_regs * regs)2021 __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs)
2022 {
2023 u8 vector = ~regs->orig_ax;
2024 u32 v;
2025
2026 entering_irq();
2027 trace_spurious_apic_entry(vector);
2028
2029 /*
2030 * Check if this really is a spurious interrupt and ACK it
2031 * if it is a vectored one. Just in case...
2032 * Spurious interrupts should not be ACKed.
2033 */
2034 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1));
2035 if (v & (1 << (vector & 0x1f)))
2036 ack_APIC_irq();
2037
2038 inc_irq_stat(irq_spurious_count);
2039
2040 /* see sw-dev-man vol 3, chapter 7.4.13.5 */
2041 pr_info("spurious APIC interrupt through vector %02x on CPU#%d, "
2042 "should never happen.\n", vector, smp_processor_id());
2043
2044 trace_spurious_apic_exit(vector);
2045 exiting_irq();
2046 }
2047
2048 /*
2049 * This interrupt should never happen with our APIC/SMP architecture
2050 */
smp_error_interrupt(struct pt_regs * regs)2051 __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs)
2052 {
2053 static const char * const error_interrupt_reason[] = {
2054 "Send CS error", /* APIC Error Bit 0 */
2055 "Receive CS error", /* APIC Error Bit 1 */
2056 "Send accept error", /* APIC Error Bit 2 */
2057 "Receive accept error", /* APIC Error Bit 3 */
2058 "Redirectable IPI", /* APIC Error Bit 4 */
2059 "Send illegal vector", /* APIC Error Bit 5 */
2060 "Received illegal vector", /* APIC Error Bit 6 */
2061 "Illegal register address", /* APIC Error Bit 7 */
2062 };
2063 u32 v, i = 0;
2064
2065 entering_irq();
2066 trace_error_apic_entry(ERROR_APIC_VECTOR);
2067
2068 /* First tickle the hardware, only then report what went on. -- REW */
2069 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */
2070 apic_write(APIC_ESR, 0);
2071 v = apic_read(APIC_ESR);
2072 ack_APIC_irq();
2073 atomic_inc(&irq_err_count);
2074
2075 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x",
2076 smp_processor_id(), v);
2077
2078 v &= 0xff;
2079 while (v) {
2080 if (v & 0x1)
2081 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]);
2082 i++;
2083 v >>= 1;
2084 }
2085
2086 apic_printk(APIC_DEBUG, KERN_CONT "\n");
2087
2088 trace_error_apic_exit(ERROR_APIC_VECTOR);
2089 exiting_irq();
2090 }
2091
2092 /**
2093 * connect_bsp_APIC - attach the APIC to the interrupt system
2094 */
connect_bsp_APIC(void)2095 static void __init connect_bsp_APIC(void)
2096 {
2097 #ifdef CONFIG_X86_32
2098 if (pic_mode) {
2099 /*
2100 * Do not trust the local APIC being empty at bootup.
2101 */
2102 clear_local_APIC();
2103 /*
2104 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's
2105 * local APIC to INT and NMI lines.
2106 */
2107 apic_printk(APIC_VERBOSE, "leaving PIC mode, "
2108 "enabling APIC mode.\n");
2109 imcr_pic_to_apic();
2110 }
2111 #endif
2112 }
2113
2114 /**
2115 * disconnect_bsp_APIC - detach the APIC from the interrupt system
2116 * @virt_wire_setup: indicates, whether virtual wire mode is selected
2117 *
2118 * Virtual wire mode is necessary to deliver legacy interrupts even when the
2119 * APIC is disabled.
2120 */
disconnect_bsp_APIC(int virt_wire_setup)2121 void disconnect_bsp_APIC(int virt_wire_setup)
2122 {
2123 unsigned int value;
2124
2125 #ifdef CONFIG_X86_32
2126 if (pic_mode) {
2127 /*
2128 * Put the board back into PIC mode (has an effect only on
2129 * certain older boards). Note that APIC interrupts, including
2130 * IPIs, won't work beyond this point! The only exception are
2131 * INIT IPIs.
2132 */
2133 apic_printk(APIC_VERBOSE, "disabling APIC mode, "
2134 "entering PIC mode.\n");
2135 imcr_apic_to_pic();
2136 return;
2137 }
2138 #endif
2139
2140 /* Go back to Virtual Wire compatibility mode */
2141
2142 /* For the spurious interrupt use vector F, and enable it */
2143 value = apic_read(APIC_SPIV);
2144 value &= ~APIC_VECTOR_MASK;
2145 value |= APIC_SPIV_APIC_ENABLED;
2146 value |= 0xf;
2147 apic_write(APIC_SPIV, value);
2148
2149 if (!virt_wire_setup) {
2150 /*
2151 * For LVT0 make it edge triggered, active high,
2152 * external and enabled
2153 */
2154 value = apic_read(APIC_LVT0);
2155 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2156 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2157 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2158 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2159 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT);
2160 apic_write(APIC_LVT0, value);
2161 } else {
2162 /* Disable LVT0 */
2163 apic_write(APIC_LVT0, APIC_LVT_MASKED);
2164 }
2165
2166 /*
2167 * For LVT1 make it edge triggered, active high,
2168 * nmi and enabled
2169 */
2170 value = apic_read(APIC_LVT1);
2171 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING |
2172 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR |
2173 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED);
2174 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING;
2175 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI);
2176 apic_write(APIC_LVT1, value);
2177 }
2178
2179 /*
2180 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated
2181 * contiguously, it equals to current allocated max logical CPU ID plus 1.
2182 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range,
2183 * so the maximum of nr_logical_cpuids is nr_cpu_ids.
2184 *
2185 * NOTE: Reserve 0 for BSP.
2186 */
2187 static int nr_logical_cpuids = 1;
2188
2189 /*
2190 * Used to store mapping between logical CPU IDs and APIC IDs.
2191 */
2192 static int cpuid_to_apicid[] = {
2193 [0 ... NR_CPUS - 1] = -1,
2194 };
2195
2196 #ifdef CONFIG_SMP
2197 /**
2198 * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread
2199 * @id: APIC ID to check
2200 */
apic_id_is_primary_thread(unsigned int apicid)2201 bool apic_id_is_primary_thread(unsigned int apicid)
2202 {
2203 u32 mask;
2204
2205 if (smp_num_siblings == 1)
2206 return true;
2207 /* Isolate the SMT bit(s) in the APICID and check for 0 */
2208 mask = (1U << (fls(smp_num_siblings) - 1)) - 1;
2209 return !(apicid & mask);
2210 }
2211 #endif
2212
2213 /*
2214 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids
2215 * and cpuid_to_apicid[] synchronized.
2216 */
allocate_logical_cpuid(int apicid)2217 static int allocate_logical_cpuid(int apicid)
2218 {
2219 int i;
2220
2221 /*
2222 * cpuid <-> apicid mapping is persistent, so when a cpu is up,
2223 * check if the kernel has allocated a cpuid for it.
2224 */
2225 for (i = 0; i < nr_logical_cpuids; i++) {
2226 if (cpuid_to_apicid[i] == apicid)
2227 return i;
2228 }
2229
2230 /* Allocate a new cpuid. */
2231 if (nr_logical_cpuids >= nr_cpu_ids) {
2232 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. "
2233 "Processor %d/0x%x and the rest are ignored.\n",
2234 nr_cpu_ids, nr_logical_cpuids, apicid);
2235 return -EINVAL;
2236 }
2237
2238 cpuid_to_apicid[nr_logical_cpuids] = apicid;
2239 return nr_logical_cpuids++;
2240 }
2241
generic_processor_info(int apicid,int version)2242 int generic_processor_info(int apicid, int version)
2243 {
2244 int cpu, max = nr_cpu_ids;
2245 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid,
2246 phys_cpu_present_map);
2247
2248 /*
2249 * boot_cpu_physical_apicid is designed to have the apicid
2250 * returned by read_apic_id(), i.e, the apicid of the
2251 * currently booting-up processor. However, on some platforms,
2252 * it is temporarily modified by the apicid reported as BSP
2253 * through MP table. Concretely:
2254 *
2255 * - arch/x86/kernel/mpparse.c: MP_processor_info()
2256 * - arch/x86/mm/amdtopology.c: amd_numa_init()
2257 *
2258 * This function is executed with the modified
2259 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel
2260 * parameter doesn't work to disable APs on kdump 2nd kernel.
2261 *
2262 * Since fixing handling of boot_cpu_physical_apicid requires
2263 * another discussion and tests on each platform, we leave it
2264 * for now and here we use read_apic_id() directly in this
2265 * function, generic_processor_info().
2266 */
2267 if (disabled_cpu_apicid != BAD_APICID &&
2268 disabled_cpu_apicid != read_apic_id() &&
2269 disabled_cpu_apicid == apicid) {
2270 int thiscpu = num_processors + disabled_cpus;
2271
2272 pr_warning("APIC: Disabling requested cpu."
2273 " Processor %d/0x%x ignored.\n",
2274 thiscpu, apicid);
2275
2276 disabled_cpus++;
2277 return -ENODEV;
2278 }
2279
2280 /*
2281 * If boot cpu has not been detected yet, then only allow upto
2282 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu
2283 */
2284 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 &&
2285 apicid != boot_cpu_physical_apicid) {
2286 int thiscpu = max + disabled_cpus - 1;
2287
2288 pr_warning(
2289 "APIC: NR_CPUS/possible_cpus limit of %i almost"
2290 " reached. Keeping one slot for boot cpu."
2291 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid);
2292
2293 disabled_cpus++;
2294 return -ENODEV;
2295 }
2296
2297 if (num_processors >= nr_cpu_ids) {
2298 int thiscpu = max + disabled_cpus;
2299
2300 pr_warning("APIC: NR_CPUS/possible_cpus limit of %i "
2301 "reached. Processor %d/0x%x ignored.\n",
2302 max, thiscpu, apicid);
2303
2304 disabled_cpus++;
2305 return -EINVAL;
2306 }
2307
2308 if (apicid == boot_cpu_physical_apicid) {
2309 /*
2310 * x86_bios_cpu_apicid is required to have processors listed
2311 * in same order as logical cpu numbers. Hence the first
2312 * entry is BSP, and so on.
2313 * boot_cpu_init() already hold bit 0 in cpu_present_mask
2314 * for BSP.
2315 */
2316 cpu = 0;
2317
2318 /* Logical cpuid 0 is reserved for BSP. */
2319 cpuid_to_apicid[0] = apicid;
2320 } else {
2321 cpu = allocate_logical_cpuid(apicid);
2322 if (cpu < 0) {
2323 disabled_cpus++;
2324 return -EINVAL;
2325 }
2326 }
2327
2328 /*
2329 * Validate version
2330 */
2331 if (version == 0x0) {
2332 pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n",
2333 cpu, apicid);
2334 version = 0x10;
2335 }
2336
2337 if (version != boot_cpu_apic_version) {
2338 pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n",
2339 boot_cpu_apic_version, cpu, version);
2340 }
2341
2342 if (apicid > max_physical_apicid)
2343 max_physical_apicid = apicid;
2344
2345 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64)
2346 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid;
2347 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid;
2348 #endif
2349 #ifdef CONFIG_X86_32
2350 early_per_cpu(x86_cpu_to_logical_apicid, cpu) =
2351 apic->x86_32_early_logical_apicid(cpu);
2352 #endif
2353 set_cpu_possible(cpu, true);
2354 physid_set(apicid, phys_cpu_present_map);
2355 set_cpu_present(cpu, true);
2356 num_processors++;
2357
2358 return cpu;
2359 }
2360
hard_smp_processor_id(void)2361 int hard_smp_processor_id(void)
2362 {
2363 return read_apic_id();
2364 }
2365
2366 /*
2367 * Override the generic EOI implementation with an optimized version.
2368 * Only called during early boot when only one CPU is active and with
2369 * interrupts disabled, so we know this does not race with actual APIC driver
2370 * use.
2371 */
apic_set_eoi_write(void (* eoi_write)(u32 reg,u32 v))2372 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v))
2373 {
2374 struct apic **drv;
2375
2376 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) {
2377 /* Should happen once for each apic */
2378 WARN_ON((*drv)->eoi_write == eoi_write);
2379 (*drv)->native_eoi_write = (*drv)->eoi_write;
2380 (*drv)->eoi_write = eoi_write;
2381 }
2382 }
2383
apic_bsp_up_setup(void)2384 static void __init apic_bsp_up_setup(void)
2385 {
2386 #ifdef CONFIG_X86_64
2387 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid));
2388 #else
2389 /*
2390 * Hack: In case of kdump, after a crash, kernel might be booting
2391 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid
2392 * might be zero if read from MP tables. Get it from LAPIC.
2393 */
2394 # ifdef CONFIG_CRASH_DUMP
2395 boot_cpu_physical_apicid = read_apic_id();
2396 # endif
2397 #endif
2398 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
2399 }
2400
2401 /**
2402 * apic_bsp_setup - Setup function for local apic and io-apic
2403 * @upmode: Force UP mode (for APIC_init_uniprocessor)
2404 *
2405 * Returns:
2406 * apic_id of BSP APIC
2407 */
apic_bsp_setup(bool upmode)2408 void __init apic_bsp_setup(bool upmode)
2409 {
2410 connect_bsp_APIC();
2411 if (upmode)
2412 apic_bsp_up_setup();
2413 setup_local_APIC();
2414
2415 enable_IO_APIC();
2416 end_local_APIC_setup();
2417 irq_remap_enable_fault_handling();
2418 setup_IO_APIC();
2419 }
2420
2421 #ifdef CONFIG_UP_LATE_INIT
up_late_init(void)2422 void __init up_late_init(void)
2423 {
2424 if (apic_intr_mode == APIC_PIC)
2425 return;
2426
2427 /* Setup local timer */
2428 x86_init.timers.setup_percpu_clockev();
2429 }
2430 #endif
2431
2432 /*
2433 * Power management
2434 */
2435 #ifdef CONFIG_PM
2436
2437 static struct {
2438 /*
2439 * 'active' is true if the local APIC was enabled by us and
2440 * not the BIOS; this signifies that we are also responsible
2441 * for disabling it before entering apm/acpi suspend
2442 */
2443 int active;
2444 /* r/w apic fields */
2445 unsigned int apic_id;
2446 unsigned int apic_taskpri;
2447 unsigned int apic_ldr;
2448 unsigned int apic_dfr;
2449 unsigned int apic_spiv;
2450 unsigned int apic_lvtt;
2451 unsigned int apic_lvtpc;
2452 unsigned int apic_lvt0;
2453 unsigned int apic_lvt1;
2454 unsigned int apic_lvterr;
2455 unsigned int apic_tmict;
2456 unsigned int apic_tdcr;
2457 unsigned int apic_thmr;
2458 unsigned int apic_cmci;
2459 } apic_pm_state;
2460
lapic_suspend(void)2461 static int lapic_suspend(void)
2462 {
2463 unsigned long flags;
2464 int maxlvt;
2465
2466 if (!apic_pm_state.active)
2467 return 0;
2468
2469 maxlvt = lapic_get_maxlvt();
2470
2471 apic_pm_state.apic_id = apic_read(APIC_ID);
2472 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI);
2473 apic_pm_state.apic_ldr = apic_read(APIC_LDR);
2474 apic_pm_state.apic_dfr = apic_read(APIC_DFR);
2475 apic_pm_state.apic_spiv = apic_read(APIC_SPIV);
2476 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT);
2477 if (maxlvt >= 4)
2478 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC);
2479 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0);
2480 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1);
2481 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR);
2482 apic_pm_state.apic_tmict = apic_read(APIC_TMICT);
2483 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR);
2484 #ifdef CONFIG_X86_THERMAL_VECTOR
2485 if (maxlvt >= 5)
2486 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR);
2487 #endif
2488 #ifdef CONFIG_X86_MCE_INTEL
2489 if (maxlvt >= 6)
2490 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI);
2491 #endif
2492
2493 local_irq_save(flags);
2494 disable_local_APIC();
2495
2496 irq_remapping_disable();
2497
2498 local_irq_restore(flags);
2499 return 0;
2500 }
2501
lapic_resume(void)2502 static void lapic_resume(void)
2503 {
2504 unsigned int l, h;
2505 unsigned long flags;
2506 int maxlvt;
2507
2508 if (!apic_pm_state.active)
2509 return;
2510
2511 local_irq_save(flags);
2512
2513 /*
2514 * IO-APIC and PIC have their own resume routines.
2515 * We just mask them here to make sure the interrupt
2516 * subsystem is completely quiet while we enable x2apic
2517 * and interrupt-remapping.
2518 */
2519 mask_ioapic_entries();
2520 legacy_pic->mask_all();
2521
2522 if (x2apic_mode) {
2523 __x2apic_enable();
2524 } else {
2525 /*
2526 * Make sure the APICBASE points to the right address
2527 *
2528 * FIXME! This will be wrong if we ever support suspend on
2529 * SMP! We'll need to do this as part of the CPU restore!
2530 */
2531 if (boot_cpu_data.x86 >= 6) {
2532 rdmsr(MSR_IA32_APICBASE, l, h);
2533 l &= ~MSR_IA32_APICBASE_BASE;
2534 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr;
2535 wrmsr(MSR_IA32_APICBASE, l, h);
2536 }
2537 }
2538
2539 maxlvt = lapic_get_maxlvt();
2540 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED);
2541 apic_write(APIC_ID, apic_pm_state.apic_id);
2542 apic_write(APIC_DFR, apic_pm_state.apic_dfr);
2543 apic_write(APIC_LDR, apic_pm_state.apic_ldr);
2544 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri);
2545 apic_write(APIC_SPIV, apic_pm_state.apic_spiv);
2546 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0);
2547 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1);
2548 #ifdef CONFIG_X86_THERMAL_VECTOR
2549 if (maxlvt >= 5)
2550 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr);
2551 #endif
2552 #ifdef CONFIG_X86_MCE_INTEL
2553 if (maxlvt >= 6)
2554 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci);
2555 #endif
2556 if (maxlvt >= 4)
2557 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc);
2558 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt);
2559 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr);
2560 apic_write(APIC_TMICT, apic_pm_state.apic_tmict);
2561 apic_write(APIC_ESR, 0);
2562 apic_read(APIC_ESR);
2563 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr);
2564 apic_write(APIC_ESR, 0);
2565 apic_read(APIC_ESR);
2566
2567 irq_remapping_reenable(x2apic_mode);
2568
2569 local_irq_restore(flags);
2570 }
2571
2572 /*
2573 * This device has no shutdown method - fully functioning local APICs
2574 * are needed on every CPU up until machine_halt/restart/poweroff.
2575 */
2576
2577 static struct syscore_ops lapic_syscore_ops = {
2578 .resume = lapic_resume,
2579 .suspend = lapic_suspend,
2580 };
2581
apic_pm_activate(void)2582 static void apic_pm_activate(void)
2583 {
2584 apic_pm_state.active = 1;
2585 }
2586
init_lapic_sysfs(void)2587 static int __init init_lapic_sysfs(void)
2588 {
2589 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */
2590 if (boot_cpu_has(X86_FEATURE_APIC))
2591 register_syscore_ops(&lapic_syscore_ops);
2592
2593 return 0;
2594 }
2595
2596 /* local apic needs to resume before other devices access its registers. */
2597 core_initcall(init_lapic_sysfs);
2598
2599 #else /* CONFIG_PM */
2600
apic_pm_activate(void)2601 static void apic_pm_activate(void) { }
2602
2603 #endif /* CONFIG_PM */
2604
2605 #ifdef CONFIG_X86_64
2606
2607 static int multi_checked;
2608 static int multi;
2609
set_multi(const struct dmi_system_id * d)2610 static int set_multi(const struct dmi_system_id *d)
2611 {
2612 if (multi)
2613 return 0;
2614 pr_info("APIC: %s detected, Multi Chassis\n", d->ident);
2615 multi = 1;
2616 return 0;
2617 }
2618
2619 static const struct dmi_system_id multi_dmi_table[] = {
2620 {
2621 .callback = set_multi,
2622 .ident = "IBM System Summit2",
2623 .matches = {
2624 DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
2625 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"),
2626 },
2627 },
2628 {}
2629 };
2630
dmi_check_multi(void)2631 static void dmi_check_multi(void)
2632 {
2633 if (multi_checked)
2634 return;
2635
2636 dmi_check_system(multi_dmi_table);
2637 multi_checked = 1;
2638 }
2639
2640 /*
2641 * apic_is_clustered_box() -- Check if we can expect good TSC
2642 *
2643 * Thus far, the major user of this is IBM's Summit2 series:
2644 * Clustered boxes may have unsynced TSC problems if they are
2645 * multi-chassis.
2646 * Use DMI to check them
2647 */
apic_is_clustered_box(void)2648 int apic_is_clustered_box(void)
2649 {
2650 dmi_check_multi();
2651 return multi;
2652 }
2653 #endif
2654
2655 /*
2656 * APIC command line parameters
2657 */
setup_disableapic(char * arg)2658 static int __init setup_disableapic(char *arg)
2659 {
2660 disable_apic = 1;
2661 setup_clear_cpu_cap(X86_FEATURE_APIC);
2662 return 0;
2663 }
2664 early_param("disableapic", setup_disableapic);
2665
2666 /* same as disableapic, for compatibility */
setup_nolapic(char * arg)2667 static int __init setup_nolapic(char *arg)
2668 {
2669 return setup_disableapic(arg);
2670 }
2671 early_param("nolapic", setup_nolapic);
2672
parse_lapic_timer_c2_ok(char * arg)2673 static int __init parse_lapic_timer_c2_ok(char *arg)
2674 {
2675 local_apic_timer_c2_ok = 1;
2676 return 0;
2677 }
2678 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok);
2679
parse_disable_apic_timer(char * arg)2680 static int __init parse_disable_apic_timer(char *arg)
2681 {
2682 disable_apic_timer = 1;
2683 return 0;
2684 }
2685 early_param("noapictimer", parse_disable_apic_timer);
2686
parse_nolapic_timer(char * arg)2687 static int __init parse_nolapic_timer(char *arg)
2688 {
2689 disable_apic_timer = 1;
2690 return 0;
2691 }
2692 early_param("nolapic_timer", parse_nolapic_timer);
2693
apic_set_verbosity(char * arg)2694 static int __init apic_set_verbosity(char *arg)
2695 {
2696 if (!arg) {
2697 #ifdef CONFIG_X86_64
2698 skip_ioapic_setup = 0;
2699 return 0;
2700 #endif
2701 return -EINVAL;
2702 }
2703
2704 if (strcmp("debug", arg) == 0)
2705 apic_verbosity = APIC_DEBUG;
2706 else if (strcmp("verbose", arg) == 0)
2707 apic_verbosity = APIC_VERBOSE;
2708 #ifdef CONFIG_X86_64
2709 else {
2710 pr_warning("APIC Verbosity level %s not recognised"
2711 " use apic=verbose or apic=debug\n", arg);
2712 return -EINVAL;
2713 }
2714 #endif
2715
2716 return 0;
2717 }
2718 early_param("apic", apic_set_verbosity);
2719
lapic_insert_resource(void)2720 static int __init lapic_insert_resource(void)
2721 {
2722 if (!apic_phys)
2723 return -1;
2724
2725 /* Put local APIC into the resource map. */
2726 lapic_resource.start = apic_phys;
2727 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1;
2728 insert_resource(&iomem_resource, &lapic_resource);
2729
2730 return 0;
2731 }
2732
2733 /*
2734 * need call insert after e820__reserve_resources()
2735 * that is using request_resource
2736 */
2737 late_initcall(lapic_insert_resource);
2738
apic_set_disabled_cpu_apicid(char * arg)2739 static int __init apic_set_disabled_cpu_apicid(char *arg)
2740 {
2741 if (!arg || !get_option(&arg, &disabled_cpu_apicid))
2742 return -EINVAL;
2743
2744 return 0;
2745 }
2746 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
2747
apic_set_extnmi(char * arg)2748 static int __init apic_set_extnmi(char *arg)
2749 {
2750 if (!arg)
2751 return -EINVAL;
2752
2753 if (!strncmp("all", arg, 3))
2754 apic_extnmi = APIC_EXTNMI_ALL;
2755 else if (!strncmp("none", arg, 4))
2756 apic_extnmi = APIC_EXTNMI_NONE;
2757 else if (!strncmp("bsp", arg, 3))
2758 apic_extnmi = APIC_EXTNMI_BSP;
2759 else {
2760 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg);
2761 return -EINVAL;
2762 }
2763
2764 return 0;
2765 }
2766 early_param("apic_extnmi", apic_set_extnmi);
2767