1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include "gen8_engine_cs.h"
7 #include "i915_drv.h"
8 #include "intel_engine_regs.h"
9 #include "intel_gpu_commands.h"
10 #include "intel_lrc.h"
11 #include "intel_ring.h"
12
gen8_emit_flush_rcs(struct i915_request * rq,u32 mode)13 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
14 {
15 bool vf_flush_wa = false, dc_flush_wa = false;
16 u32 *cs, flags = 0;
17 int len;
18
19 flags |= PIPE_CONTROL_CS_STALL;
20
21 if (mode & EMIT_FLUSH) {
22 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
23 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
24 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
25 flags |= PIPE_CONTROL_FLUSH_ENABLE;
26 }
27
28 if (mode & EMIT_INVALIDATE) {
29 flags |= PIPE_CONTROL_TLB_INVALIDATE;
30 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
31 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
32 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
33 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
34 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
35 flags |= PIPE_CONTROL_QW_WRITE;
36 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
37
38 /*
39 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
40 * pipe control.
41 */
42 if (GRAPHICS_VER(rq->i915) == 9)
43 vf_flush_wa = true;
44
45 /* WaForGAMHang:kbl */
46 if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0))
47 dc_flush_wa = true;
48 }
49
50 len = 6;
51
52 if (vf_flush_wa)
53 len += 6;
54
55 if (dc_flush_wa)
56 len += 12;
57
58 cs = intel_ring_begin(rq, len);
59 if (IS_ERR(cs))
60 return PTR_ERR(cs);
61
62 if (vf_flush_wa)
63 cs = gen8_emit_pipe_control(cs, 0, 0);
64
65 if (dc_flush_wa)
66 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
67 0);
68
69 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
70
71 if (dc_flush_wa)
72 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
73
74 intel_ring_advance(rq, cs);
75
76 return 0;
77 }
78
gen8_emit_flush_xcs(struct i915_request * rq,u32 mode)79 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
80 {
81 u32 cmd, *cs;
82
83 cs = intel_ring_begin(rq, 4);
84 if (IS_ERR(cs))
85 return PTR_ERR(cs);
86
87 cmd = MI_FLUSH_DW + 1;
88
89 /*
90 * We always require a command barrier so that subsequent
91 * commands, such as breadcrumb interrupts, are strictly ordered
92 * wrt the contents of the write cache being flushed to memory
93 * (and thus being coherent from the CPU).
94 */
95 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
96
97 if (mode & EMIT_INVALIDATE) {
98 cmd |= MI_INVALIDATE_TLB;
99 if (rq->engine->class == VIDEO_DECODE_CLASS)
100 cmd |= MI_INVALIDATE_BSD;
101 }
102
103 *cs++ = cmd;
104 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
105 *cs++ = 0; /* upper addr */
106 *cs++ = 0; /* value */
107 intel_ring_advance(rq, cs);
108
109 return 0;
110 }
111
gen11_emit_flush_rcs(struct i915_request * rq,u32 mode)112 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
113 {
114 if (mode & EMIT_FLUSH) {
115 u32 *cs;
116 u32 flags = 0;
117
118 flags |= PIPE_CONTROL_CS_STALL;
119
120 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
121 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
122 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
123 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
124 flags |= PIPE_CONTROL_FLUSH_ENABLE;
125 flags |= PIPE_CONTROL_QW_WRITE;
126 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
127
128 cs = intel_ring_begin(rq, 6);
129 if (IS_ERR(cs))
130 return PTR_ERR(cs);
131
132 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
133 intel_ring_advance(rq, cs);
134 }
135
136 if (mode & EMIT_INVALIDATE) {
137 u32 *cs;
138 u32 flags = 0;
139
140 flags |= PIPE_CONTROL_CS_STALL;
141
142 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
143 flags |= PIPE_CONTROL_TLB_INVALIDATE;
144 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
145 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
146 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
147 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
148 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
149 flags |= PIPE_CONTROL_QW_WRITE;
150 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
151
152 cs = intel_ring_begin(rq, 6);
153 if (IS_ERR(cs))
154 return PTR_ERR(cs);
155
156 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
157 intel_ring_advance(rq, cs);
158 }
159
160 return 0;
161 }
162
preparser_disable(bool state)163 static u32 preparser_disable(bool state)
164 {
165 return MI_ARB_CHECK | 1 << 8 | state;
166 }
167
gen12_get_aux_inv_reg(struct intel_engine_cs * engine)168 static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine)
169 {
170 switch (engine->id) {
171 case RCS0:
172 return GEN12_CCS_AUX_INV;
173 case BCS0:
174 return GEN12_BCS0_AUX_INV;
175 case VCS0:
176 return GEN12_VD0_AUX_INV;
177 case VCS2:
178 return GEN12_VD2_AUX_INV;
179 case VECS0:
180 return GEN12_VE0_AUX_INV;
181 case CCS0:
182 return GEN12_CCS0_AUX_INV;
183 default:
184 return INVALID_MMIO_REG;
185 }
186 }
187
gen12_needs_ccs_aux_inv(struct intel_engine_cs * engine)188 static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine)
189 {
190 i915_reg_t reg = gen12_get_aux_inv_reg(engine);
191
192 if (IS_PONTEVECCHIO(engine->i915))
193 return false;
194
195 /*
196 * So far platforms supported by i915 having flat ccs do not require
197 * AUX invalidation. Check also whether the engine requires it.
198 */
199 return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915);
200 }
201
gen12_emit_aux_table_inv(struct intel_engine_cs * engine,u32 * cs)202 u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs)
203 {
204 i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine);
205 u32 gsi_offset = engine->gt->uncore->gsi_offset;
206
207 if (!gen12_needs_ccs_aux_inv(engine))
208 return cs;
209
210 *cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN;
211 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
212 *cs++ = AUX_INV;
213
214 *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
215 MI_SEMAPHORE_REGISTER_POLL |
216 MI_SEMAPHORE_POLL |
217 MI_SEMAPHORE_SAD_EQ_SDD;
218 *cs++ = 0;
219 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
220 *cs++ = 0;
221 *cs++ = 0;
222
223 return cs;
224 }
225
mtl_dummy_pipe_control(struct i915_request * rq)226 static int mtl_dummy_pipe_control(struct i915_request *rq)
227 {
228 /* Wa_14016712196 */
229 if (IS_MTL_GRAPHICS_STEP(rq->i915, M, STEP_A0, STEP_B0) ||
230 IS_MTL_GRAPHICS_STEP(rq->i915, P, STEP_A0, STEP_B0)) {
231 u32 *cs;
232
233 /* dummy PIPE_CONTROL + depth flush */
234 cs = intel_ring_begin(rq, 6);
235 if (IS_ERR(cs))
236 return PTR_ERR(cs);
237 cs = gen12_emit_pipe_control(cs,
238 0,
239 PIPE_CONTROL_DEPTH_CACHE_FLUSH,
240 LRC_PPHWSP_SCRATCH_ADDR);
241 intel_ring_advance(rq, cs);
242 }
243
244 return 0;
245 }
246
gen12_emit_flush_rcs(struct i915_request * rq,u32 mode)247 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
248 {
249 struct intel_engine_cs *engine = rq->engine;
250
251 /*
252 * On Aux CCS platforms the invalidation of the Aux
253 * table requires quiescing memory traffic beforehand
254 */
255 if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) {
256 u32 bit_group_0 = 0;
257 u32 bit_group_1 = 0;
258 int err;
259 u32 *cs;
260
261 err = mtl_dummy_pipe_control(rq);
262 if (err)
263 return err;
264
265 bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH;
266
267 /*
268 * When required, in MTL and beyond platforms we
269 * need to set the CCS_FLUSH bit in the pipe control
270 */
271 if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70))
272 bit_group_0 |= PIPE_CONTROL_CCS_FLUSH;
273
274 /*
275 * L3 fabric flush is needed for AUX CCS invalidation
276 * which happens as part of pipe-control so we can
277 * ignore PIPE_CONTROL_FLUSH_L3. Also PIPE_CONTROL_FLUSH_L3
278 * deals with Protected Memory which is not needed for
279 * AUX CCS invalidation and lead to unwanted side effects.
280 */
281 if (mode & EMIT_FLUSH)
282 bit_group_1 |= PIPE_CONTROL_FLUSH_L3;
283
284 bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH;
285 bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
286 bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
287 /* Wa_1409600907:tgl,adl-p */
288 bit_group_1 |= PIPE_CONTROL_DEPTH_STALL;
289 bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE;
290 bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE;
291
292 bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX;
293 bit_group_1 |= PIPE_CONTROL_QW_WRITE;
294
295 bit_group_1 |= PIPE_CONTROL_CS_STALL;
296
297 if (!HAS_3D_PIPELINE(engine->i915))
298 bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
299 else if (engine->class == COMPUTE_CLASS)
300 bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
301
302 cs = intel_ring_begin(rq, 6);
303 if (IS_ERR(cs))
304 return PTR_ERR(cs);
305
306 cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1,
307 LRC_PPHWSP_SCRATCH_ADDR);
308 intel_ring_advance(rq, cs);
309 }
310
311 if (mode & EMIT_INVALIDATE) {
312 u32 flags = 0;
313 u32 *cs, count;
314 int err;
315
316 err = mtl_dummy_pipe_control(rq);
317 if (err)
318 return err;
319
320 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
321 flags |= PIPE_CONTROL_TLB_INVALIDATE;
322 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
323 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
324 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
325 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
326 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
327
328 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
329 flags |= PIPE_CONTROL_QW_WRITE;
330
331 flags |= PIPE_CONTROL_CS_STALL;
332
333 if (!HAS_3D_PIPELINE(engine->i915))
334 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
335 else if (engine->class == COMPUTE_CLASS)
336 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
337
338 count = 8;
339 if (gen12_needs_ccs_aux_inv(rq->engine))
340 count += 8;
341
342 cs = intel_ring_begin(rq, count);
343 if (IS_ERR(cs))
344 return PTR_ERR(cs);
345
346 /*
347 * Prevent the pre-parser from skipping past the TLB
348 * invalidate and loading a stale page for the batch
349 * buffer / request payload.
350 */
351 *cs++ = preparser_disable(true);
352
353 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
354
355 cs = gen12_emit_aux_table_inv(engine, cs);
356
357 *cs++ = preparser_disable(false);
358 intel_ring_advance(rq, cs);
359 }
360
361 return 0;
362 }
363
gen12_emit_flush_xcs(struct i915_request * rq,u32 mode)364 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
365 {
366 u32 cmd = 4;
367 u32 *cs;
368
369 if (mode & EMIT_INVALIDATE) {
370 cmd += 2;
371
372 if (gen12_needs_ccs_aux_inv(rq->engine))
373 cmd += 8;
374 }
375
376 cs = intel_ring_begin(rq, cmd);
377 if (IS_ERR(cs))
378 return PTR_ERR(cs);
379
380 if (mode & EMIT_INVALIDATE)
381 *cs++ = preparser_disable(true);
382
383 cmd = MI_FLUSH_DW + 1;
384
385 /*
386 * We always require a command barrier so that subsequent
387 * commands, such as breadcrumb interrupts, are strictly ordered
388 * wrt the contents of the write cache being flushed to memory
389 * (and thus being coherent from the CPU).
390 */
391 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
392
393 if (mode & EMIT_INVALIDATE) {
394 cmd |= MI_INVALIDATE_TLB;
395 if (rq->engine->class == VIDEO_DECODE_CLASS)
396 cmd |= MI_INVALIDATE_BSD;
397
398 if (gen12_needs_ccs_aux_inv(rq->engine) &&
399 rq->engine->class == COPY_ENGINE_CLASS)
400 cmd |= MI_FLUSH_DW_CCS;
401 }
402
403 *cs++ = cmd;
404 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
405 *cs++ = 0; /* upper addr */
406 *cs++ = 0; /* value */
407
408 cs = gen12_emit_aux_table_inv(rq->engine, cs);
409
410 if (mode & EMIT_INVALIDATE)
411 *cs++ = preparser_disable(false);
412
413 intel_ring_advance(rq, cs);
414
415 return 0;
416 }
417
preempt_address(struct intel_engine_cs * engine)418 static u32 preempt_address(struct intel_engine_cs *engine)
419 {
420 return (i915_ggtt_offset(engine->status_page.vma) +
421 I915_GEM_HWS_PREEMPT_ADDR);
422 }
423
hwsp_offset(const struct i915_request * rq)424 static u32 hwsp_offset(const struct i915_request *rq)
425 {
426 const struct intel_timeline *tl;
427
428 /* Before the request is executed, the timeline is fixed */
429 tl = rcu_dereference_protected(rq->timeline,
430 !i915_request_signaled(rq));
431
432 /* See the comment in i915_request_active_seqno(). */
433 return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
434 }
435
gen8_emit_init_breadcrumb(struct i915_request * rq)436 int gen8_emit_init_breadcrumb(struct i915_request *rq)
437 {
438 u32 *cs;
439
440 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
441 if (!i915_request_timeline(rq)->has_initial_breadcrumb)
442 return 0;
443
444 cs = intel_ring_begin(rq, 6);
445 if (IS_ERR(cs))
446 return PTR_ERR(cs);
447
448 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
449 *cs++ = hwsp_offset(rq);
450 *cs++ = 0;
451 *cs++ = rq->fence.seqno - 1;
452
453 /*
454 * Check if we have been preempted before we even get started.
455 *
456 * After this point i915_request_started() reports true, even if
457 * we get preempted and so are no longer running.
458 *
459 * i915_request_started() is used during preemption processing
460 * to decide if the request is currently inside the user payload
461 * or spinning on a kernel semaphore (or earlier). For no-preemption
462 * requests, we do allow preemption on the semaphore before the user
463 * payload, but do not allow preemption once the request is started.
464 *
465 * i915_request_started() is similarly used during GPU hangs to
466 * determine if the user's payload was guilty, and if so, the
467 * request is banned. Before the request is started, it is assumed
468 * to be unharmed and an innocent victim of another's hang.
469 */
470 *cs++ = MI_NOOP;
471 *cs++ = MI_ARB_CHECK;
472
473 intel_ring_advance(rq, cs);
474
475 /* Record the updated position of the request's payload */
476 rq->infix = intel_ring_offset(rq, cs);
477
478 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
479
480 return 0;
481 }
482
__xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags,u32 arb)483 static int __xehp_emit_bb_start(struct i915_request *rq,
484 u64 offset, u32 len,
485 const unsigned int flags,
486 u32 arb)
487 {
488 struct intel_context *ce = rq->context;
489 u32 wa_offset = lrc_indirect_bb(ce);
490 u32 *cs;
491
492 GEM_BUG_ON(!ce->wa_bb_page);
493
494 cs = intel_ring_begin(rq, 12);
495 if (IS_ERR(cs))
496 return PTR_ERR(cs);
497
498 *cs++ = MI_ARB_ON_OFF | arb;
499
500 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
501 MI_SRM_LRM_GLOBAL_GTT |
502 MI_LRI_LRM_CS_MMIO;
503 *cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0));
504 *cs++ = wa_offset + DG2_PREDICATE_RESULT_WA;
505 *cs++ = 0;
506
507 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
508 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
509 *cs++ = lower_32_bits(offset);
510 *cs++ = upper_32_bits(offset);
511
512 /* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */
513 *cs++ = MI_BATCH_BUFFER_START_GEN8;
514 *cs++ = wa_offset + DG2_PREDICATE_RESULT_BB;
515 *cs++ = 0;
516
517 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
518
519 intel_ring_advance(rq, cs);
520
521 return 0;
522 }
523
xehp_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)524 int xehp_emit_bb_start_noarb(struct i915_request *rq,
525 u64 offset, u32 len,
526 const unsigned int flags)
527 {
528 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE);
529 }
530
xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)531 int xehp_emit_bb_start(struct i915_request *rq,
532 u64 offset, u32 len,
533 const unsigned int flags)
534 {
535 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE);
536 }
537
gen8_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)538 int gen8_emit_bb_start_noarb(struct i915_request *rq,
539 u64 offset, u32 len,
540 const unsigned int flags)
541 {
542 u32 *cs;
543
544 cs = intel_ring_begin(rq, 4);
545 if (IS_ERR(cs))
546 return PTR_ERR(cs);
547
548 /*
549 * WaDisableCtxRestoreArbitration:bdw,chv
550 *
551 * We don't need to perform MI_ARB_ENABLE as often as we do (in
552 * particular all the gen that do not need the w/a at all!), if we
553 * took care to make sure that on every switch into this context
554 * (both ordinary and for preemption) that arbitrartion was enabled
555 * we would be fine. However, for gen8 there is another w/a that
556 * requires us to not preempt inside GPGPU execution, so we keep
557 * arbitration disabled for gen8 batches. Arbitration will be
558 * re-enabled before we close the request
559 * (engine->emit_fini_breadcrumb).
560 */
561 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
562
563 /* FIXME(BDW+): Address space and security selectors. */
564 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
565 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
566 *cs++ = lower_32_bits(offset);
567 *cs++ = upper_32_bits(offset);
568
569 intel_ring_advance(rq, cs);
570
571 return 0;
572 }
573
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)574 int gen8_emit_bb_start(struct i915_request *rq,
575 u64 offset, u32 len,
576 const unsigned int flags)
577 {
578 u32 *cs;
579
580 if (unlikely(i915_request_has_nopreempt(rq)))
581 return gen8_emit_bb_start_noarb(rq, offset, len, flags);
582
583 cs = intel_ring_begin(rq, 6);
584 if (IS_ERR(cs))
585 return PTR_ERR(cs);
586
587 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
588
589 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
590 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
591 *cs++ = lower_32_bits(offset);
592 *cs++ = upper_32_bits(offset);
593
594 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
595 *cs++ = MI_NOOP;
596
597 intel_ring_advance(rq, cs);
598
599 return 0;
600 }
601
assert_request_valid(struct i915_request * rq)602 static void assert_request_valid(struct i915_request *rq)
603 {
604 struct intel_ring *ring __maybe_unused = rq->ring;
605
606 /* Can we unwind this request without appearing to go forwards? */
607 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
608 }
609
610 /*
611 * Reserve space for 2 NOOPs at the end of each request to be
612 * used as a workaround for not being allowed to do lite
613 * restore with HEAD==TAIL (WaIdleLiteRestore).
614 */
gen8_emit_wa_tail(struct i915_request * rq,u32 * cs)615 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
616 {
617 /* Ensure there's always at least one preemption point per-request. */
618 *cs++ = MI_ARB_CHECK;
619 *cs++ = MI_NOOP;
620 rq->wa_tail = intel_ring_offset(rq, cs);
621
622 /* Check that entire request is less than half the ring */
623 assert_request_valid(rq);
624
625 return cs;
626 }
627
emit_preempt_busywait(struct i915_request * rq,u32 * cs)628 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
629 {
630 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
631 *cs++ = MI_SEMAPHORE_WAIT |
632 MI_SEMAPHORE_GLOBAL_GTT |
633 MI_SEMAPHORE_POLL |
634 MI_SEMAPHORE_SAD_EQ_SDD;
635 *cs++ = 0;
636 *cs++ = preempt_address(rq->engine);
637 *cs++ = 0;
638 *cs++ = MI_NOOP;
639
640 return cs;
641 }
642
643 static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)644 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
645 {
646 *cs++ = MI_USER_INTERRUPT;
647
648 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
649 if (intel_engine_has_semaphores(rq->engine) &&
650 !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
651 cs = emit_preempt_busywait(rq, cs);
652
653 rq->tail = intel_ring_offset(rq, cs);
654 assert_ring_tail_valid(rq->ring, rq->tail);
655
656 return gen8_emit_wa_tail(rq, cs);
657 }
658
emit_xcs_breadcrumb(struct i915_request * rq,u32 * cs)659 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
660 {
661 return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
662 }
663
gen8_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)664 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
665 {
666 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
667 }
668
gen8_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)669 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
670 {
671 cs = gen8_emit_pipe_control(cs,
672 PIPE_CONTROL_CS_STALL |
673 PIPE_CONTROL_TLB_INVALIDATE |
674 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
675 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
676 PIPE_CONTROL_DC_FLUSH_ENABLE,
677 0);
678
679 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
680 cs = gen8_emit_ggtt_write_rcs(cs,
681 rq->fence.seqno,
682 hwsp_offset(rq),
683 PIPE_CONTROL_FLUSH_ENABLE |
684 PIPE_CONTROL_CS_STALL);
685
686 return gen8_emit_fini_breadcrumb_tail(rq, cs);
687 }
688
gen11_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)689 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
690 {
691 cs = gen8_emit_pipe_control(cs,
692 PIPE_CONTROL_CS_STALL |
693 PIPE_CONTROL_TLB_INVALIDATE |
694 PIPE_CONTROL_TILE_CACHE_FLUSH |
695 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
696 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
697 PIPE_CONTROL_DC_FLUSH_ENABLE,
698 0);
699
700 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
701 cs = gen8_emit_ggtt_write_rcs(cs,
702 rq->fence.seqno,
703 hwsp_offset(rq),
704 PIPE_CONTROL_FLUSH_ENABLE |
705 PIPE_CONTROL_CS_STALL);
706
707 return gen8_emit_fini_breadcrumb_tail(rq, cs);
708 }
709
710 /*
711 * Note that the CS instruction pre-parser will not stall on the breadcrumb
712 * flush and will continue pre-fetching the instructions after it before the
713 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
714 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
715 * of the next request before the memory has been flushed, we're guaranteed that
716 * we won't access the batch itself too early.
717 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
718 * so, if the current request is modifying an instruction in the next request on
719 * the same intel_context, we might pre-fetch and then execute the pre-update
720 * instruction. To avoid this, the users of self-modifying code should either
721 * disable the parser around the code emitting the memory writes, via a new flag
722 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
723 * the in-kernel use-cases we've opted to use a separate context, see
724 * reloc_gpu() as an example.
725 * All the above applies only to the instructions themselves. Non-inline data
726 * used by the instructions is not pre-fetched.
727 */
728
gen12_emit_preempt_busywait(struct i915_request * rq,u32 * cs)729 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
730 {
731 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
732 *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
733 MI_SEMAPHORE_GLOBAL_GTT |
734 MI_SEMAPHORE_POLL |
735 MI_SEMAPHORE_SAD_EQ_SDD;
736 *cs++ = 0;
737 *cs++ = preempt_address(rq->engine);
738 *cs++ = 0;
739 *cs++ = 0;
740
741 return cs;
742 }
743
744 /* Wa_14014475959:dg2 */
745 #define CCS_SEMAPHORE_PPHWSP_OFFSET 0x540
ccs_semaphore_offset(struct i915_request * rq)746 static u32 ccs_semaphore_offset(struct i915_request *rq)
747 {
748 return i915_ggtt_offset(rq->context->state) +
749 (LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET;
750 }
751
752 /* Wa_14014475959:dg2 */
ccs_emit_wa_busywait(struct i915_request * rq,u32 * cs)753 static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs)
754 {
755 int i;
756
757 *cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL |
758 MI_ATOMIC_MOVE;
759 *cs++ = ccs_semaphore_offset(rq);
760 *cs++ = 0;
761 *cs++ = 1;
762
763 /*
764 * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP)
765 * to align. 4 DWs above + 8 filler DWs here.
766 */
767 for (i = 0; i < 8; ++i)
768 *cs++ = 0;
769
770 *cs++ = MI_SEMAPHORE_WAIT |
771 MI_SEMAPHORE_GLOBAL_GTT |
772 MI_SEMAPHORE_POLL |
773 MI_SEMAPHORE_SAD_EQ_SDD;
774 *cs++ = 0;
775 *cs++ = ccs_semaphore_offset(rq);
776 *cs++ = 0;
777
778 return cs;
779 }
780
781 static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)782 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
783 {
784 *cs++ = MI_USER_INTERRUPT;
785
786 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
787 if (intel_engine_has_semaphores(rq->engine) &&
788 !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
789 cs = gen12_emit_preempt_busywait(rq, cs);
790
791 /* Wa_14014475959:dg2 */
792 if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine))
793 cs = ccs_emit_wa_busywait(rq, cs);
794
795 rq->tail = intel_ring_offset(rq, cs);
796 assert_ring_tail_valid(rq->ring, rq->tail);
797
798 return gen8_emit_wa_tail(rq, cs);
799 }
800
gen12_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)801 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
802 {
803 /* XXX Stalling flush before seqno write; post-sync not */
804 cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
805 return gen12_emit_fini_breadcrumb_tail(rq, cs);
806 }
807
gen12_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)808 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
809 {
810 struct drm_i915_private *i915 = rq->i915;
811 u32 flags = (PIPE_CONTROL_CS_STALL |
812 PIPE_CONTROL_TLB_INVALIDATE |
813 PIPE_CONTROL_TILE_CACHE_FLUSH |
814 PIPE_CONTROL_FLUSH_L3 |
815 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
816 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
817 PIPE_CONTROL_DC_FLUSH_ENABLE |
818 PIPE_CONTROL_FLUSH_ENABLE);
819
820 /* Wa_14016712196 */
821 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
822 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
823 /* dummy PIPE_CONTROL + depth flush */
824 cs = gen12_emit_pipe_control(cs, 0,
825 PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0);
826
827 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
828 /* Wa_1409600907 */
829 flags |= PIPE_CONTROL_DEPTH_STALL;
830
831 if (!HAS_3D_PIPELINE(rq->i915))
832 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
833 else if (rq->engine->class == COMPUTE_CLASS)
834 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
835
836 cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0);
837
838 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
839 cs = gen12_emit_ggtt_write_rcs(cs,
840 rq->fence.seqno,
841 hwsp_offset(rq),
842 0,
843 PIPE_CONTROL_FLUSH_ENABLE |
844 PIPE_CONTROL_CS_STALL);
845
846 return gen12_emit_fini_breadcrumb_tail(rq, cs);
847 }
848