1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include "gen8_engine_cs.h"
7 #include "i915_drv.h"
8 #include "intel_lrc.h"
9 #include "intel_gpu_commands.h"
10 #include "intel_ring.h"
11
gen8_emit_flush_rcs(struct i915_request * rq,u32 mode)12 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
13 {
14 bool vf_flush_wa = false, dc_flush_wa = false;
15 u32 *cs, flags = 0;
16 int len;
17
18 flags |= PIPE_CONTROL_CS_STALL;
19
20 if (mode & EMIT_FLUSH) {
21 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
22 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
23 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
24 flags |= PIPE_CONTROL_FLUSH_ENABLE;
25 }
26
27 if (mode & EMIT_INVALIDATE) {
28 flags |= PIPE_CONTROL_TLB_INVALIDATE;
29 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
30 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
31 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
32 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
33 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
34 flags |= PIPE_CONTROL_QW_WRITE;
35 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
36
37 /*
38 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
39 * pipe control.
40 */
41 if (GRAPHICS_VER(rq->engine->i915) == 9)
42 vf_flush_wa = true;
43
44 /* WaForGAMHang:kbl */
45 if (IS_KBL_GT_STEP(rq->engine->i915, 0, STEP_C0))
46 dc_flush_wa = true;
47 }
48
49 len = 6;
50
51 if (vf_flush_wa)
52 len += 6;
53
54 if (dc_flush_wa)
55 len += 12;
56
57 cs = intel_ring_begin(rq, len);
58 if (IS_ERR(cs))
59 return PTR_ERR(cs);
60
61 if (vf_flush_wa)
62 cs = gen8_emit_pipe_control(cs, 0, 0);
63
64 if (dc_flush_wa)
65 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
66 0);
67
68 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
69
70 if (dc_flush_wa)
71 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
72
73 intel_ring_advance(rq, cs);
74
75 return 0;
76 }
77
gen8_emit_flush_xcs(struct i915_request * rq,u32 mode)78 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
79 {
80 u32 cmd, *cs;
81
82 cs = intel_ring_begin(rq, 4);
83 if (IS_ERR(cs))
84 return PTR_ERR(cs);
85
86 cmd = MI_FLUSH_DW + 1;
87
88 /*
89 * We always require a command barrier so that subsequent
90 * commands, such as breadcrumb interrupts, are strictly ordered
91 * wrt the contents of the write cache being flushed to memory
92 * (and thus being coherent from the CPU).
93 */
94 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
95
96 if (mode & EMIT_INVALIDATE) {
97 cmd |= MI_INVALIDATE_TLB;
98 if (rq->engine->class == VIDEO_DECODE_CLASS)
99 cmd |= MI_INVALIDATE_BSD;
100 }
101
102 *cs++ = cmd;
103 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
104 *cs++ = 0; /* upper addr */
105 *cs++ = 0; /* value */
106 intel_ring_advance(rq, cs);
107
108 return 0;
109 }
110
gen11_emit_flush_rcs(struct i915_request * rq,u32 mode)111 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
112 {
113 if (mode & EMIT_FLUSH) {
114 u32 *cs;
115 u32 flags = 0;
116
117 flags |= PIPE_CONTROL_CS_STALL;
118
119 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
120 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
121 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
122 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
123 flags |= PIPE_CONTROL_FLUSH_ENABLE;
124 flags |= PIPE_CONTROL_QW_WRITE;
125 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
126
127 cs = intel_ring_begin(rq, 6);
128 if (IS_ERR(cs))
129 return PTR_ERR(cs);
130
131 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
132 intel_ring_advance(rq, cs);
133 }
134
135 if (mode & EMIT_INVALIDATE) {
136 u32 *cs;
137 u32 flags = 0;
138
139 flags |= PIPE_CONTROL_CS_STALL;
140
141 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
142 flags |= PIPE_CONTROL_TLB_INVALIDATE;
143 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
144 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
145 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
146 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
147 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
148 flags |= PIPE_CONTROL_QW_WRITE;
149 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
150
151 cs = intel_ring_begin(rq, 6);
152 if (IS_ERR(cs))
153 return PTR_ERR(cs);
154
155 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
156 intel_ring_advance(rq, cs);
157 }
158
159 return 0;
160 }
161
preparser_disable(bool state)162 static u32 preparser_disable(bool state)
163 {
164 return MI_ARB_CHECK | 1 << 8 | state;
165 }
166
aux_inv_reg(const struct intel_engine_cs * engine)167 static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
168 {
169 static const i915_reg_t vd[] = {
170 GEN12_VD0_AUX_NV,
171 GEN12_VD1_AUX_NV,
172 GEN12_VD2_AUX_NV,
173 GEN12_VD3_AUX_NV,
174 };
175
176 static const i915_reg_t ve[] = {
177 GEN12_VE0_AUX_NV,
178 GEN12_VE1_AUX_NV,
179 };
180
181 if (engine->class == VIDEO_DECODE_CLASS)
182 return vd[engine->instance];
183
184 if (engine->class == VIDEO_ENHANCEMENT_CLASS)
185 return ve[engine->instance];
186
187 GEM_BUG_ON("unknown aux_inv reg\n");
188 return INVALID_MMIO_REG;
189 }
190
gen12_emit_aux_table_inv(const i915_reg_t inv_reg,u32 * cs)191 static u32 *gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
192 {
193 *cs++ = MI_LOAD_REGISTER_IMM(1);
194 *cs++ = i915_mmio_reg_offset(inv_reg);
195 *cs++ = AUX_INV;
196 *cs++ = MI_NOOP;
197
198 return cs;
199 }
200
gen12_emit_flush_rcs(struct i915_request * rq,u32 mode)201 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
202 {
203 if (mode & EMIT_FLUSH) {
204 u32 flags = 0;
205 u32 *cs;
206
207 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
208 flags |= PIPE_CONTROL_FLUSH_L3;
209 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
210 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
211 /* Wa_1409600907:tgl,adl-p */
212 flags |= PIPE_CONTROL_DEPTH_STALL;
213 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
214 flags |= PIPE_CONTROL_FLUSH_ENABLE;
215
216 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
217 flags |= PIPE_CONTROL_QW_WRITE;
218
219 flags |= PIPE_CONTROL_CS_STALL;
220
221 cs = intel_ring_begin(rq, 6);
222 if (IS_ERR(cs))
223 return PTR_ERR(cs);
224
225 cs = gen12_emit_pipe_control(cs,
226 PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
227 flags, LRC_PPHWSP_SCRATCH_ADDR);
228 intel_ring_advance(rq, cs);
229 }
230
231 if (mode & EMIT_INVALIDATE) {
232 u32 flags = 0;
233 u32 *cs;
234
235 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
236 flags |= PIPE_CONTROL_TLB_INVALIDATE;
237 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
238 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
239 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
240 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
242
243 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
244 flags |= PIPE_CONTROL_QW_WRITE;
245
246 flags |= PIPE_CONTROL_CS_STALL;
247
248 cs = intel_ring_begin(rq, 8 + 4);
249 if (IS_ERR(cs))
250 return PTR_ERR(cs);
251
252 /*
253 * Prevent the pre-parser from skipping past the TLB
254 * invalidate and loading a stale page for the batch
255 * buffer / request payload.
256 */
257 *cs++ = preparser_disable(true);
258
259 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
260
261 /* hsdes: 1809175790 */
262 cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
263
264 *cs++ = preparser_disable(false);
265 intel_ring_advance(rq, cs);
266 }
267
268 return 0;
269 }
270
gen12_emit_flush_xcs(struct i915_request * rq,u32 mode)271 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
272 {
273 intel_engine_mask_t aux_inv = 0;
274 u32 cmd, *cs;
275
276 cmd = 4;
277 if (mode & EMIT_INVALIDATE)
278 cmd += 2;
279 if (mode & EMIT_INVALIDATE)
280 aux_inv = rq->engine->mask & ~BIT(BCS0);
281 if (aux_inv)
282 cmd += 2 * hweight32(aux_inv) + 2;
283
284 cs = intel_ring_begin(rq, cmd);
285 if (IS_ERR(cs))
286 return PTR_ERR(cs);
287
288 if (mode & EMIT_INVALIDATE)
289 *cs++ = preparser_disable(true);
290
291 cmd = MI_FLUSH_DW + 1;
292
293 /*
294 * We always require a command barrier so that subsequent
295 * commands, such as breadcrumb interrupts, are strictly ordered
296 * wrt the contents of the write cache being flushed to memory
297 * (and thus being coherent from the CPU).
298 */
299 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
300
301 if (mode & EMIT_INVALIDATE) {
302 cmd |= MI_INVALIDATE_TLB;
303 if (rq->engine->class == VIDEO_DECODE_CLASS)
304 cmd |= MI_INVALIDATE_BSD;
305 }
306
307 *cs++ = cmd;
308 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
309 *cs++ = 0; /* upper addr */
310 *cs++ = 0; /* value */
311
312 if (aux_inv) { /* hsdes: 1809175790 */
313 struct intel_engine_cs *engine;
314 unsigned int tmp;
315
316 *cs++ = MI_LOAD_REGISTER_IMM(hweight32(aux_inv));
317 for_each_engine_masked(engine, rq->engine->gt, aux_inv, tmp) {
318 *cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
319 *cs++ = AUX_INV;
320 }
321 *cs++ = MI_NOOP;
322 }
323
324 if (mode & EMIT_INVALIDATE)
325 *cs++ = preparser_disable(false);
326
327 intel_ring_advance(rq, cs);
328
329 return 0;
330 }
331
preempt_address(struct intel_engine_cs * engine)332 static u32 preempt_address(struct intel_engine_cs *engine)
333 {
334 return (i915_ggtt_offset(engine->status_page.vma) +
335 I915_GEM_HWS_PREEMPT_ADDR);
336 }
337
hwsp_offset(const struct i915_request * rq)338 static u32 hwsp_offset(const struct i915_request *rq)
339 {
340 const struct intel_timeline *tl;
341
342 /* Before the request is executed, the timeline is fixed */
343 tl = rcu_dereference_protected(rq->timeline,
344 !i915_request_signaled(rq));
345
346 /* See the comment in i915_request_active_seqno(). */
347 return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
348 }
349
gen8_emit_init_breadcrumb(struct i915_request * rq)350 int gen8_emit_init_breadcrumb(struct i915_request *rq)
351 {
352 u32 *cs;
353
354 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
355 if (!i915_request_timeline(rq)->has_initial_breadcrumb)
356 return 0;
357
358 cs = intel_ring_begin(rq, 6);
359 if (IS_ERR(cs))
360 return PTR_ERR(cs);
361
362 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
363 *cs++ = hwsp_offset(rq);
364 *cs++ = 0;
365 *cs++ = rq->fence.seqno - 1;
366
367 /*
368 * Check if we have been preempted before we even get started.
369 *
370 * After this point i915_request_started() reports true, even if
371 * we get preempted and so are no longer running.
372 *
373 * i915_request_started() is used during preemption processing
374 * to decide if the request is currently inside the user payload
375 * or spinning on a kernel semaphore (or earlier). For no-preemption
376 * requests, we do allow preemption on the semaphore before the user
377 * payload, but do not allow preemption once the request is started.
378 *
379 * i915_request_started() is similarly used during GPU hangs to
380 * determine if the user's payload was guilty, and if so, the
381 * request is banned. Before the request is started, it is assumed
382 * to be unharmed and an innocent victim of another's hang.
383 */
384 *cs++ = MI_NOOP;
385 *cs++ = MI_ARB_CHECK;
386
387 intel_ring_advance(rq, cs);
388
389 /* Record the updated position of the request's payload */
390 rq->infix = intel_ring_offset(rq, cs);
391
392 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
393
394 return 0;
395 }
396
gen8_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)397 int gen8_emit_bb_start_noarb(struct i915_request *rq,
398 u64 offset, u32 len,
399 const unsigned int flags)
400 {
401 u32 *cs;
402
403 cs = intel_ring_begin(rq, 4);
404 if (IS_ERR(cs))
405 return PTR_ERR(cs);
406
407 /*
408 * WaDisableCtxRestoreArbitration:bdw,chv
409 *
410 * We don't need to perform MI_ARB_ENABLE as often as we do (in
411 * particular all the gen that do not need the w/a at all!), if we
412 * took care to make sure that on every switch into this context
413 * (both ordinary and for preemption) that arbitrartion was enabled
414 * we would be fine. However, for gen8 there is another w/a that
415 * requires us to not preempt inside GPGPU execution, so we keep
416 * arbitration disabled for gen8 batches. Arbitration will be
417 * re-enabled before we close the request
418 * (engine->emit_fini_breadcrumb).
419 */
420 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
421
422 /* FIXME(BDW+): Address space and security selectors. */
423 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
424 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
425 *cs++ = lower_32_bits(offset);
426 *cs++ = upper_32_bits(offset);
427
428 intel_ring_advance(rq, cs);
429
430 return 0;
431 }
432
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)433 int gen8_emit_bb_start(struct i915_request *rq,
434 u64 offset, u32 len,
435 const unsigned int flags)
436 {
437 u32 *cs;
438
439 if (unlikely(i915_request_has_nopreempt(rq)))
440 return gen8_emit_bb_start_noarb(rq, offset, len, flags);
441
442 cs = intel_ring_begin(rq, 6);
443 if (IS_ERR(cs))
444 return PTR_ERR(cs);
445
446 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
447
448 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
449 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
450 *cs++ = lower_32_bits(offset);
451 *cs++ = upper_32_bits(offset);
452
453 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
454 *cs++ = MI_NOOP;
455
456 intel_ring_advance(rq, cs);
457
458 return 0;
459 }
460
assert_request_valid(struct i915_request * rq)461 static void assert_request_valid(struct i915_request *rq)
462 {
463 struct intel_ring *ring __maybe_unused = rq->ring;
464
465 /* Can we unwind this request without appearing to go forwards? */
466 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
467 }
468
469 /*
470 * Reserve space for 2 NOOPs at the end of each request to be
471 * used as a workaround for not being allowed to do lite
472 * restore with HEAD==TAIL (WaIdleLiteRestore).
473 */
gen8_emit_wa_tail(struct i915_request * rq,u32 * cs)474 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
475 {
476 /* Ensure there's always at least one preemption point per-request. */
477 *cs++ = MI_ARB_CHECK;
478 *cs++ = MI_NOOP;
479 rq->wa_tail = intel_ring_offset(rq, cs);
480
481 /* Check that entire request is less than half the ring */
482 assert_request_valid(rq);
483
484 return cs;
485 }
486
emit_preempt_busywait(struct i915_request * rq,u32 * cs)487 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
488 {
489 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
490 *cs++ = MI_SEMAPHORE_WAIT |
491 MI_SEMAPHORE_GLOBAL_GTT |
492 MI_SEMAPHORE_POLL |
493 MI_SEMAPHORE_SAD_EQ_SDD;
494 *cs++ = 0;
495 *cs++ = preempt_address(rq->engine);
496 *cs++ = 0;
497 *cs++ = MI_NOOP;
498
499 return cs;
500 }
501
502 static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)503 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
504 {
505 *cs++ = MI_USER_INTERRUPT;
506
507 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
508 if (intel_engine_has_semaphores(rq->engine) &&
509 !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
510 cs = emit_preempt_busywait(rq, cs);
511
512 rq->tail = intel_ring_offset(rq, cs);
513 assert_ring_tail_valid(rq->ring, rq->tail);
514
515 return gen8_emit_wa_tail(rq, cs);
516 }
517
emit_xcs_breadcrumb(struct i915_request * rq,u32 * cs)518 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
519 {
520 return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
521 }
522
gen8_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)523 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
524 {
525 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
526 }
527
gen8_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)528 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
529 {
530 cs = gen8_emit_pipe_control(cs,
531 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
532 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
533 PIPE_CONTROL_DC_FLUSH_ENABLE,
534 0);
535
536 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
537 cs = gen8_emit_ggtt_write_rcs(cs,
538 rq->fence.seqno,
539 hwsp_offset(rq),
540 PIPE_CONTROL_FLUSH_ENABLE |
541 PIPE_CONTROL_CS_STALL);
542
543 return gen8_emit_fini_breadcrumb_tail(rq, cs);
544 }
545
gen11_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)546 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
547 {
548 cs = gen8_emit_ggtt_write_rcs(cs,
549 rq->fence.seqno,
550 hwsp_offset(rq),
551 PIPE_CONTROL_CS_STALL |
552 PIPE_CONTROL_TILE_CACHE_FLUSH |
553 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
554 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
555 PIPE_CONTROL_DC_FLUSH_ENABLE |
556 PIPE_CONTROL_FLUSH_ENABLE);
557
558 return gen8_emit_fini_breadcrumb_tail(rq, cs);
559 }
560
561 /*
562 * Note that the CS instruction pre-parser will not stall on the breadcrumb
563 * flush and will continue pre-fetching the instructions after it before the
564 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
565 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
566 * of the next request before the memory has been flushed, we're guaranteed that
567 * we won't access the batch itself too early.
568 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
569 * so, if the current request is modifying an instruction in the next request on
570 * the same intel_context, we might pre-fetch and then execute the pre-update
571 * instruction. To avoid this, the users of self-modifying code should either
572 * disable the parser around the code emitting the memory writes, via a new flag
573 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
574 * the in-kernel use-cases we've opted to use a separate context, see
575 * reloc_gpu() as an example.
576 * All the above applies only to the instructions themselves. Non-inline data
577 * used by the instructions is not pre-fetched.
578 */
579
gen12_emit_preempt_busywait(struct i915_request * rq,u32 * cs)580 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
581 {
582 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
583 *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
584 MI_SEMAPHORE_GLOBAL_GTT |
585 MI_SEMAPHORE_POLL |
586 MI_SEMAPHORE_SAD_EQ_SDD;
587 *cs++ = 0;
588 *cs++ = preempt_address(rq->engine);
589 *cs++ = 0;
590 *cs++ = 0;
591
592 return cs;
593 }
594
595 static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)596 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
597 {
598 *cs++ = MI_USER_INTERRUPT;
599
600 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
601 if (intel_engine_has_semaphores(rq->engine) &&
602 !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
603 cs = gen12_emit_preempt_busywait(rq, cs);
604
605 rq->tail = intel_ring_offset(rq, cs);
606 assert_ring_tail_valid(rq->ring, rq->tail);
607
608 return gen8_emit_wa_tail(rq, cs);
609 }
610
gen12_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)611 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
612 {
613 /* XXX Stalling flush before seqno write; post-sync not */
614 cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
615 return gen12_emit_fini_breadcrumb_tail(rq, cs);
616 }
617
gen12_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)618 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
619 {
620 cs = gen12_emit_ggtt_write_rcs(cs,
621 rq->fence.seqno,
622 hwsp_offset(rq),
623 PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
624 PIPE_CONTROL_CS_STALL |
625 PIPE_CONTROL_TILE_CACHE_FLUSH |
626 PIPE_CONTROL_FLUSH_L3 |
627 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
628 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
629 /* Wa_1409600907:tgl */
630 PIPE_CONTROL_DEPTH_STALL |
631 PIPE_CONTROL_DC_FLUSH_ENABLE |
632 PIPE_CONTROL_FLUSH_ENABLE);
633
634 return gen12_emit_fini_breadcrumb_tail(rq, cs);
635 }
636