1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35 
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55 
gen9_init_clock_gating(struct drm_i915_private * dev_priv)56 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
57 {
58 	if (HAS_LLC(dev_priv)) {
59 		/*
60 		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
61 		 * Display WA #0390: skl,kbl
62 		 *
63 		 * Must match Sampler, Pixel Back End, and Media. See
64 		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
65 		 */
66 		I915_WRITE(CHICKEN_PAR1_1,
67 			   I915_READ(CHICKEN_PAR1_1) |
68 			   SKL_DE_COMPRESSED_HASH_MODE);
69 	}
70 
71 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72 	I915_WRITE(CHICKEN_PAR1_1,
73 		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
74 
75 	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
77 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
78 
79 	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
80 	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
82 		   DISP_FBC_WM_DIS |
83 		   DISP_FBC_MEMORY_WAKE);
84 
85 	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
87 		   ILK_DPFC_DISABLE_DUMMY0);
88 
89 	if (IS_SKYLAKE(dev_priv)) {
90 		/* WaDisableDopClockGating */
91 		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
92 			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
93 	}
94 }
95 
bxt_init_clock_gating(struct drm_i915_private * dev_priv)96 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
97 {
98 	gen9_init_clock_gating(dev_priv);
99 
100 	/* WaDisableSDEUnitClockGating:bxt */
101 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
103 
104 	/*
105 	 * FIXME:
106 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107 	 */
108 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
110 
111 	/*
112 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
113 	 * to stay fully on.
114 	 */
115 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
117 }
118 
glk_init_clock_gating(struct drm_i915_private * dev_priv)119 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
120 {
121 	gen9_init_clock_gating(dev_priv);
122 
123 	/*
124 	 * WaDisablePWMClockGating:glk
125 	 * Backlight PWM may stop in the asserted state, causing backlight
126 	 * to stay fully on.
127 	 */
128 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
129 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
130 
131 	/* WaDDIIOTimeout:glk */
132 	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
133 		u32 val = I915_READ(CHICKEN_MISC_2);
134 		val &= ~(GLK_CL0_PWR_DOWN |
135 			 GLK_CL1_PWR_DOWN |
136 			 GLK_CL2_PWR_DOWN);
137 		I915_WRITE(CHICKEN_MISC_2, val);
138 	}
139 
140 }
141 
i915_pineview_get_mem_freq(struct drm_i915_private * dev_priv)142 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
143 {
144 	u32 tmp;
145 
146 	tmp = I915_READ(CLKCFG);
147 
148 	switch (tmp & CLKCFG_FSB_MASK) {
149 	case CLKCFG_FSB_533:
150 		dev_priv->fsb_freq = 533; /* 133*4 */
151 		break;
152 	case CLKCFG_FSB_800:
153 		dev_priv->fsb_freq = 800; /* 200*4 */
154 		break;
155 	case CLKCFG_FSB_667:
156 		dev_priv->fsb_freq =  667; /* 167*4 */
157 		break;
158 	case CLKCFG_FSB_400:
159 		dev_priv->fsb_freq = 400; /* 100*4 */
160 		break;
161 	}
162 
163 	switch (tmp & CLKCFG_MEM_MASK) {
164 	case CLKCFG_MEM_533:
165 		dev_priv->mem_freq = 533;
166 		break;
167 	case CLKCFG_MEM_667:
168 		dev_priv->mem_freq = 667;
169 		break;
170 	case CLKCFG_MEM_800:
171 		dev_priv->mem_freq = 800;
172 		break;
173 	}
174 
175 	/* detect pineview DDR3 setting */
176 	tmp = I915_READ(CSHRDDR3CTL);
177 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
178 }
179 
i915_ironlake_get_mem_freq(struct drm_i915_private * dev_priv)180 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
181 {
182 	u16 ddrpll, csipll;
183 
184 	ddrpll = I915_READ16(DDRMPLL1);
185 	csipll = I915_READ16(CSIPLL0);
186 
187 	switch (ddrpll & 0xff) {
188 	case 0xc:
189 		dev_priv->mem_freq = 800;
190 		break;
191 	case 0x10:
192 		dev_priv->mem_freq = 1066;
193 		break;
194 	case 0x14:
195 		dev_priv->mem_freq = 1333;
196 		break;
197 	case 0x18:
198 		dev_priv->mem_freq = 1600;
199 		break;
200 	default:
201 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
202 				 ddrpll & 0xff);
203 		dev_priv->mem_freq = 0;
204 		break;
205 	}
206 
207 	dev_priv->ips.r_t = dev_priv->mem_freq;
208 
209 	switch (csipll & 0x3ff) {
210 	case 0x00c:
211 		dev_priv->fsb_freq = 3200;
212 		break;
213 	case 0x00e:
214 		dev_priv->fsb_freq = 3733;
215 		break;
216 	case 0x010:
217 		dev_priv->fsb_freq = 4266;
218 		break;
219 	case 0x012:
220 		dev_priv->fsb_freq = 4800;
221 		break;
222 	case 0x014:
223 		dev_priv->fsb_freq = 5333;
224 		break;
225 	case 0x016:
226 		dev_priv->fsb_freq = 5866;
227 		break;
228 	case 0x018:
229 		dev_priv->fsb_freq = 6400;
230 		break;
231 	default:
232 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
233 				 csipll & 0x3ff);
234 		dev_priv->fsb_freq = 0;
235 		break;
236 	}
237 
238 	if (dev_priv->fsb_freq == 3200) {
239 		dev_priv->ips.c_m = 0;
240 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241 		dev_priv->ips.c_m = 1;
242 	} else {
243 		dev_priv->ips.c_m = 2;
244 	}
245 }
246 
247 static const struct cxsr_latency cxsr_latency_table[] = {
248 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
249 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
250 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
251 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
252 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
253 
254 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
255 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
256 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
257 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
258 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
259 
260 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
261 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
262 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
263 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
264 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
265 
266 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
267 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
268 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
269 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
270 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
271 
272 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
273 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
274 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
275 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
276 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
277 
278 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
279 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
280 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
281 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
282 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
283 };
284 
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)285 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
286 							 bool is_ddr3,
287 							 int fsb,
288 							 int mem)
289 {
290 	const struct cxsr_latency *latency;
291 	int i;
292 
293 	if (fsb == 0 || mem == 0)
294 		return NULL;
295 
296 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
297 		latency = &cxsr_latency_table[i];
298 		if (is_desktop == latency->is_desktop &&
299 		    is_ddr3 == latency->is_ddr3 &&
300 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
301 			return latency;
302 	}
303 
304 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
305 
306 	return NULL;
307 }
308 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)309 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
310 {
311 	u32 val;
312 
313 	mutex_lock(&dev_priv->pcu_lock);
314 
315 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
316 	if (enable)
317 		val &= ~FORCE_DDR_HIGH_FREQ;
318 	else
319 		val |= FORCE_DDR_HIGH_FREQ;
320 	val &= ~FORCE_DDR_LOW_FREQ;
321 	val |= FORCE_DDR_FREQ_REQ_ACK;
322 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
323 
324 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
325 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
326 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
327 
328 	mutex_unlock(&dev_priv->pcu_lock);
329 }
330 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)331 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
332 {
333 	u32 val;
334 
335 	mutex_lock(&dev_priv->pcu_lock);
336 
337 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
338 	if (enable)
339 		val |= DSP_MAXFIFO_PM5_ENABLE;
340 	else
341 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
342 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
343 
344 	mutex_unlock(&dev_priv->pcu_lock);
345 }
346 
347 #define FW_WM(value, plane) \
348 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
349 
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)350 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
351 {
352 	bool was_enabled;
353 	u32 val;
354 
355 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356 		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358 		POSTING_READ(FW_BLC_SELF_VLV);
359 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362 		POSTING_READ(FW_BLC_SELF);
363 	} else if (IS_PINEVIEW(dev_priv)) {
364 		val = I915_READ(DSPFW3);
365 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
366 		if (enable)
367 			val |= PINEVIEW_SELF_REFRESH_EN;
368 		else
369 			val &= ~PINEVIEW_SELF_REFRESH_EN;
370 		I915_WRITE(DSPFW3, val);
371 		POSTING_READ(DSPFW3);
372 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
375 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
376 		I915_WRITE(FW_BLC_SELF, val);
377 		POSTING_READ(FW_BLC_SELF);
378 	} else if (IS_I915GM(dev_priv)) {
379 		/*
380 		 * FIXME can't find a bit like this for 915G, and
381 		 * and yet it does have the related watermark in
382 		 * FW_BLC_SELF. What's going on?
383 		 */
384 		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
386 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
387 		I915_WRITE(INSTPM, val);
388 		POSTING_READ(INSTPM);
389 	} else {
390 		return false;
391 	}
392 
393 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
394 
395 	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
396 		      enableddisabled(enable),
397 		      enableddisabled(was_enabled));
398 
399 	return was_enabled;
400 }
401 
402 /**
403  * intel_set_memory_cxsr - Configure CxSR state
404  * @dev_priv: i915 device
405  * @enable: Allow vs. disallow CxSR
406  *
407  * Allow or disallow the system to enter a special CxSR
408  * (C-state self refresh) state. What typically happens in CxSR mode
409  * is that several display FIFOs may get combined into a single larger
410  * FIFO for a particular plane (so called max FIFO mode) to allow the
411  * system to defer memory fetches longer, and the memory will enter
412  * self refresh.
413  *
414  * Note that enabling CxSR does not guarantee that the system enter
415  * this special mode, nor does it guarantee that the system stays
416  * in that mode once entered. So this just allows/disallows the system
417  * to autonomously utilize the CxSR mode. Other factors such as core
418  * C-states will affect when/if the system actually enters/exits the
419  * CxSR mode.
420  *
421  * Note that on VLV/CHV this actually only controls the max FIFO mode,
422  * and the system is free to enter/exit memory self refresh at any time
423  * even when the use of CxSR has been disallowed.
424  *
425  * While the system is actually in the CxSR/max FIFO mode, some plane
426  * control registers will not get latched on vblank. Thus in order to
427  * guarantee the system will respond to changes in the plane registers
428  * we must always disallow CxSR prior to making changes to those registers.
429  * Unfortunately the system will re-evaluate the CxSR conditions at
430  * frame start which happens after vblank start (which is when the plane
431  * registers would get latched), so we can't proceed with the plane update
432  * during the same frame where we disallowed CxSR.
433  *
434  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
435  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
436  * the hardware w.r.t. HPLL SR when writing to plane registers.
437  * Disallowing just CxSR is sufficient.
438  */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)439 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
440 {
441 	bool ret;
442 
443 	mutex_lock(&dev_priv->wm.wm_mutex);
444 	ret = _intel_set_memory_cxsr(dev_priv, enable);
445 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
446 		dev_priv->wm.vlv.cxsr = enable;
447 	else if (IS_G4X(dev_priv))
448 		dev_priv->wm.g4x.cxsr = enable;
449 	mutex_unlock(&dev_priv->wm.wm_mutex);
450 
451 	return ret;
452 }
453 
454 /*
455  * Latency for FIFO fetches is dependent on several factors:
456  *   - memory configuration (speed, channels)
457  *   - chipset
458  *   - current MCH state
459  * It can be fairly high in some situations, so here we assume a fairly
460  * pessimal value.  It's a tradeoff between extra memory fetches (if we
461  * set this value too high, the FIFO will fetch frequently to stay full)
462  * and power consumption (set it too low to save power and we might see
463  * FIFO underruns and display "flicker").
464  *
465  * A value of 5us seems to be a good balance; safe for very low end
466  * platforms but not overly aggressive on lower latency configs.
467  */
468 static const int pessimal_latency_ns = 5000;
469 
470 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
471 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
472 
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)473 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
474 {
475 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478 	enum pipe pipe = crtc->pipe;
479 	int sprite0_start, sprite1_start;
480 
481 	switch (pipe) {
482 		uint32_t dsparb, dsparb2, dsparb3;
483 	case PIPE_A:
484 		dsparb = I915_READ(DSPARB);
485 		dsparb2 = I915_READ(DSPARB2);
486 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
487 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
488 		break;
489 	case PIPE_B:
490 		dsparb = I915_READ(DSPARB);
491 		dsparb2 = I915_READ(DSPARB2);
492 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
493 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
494 		break;
495 	case PIPE_C:
496 		dsparb2 = I915_READ(DSPARB2);
497 		dsparb3 = I915_READ(DSPARB3);
498 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
499 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
500 		break;
501 	default:
502 		MISSING_CASE(pipe);
503 		return;
504 	}
505 
506 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
507 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
508 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
509 	fifo_state->plane[PLANE_CURSOR] = 63;
510 }
511 
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)512 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
513 			      enum i9xx_plane_id i9xx_plane)
514 {
515 	uint32_t dsparb = I915_READ(DSPARB);
516 	int size;
517 
518 	size = dsparb & 0x7f;
519 	if (i9xx_plane == PLANE_B)
520 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
521 
522 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
523 		      dsparb, plane_name(i9xx_plane), size);
524 
525 	return size;
526 }
527 
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)528 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
529 			      enum i9xx_plane_id i9xx_plane)
530 {
531 	uint32_t dsparb = I915_READ(DSPARB);
532 	int size;
533 
534 	size = dsparb & 0x1ff;
535 	if (i9xx_plane == PLANE_B)
536 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
537 	size >>= 1; /* Convert to cachelines */
538 
539 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
540 		      dsparb, plane_name(i9xx_plane), size);
541 
542 	return size;
543 }
544 
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)545 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
546 			      enum i9xx_plane_id i9xx_plane)
547 {
548 	uint32_t dsparb = I915_READ(DSPARB);
549 	int size;
550 
551 	size = dsparb & 0x7f;
552 	size >>= 2; /* Convert to cachelines */
553 
554 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
555 		      dsparb, plane_name(i9xx_plane), size);
556 
557 	return size;
558 }
559 
560 /* Pineview has different values for various configs */
561 static const struct intel_watermark_params pineview_display_wm = {
562 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
563 	.max_wm = PINEVIEW_MAX_WM,
564 	.default_wm = PINEVIEW_DFT_WM,
565 	.guard_size = PINEVIEW_GUARD_WM,
566 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
567 };
568 static const struct intel_watermark_params pineview_display_hplloff_wm = {
569 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
570 	.max_wm = PINEVIEW_MAX_WM,
571 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
572 	.guard_size = PINEVIEW_GUARD_WM,
573 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 };
575 static const struct intel_watermark_params pineview_cursor_wm = {
576 	.fifo_size = PINEVIEW_CURSOR_FIFO,
577 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
578 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
579 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
580 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 };
582 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583 	.fifo_size = PINEVIEW_CURSOR_FIFO,
584 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
585 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
586 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
587 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 };
589 static const struct intel_watermark_params i965_cursor_wm_info = {
590 	.fifo_size = I965_CURSOR_FIFO,
591 	.max_wm = I965_CURSOR_MAX_WM,
592 	.default_wm = I965_CURSOR_DFT_WM,
593 	.guard_size = 2,
594 	.cacheline_size = I915_FIFO_LINE_SIZE,
595 };
596 static const struct intel_watermark_params i945_wm_info = {
597 	.fifo_size = I945_FIFO_SIZE,
598 	.max_wm = I915_MAX_WM,
599 	.default_wm = 1,
600 	.guard_size = 2,
601 	.cacheline_size = I915_FIFO_LINE_SIZE,
602 };
603 static const struct intel_watermark_params i915_wm_info = {
604 	.fifo_size = I915_FIFO_SIZE,
605 	.max_wm = I915_MAX_WM,
606 	.default_wm = 1,
607 	.guard_size = 2,
608 	.cacheline_size = I915_FIFO_LINE_SIZE,
609 };
610 static const struct intel_watermark_params i830_a_wm_info = {
611 	.fifo_size = I855GM_FIFO_SIZE,
612 	.max_wm = I915_MAX_WM,
613 	.default_wm = 1,
614 	.guard_size = 2,
615 	.cacheline_size = I830_FIFO_LINE_SIZE,
616 };
617 static const struct intel_watermark_params i830_bc_wm_info = {
618 	.fifo_size = I855GM_FIFO_SIZE,
619 	.max_wm = I915_MAX_WM/2,
620 	.default_wm = 1,
621 	.guard_size = 2,
622 	.cacheline_size = I830_FIFO_LINE_SIZE,
623 };
624 static const struct intel_watermark_params i845_wm_info = {
625 	.fifo_size = I830_FIFO_SIZE,
626 	.max_wm = I915_MAX_WM,
627 	.default_wm = 1,
628 	.guard_size = 2,
629 	.cacheline_size = I830_FIFO_LINE_SIZE,
630 };
631 
632 /**
633  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
634  * @pixel_rate: Pipe pixel rate in kHz
635  * @cpp: Plane bytes per pixel
636  * @latency: Memory wakeup latency in 0.1us units
637  *
638  * Compute the watermark using the method 1 or "small buffer"
639  * formula. The caller may additonally add extra cachelines
640  * to account for TLB misses and clock crossings.
641  *
642  * This method is concerned with the short term drain rate
643  * of the FIFO, ie. it does not account for blanking periods
644  * which would effectively reduce the average drain rate across
645  * a longer period. The name "small" refers to the fact the
646  * FIFO is relatively small compared to the amount of data
647  * fetched.
648  *
649  * The FIFO level vs. time graph might look something like:
650  *
651  *   |\   |\
652  *   | \  | \
653  * __---__---__ (- plane active, _ blanking)
654  * -> time
655  *
656  * or perhaps like this:
657  *
658  *   |\|\  |\|\
659  * __----__----__ (- plane active, _ blanking)
660  * -> time
661  *
662  * Returns:
663  * The watermark in bytes
664  */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)665 static unsigned int intel_wm_method1(unsigned int pixel_rate,
666 				     unsigned int cpp,
667 				     unsigned int latency)
668 {
669 	uint64_t ret;
670 
671 	ret = (uint64_t) pixel_rate * cpp * latency;
672 	ret = DIV_ROUND_UP_ULL(ret, 10000);
673 
674 	return ret;
675 }
676 
677 /**
678  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
679  * @pixel_rate: Pipe pixel rate in kHz
680  * @htotal: Pipe horizontal total
681  * @width: Plane width in pixels
682  * @cpp: Plane bytes per pixel
683  * @latency: Memory wakeup latency in 0.1us units
684  *
685  * Compute the watermark using the method 2 or "large buffer"
686  * formula. The caller may additonally add extra cachelines
687  * to account for TLB misses and clock crossings.
688  *
689  * This method is concerned with the long term drain rate
690  * of the FIFO, ie. it does account for blanking periods
691  * which effectively reduce the average drain rate across
692  * a longer period. The name "large" refers to the fact the
693  * FIFO is relatively large compared to the amount of data
694  * fetched.
695  *
696  * The FIFO level vs. time graph might look something like:
697  *
698  *    |\___       |\___
699  *    |    \___   |    \___
700  *    |        \  |        \
701  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
702  * -> time
703  *
704  * Returns:
705  * The watermark in bytes
706  */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)707 static unsigned int intel_wm_method2(unsigned int pixel_rate,
708 				     unsigned int htotal,
709 				     unsigned int width,
710 				     unsigned int cpp,
711 				     unsigned int latency)
712 {
713 	unsigned int ret;
714 
715 	/*
716 	 * FIXME remove once all users are computing
717 	 * watermarks in the correct place.
718 	 */
719 	if (WARN_ON_ONCE(htotal == 0))
720 		htotal = 1;
721 
722 	ret = (latency * pixel_rate) / (htotal * 10000);
723 	ret = (ret + 1) * width * cpp;
724 
725 	return ret;
726 }
727 
728 /**
729  * intel_calculate_wm - calculate watermark level
730  * @pixel_rate: pixel clock
731  * @wm: chip FIFO params
732  * @fifo_size: size of the FIFO buffer
733  * @cpp: bytes per pixel
734  * @latency_ns: memory latency for the platform
735  *
736  * Calculate the watermark level (the level at which the display plane will
737  * start fetching from memory again).  Each chip has a different display
738  * FIFO size and allocation, so the caller needs to figure that out and pass
739  * in the correct intel_watermark_params structure.
740  *
741  * As the pixel clock runs, the FIFO will be drained at a rate that depends
742  * on the pixel size.  When it reaches the watermark level, it'll start
743  * fetching FIFO line sized based chunks from memory until the FIFO fills
744  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
745  * will occur, and a display engine hang could result.
746  */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)747 static unsigned int intel_calculate_wm(int pixel_rate,
748 				       const struct intel_watermark_params *wm,
749 				       int fifo_size, int cpp,
750 				       unsigned int latency_ns)
751 {
752 	int entries, wm_size;
753 
754 	/*
755 	 * Note: we need to make sure we don't overflow for various clock &
756 	 * latency values.
757 	 * clocks go from a few thousand to several hundred thousand.
758 	 * latency is usually a few thousand
759 	 */
760 	entries = intel_wm_method1(pixel_rate, cpp,
761 				   latency_ns / 100);
762 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
763 		wm->guard_size;
764 	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
765 
766 	wm_size = fifo_size - entries;
767 	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
768 
769 	/* Don't promote wm_size to unsigned... */
770 	if (wm_size > wm->max_wm)
771 		wm_size = wm->max_wm;
772 	if (wm_size <= 0)
773 		wm_size = wm->default_wm;
774 
775 	/*
776 	 * Bspec seems to indicate that the value shouldn't be lower than
777 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
778 	 * Lets go for 8 which is the burst size since certain platforms
779 	 * already use a hardcoded 8 (which is what the spec says should be
780 	 * done).
781 	 */
782 	if (wm_size <= 8)
783 		wm_size = 8;
784 
785 	return wm_size;
786 }
787 
is_disabling(int old,int new,int threshold)788 static bool is_disabling(int old, int new, int threshold)
789 {
790 	return old >= threshold && new < threshold;
791 }
792 
is_enabling(int old,int new,int threshold)793 static bool is_enabling(int old, int new, int threshold)
794 {
795 	return old < threshold && new >= threshold;
796 }
797 
intel_wm_num_levels(struct drm_i915_private * dev_priv)798 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
799 {
800 	return dev_priv->wm.max_level + 1;
801 }
802 
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)803 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
804 				   const struct intel_plane_state *plane_state)
805 {
806 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
807 
808 	/* FIXME check the 'enable' instead */
809 	if (!crtc_state->base.active)
810 		return false;
811 
812 	/*
813 	 * Treat cursor with fb as always visible since cursor updates
814 	 * can happen faster than the vrefresh rate, and the current
815 	 * watermark code doesn't handle that correctly. Cursor updates
816 	 * which set/clear the fb or change the cursor size are going
817 	 * to get throttled by intel_legacy_cursor_update() to work
818 	 * around this problem with the watermark code.
819 	 */
820 	if (plane->id == PLANE_CURSOR)
821 		return plane_state->base.fb != NULL;
822 	else
823 		return plane_state->base.visible;
824 }
825 
single_enabled_crtc(struct drm_i915_private * dev_priv)826 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
827 {
828 	struct intel_crtc *crtc, *enabled = NULL;
829 
830 	for_each_intel_crtc(&dev_priv->drm, crtc) {
831 		if (intel_crtc_active(crtc)) {
832 			if (enabled)
833 				return NULL;
834 			enabled = crtc;
835 		}
836 	}
837 
838 	return enabled;
839 }
840 
pineview_update_wm(struct intel_crtc * unused_crtc)841 static void pineview_update_wm(struct intel_crtc *unused_crtc)
842 {
843 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
844 	struct intel_crtc *crtc;
845 	const struct cxsr_latency *latency;
846 	u32 reg;
847 	unsigned int wm;
848 
849 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
850 					 dev_priv->is_ddr3,
851 					 dev_priv->fsb_freq,
852 					 dev_priv->mem_freq);
853 	if (!latency) {
854 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
855 		intel_set_memory_cxsr(dev_priv, false);
856 		return;
857 	}
858 
859 	crtc = single_enabled_crtc(dev_priv);
860 	if (crtc) {
861 		const struct drm_display_mode *adjusted_mode =
862 			&crtc->config->base.adjusted_mode;
863 		const struct drm_framebuffer *fb =
864 			crtc->base.primary->state->fb;
865 		int cpp = fb->format->cpp[0];
866 		int clock = adjusted_mode->crtc_clock;
867 
868 		/* Display SR */
869 		wm = intel_calculate_wm(clock, &pineview_display_wm,
870 					pineview_display_wm.fifo_size,
871 					cpp, latency->display_sr);
872 		reg = I915_READ(DSPFW1);
873 		reg &= ~DSPFW_SR_MASK;
874 		reg |= FW_WM(wm, SR);
875 		I915_WRITE(DSPFW1, reg);
876 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
877 
878 		/* cursor SR */
879 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
880 					pineview_display_wm.fifo_size,
881 					4, latency->cursor_sr);
882 		reg = I915_READ(DSPFW3);
883 		reg &= ~DSPFW_CURSOR_SR_MASK;
884 		reg |= FW_WM(wm, CURSOR_SR);
885 		I915_WRITE(DSPFW3, reg);
886 
887 		/* Display HPLL off SR */
888 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
889 					pineview_display_hplloff_wm.fifo_size,
890 					cpp, latency->display_hpll_disable);
891 		reg = I915_READ(DSPFW3);
892 		reg &= ~DSPFW_HPLL_SR_MASK;
893 		reg |= FW_WM(wm, HPLL_SR);
894 		I915_WRITE(DSPFW3, reg);
895 
896 		/* cursor HPLL off SR */
897 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
898 					pineview_display_hplloff_wm.fifo_size,
899 					4, latency->cursor_hpll_disable);
900 		reg = I915_READ(DSPFW3);
901 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
902 		reg |= FW_WM(wm, HPLL_CURSOR);
903 		I915_WRITE(DSPFW3, reg);
904 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
905 
906 		intel_set_memory_cxsr(dev_priv, true);
907 	} else {
908 		intel_set_memory_cxsr(dev_priv, false);
909 	}
910 }
911 
912 /*
913  * Documentation says:
914  * "If the line size is small, the TLB fetches can get in the way of the
915  *  data fetches, causing some lag in the pixel data return which is not
916  *  accounted for in the above formulas. The following adjustment only
917  *  needs to be applied if eight whole lines fit in the buffer at once.
918  *  The WM is adjusted upwards by the difference between the FIFO size
919  *  and the size of 8 whole lines. This adjustment is always performed
920  *  in the actual pixel depth regardless of whether FBC is enabled or not."
921  */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)922 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
923 {
924 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
925 
926 	return max(0, tlb_miss);
927 }
928 
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)929 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
930 				const struct g4x_wm_values *wm)
931 {
932 	enum pipe pipe;
933 
934 	for_each_pipe(dev_priv, pipe)
935 		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
936 
937 	I915_WRITE(DSPFW1,
938 		   FW_WM(wm->sr.plane, SR) |
939 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
940 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
941 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
942 	I915_WRITE(DSPFW2,
943 		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
944 		   FW_WM(wm->sr.fbc, FBC_SR) |
945 		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
946 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
947 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
948 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
949 	I915_WRITE(DSPFW3,
950 		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
951 		   FW_WM(wm->sr.cursor, CURSOR_SR) |
952 		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
953 		   FW_WM(wm->hpll.plane, HPLL_SR));
954 
955 	POSTING_READ(DSPFW1);
956 }
957 
958 #define FW_WM_VLV(value, plane) \
959 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
960 
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)961 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
962 				const struct vlv_wm_values *wm)
963 {
964 	enum pipe pipe;
965 
966 	for_each_pipe(dev_priv, pipe) {
967 		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
968 
969 		I915_WRITE(VLV_DDL(pipe),
970 			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
971 			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
972 			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
973 			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
974 	}
975 
976 	/*
977 	 * Zero the (unused) WM1 watermarks, and also clear all the
978 	 * high order bits so that there are no out of bounds values
979 	 * present in the registers during the reprogramming.
980 	 */
981 	I915_WRITE(DSPHOWM, 0);
982 	I915_WRITE(DSPHOWM1, 0);
983 	I915_WRITE(DSPFW4, 0);
984 	I915_WRITE(DSPFW5, 0);
985 	I915_WRITE(DSPFW6, 0);
986 
987 	I915_WRITE(DSPFW1,
988 		   FW_WM(wm->sr.plane, SR) |
989 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
990 		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
991 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
992 	I915_WRITE(DSPFW2,
993 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
994 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
995 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
996 	I915_WRITE(DSPFW3,
997 		   FW_WM(wm->sr.cursor, CURSOR_SR));
998 
999 	if (IS_CHERRYVIEW(dev_priv)) {
1000 		I915_WRITE(DSPFW7_CHV,
1001 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1002 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003 		I915_WRITE(DSPFW8_CHV,
1004 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1005 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006 		I915_WRITE(DSPFW9_CHV,
1007 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1008 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1009 		I915_WRITE(DSPHOWM,
1010 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1011 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1012 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1013 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1014 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1015 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1016 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1017 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1018 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1019 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1020 	} else {
1021 		I915_WRITE(DSPFW7,
1022 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1023 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1024 		I915_WRITE(DSPHOWM,
1025 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1026 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1027 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1028 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1029 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1030 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1031 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1032 	}
1033 
1034 	POSTING_READ(DSPFW1);
1035 }
1036 
1037 #undef FW_WM_VLV
1038 
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1039 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1040 {
1041 	/* all latencies in usec */
1042 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1043 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1045 
1046 	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1047 }
1048 
g4x_plane_fifo_size(enum plane_id plane_id,int level)1049 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1050 {
1051 	/*
1052 	 * DSPCNTR[13] supposedly controls whether the
1053 	 * primary plane can use the FIFO space otherwise
1054 	 * reserved for the sprite plane. It's not 100% clear
1055 	 * what the actual FIFO size is, but it looks like we
1056 	 * can happily set both primary and sprite watermarks
1057 	 * up to 127 cachelines. So that would seem to mean
1058 	 * that either DSPCNTR[13] doesn't do anything, or that
1059 	 * the total FIFO is >= 256 cachelines in size. Either
1060 	 * way, we don't seem to have to worry about this
1061 	 * repartitioning as the maximum watermark value the
1062 	 * register can hold for each plane is lower than the
1063 	 * minimum FIFO size.
1064 	 */
1065 	switch (plane_id) {
1066 	case PLANE_CURSOR:
1067 		return 63;
1068 	case PLANE_PRIMARY:
1069 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1070 	case PLANE_SPRITE0:
1071 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1072 	default:
1073 		MISSING_CASE(plane_id);
1074 		return 0;
1075 	}
1076 }
1077 
g4x_fbc_fifo_size(int level)1078 static int g4x_fbc_fifo_size(int level)
1079 {
1080 	switch (level) {
1081 	case G4X_WM_LEVEL_SR:
1082 		return 7;
1083 	case G4X_WM_LEVEL_HPLL:
1084 		return 15;
1085 	default:
1086 		MISSING_CASE(level);
1087 		return 0;
1088 	}
1089 }
1090 
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1091 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1092 			       const struct intel_plane_state *plane_state,
1093 			       int level)
1094 {
1095 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1096 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1097 	const struct drm_display_mode *adjusted_mode =
1098 		&crtc_state->base.adjusted_mode;
1099 	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1100 	unsigned int clock, htotal, cpp, width, wm;
1101 
1102 	if (latency == 0)
1103 		return USHRT_MAX;
1104 
1105 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1106 		return 0;
1107 
1108 	/*
1109 	 * Not 100% sure which way ELK should go here as the
1110 	 * spec only says CL/CTG should assume 32bpp and BW
1111 	 * doesn't need to. But as these things followed the
1112 	 * mobile vs. desktop lines on gen3 as well, let's
1113 	 * assume ELK doesn't need this.
1114 	 *
1115 	 * The spec also fails to list such a restriction for
1116 	 * the HPLL watermark, which seems a little strange.
1117 	 * Let's use 32bpp for the HPLL watermark as well.
1118 	 */
1119 	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1120 	    level != G4X_WM_LEVEL_NORMAL)
1121 		cpp = 4;
1122 	else
1123 		cpp = plane_state->base.fb->format->cpp[0];
1124 
1125 	clock = adjusted_mode->crtc_clock;
1126 	htotal = adjusted_mode->crtc_htotal;
1127 
1128 	if (plane->id == PLANE_CURSOR)
1129 		width = plane_state->base.crtc_w;
1130 	else
1131 		width = drm_rect_width(&plane_state->base.dst);
1132 
1133 	if (plane->id == PLANE_CURSOR) {
1134 		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1135 	} else if (plane->id == PLANE_PRIMARY &&
1136 		   level == G4X_WM_LEVEL_NORMAL) {
1137 		wm = intel_wm_method1(clock, cpp, latency);
1138 	} else {
1139 		unsigned int small, large;
1140 
1141 		small = intel_wm_method1(clock, cpp, latency);
1142 		large = intel_wm_method2(clock, htotal, width, cpp, latency);
1143 
1144 		wm = min(small, large);
1145 	}
1146 
1147 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1148 			      width, cpp);
1149 
1150 	wm = DIV_ROUND_UP(wm, 64) + 2;
1151 
1152 	return min_t(unsigned int, wm, USHRT_MAX);
1153 }
1154 
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1155 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1156 				 int level, enum plane_id plane_id, u16 value)
1157 {
1158 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159 	bool dirty = false;
1160 
1161 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1162 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1163 
1164 		dirty |= raw->plane[plane_id] != value;
1165 		raw->plane[plane_id] = value;
1166 	}
1167 
1168 	return dirty;
1169 }
1170 
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1171 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1172 			       int level, u16 value)
1173 {
1174 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1175 	bool dirty = false;
1176 
1177 	/* NORMAL level doesn't have an FBC watermark */
1178 	level = max(level, G4X_WM_LEVEL_SR);
1179 
1180 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1181 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1182 
1183 		dirty |= raw->fbc != value;
1184 		raw->fbc = value;
1185 	}
1186 
1187 	return dirty;
1188 }
1189 
1190 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1191 				   const struct intel_plane_state *pstate,
1192 				   uint32_t pri_val);
1193 
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1194 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1195 				     const struct intel_plane_state *plane_state)
1196 {
1197 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1198 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1199 	enum plane_id plane_id = plane->id;
1200 	bool dirty = false;
1201 	int level;
1202 
1203 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1204 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1205 		if (plane_id == PLANE_PRIMARY)
1206 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1207 		goto out;
1208 	}
1209 
1210 	for (level = 0; level < num_levels; level++) {
1211 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1212 		int wm, max_wm;
1213 
1214 		wm = g4x_compute_wm(crtc_state, plane_state, level);
1215 		max_wm = g4x_plane_fifo_size(plane_id, level);
1216 
1217 		if (wm > max_wm)
1218 			break;
1219 
1220 		dirty |= raw->plane[plane_id] != wm;
1221 		raw->plane[plane_id] = wm;
1222 
1223 		if (plane_id != PLANE_PRIMARY ||
1224 		    level == G4X_WM_LEVEL_NORMAL)
1225 			continue;
1226 
1227 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1228 					raw->plane[plane_id]);
1229 		max_wm = g4x_fbc_fifo_size(level);
1230 
1231 		/*
1232 		 * FBC wm is not mandatory as we
1233 		 * can always just disable its use.
1234 		 */
1235 		if (wm > max_wm)
1236 			wm = USHRT_MAX;
1237 
1238 		dirty |= raw->fbc != wm;
1239 		raw->fbc = wm;
1240 	}
1241 
1242 	/* mark watermarks as invalid */
1243 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1244 
1245 	if (plane_id == PLANE_PRIMARY)
1246 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1247 
1248  out:
1249 	if (dirty) {
1250 		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1251 			      plane->base.name,
1252 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1253 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1254 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1255 
1256 		if (plane_id == PLANE_PRIMARY)
1257 			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1258 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1259 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1260 	}
1261 
1262 	return dirty;
1263 }
1264 
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1265 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1266 				      enum plane_id plane_id, int level)
1267 {
1268 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1269 
1270 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1271 }
1272 
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1273 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1274 				     int level)
1275 {
1276 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1277 
1278 	if (level > dev_priv->wm.max_level)
1279 		return false;
1280 
1281 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1282 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1283 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1284 }
1285 
1286 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1287 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1288 			       struct g4x_wm_state *wm_state, int level)
1289 {
1290 	if (level <= G4X_WM_LEVEL_NORMAL) {
1291 		enum plane_id plane_id;
1292 
1293 		for_each_plane_id_on_crtc(crtc, plane_id)
1294 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1295 	}
1296 
1297 	if (level <= G4X_WM_LEVEL_SR) {
1298 		wm_state->cxsr = false;
1299 		wm_state->sr.cursor = USHRT_MAX;
1300 		wm_state->sr.plane = USHRT_MAX;
1301 		wm_state->sr.fbc = USHRT_MAX;
1302 	}
1303 
1304 	if (level <= G4X_WM_LEVEL_HPLL) {
1305 		wm_state->hpll_en = false;
1306 		wm_state->hpll.cursor = USHRT_MAX;
1307 		wm_state->hpll.plane = USHRT_MAX;
1308 		wm_state->hpll.fbc = USHRT_MAX;
1309 	}
1310 }
1311 
g4x_compute_pipe_wm(struct intel_crtc_state * crtc_state)1312 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1313 {
1314 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1315 	struct intel_atomic_state *state =
1316 		to_intel_atomic_state(crtc_state->base.state);
1317 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1318 	int num_active_planes = hweight32(crtc_state->active_planes &
1319 					  ~BIT(PLANE_CURSOR));
1320 	const struct g4x_pipe_wm *raw;
1321 	const struct intel_plane_state *old_plane_state;
1322 	const struct intel_plane_state *new_plane_state;
1323 	struct intel_plane *plane;
1324 	enum plane_id plane_id;
1325 	int i, level;
1326 	unsigned int dirty = 0;
1327 
1328 	for_each_oldnew_intel_plane_in_state(state, plane,
1329 					     old_plane_state,
1330 					     new_plane_state, i) {
1331 		if (new_plane_state->base.crtc != &crtc->base &&
1332 		    old_plane_state->base.crtc != &crtc->base)
1333 			continue;
1334 
1335 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336 			dirty |= BIT(plane->id);
1337 	}
1338 
1339 	if (!dirty)
1340 		return 0;
1341 
1342 	level = G4X_WM_LEVEL_NORMAL;
1343 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1344 		goto out;
1345 
1346 	raw = &crtc_state->wm.g4x.raw[level];
1347 	for_each_plane_id_on_crtc(crtc, plane_id)
1348 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1349 
1350 	level = G4X_WM_LEVEL_SR;
1351 
1352 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1353 		goto out;
1354 
1355 	raw = &crtc_state->wm.g4x.raw[level];
1356 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1357 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1358 	wm_state->sr.fbc = raw->fbc;
1359 
1360 	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1361 
1362 	level = G4X_WM_LEVEL_HPLL;
1363 
1364 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1365 		goto out;
1366 
1367 	raw = &crtc_state->wm.g4x.raw[level];
1368 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1369 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1370 	wm_state->hpll.fbc = raw->fbc;
1371 
1372 	wm_state->hpll_en = wm_state->cxsr;
1373 
1374 	level++;
1375 
1376  out:
1377 	if (level == G4X_WM_LEVEL_NORMAL)
1378 		return -EINVAL;
1379 
1380 	/* invalidate the higher levels */
1381 	g4x_invalidate_wms(crtc, wm_state, level);
1382 
1383 	/*
1384 	 * Determine if the FBC watermark(s) can be used. IF
1385 	 * this isn't the case we prefer to disable the FBC
1386 	 ( watermark(s) rather than disable the SR/HPLL
1387 	 * level(s) entirely.
1388 	 */
1389 	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1390 
1391 	if (level >= G4X_WM_LEVEL_SR &&
1392 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1393 		wm_state->fbc_en = false;
1394 	else if (level >= G4X_WM_LEVEL_HPLL &&
1395 		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1396 		wm_state->fbc_en = false;
1397 
1398 	return 0;
1399 }
1400 
g4x_compute_intermediate_wm(struct drm_device * dev,struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)1401 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1402 				       struct intel_crtc *crtc,
1403 				       struct intel_crtc_state *new_crtc_state)
1404 {
1405 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1406 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1407 	struct intel_atomic_state *intel_state =
1408 		to_intel_atomic_state(new_crtc_state->base.state);
1409 	const struct intel_crtc_state *old_crtc_state =
1410 		intel_atomic_get_old_crtc_state(intel_state, crtc);
1411 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 	enum plane_id plane_id;
1413 
1414 	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1415 		*intermediate = *optimal;
1416 
1417 		intermediate->cxsr = false;
1418 		intermediate->hpll_en = false;
1419 		goto out;
1420 	}
1421 
1422 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423 		!new_crtc_state->disable_cxsr;
1424 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425 		!new_crtc_state->disable_cxsr;
1426 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1427 
1428 	for_each_plane_id_on_crtc(crtc, plane_id) {
1429 		intermediate->wm.plane[plane_id] =
1430 			max(optimal->wm.plane[plane_id],
1431 			    active->wm.plane[plane_id]);
1432 
1433 		WARN_ON(intermediate->wm.plane[plane_id] >
1434 			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1435 	}
1436 
1437 	intermediate->sr.plane = max(optimal->sr.plane,
1438 				     active->sr.plane);
1439 	intermediate->sr.cursor = max(optimal->sr.cursor,
1440 				      active->sr.cursor);
1441 	intermediate->sr.fbc = max(optimal->sr.fbc,
1442 				   active->sr.fbc);
1443 
1444 	intermediate->hpll.plane = max(optimal->hpll.plane,
1445 				       active->hpll.plane);
1446 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1447 					active->hpll.cursor);
1448 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1449 				     active->hpll.fbc);
1450 
1451 	WARN_ON((intermediate->sr.plane >
1452 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1453 		 intermediate->sr.cursor >
1454 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1455 		intermediate->cxsr);
1456 	WARN_ON((intermediate->sr.plane >
1457 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1458 		 intermediate->sr.cursor >
1459 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1460 		intermediate->hpll_en);
1461 
1462 	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1463 		intermediate->fbc_en && intermediate->cxsr);
1464 	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1465 		intermediate->fbc_en && intermediate->hpll_en);
1466 
1467 out:
1468 	/*
1469 	 * If our intermediate WM are identical to the final WM, then we can
1470 	 * omit the post-vblank programming; only update if it's different.
1471 	 */
1472 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473 		new_crtc_state->wm.need_postvbl_update = true;
1474 
1475 	return 0;
1476 }
1477 
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1478 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1479 			 struct g4x_wm_values *wm)
1480 {
1481 	struct intel_crtc *crtc;
1482 	int num_active_crtcs = 0;
1483 
1484 	wm->cxsr = true;
1485 	wm->hpll_en = true;
1486 	wm->fbc_en = true;
1487 
1488 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1489 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1490 
1491 		if (!crtc->active)
1492 			continue;
1493 
1494 		if (!wm_state->cxsr)
1495 			wm->cxsr = false;
1496 		if (!wm_state->hpll_en)
1497 			wm->hpll_en = false;
1498 		if (!wm_state->fbc_en)
1499 			wm->fbc_en = false;
1500 
1501 		num_active_crtcs++;
1502 	}
1503 
1504 	if (num_active_crtcs != 1) {
1505 		wm->cxsr = false;
1506 		wm->hpll_en = false;
1507 		wm->fbc_en = false;
1508 	}
1509 
1510 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1511 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1512 		enum pipe pipe = crtc->pipe;
1513 
1514 		wm->pipe[pipe] = wm_state->wm;
1515 		if (crtc->active && wm->cxsr)
1516 			wm->sr = wm_state->sr;
1517 		if (crtc->active && wm->hpll_en)
1518 			wm->hpll = wm_state->hpll;
1519 	}
1520 }
1521 
g4x_program_watermarks(struct drm_i915_private * dev_priv)1522 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1523 {
1524 	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1525 	struct g4x_wm_values new_wm = {};
1526 
1527 	g4x_merge_wm(dev_priv, &new_wm);
1528 
1529 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1530 		return;
1531 
1532 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1533 		_intel_set_memory_cxsr(dev_priv, false);
1534 
1535 	g4x_write_wm_values(dev_priv, &new_wm);
1536 
1537 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1538 		_intel_set_memory_cxsr(dev_priv, true);
1539 
1540 	*old_wm = new_wm;
1541 }
1542 
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1543 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1544 				   struct intel_crtc_state *crtc_state)
1545 {
1546 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548 
1549 	mutex_lock(&dev_priv->wm.wm_mutex);
1550 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1551 	g4x_program_watermarks(dev_priv);
1552 	mutex_unlock(&dev_priv->wm.wm_mutex);
1553 }
1554 
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1555 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1556 				    struct intel_crtc_state *crtc_state)
1557 {
1558 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1559 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1560 
1561 	if (!crtc_state->wm.need_postvbl_update)
1562 		return;
1563 
1564 	mutex_lock(&dev_priv->wm.wm_mutex);
1565 	intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1566 	g4x_program_watermarks(dev_priv);
1567 	mutex_unlock(&dev_priv->wm.wm_mutex);
1568 }
1569 
1570 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1571 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 				   unsigned int htotal,
1573 				   unsigned int width,
1574 				   unsigned int cpp,
1575 				   unsigned int latency)
1576 {
1577 	unsigned int ret;
1578 
1579 	ret = intel_wm_method2(pixel_rate, htotal,
1580 			       width, cpp, latency);
1581 	ret = DIV_ROUND_UP(ret, 64);
1582 
1583 	return ret;
1584 }
1585 
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1586 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 {
1588 	/* all latencies in usec */
1589 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1590 
1591 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1592 
1593 	if (IS_CHERRYVIEW(dev_priv)) {
1594 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1595 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596 
1597 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598 	}
1599 }
1600 
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1601 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1602 				     const struct intel_plane_state *plane_state,
1603 				     int level)
1604 {
1605 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 	const struct drm_display_mode *adjusted_mode =
1608 		&crtc_state->base.adjusted_mode;
1609 	unsigned int clock, htotal, cpp, width, wm;
1610 
1611 	if (dev_priv->wm.pri_latency[level] == 0)
1612 		return USHRT_MAX;
1613 
1614 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1615 		return 0;
1616 
1617 	cpp = plane_state->base.fb->format->cpp[0];
1618 	clock = adjusted_mode->crtc_clock;
1619 	htotal = adjusted_mode->crtc_htotal;
1620 	width = crtc_state->pipe_src_w;
1621 
1622 	if (plane->id == PLANE_CURSOR) {
1623 		/*
1624 		 * FIXME the formula gives values that are
1625 		 * too big for the cursor FIFO, and hence we
1626 		 * would never be able to use cursors. For
1627 		 * now just hardcode the watermark.
1628 		 */
1629 		wm = 63;
1630 	} else {
1631 		wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 				    dev_priv->wm.pri_latency[level] * 10);
1633 	}
1634 
1635 	return min_t(unsigned int, wm, USHRT_MAX);
1636 }
1637 
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1638 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1639 {
1640 	return (active_planes & (BIT(PLANE_SPRITE0) |
1641 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1642 }
1643 
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1644 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645 {
1646 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647 	const struct g4x_pipe_wm *raw =
1648 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1651 	int num_active_planes = hweight32(active_planes);
1652 	const int fifo_size = 511;
1653 	int fifo_extra, fifo_left = fifo_size;
1654 	int sprite0_fifo_extra = 0;
1655 	unsigned int total_rate;
1656 	enum plane_id plane_id;
1657 
1658 	/*
1659 	 * When enabling sprite0 after sprite1 has already been enabled
1660 	 * we tend to get an underrun unless sprite0 already has some
1661 	 * FIFO space allcoated. Hence we always allocate at least one
1662 	 * cacheline for sprite0 whenever sprite1 is enabled.
1663 	 *
1664 	 * All other plane enable sequences appear immune to this problem.
1665 	 */
1666 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1667 		sprite0_fifo_extra = 1;
1668 
1669 	total_rate = raw->plane[PLANE_PRIMARY] +
1670 		raw->plane[PLANE_SPRITE0] +
1671 		raw->plane[PLANE_SPRITE1] +
1672 		sprite0_fifo_extra;
1673 
1674 	if (total_rate > fifo_size)
1675 		return -EINVAL;
1676 
1677 	if (total_rate == 0)
1678 		total_rate = 1;
1679 
1680 	for_each_plane_id_on_crtc(crtc, plane_id) {
1681 		unsigned int rate;
1682 
1683 		if ((active_planes & BIT(plane_id)) == 0) {
1684 			fifo_state->plane[plane_id] = 0;
1685 			continue;
1686 		}
1687 
1688 		rate = raw->plane[plane_id];
1689 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1690 		fifo_left -= fifo_state->plane[plane_id];
1691 	}
1692 
1693 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1694 	fifo_left -= sprite0_fifo_extra;
1695 
1696 	fifo_state->plane[PLANE_CURSOR] = 63;
1697 
1698 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699 
1700 	/* spread the remainder evenly */
1701 	for_each_plane_id_on_crtc(crtc, plane_id) {
1702 		int plane_extra;
1703 
1704 		if (fifo_left == 0)
1705 			break;
1706 
1707 		if ((active_planes & BIT(plane_id)) == 0)
1708 			continue;
1709 
1710 		plane_extra = min(fifo_extra, fifo_left);
1711 		fifo_state->plane[plane_id] += plane_extra;
1712 		fifo_left -= plane_extra;
1713 	}
1714 
1715 	WARN_ON(active_planes != 0 && fifo_left != 0);
1716 
1717 	/* give it all to the first plane if none are active */
1718 	if (active_planes == 0) {
1719 		WARN_ON(fifo_left != fifo_size);
1720 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1727 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1728 			       struct vlv_wm_state *wm_state, int level)
1729 {
1730 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1731 
1732 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 		enum plane_id plane_id;
1734 
1735 		for_each_plane_id_on_crtc(crtc, plane_id)
1736 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1737 
1738 		wm_state->sr[level].cursor = USHRT_MAX;
1739 		wm_state->sr[level].plane = USHRT_MAX;
1740 	}
1741 }
1742 
vlv_invert_wm_value(u16 wm,u16 fifo_size)1743 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1744 {
1745 	if (wm > fifo_size)
1746 		return USHRT_MAX;
1747 	else
1748 		return fifo_size - wm;
1749 }
1750 
1751 /*
1752  * Starting from 'level' set all higher
1753  * levels to 'value' in the "raw" watermarks.
1754  */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1755 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756 				 int level, enum plane_id plane_id, u16 value)
1757 {
1758 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759 	int num_levels = intel_wm_num_levels(dev_priv);
1760 	bool dirty = false;
1761 
1762 	for (; level < num_levels; level++) {
1763 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764 
1765 		dirty |= raw->plane[plane_id] != value;
1766 		raw->plane[plane_id] = value;
1767 	}
1768 
1769 	return dirty;
1770 }
1771 
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1772 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1773 				     const struct intel_plane_state *plane_state)
1774 {
1775 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1776 	enum plane_id plane_id = plane->id;
1777 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778 	int level;
1779 	bool dirty = false;
1780 
1781 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1783 		goto out;
1784 	}
1785 
1786 	for (level = 0; level < num_levels; level++) {
1787 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1789 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790 
1791 		if (wm > max_wm)
1792 			break;
1793 
1794 		dirty |= raw->plane[plane_id] != wm;
1795 		raw->plane[plane_id] = wm;
1796 	}
1797 
1798 	/* mark all higher levels as invalid */
1799 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800 
1801 out:
1802 	if (dirty)
1803 		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804 			      plane->base.name,
1805 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1806 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1807 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1808 
1809 	return dirty;
1810 }
1811 
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1812 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1813 				      enum plane_id plane_id, int level)
1814 {
1815 	const struct g4x_pipe_wm *raw =
1816 		&crtc_state->wm.vlv.raw[level];
1817 	const struct vlv_fifo_state *fifo_state =
1818 		&crtc_state->wm.vlv.fifo_state;
1819 
1820 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1821 }
1822 
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1823 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824 {
1825 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1826 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1827 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1828 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 }
1830 
vlv_compute_pipe_wm(struct intel_crtc_state * crtc_state)1831 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1832 {
1833 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1834 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1835 	struct intel_atomic_state *state =
1836 		to_intel_atomic_state(crtc_state->base.state);
1837 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1838 	const struct vlv_fifo_state *fifo_state =
1839 		&crtc_state->wm.vlv.fifo_state;
1840 	int num_active_planes = hweight32(crtc_state->active_planes &
1841 					  ~BIT(PLANE_CURSOR));
1842 	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 	const struct intel_plane_state *old_plane_state;
1844 	const struct intel_plane_state *new_plane_state;
1845 	struct intel_plane *plane;
1846 	enum plane_id plane_id;
1847 	int level, ret, i;
1848 	unsigned int dirty = 0;
1849 
1850 	for_each_oldnew_intel_plane_in_state(state, plane,
1851 					     old_plane_state,
1852 					     new_plane_state, i) {
1853 		if (new_plane_state->base.crtc != &crtc->base &&
1854 		    old_plane_state->base.crtc != &crtc->base)
1855 			continue;
1856 
1857 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 			dirty |= BIT(plane->id);
1859 	}
1860 
1861 	/*
1862 	 * DSPARB registers may have been reset due to the
1863 	 * power well being turned off. Make sure we restore
1864 	 * them to a consistent state even if no primary/sprite
1865 	 * planes are initially active.
1866 	 */
1867 	if (needs_modeset)
1868 		crtc_state->fifo_changed = true;
1869 
1870 	if (!dirty)
1871 		return 0;
1872 
1873 	/* cursor changes don't warrant a FIFO recompute */
1874 	if (dirty & ~BIT(PLANE_CURSOR)) {
1875 		const struct intel_crtc_state *old_crtc_state =
1876 			intel_atomic_get_old_crtc_state(state, crtc);
1877 		const struct vlv_fifo_state *old_fifo_state =
1878 			&old_crtc_state->wm.vlv.fifo_state;
1879 
1880 		ret = vlv_compute_fifo(crtc_state);
1881 		if (ret)
1882 			return ret;
1883 
1884 		if (needs_modeset ||
1885 		    memcmp(old_fifo_state, fifo_state,
1886 			   sizeof(*fifo_state)) != 0)
1887 			crtc_state->fifo_changed = true;
1888 	}
1889 
1890 	/* initially allow all levels */
1891 	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892 	/*
1893 	 * Note that enabling cxsr with no primary/sprite planes
1894 	 * enabled can wedge the pipe. Hence we only allow cxsr
1895 	 * with exactly one enabled primary/sprite plane.
1896 	 */
1897 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898 
1899 	for (level = 0; level < wm_state->num_levels; level++) {
1900 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901 		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902 
1903 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904 			break;
1905 
1906 		for_each_plane_id_on_crtc(crtc, plane_id) {
1907 			wm_state->wm[level].plane[plane_id] =
1908 				vlv_invert_wm_value(raw->plane[plane_id],
1909 						    fifo_state->plane[plane_id]);
1910 		}
1911 
1912 		wm_state->sr[level].plane =
1913 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914 						 raw->plane[PLANE_SPRITE0],
1915 						 raw->plane[PLANE_SPRITE1]),
1916 					    sr_fifo_size);
1917 
1918 		wm_state->sr[level].cursor =
1919 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1920 					    63);
1921 	}
1922 
1923 	if (level == 0)
1924 		return -EINVAL;
1925 
1926 	/* limit to only levels we can actually handle */
1927 	wm_state->num_levels = level;
1928 
1929 	/* invalidate the higher levels */
1930 	vlv_invalidate_wms(crtc, wm_state, level);
1931 
1932 	return 0;
1933 }
1934 
1935 #define VLV_FIFO(plane, value) \
1936 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1937 
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1938 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1939 				   struct intel_crtc_state *crtc_state)
1940 {
1941 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 	const struct vlv_fifo_state *fifo_state =
1944 		&crtc_state->wm.vlv.fifo_state;
1945 	int sprite0_start, sprite1_start, fifo_size;
1946 
1947 	if (!crtc_state->fifo_changed)
1948 		return;
1949 
1950 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1951 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1952 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953 
1954 	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1955 	WARN_ON(fifo_size != 511);
1956 
1957 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1958 
1959 	/*
1960 	 * uncore.lock serves a double purpose here. It allows us to
1961 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1962 	 * it protects the DSPARB registers from getting clobbered by
1963 	 * parallel updates from multiple pipes.
1964 	 *
1965 	 * intel_pipe_update_start() has already disabled interrupts
1966 	 * for us, so a plain spin_lock() is sufficient here.
1967 	 */
1968 	spin_lock(&dev_priv->uncore.lock);
1969 
1970 	switch (crtc->pipe) {
1971 		uint32_t dsparb, dsparb2, dsparb3;
1972 	case PIPE_A:
1973 		dsparb = I915_READ_FW(DSPARB);
1974 		dsparb2 = I915_READ_FW(DSPARB2);
1975 
1976 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1977 			    VLV_FIFO(SPRITEB, 0xff));
1978 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1979 			   VLV_FIFO(SPRITEB, sprite1_start));
1980 
1981 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1982 			     VLV_FIFO(SPRITEB_HI, 0x1));
1983 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1984 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1985 
1986 		I915_WRITE_FW(DSPARB, dsparb);
1987 		I915_WRITE_FW(DSPARB2, dsparb2);
1988 		break;
1989 	case PIPE_B:
1990 		dsparb = I915_READ_FW(DSPARB);
1991 		dsparb2 = I915_READ_FW(DSPARB2);
1992 
1993 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1994 			    VLV_FIFO(SPRITED, 0xff));
1995 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1996 			   VLV_FIFO(SPRITED, sprite1_start));
1997 
1998 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1999 			     VLV_FIFO(SPRITED_HI, 0xff));
2000 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2001 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2002 
2003 		I915_WRITE_FW(DSPARB, dsparb);
2004 		I915_WRITE_FW(DSPARB2, dsparb2);
2005 		break;
2006 	case PIPE_C:
2007 		dsparb3 = I915_READ_FW(DSPARB3);
2008 		dsparb2 = I915_READ_FW(DSPARB2);
2009 
2010 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2011 			     VLV_FIFO(SPRITEF, 0xff));
2012 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2013 			    VLV_FIFO(SPRITEF, sprite1_start));
2014 
2015 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2016 			     VLV_FIFO(SPRITEF_HI, 0xff));
2017 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2018 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2019 
2020 		I915_WRITE_FW(DSPARB3, dsparb3);
2021 		I915_WRITE_FW(DSPARB2, dsparb2);
2022 		break;
2023 	default:
2024 		break;
2025 	}
2026 
2027 	POSTING_READ_FW(DSPARB);
2028 
2029 	spin_unlock(&dev_priv->uncore.lock);
2030 }
2031 
2032 #undef VLV_FIFO
2033 
vlv_compute_intermediate_wm(struct drm_device * dev,struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)2034 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2035 				       struct intel_crtc *crtc,
2036 				       struct intel_crtc_state *new_crtc_state)
2037 {
2038 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2039 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2040 	struct intel_atomic_state *intel_state =
2041 		to_intel_atomic_state(new_crtc_state->base.state);
2042 	const struct intel_crtc_state *old_crtc_state =
2043 		intel_atomic_get_old_crtc_state(intel_state, crtc);
2044 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2045 	int level;
2046 
2047 	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2048 		*intermediate = *optimal;
2049 
2050 		intermediate->cxsr = false;
2051 		goto out;
2052 	}
2053 
2054 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056 		!new_crtc_state->disable_cxsr;
2057 
2058 	for (level = 0; level < intermediate->num_levels; level++) {
2059 		enum plane_id plane_id;
2060 
2061 		for_each_plane_id_on_crtc(crtc, plane_id) {
2062 			intermediate->wm[level].plane[plane_id] =
2063 				min(optimal->wm[level].plane[plane_id],
2064 				    active->wm[level].plane[plane_id]);
2065 		}
2066 
2067 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
2068 						    active->sr[level].plane);
2069 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2070 						     active->sr[level].cursor);
2071 	}
2072 
2073 	vlv_invalidate_wms(crtc, intermediate, level);
2074 
2075 out:
2076 	/*
2077 	 * If our intermediate WM are identical to the final WM, then we can
2078 	 * omit the post-vblank programming; only update if it's different.
2079 	 */
2080 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081 		new_crtc_state->wm.need_postvbl_update = true;
2082 
2083 	return 0;
2084 }
2085 
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2086 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087 			 struct vlv_wm_values *wm)
2088 {
2089 	struct intel_crtc *crtc;
2090 	int num_active_crtcs = 0;
2091 
2092 	wm->level = dev_priv->wm.max_level;
2093 	wm->cxsr = true;
2094 
2095 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2096 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097 
2098 		if (!crtc->active)
2099 			continue;
2100 
2101 		if (!wm_state->cxsr)
2102 			wm->cxsr = false;
2103 
2104 		num_active_crtcs++;
2105 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2106 	}
2107 
2108 	if (num_active_crtcs != 1)
2109 		wm->cxsr = false;
2110 
2111 	if (num_active_crtcs > 1)
2112 		wm->level = VLV_WM_LEVEL_PM2;
2113 
2114 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2115 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116 		enum pipe pipe = crtc->pipe;
2117 
2118 		wm->pipe[pipe] = wm_state->wm[wm->level];
2119 		if (crtc->active && wm->cxsr)
2120 			wm->sr = wm_state->sr[wm->level];
2121 
2122 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2123 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2124 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2125 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2126 	}
2127 }
2128 
vlv_program_watermarks(struct drm_i915_private * dev_priv)2129 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2130 {
2131 	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2132 	struct vlv_wm_values new_wm = {};
2133 
2134 	vlv_merge_wm(dev_priv, &new_wm);
2135 
2136 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2137 		return;
2138 
2139 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140 		chv_set_memory_dvfs(dev_priv, false);
2141 
2142 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143 		chv_set_memory_pm5(dev_priv, false);
2144 
2145 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146 		_intel_set_memory_cxsr(dev_priv, false);
2147 
2148 	vlv_write_wm_values(dev_priv, &new_wm);
2149 
2150 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151 		_intel_set_memory_cxsr(dev_priv, true);
2152 
2153 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154 		chv_set_memory_pm5(dev_priv, true);
2155 
2156 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157 		chv_set_memory_dvfs(dev_priv, true);
2158 
2159 	*old_wm = new_wm;
2160 }
2161 
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2162 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2163 				   struct intel_crtc_state *crtc_state)
2164 {
2165 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2167 
2168 	mutex_lock(&dev_priv->wm.wm_mutex);
2169 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2170 	vlv_program_watermarks(dev_priv);
2171 	mutex_unlock(&dev_priv->wm.wm_mutex);
2172 }
2173 
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2174 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2175 				    struct intel_crtc_state *crtc_state)
2176 {
2177 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2178 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2179 
2180 	if (!crtc_state->wm.need_postvbl_update)
2181 		return;
2182 
2183 	mutex_lock(&dev_priv->wm.wm_mutex);
2184 	intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185 	vlv_program_watermarks(dev_priv);
2186 	mutex_unlock(&dev_priv->wm.wm_mutex);
2187 }
2188 
i965_update_wm(struct intel_crtc * unused_crtc)2189 static void i965_update_wm(struct intel_crtc *unused_crtc)
2190 {
2191 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192 	struct intel_crtc *crtc;
2193 	int srwm = 1;
2194 	int cursor_sr = 16;
2195 	bool cxsr_enabled;
2196 
2197 	/* Calc sr entries for one plane configs */
2198 	crtc = single_enabled_crtc(dev_priv);
2199 	if (crtc) {
2200 		/* self-refresh has much higher latency */
2201 		static const int sr_latency_ns = 12000;
2202 		const struct drm_display_mode *adjusted_mode =
2203 			&crtc->config->base.adjusted_mode;
2204 		const struct drm_framebuffer *fb =
2205 			crtc->base.primary->state->fb;
2206 		int clock = adjusted_mode->crtc_clock;
2207 		int htotal = adjusted_mode->crtc_htotal;
2208 		int hdisplay = crtc->config->pipe_src_w;
2209 		int cpp = fb->format->cpp[0];
2210 		int entries;
2211 
2212 		entries = intel_wm_method2(clock, htotal,
2213 					   hdisplay, cpp, sr_latency_ns / 100);
2214 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2215 		srwm = I965_FIFO_SIZE - entries;
2216 		if (srwm < 0)
2217 			srwm = 1;
2218 		srwm &= 0x1ff;
2219 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2220 			      entries, srwm);
2221 
2222 		entries = intel_wm_method2(clock, htotal,
2223 					   crtc->base.cursor->state->crtc_w, 4,
2224 					   sr_latency_ns / 100);
2225 		entries = DIV_ROUND_UP(entries,
2226 				       i965_cursor_wm_info.cacheline_size) +
2227 			i965_cursor_wm_info.guard_size;
2228 
2229 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2231 			cursor_sr = i965_cursor_wm_info.max_wm;
2232 
2233 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2234 			      "cursor %d\n", srwm, cursor_sr);
2235 
2236 		cxsr_enabled = true;
2237 	} else {
2238 		cxsr_enabled = false;
2239 		/* Turn off self refresh if both pipes are enabled */
2240 		intel_set_memory_cxsr(dev_priv, false);
2241 	}
2242 
2243 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2244 		      srwm);
2245 
2246 	/* 965 has limitations... */
2247 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2248 		   FW_WM(8, CURSORB) |
2249 		   FW_WM(8, PLANEB) |
2250 		   FW_WM(8, PLANEA));
2251 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2252 		   FW_WM(8, PLANEC_OLD));
2253 	/* update cursor SR watermark */
2254 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2255 
2256 	if (cxsr_enabled)
2257 		intel_set_memory_cxsr(dev_priv, true);
2258 }
2259 
2260 #undef FW_WM
2261 
i9xx_update_wm(struct intel_crtc * unused_crtc)2262 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2263 {
2264 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265 	const struct intel_watermark_params *wm_info;
2266 	uint32_t fwater_lo;
2267 	uint32_t fwater_hi;
2268 	int cwm, srwm = 1;
2269 	int fifo_size;
2270 	int planea_wm, planeb_wm;
2271 	struct intel_crtc *crtc, *enabled = NULL;
2272 
2273 	if (IS_I945GM(dev_priv))
2274 		wm_info = &i945_wm_info;
2275 	else if (!IS_GEN2(dev_priv))
2276 		wm_info = &i915_wm_info;
2277 	else
2278 		wm_info = &i830_a_wm_info;
2279 
2280 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2281 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282 	if (intel_crtc_active(crtc)) {
2283 		const struct drm_display_mode *adjusted_mode =
2284 			&crtc->config->base.adjusted_mode;
2285 		const struct drm_framebuffer *fb =
2286 			crtc->base.primary->state->fb;
2287 		int cpp;
2288 
2289 		if (IS_GEN2(dev_priv))
2290 			cpp = 4;
2291 		else
2292 			cpp = fb->format->cpp[0];
2293 
2294 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295 					       wm_info, fifo_size, cpp,
2296 					       pessimal_latency_ns);
2297 		enabled = crtc;
2298 	} else {
2299 		planea_wm = fifo_size - wm_info->guard_size;
2300 		if (planea_wm > (long)wm_info->max_wm)
2301 			planea_wm = wm_info->max_wm;
2302 	}
2303 
2304 	if (IS_GEN2(dev_priv))
2305 		wm_info = &i830_bc_wm_info;
2306 
2307 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2308 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309 	if (intel_crtc_active(crtc)) {
2310 		const struct drm_display_mode *adjusted_mode =
2311 			&crtc->config->base.adjusted_mode;
2312 		const struct drm_framebuffer *fb =
2313 			crtc->base.primary->state->fb;
2314 		int cpp;
2315 
2316 		if (IS_GEN2(dev_priv))
2317 			cpp = 4;
2318 		else
2319 			cpp = fb->format->cpp[0];
2320 
2321 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322 					       wm_info, fifo_size, cpp,
2323 					       pessimal_latency_ns);
2324 		if (enabled == NULL)
2325 			enabled = crtc;
2326 		else
2327 			enabled = NULL;
2328 	} else {
2329 		planeb_wm = fifo_size - wm_info->guard_size;
2330 		if (planeb_wm > (long)wm_info->max_wm)
2331 			planeb_wm = wm_info->max_wm;
2332 	}
2333 
2334 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2335 
2336 	if (IS_I915GM(dev_priv) && enabled) {
2337 		struct drm_i915_gem_object *obj;
2338 
2339 		obj = intel_fb_obj(enabled->base.primary->state->fb);
2340 
2341 		/* self-refresh seems busted with untiled */
2342 		if (!i915_gem_object_is_tiled(obj))
2343 			enabled = NULL;
2344 	}
2345 
2346 	/*
2347 	 * Overlay gets an aggressive default since video jitter is bad.
2348 	 */
2349 	cwm = 2;
2350 
2351 	/* Play safe and disable self-refresh before adjusting watermarks. */
2352 	intel_set_memory_cxsr(dev_priv, false);
2353 
2354 	/* Calc sr entries for one plane configs */
2355 	if (HAS_FW_BLC(dev_priv) && enabled) {
2356 		/* self-refresh has much higher latency */
2357 		static const int sr_latency_ns = 6000;
2358 		const struct drm_display_mode *adjusted_mode =
2359 			&enabled->config->base.adjusted_mode;
2360 		const struct drm_framebuffer *fb =
2361 			enabled->base.primary->state->fb;
2362 		int clock = adjusted_mode->crtc_clock;
2363 		int htotal = adjusted_mode->crtc_htotal;
2364 		int hdisplay = enabled->config->pipe_src_w;
2365 		int cpp;
2366 		int entries;
2367 
2368 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2369 			cpp = 4;
2370 		else
2371 			cpp = fb->format->cpp[0];
2372 
2373 		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2374 					   sr_latency_ns / 100);
2375 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2376 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2377 		srwm = wm_info->fifo_size - entries;
2378 		if (srwm < 0)
2379 			srwm = 1;
2380 
2381 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382 			I915_WRITE(FW_BLC_SELF,
2383 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2384 		else
2385 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2386 	}
2387 
2388 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2389 		      planea_wm, planeb_wm, cwm, srwm);
2390 
2391 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2392 	fwater_hi = (cwm & 0x1f);
2393 
2394 	/* Set request length to 8 cachelines per fetch */
2395 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2396 	fwater_hi = fwater_hi | (1 << 8);
2397 
2398 	I915_WRITE(FW_BLC, fwater_lo);
2399 	I915_WRITE(FW_BLC2, fwater_hi);
2400 
2401 	if (enabled)
2402 		intel_set_memory_cxsr(dev_priv, true);
2403 }
2404 
i845_update_wm(struct intel_crtc * unused_crtc)2405 static void i845_update_wm(struct intel_crtc *unused_crtc)
2406 {
2407 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408 	struct intel_crtc *crtc;
2409 	const struct drm_display_mode *adjusted_mode;
2410 	uint32_t fwater_lo;
2411 	int planea_wm;
2412 
2413 	crtc = single_enabled_crtc(dev_priv);
2414 	if (crtc == NULL)
2415 		return;
2416 
2417 	adjusted_mode = &crtc->config->base.adjusted_mode;
2418 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2419 				       &i845_wm_info,
2420 				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421 				       4, pessimal_latency_ns);
2422 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2423 	fwater_lo |= (3<<8) | planea_wm;
2424 
2425 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2426 
2427 	I915_WRITE(FW_BLC, fwater_lo);
2428 }
2429 
2430 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2431 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2432 				   unsigned int cpp,
2433 				   unsigned int latency)
2434 {
2435 	unsigned int ret;
2436 
2437 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2438 	ret = DIV_ROUND_UP(ret, 64) + 2;
2439 
2440 	return ret;
2441 }
2442 
2443 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2444 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2445 				   unsigned int htotal,
2446 				   unsigned int width,
2447 				   unsigned int cpp,
2448 				   unsigned int latency)
2449 {
2450 	unsigned int ret;
2451 
2452 	ret = intel_wm_method2(pixel_rate, htotal,
2453 			       width, cpp, latency);
2454 	ret = DIV_ROUND_UP(ret, 64) + 2;
2455 
2456 	return ret;
2457 }
2458 
ilk_wm_fbc(uint32_t pri_val,uint32_t horiz_pixels,uint8_t cpp)2459 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2460 			   uint8_t cpp)
2461 {
2462 	/*
2463 	 * Neither of these should be possible since this function shouldn't be
2464 	 * called if the CRTC is off or the plane is invisible.  But let's be
2465 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2466 	 * elsewhere in the driver.
2467 	 */
2468 	if (WARN_ON(!cpp))
2469 		return 0;
2470 	if (WARN_ON(!horiz_pixels))
2471 		return 0;
2472 
2473 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2474 }
2475 
2476 struct ilk_wm_maximums {
2477 	uint16_t pri;
2478 	uint16_t spr;
2479 	uint16_t cur;
2480 	uint16_t fbc;
2481 };
2482 
2483 /*
2484  * For both WM_PIPE and WM_LP.
2485  * mem_value must be in 0.1us units.
2486  */
ilk_compute_pri_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value,bool is_lp)2487 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488 				   const struct intel_plane_state *pstate,
2489 				   uint32_t mem_value,
2490 				   bool is_lp)
2491 {
2492 	uint32_t method1, method2;
2493 	int cpp;
2494 
2495 	if (!intel_wm_plane_visible(cstate, pstate))
2496 		return 0;
2497 
2498 	cpp = pstate->base.fb->format->cpp[0];
2499 
2500 	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501 
2502 	if (!is_lp)
2503 		return method1;
2504 
2505 	method2 = ilk_wm_method2(cstate->pixel_rate,
2506 				 cstate->base.adjusted_mode.crtc_htotal,
2507 				 drm_rect_width(&pstate->base.dst),
2508 				 cpp, mem_value);
2509 
2510 	return min(method1, method2);
2511 }
2512 
2513 /*
2514  * For both WM_PIPE and WM_LP.
2515  * mem_value must be in 0.1us units.
2516  */
ilk_compute_spr_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)2517 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518 				   const struct intel_plane_state *pstate,
2519 				   uint32_t mem_value)
2520 {
2521 	uint32_t method1, method2;
2522 	int cpp;
2523 
2524 	if (!intel_wm_plane_visible(cstate, pstate))
2525 		return 0;
2526 
2527 	cpp = pstate->base.fb->format->cpp[0];
2528 
2529 	method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2530 	method2 = ilk_wm_method2(cstate->pixel_rate,
2531 				 cstate->base.adjusted_mode.crtc_htotal,
2532 				 drm_rect_width(&pstate->base.dst),
2533 				 cpp, mem_value);
2534 	return min(method1, method2);
2535 }
2536 
2537 /*
2538  * For both WM_PIPE and WM_LP.
2539  * mem_value must be in 0.1us units.
2540  */
ilk_compute_cur_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)2541 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542 				   const struct intel_plane_state *pstate,
2543 				   uint32_t mem_value)
2544 {
2545 	int cpp;
2546 
2547 	if (!intel_wm_plane_visible(cstate, pstate))
2548 		return 0;
2549 
2550 	cpp = pstate->base.fb->format->cpp[0];
2551 
2552 	return ilk_wm_method2(cstate->pixel_rate,
2553 			      cstate->base.adjusted_mode.crtc_htotal,
2554 			      pstate->base.crtc_w, cpp, mem_value);
2555 }
2556 
2557 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t pri_val)2558 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559 				   const struct intel_plane_state *pstate,
2560 				   uint32_t pri_val)
2561 {
2562 	int cpp;
2563 
2564 	if (!intel_wm_plane_visible(cstate, pstate))
2565 		return 0;
2566 
2567 	cpp = pstate->base.fb->format->cpp[0];
2568 
2569 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2570 }
2571 
2572 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2573 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2574 {
2575 	if (INTEL_GEN(dev_priv) >= 8)
2576 		return 3072;
2577 	else if (INTEL_GEN(dev_priv) >= 7)
2578 		return 768;
2579 	else
2580 		return 512;
2581 }
2582 
2583 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2584 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2585 		     int level, bool is_sprite)
2586 {
2587 	if (INTEL_GEN(dev_priv) >= 8)
2588 		/* BDW primary/sprite plane watermarks */
2589 		return level == 0 ? 255 : 2047;
2590 	else if (INTEL_GEN(dev_priv) >= 7)
2591 		/* IVB/HSW primary/sprite plane watermarks */
2592 		return level == 0 ? 127 : 1023;
2593 	else if (!is_sprite)
2594 		/* ILK/SNB primary plane watermarks */
2595 		return level == 0 ? 127 : 511;
2596 	else
2597 		/* ILK/SNB sprite plane watermarks */
2598 		return level == 0 ? 63 : 255;
2599 }
2600 
2601 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2602 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2603 {
2604 	if (INTEL_GEN(dev_priv) >= 7)
2605 		return level == 0 ? 63 : 255;
2606 	else
2607 		return level == 0 ? 31 : 63;
2608 }
2609 
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2610 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2611 {
2612 	if (INTEL_GEN(dev_priv) >= 8)
2613 		return 31;
2614 	else
2615 		return 15;
2616 }
2617 
2618 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2619 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2620 				     int level,
2621 				     const struct intel_wm_config *config,
2622 				     enum intel_ddb_partitioning ddb_partitioning,
2623 				     bool is_sprite)
2624 {
2625 	struct drm_i915_private *dev_priv = to_i915(dev);
2626 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627 
2628 	/* if sprites aren't enabled, sprites get nothing */
2629 	if (is_sprite && !config->sprites_enabled)
2630 		return 0;
2631 
2632 	/* HSW allows LP1+ watermarks even with multiple pipes */
2633 	if (level == 0 || config->num_pipes_active > 1) {
2634 		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2635 
2636 		/*
2637 		 * For some reason the non self refresh
2638 		 * FIFO size is only half of the self
2639 		 * refresh FIFO size on ILK/SNB.
2640 		 */
2641 		if (INTEL_GEN(dev_priv) <= 6)
2642 			fifo_size /= 2;
2643 	}
2644 
2645 	if (config->sprites_enabled) {
2646 		/* level 0 is always calculated with 1:1 split */
2647 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2648 			if (is_sprite)
2649 				fifo_size *= 5;
2650 			fifo_size /= 6;
2651 		} else {
2652 			fifo_size /= 2;
2653 		}
2654 	}
2655 
2656 	/* clamp to max that the registers can hold */
2657 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658 }
2659 
2660 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config)2661 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2662 				      int level,
2663 				      const struct intel_wm_config *config)
2664 {
2665 	/* HSW LP1+ watermarks w/ multiple pipes */
2666 	if (level > 0 && config->num_pipes_active > 1)
2667 		return 64;
2668 
2669 	/* otherwise just report max that registers can hold */
2670 	return ilk_cursor_wm_reg_max(to_i915(dev), level);
2671 }
2672 
ilk_compute_wm_maximums(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2673 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2674 				    int level,
2675 				    const struct intel_wm_config *config,
2676 				    enum intel_ddb_partitioning ddb_partitioning,
2677 				    struct ilk_wm_maximums *max)
2678 {
2679 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2680 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2681 	max->cur = ilk_cursor_wm_max(dev, level, config);
2682 	max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2683 }
2684 
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2685 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686 					int level,
2687 					struct ilk_wm_maximums *max)
2688 {
2689 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2690 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2691 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2692 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693 }
2694 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2695 static bool ilk_validate_wm_level(int level,
2696 				  const struct ilk_wm_maximums *max,
2697 				  struct intel_wm_level *result)
2698 {
2699 	bool ret;
2700 
2701 	/* already determined to be invalid? */
2702 	if (!result->enable)
2703 		return false;
2704 
2705 	result->enable = result->pri_val <= max->pri &&
2706 			 result->spr_val <= max->spr &&
2707 			 result->cur_val <= max->cur;
2708 
2709 	ret = result->enable;
2710 
2711 	/*
2712 	 * HACK until we can pre-compute everything,
2713 	 * and thus fail gracefully if LP0 watermarks
2714 	 * are exceeded...
2715 	 */
2716 	if (level == 0 && !result->enable) {
2717 		if (result->pri_val > max->pri)
2718 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2719 				      level, result->pri_val, max->pri);
2720 		if (result->spr_val > max->spr)
2721 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2722 				      level, result->spr_val, max->spr);
2723 		if (result->cur_val > max->cur)
2724 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2725 				      level, result->cur_val, max->cur);
2726 
2727 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2728 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2729 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2730 		result->enable = true;
2731 	}
2732 
2733 	return ret;
2734 }
2735 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * cstate,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2736 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737 				 const struct intel_crtc *intel_crtc,
2738 				 int level,
2739 				 struct intel_crtc_state *cstate,
2740 				 const struct intel_plane_state *pristate,
2741 				 const struct intel_plane_state *sprstate,
2742 				 const struct intel_plane_state *curstate,
2743 				 struct intel_wm_level *result)
2744 {
2745 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2746 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2747 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2748 
2749 	/* WM1+ latency values stored in 0.5us units */
2750 	if (level > 0) {
2751 		pri_latency *= 5;
2752 		spr_latency *= 5;
2753 		cur_latency *= 5;
2754 	}
2755 
2756 	if (pristate) {
2757 		result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2758 						     pri_latency, level);
2759 		result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2760 	}
2761 
2762 	if (sprstate)
2763 		result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2764 
2765 	if (curstate)
2766 		result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2767 
2768 	result->enable = true;
2769 }
2770 
2771 static uint32_t
hsw_compute_linetime_wm(const struct intel_crtc_state * cstate)2772 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2773 {
2774 	const struct intel_atomic_state *intel_state =
2775 		to_intel_atomic_state(cstate->base.state);
2776 	const struct drm_display_mode *adjusted_mode =
2777 		&cstate->base.adjusted_mode;
2778 	u32 linetime, ips_linetime;
2779 
2780 	if (!cstate->base.active)
2781 		return 0;
2782 	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2783 		return 0;
2784 	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785 		return 0;
2786 
2787 	/* The WM are computed with base on how long it takes to fill a single
2788 	 * row at the given clock rate, multiplied by 8.
2789 	 * */
2790 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2791 				     adjusted_mode->crtc_clock);
2792 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793 					 intel_state->cdclk.logical.cdclk);
2794 
2795 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2796 	       PIPE_WM_LINETIME_TIME(linetime);
2797 }
2798 
intel_read_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[8])2799 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2800 				  uint16_t wm[8])
2801 {
2802 	if (INTEL_GEN(dev_priv) >= 9) {
2803 		uint32_t val;
2804 		int ret, i;
2805 		int level, max_level = ilk_wm_max_level(dev_priv);
2806 
2807 		/* read the first set of memory latencies[0:3] */
2808 		val = 0; /* data0 to be programmed to 0 for first set */
2809 		mutex_lock(&dev_priv->pcu_lock);
2810 		ret = sandybridge_pcode_read(dev_priv,
2811 					     GEN9_PCODE_READ_MEM_LATENCY,
2812 					     &val);
2813 		mutex_unlock(&dev_priv->pcu_lock);
2814 
2815 		if (ret) {
2816 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2817 			return;
2818 		}
2819 
2820 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2821 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2822 				GEN9_MEM_LATENCY_LEVEL_MASK;
2823 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2824 				GEN9_MEM_LATENCY_LEVEL_MASK;
2825 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2826 				GEN9_MEM_LATENCY_LEVEL_MASK;
2827 
2828 		/* read the second set of memory latencies[4:7] */
2829 		val = 1; /* data0 to be programmed to 1 for second set */
2830 		mutex_lock(&dev_priv->pcu_lock);
2831 		ret = sandybridge_pcode_read(dev_priv,
2832 					     GEN9_PCODE_READ_MEM_LATENCY,
2833 					     &val);
2834 		mutex_unlock(&dev_priv->pcu_lock);
2835 		if (ret) {
2836 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2837 			return;
2838 		}
2839 
2840 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2841 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2842 				GEN9_MEM_LATENCY_LEVEL_MASK;
2843 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2844 				GEN9_MEM_LATENCY_LEVEL_MASK;
2845 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2846 				GEN9_MEM_LATENCY_LEVEL_MASK;
2847 
2848 		/*
2849 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2850 		 * need to be disabled. We make sure to sanitize the values out
2851 		 * of the punit to satisfy this requirement.
2852 		 */
2853 		for (level = 1; level <= max_level; level++) {
2854 			if (wm[level] == 0) {
2855 				for (i = level + 1; i <= max_level; i++)
2856 					wm[i] = 0;
2857 				break;
2858 			}
2859 		}
2860 
2861 		/*
2862 		 * WaWmMemoryReadLatency:skl+,glk
2863 		 *
2864 		 * punit doesn't take into account the read latency so we need
2865 		 * to add 2us to the various latency levels we retrieve from the
2866 		 * punit when level 0 response data us 0us.
2867 		 */
2868 		if (wm[0] == 0) {
2869 			wm[0] += 2;
2870 			for (level = 1; level <= max_level; level++) {
2871 				if (wm[level] == 0)
2872 					break;
2873 				wm[level] += 2;
2874 			}
2875 		}
2876 
2877 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2879 
2880 		wm[0] = (sskpd >> 56) & 0xFF;
2881 		if (wm[0] == 0)
2882 			wm[0] = sskpd & 0xF;
2883 		wm[1] = (sskpd >> 4) & 0xFF;
2884 		wm[2] = (sskpd >> 12) & 0xFF;
2885 		wm[3] = (sskpd >> 20) & 0x1FF;
2886 		wm[4] = (sskpd >> 32) & 0x1FF;
2887 	} else if (INTEL_GEN(dev_priv) >= 6) {
2888 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2889 
2890 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2891 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2892 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2893 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894 	} else if (INTEL_GEN(dev_priv) >= 5) {
2895 		uint32_t mltr = I915_READ(MLTR_ILK);
2896 
2897 		/* ILK primary LP0 latency is 700 ns */
2898 		wm[0] = 7;
2899 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2900 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2901 	} else {
2902 		MISSING_CASE(INTEL_DEVID(dev_priv));
2903 	}
2904 }
2905 
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5])2906 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2907 				       uint16_t wm[5])
2908 {
2909 	/* ILK sprite LP0 latency is 1300 ns */
2910 	if (IS_GEN5(dev_priv))
2911 		wm[0] = 13;
2912 }
2913 
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5])2914 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2915 				       uint16_t wm[5])
2916 {
2917 	/* ILK cursor LP0 latency is 1300 ns */
2918 	if (IS_GEN5(dev_priv))
2919 		wm[0] = 13;
2920 }
2921 
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2922 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2923 {
2924 	/* how many WM levels are we expecting */
2925 	if (INTEL_GEN(dev_priv) >= 9)
2926 		return 7;
2927 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2928 		return 4;
2929 	else if (INTEL_GEN(dev_priv) >= 6)
2930 		return 3;
2931 	else
2932 		return 2;
2933 }
2934 
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const uint16_t wm[8])2935 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2936 				   const char *name,
2937 				   const uint16_t wm[8])
2938 {
2939 	int level, max_level = ilk_wm_max_level(dev_priv);
2940 
2941 	for (level = 0; level <= max_level; level++) {
2942 		unsigned int latency = wm[level];
2943 
2944 		if (latency == 0) {
2945 			DRM_ERROR("%s WM%d latency not provided\n",
2946 				  name, level);
2947 			continue;
2948 		}
2949 
2950 		/*
2951 		 * - latencies are in us on gen9.
2952 		 * - before then, WM1+ latency values are in 0.5us units
2953 		 */
2954 		if (INTEL_GEN(dev_priv) >= 9)
2955 			latency *= 10;
2956 		else if (level > 0)
2957 			latency *= 5;
2958 
2959 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2960 			      name, level, wm[level],
2961 			      latency / 10, latency % 10);
2962 	}
2963 }
2964 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5],uint16_t min)2965 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2966 				    uint16_t wm[5], uint16_t min)
2967 {
2968 	int level, max_level = ilk_wm_max_level(dev_priv);
2969 
2970 	if (wm[0] >= min)
2971 		return false;
2972 
2973 	wm[0] = max(wm[0], min);
2974 	for (level = 1; level <= max_level; level++)
2975 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2976 
2977 	return true;
2978 }
2979 
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)2980 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2981 {
2982 	bool changed;
2983 
2984 	/*
2985 	 * The BIOS provided WM memory latency values are often
2986 	 * inadequate for high resolution displays. Adjust them.
2987 	 */
2988 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2989 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2990 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2991 
2992 	if (!changed)
2993 		return;
2994 
2995 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999 }
3000 
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3001 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3002 {
3003 	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3004 
3005 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3006 	       sizeof(dev_priv->wm.pri_latency));
3007 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3008 	       sizeof(dev_priv->wm.pri_latency));
3009 
3010 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3012 
3013 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3014 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3015 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016 
3017 	if (IS_GEN6(dev_priv))
3018 		snb_wm_latency_quirk(dev_priv);
3019 }
3020 
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3021 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3022 {
3023 	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024 	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3025 }
3026 
ilk_validate_pipe_wm(struct drm_device * dev,struct intel_pipe_wm * pipe_wm)3027 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3028 				 struct intel_pipe_wm *pipe_wm)
3029 {
3030 	/* LP0 watermark maximums depend on this pipe alone */
3031 	const struct intel_wm_config config = {
3032 		.num_pipes_active = 1,
3033 		.sprites_enabled = pipe_wm->sprites_enabled,
3034 		.sprites_scaled = pipe_wm->sprites_scaled,
3035 	};
3036 	struct ilk_wm_maximums max;
3037 
3038 	/* LP0 watermarks always use 1/2 DDB partitioning */
3039 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3040 
3041 	/* At least LP0 must be valid */
3042 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3043 		DRM_DEBUG_KMS("LP0 watermark invalid\n");
3044 		return false;
3045 	}
3046 
3047 	return true;
3048 }
3049 
3050 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_crtc_state * cstate)3051 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3052 {
3053 	struct drm_atomic_state *state = cstate->base.state;
3054 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055 	struct intel_pipe_wm *pipe_wm;
3056 	struct drm_device *dev = state->dev;
3057 	const struct drm_i915_private *dev_priv = to_i915(dev);
3058 	struct drm_plane *plane;
3059 	const struct drm_plane_state *plane_state;
3060 	const struct intel_plane_state *pristate = NULL;
3061 	const struct intel_plane_state *sprstate = NULL;
3062 	const struct intel_plane_state *curstate = NULL;
3063 	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064 	struct ilk_wm_maximums max;
3065 
3066 	pipe_wm = &cstate->wm.ilk.optimal;
3067 
3068 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3069 		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3070 
3071 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3072 			pristate = ps;
3073 		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3074 			sprstate = ps;
3075 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3076 			curstate = ps;
3077 	}
3078 
3079 	pipe_wm->pipe_enabled = cstate->base.active;
3080 	if (sprstate) {
3081 		pipe_wm->sprites_enabled = sprstate->base.visible;
3082 		pipe_wm->sprites_scaled = sprstate->base.visible &&
3083 			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3084 			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3085 	}
3086 
3087 	usable_level = max_level;
3088 
3089 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3090 	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3091 		usable_level = 1;
3092 
3093 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094 	if (pipe_wm->sprites_scaled)
3095 		usable_level = 0;
3096 
3097 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3099 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3100 
3101 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102 		pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3103 
3104 	if (!ilk_validate_pipe_wm(dev, pipe_wm))
3105 		return -EINVAL;
3106 
3107 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3108 
3109 	for (level = 1; level <= usable_level; level++) {
3110 		struct intel_wm_level *wm = &pipe_wm->wm[level];
3111 
3112 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113 				     pristate, sprstate, curstate, wm);
3114 
3115 		/*
3116 		 * Disable any watermark level that exceeds the
3117 		 * register maximums since such watermarks are
3118 		 * always invalid.
3119 		 */
3120 		if (!ilk_validate_wm_level(level, &max, wm)) {
3121 			memset(wm, 0, sizeof(*wm));
3122 			break;
3123 		}
3124 	}
3125 
3126 	return 0;
3127 }
3128 
3129 /*
3130  * Build a set of 'intermediate' watermark values that satisfy both the old
3131  * state and the new state.  These can be programmed to the hardware
3132  * immediately.
3133  */
ilk_compute_intermediate_wm(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * newstate)3134 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3135 				       struct intel_crtc *intel_crtc,
3136 				       struct intel_crtc_state *newstate)
3137 {
3138 	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139 	struct intel_atomic_state *intel_state =
3140 		to_intel_atomic_state(newstate->base.state);
3141 	const struct intel_crtc_state *oldstate =
3142 		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3143 	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144 	int level, max_level = ilk_wm_max_level(to_i915(dev));
3145 
3146 	/*
3147 	 * Start with the final, target watermarks, then combine with the
3148 	 * currently active watermarks to get values that are safe both before
3149 	 * and after the vblank.
3150 	 */
3151 	*a = newstate->wm.ilk.optimal;
3152 	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3153 		return 0;
3154 
3155 	a->pipe_enabled |= b->pipe_enabled;
3156 	a->sprites_enabled |= b->sprites_enabled;
3157 	a->sprites_scaled |= b->sprites_scaled;
3158 
3159 	for (level = 0; level <= max_level; level++) {
3160 		struct intel_wm_level *a_wm = &a->wm[level];
3161 		const struct intel_wm_level *b_wm = &b->wm[level];
3162 
3163 		a_wm->enable &= b_wm->enable;
3164 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3165 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3166 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3167 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3168 	}
3169 
3170 	/*
3171 	 * We need to make sure that these merged watermark values are
3172 	 * actually a valid configuration themselves.  If they're not,
3173 	 * there's no safe way to transition from the old state to
3174 	 * the new state, so we need to fail the atomic transaction.
3175 	 */
3176 	if (!ilk_validate_pipe_wm(dev, a))
3177 		return -EINVAL;
3178 
3179 	/*
3180 	 * If our intermediate WM are identical to the final WM, then we can
3181 	 * omit the post-vblank programming; only update if it's different.
3182 	 */
3183 	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3184 		newstate->wm.need_postvbl_update = true;
3185 
3186 	return 0;
3187 }
3188 
3189 /*
3190  * Merge the watermarks from all active pipes for a specific level.
3191  */
ilk_merge_wm_level(struct drm_device * dev,int level,struct intel_wm_level * ret_wm)3192 static void ilk_merge_wm_level(struct drm_device *dev,
3193 			       int level,
3194 			       struct intel_wm_level *ret_wm)
3195 {
3196 	const struct intel_crtc *intel_crtc;
3197 
3198 	ret_wm->enable = true;
3199 
3200 	for_each_intel_crtc(dev, intel_crtc) {
3201 		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202 		const struct intel_wm_level *wm = &active->wm[level];
3203 
3204 		if (!active->pipe_enabled)
3205 			continue;
3206 
3207 		/*
3208 		 * The watermark values may have been used in the past,
3209 		 * so we must maintain them in the registers for some
3210 		 * time even if the level is now disabled.
3211 		 */
3212 		if (!wm->enable)
3213 			ret_wm->enable = false;
3214 
3215 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3216 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3217 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3218 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3219 	}
3220 }
3221 
3222 /*
3223  * Merge all low power watermarks for all active pipes.
3224  */
ilk_wm_merge(struct drm_device * dev,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3225 static void ilk_wm_merge(struct drm_device *dev,
3226 			 const struct intel_wm_config *config,
3227 			 const struct ilk_wm_maximums *max,
3228 			 struct intel_pipe_wm *merged)
3229 {
3230 	struct drm_i915_private *dev_priv = to_i915(dev);
3231 	int level, max_level = ilk_wm_max_level(dev_priv);
3232 	int last_enabled_level = max_level;
3233 
3234 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235 	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236 	    config->num_pipes_active > 1)
3237 		last_enabled_level = 0;
3238 
3239 	/* ILK: FBC WM must be disabled always */
3240 	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3241 
3242 	/* merge each WM1+ level */
3243 	for (level = 1; level <= max_level; level++) {
3244 		struct intel_wm_level *wm = &merged->wm[level];
3245 
3246 		ilk_merge_wm_level(dev, level, wm);
3247 
3248 		if (level > last_enabled_level)
3249 			wm->enable = false;
3250 		else if (!ilk_validate_wm_level(level, max, wm))
3251 			/* make sure all following levels get disabled */
3252 			last_enabled_level = level - 1;
3253 
3254 		/*
3255 		 * The spec says it is preferred to disable
3256 		 * FBC WMs instead of disabling a WM level.
3257 		 */
3258 		if (wm->fbc_val > max->fbc) {
3259 			if (wm->enable)
3260 				merged->fbc_wm_enabled = false;
3261 			wm->fbc_val = 0;
3262 		}
3263 	}
3264 
3265 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3266 	/*
3267 	 * FIXME this is racy. FBC might get enabled later.
3268 	 * What we should check here is whether FBC can be
3269 	 * enabled sometime later.
3270 	 */
3271 	if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272 	    intel_fbc_is_active(dev_priv)) {
3273 		for (level = 2; level <= max_level; level++) {
3274 			struct intel_wm_level *wm = &merged->wm[level];
3275 
3276 			wm->enable = false;
3277 		}
3278 	}
3279 }
3280 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3281 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3282 {
3283 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3284 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3285 }
3286 
3287 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_device * dev,int level)3288 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3289 {
3290 	struct drm_i915_private *dev_priv = to_i915(dev);
3291 
3292 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3293 		return 2 * level;
3294 	else
3295 		return dev_priv->wm.pri_latency[level];
3296 }
3297 
ilk_compute_wm_results(struct drm_device * dev,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3298 static void ilk_compute_wm_results(struct drm_device *dev,
3299 				   const struct intel_pipe_wm *merged,
3300 				   enum intel_ddb_partitioning partitioning,
3301 				   struct ilk_wm_values *results)
3302 {
3303 	struct drm_i915_private *dev_priv = to_i915(dev);
3304 	struct intel_crtc *intel_crtc;
3305 	int level, wm_lp;
3306 
3307 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3308 	results->partitioning = partitioning;
3309 
3310 	/* LP1+ register values */
3311 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312 		const struct intel_wm_level *r;
3313 
3314 		level = ilk_wm_lp_to_level(wm_lp, merged);
3315 
3316 		r = &merged->wm[level];
3317 
3318 		/*
3319 		 * Maintain the watermark values even if the level is
3320 		 * disabled. Doing otherwise could cause underruns.
3321 		 */
3322 		results->wm_lp[wm_lp - 1] =
3323 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324 			(r->pri_val << WM1_LP_SR_SHIFT) |
3325 			r->cur_val;
3326 
3327 		if (r->enable)
3328 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3329 
3330 		if (INTEL_GEN(dev_priv) >= 8)
3331 			results->wm_lp[wm_lp - 1] |=
3332 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3333 		else
3334 			results->wm_lp[wm_lp - 1] |=
3335 				r->fbc_val << WM1_LP_FBC_SHIFT;
3336 
3337 		/*
3338 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
3339 		 * level is disabled. Doing otherwise could cause underruns.
3340 		 */
3341 		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342 			WARN_ON(wm_lp != 1);
3343 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3344 		} else
3345 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3346 	}
3347 
3348 	/* LP0 register values */
3349 	for_each_intel_crtc(dev, intel_crtc) {
3350 		enum pipe pipe = intel_crtc->pipe;
3351 		const struct intel_wm_level *r =
3352 			&intel_crtc->wm.active.ilk.wm[0];
3353 
3354 		if (WARN_ON(!r->enable))
3355 			continue;
3356 
3357 		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3358 
3359 		results->wm_pipe[pipe] =
3360 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3361 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3362 			r->cur_val;
3363 	}
3364 }
3365 
3366 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3367  * case both are at the same level. Prefer r1 in case they're the same. */
ilk_find_best_result(struct drm_device * dev,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3368 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369 						  struct intel_pipe_wm *r1,
3370 						  struct intel_pipe_wm *r2)
3371 {
3372 	int level, max_level = ilk_wm_max_level(to_i915(dev));
3373 	int level1 = 0, level2 = 0;
3374 
3375 	for (level = 1; level <= max_level; level++) {
3376 		if (r1->wm[level].enable)
3377 			level1 = level;
3378 		if (r2->wm[level].enable)
3379 			level2 = level;
3380 	}
3381 
3382 	if (level1 == level2) {
3383 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3384 			return r2;
3385 		else
3386 			return r1;
3387 	} else if (level1 > level2) {
3388 		return r1;
3389 	} else {
3390 		return r2;
3391 	}
3392 }
3393 
3394 /* dirty bits used to track which watermarks need changes */
3395 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3396 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3397 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3398 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3399 #define WM_DIRTY_FBC (1 << 24)
3400 #define WM_DIRTY_DDB (1 << 25)
3401 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3402 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403 					 const struct ilk_wm_values *old,
3404 					 const struct ilk_wm_values *new)
3405 {
3406 	unsigned int dirty = 0;
3407 	enum pipe pipe;
3408 	int wm_lp;
3409 
3410 	for_each_pipe(dev_priv, pipe) {
3411 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3412 			dirty |= WM_DIRTY_LINETIME(pipe);
3413 			/* Must disable LP1+ watermarks too */
3414 			dirty |= WM_DIRTY_LP_ALL;
3415 		}
3416 
3417 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3418 			dirty |= WM_DIRTY_PIPE(pipe);
3419 			/* Must disable LP1+ watermarks too */
3420 			dirty |= WM_DIRTY_LP_ALL;
3421 		}
3422 	}
3423 
3424 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3425 		dirty |= WM_DIRTY_FBC;
3426 		/* Must disable LP1+ watermarks too */
3427 		dirty |= WM_DIRTY_LP_ALL;
3428 	}
3429 
3430 	if (old->partitioning != new->partitioning) {
3431 		dirty |= WM_DIRTY_DDB;
3432 		/* Must disable LP1+ watermarks too */
3433 		dirty |= WM_DIRTY_LP_ALL;
3434 	}
3435 
3436 	/* LP1+ watermarks already deemed dirty, no need to continue */
3437 	if (dirty & WM_DIRTY_LP_ALL)
3438 		return dirty;
3439 
3440 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3441 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3442 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3443 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3444 			break;
3445 	}
3446 
3447 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3448 	for (; wm_lp <= 3; wm_lp++)
3449 		dirty |= WM_DIRTY_LP(wm_lp);
3450 
3451 	return dirty;
3452 }
3453 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3454 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3455 			       unsigned int dirty)
3456 {
3457 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458 	bool changed = false;
3459 
3460 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3461 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3462 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3463 		changed = true;
3464 	}
3465 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3466 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3467 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3468 		changed = true;
3469 	}
3470 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3471 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3472 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3473 		changed = true;
3474 	}
3475 
3476 	/*
3477 	 * Don't touch WM1S_LP_EN here.
3478 	 * Doing so could cause underruns.
3479 	 */
3480 
3481 	return changed;
3482 }
3483 
3484 /*
3485  * The spec says we shouldn't write when we don't need, because every write
3486  * causes WMs to be re-evaluated, expending some power.
3487  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3488 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3489 				struct ilk_wm_values *results)
3490 {
3491 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3492 	unsigned int dirty;
3493 	uint32_t val;
3494 
3495 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3496 	if (!dirty)
3497 		return;
3498 
3499 	_ilk_disable_lp_wm(dev_priv, dirty);
3500 
3501 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3507 
3508 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3514 
3515 	if (dirty & WM_DIRTY_DDB) {
3516 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517 			val = I915_READ(WM_MISC);
3518 			if (results->partitioning == INTEL_DDB_PART_1_2)
3519 				val &= ~WM_MISC_DATA_PARTITION_5_6;
3520 			else
3521 				val |= WM_MISC_DATA_PARTITION_5_6;
3522 			I915_WRITE(WM_MISC, val);
3523 		} else {
3524 			val = I915_READ(DISP_ARB_CTL2);
3525 			if (results->partitioning == INTEL_DDB_PART_1_2)
3526 				val &= ~DISP_DATA_PARTITION_5_6;
3527 			else
3528 				val |= DISP_DATA_PARTITION_5_6;
3529 			I915_WRITE(DISP_ARB_CTL2, val);
3530 		}
3531 	}
3532 
3533 	if (dirty & WM_DIRTY_FBC) {
3534 		val = I915_READ(DISP_ARB_CTL);
3535 		if (results->enable_fbc_wm)
3536 			val &= ~DISP_FBC_WM_DIS;
3537 		else
3538 			val |= DISP_FBC_WM_DIS;
3539 		I915_WRITE(DISP_ARB_CTL, val);
3540 	}
3541 
3542 	if (dirty & WM_DIRTY_LP(1) &&
3543 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3544 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3545 
3546 	if (INTEL_GEN(dev_priv) >= 7) {
3547 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3548 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3549 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3550 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3551 	}
3552 
3553 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3559 
3560 	dev_priv->wm.hw = *results;
3561 }
3562 
ilk_disable_lp_wm(struct drm_device * dev)3563 bool ilk_disable_lp_wm(struct drm_device *dev)
3564 {
3565 	struct drm_i915_private *dev_priv = to_i915(dev);
3566 
3567 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3568 }
3569 
intel_enabled_dbuf_slices_num(struct drm_i915_private * dev_priv)3570 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3571 {
3572 	u8 enabled_slices;
3573 
3574 	/* Slice 1 will always be enabled */
3575 	enabled_slices = 1;
3576 
3577 	/* Gen prior to GEN11 have only one DBuf slice */
3578 	if (INTEL_GEN(dev_priv) < 11)
3579 		return enabled_slices;
3580 
3581 	if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3582 		enabled_slices++;
3583 
3584 	return enabled_slices;
3585 }
3586 
3587 /*
3588  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3589  * so assume we'll always need it in order to avoid underruns.
3590  */
skl_needs_memory_bw_wa(struct intel_atomic_state * state)3591 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3592 {
3593 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3594 
3595 	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3596 		return true;
3597 
3598 	return false;
3599 }
3600 
3601 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3602 intel_has_sagv(struct drm_i915_private *dev_priv)
3603 {
3604 	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3605 	    IS_CANNONLAKE(dev_priv))
3606 		return true;
3607 
3608 	if (IS_SKYLAKE(dev_priv) &&
3609 	    dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3610 		return true;
3611 
3612 	return false;
3613 }
3614 
3615 /*
3616  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3617  * depending on power and performance requirements. The display engine access
3618  * to system memory is blocked during the adjustment time. Because of the
3619  * blocking time, having this enabled can cause full system hangs and/or pipe
3620  * underruns if we don't meet all of the following requirements:
3621  *
3622  *  - <= 1 pipe enabled
3623  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3624  *  - We're not using an interlaced display configuration
3625  */
3626 int
intel_enable_sagv(struct drm_i915_private * dev_priv)3627 intel_enable_sagv(struct drm_i915_private *dev_priv)
3628 {
3629 	int ret;
3630 
3631 	if (!intel_has_sagv(dev_priv))
3632 		return 0;
3633 
3634 	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3635 		return 0;
3636 
3637 	DRM_DEBUG_KMS("Enabling the SAGV\n");
3638 	mutex_lock(&dev_priv->pcu_lock);
3639 
3640 	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3641 				      GEN9_SAGV_ENABLE);
3642 
3643 	/* We don't need to wait for the SAGV when enabling */
3644 	mutex_unlock(&dev_priv->pcu_lock);
3645 
3646 	/*
3647 	 * Some skl systems, pre-release machines in particular,
3648 	 * don't actually have an SAGV.
3649 	 */
3650 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3651 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3652 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3653 		return 0;
3654 	} else if (ret < 0) {
3655 		DRM_ERROR("Failed to enable the SAGV\n");
3656 		return ret;
3657 	}
3658 
3659 	dev_priv->sagv_status = I915_SAGV_ENABLED;
3660 	return 0;
3661 }
3662 
3663 int
intel_disable_sagv(struct drm_i915_private * dev_priv)3664 intel_disable_sagv(struct drm_i915_private *dev_priv)
3665 {
3666 	int ret;
3667 
3668 	if (!intel_has_sagv(dev_priv))
3669 		return 0;
3670 
3671 	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3672 		return 0;
3673 
3674 	DRM_DEBUG_KMS("Disabling the SAGV\n");
3675 	mutex_lock(&dev_priv->pcu_lock);
3676 
3677 	/* bspec says to keep retrying for at least 1 ms */
3678 	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3679 				GEN9_SAGV_DISABLE,
3680 				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3681 				1);
3682 	mutex_unlock(&dev_priv->pcu_lock);
3683 
3684 	/*
3685 	 * Some skl systems, pre-release machines in particular,
3686 	 * don't actually have an SAGV.
3687 	 */
3688 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3691 		return 0;
3692 	} else if (ret < 0) {
3693 		DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3694 		return ret;
3695 	}
3696 
3697 	dev_priv->sagv_status = I915_SAGV_DISABLED;
3698 	return 0;
3699 }
3700 
intel_can_enable_sagv(struct drm_atomic_state * state)3701 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3702 {
3703 	struct drm_device *dev = state->dev;
3704 	struct drm_i915_private *dev_priv = to_i915(dev);
3705 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3706 	struct intel_crtc *crtc;
3707 	struct intel_plane *plane;
3708 	struct intel_crtc_state *cstate;
3709 	enum pipe pipe;
3710 	int level, latency;
3711 	int sagv_block_time_us;
3712 
3713 	if (!intel_has_sagv(dev_priv))
3714 		return false;
3715 
3716 	if (IS_GEN9(dev_priv))
3717 		sagv_block_time_us = 30;
3718 	else if (IS_GEN10(dev_priv))
3719 		sagv_block_time_us = 20;
3720 	else
3721 		sagv_block_time_us = 10;
3722 
3723 	/*
3724 	 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3725 	 * more then one pipe enabled
3726 	 *
3727 	 * If there are no active CRTCs, no additional checks need be performed
3728 	 */
3729 	if (hweight32(intel_state->active_crtcs) == 0)
3730 		return true;
3731 	else if (hweight32(intel_state->active_crtcs) > 1)
3732 		return false;
3733 
3734 	/* Since we're now guaranteed to only have one active CRTC... */
3735 	pipe = ffs(intel_state->active_crtcs) - 1;
3736 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3737 	cstate = to_intel_crtc_state(crtc->base.state);
3738 
3739 	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3740 		return false;
3741 
3742 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3743 		struct skl_plane_wm *wm =
3744 			&cstate->wm.skl.optimal.planes[plane->id];
3745 
3746 		/* Skip this plane if it's not enabled */
3747 		if (!wm->wm[0].plane_en)
3748 			continue;
3749 
3750 		/* Find the highest enabled wm level for this plane */
3751 		for (level = ilk_wm_max_level(dev_priv);
3752 		     !wm->wm[level].plane_en; --level)
3753 		     { }
3754 
3755 		latency = dev_priv->wm.skl_latency[level];
3756 
3757 		if (skl_needs_memory_bw_wa(intel_state) &&
3758 		    plane->base.state->fb->modifier ==
3759 		    I915_FORMAT_MOD_X_TILED)
3760 			latency += 15;
3761 
3762 		/*
3763 		 * If any of the planes on this pipe don't enable wm levels that
3764 		 * incur memory latencies higher than sagv_block_time_us we
3765 		 * can't enable the SAGV.
3766 		 */
3767 		if (latency < sagv_block_time_us)
3768 			return false;
3769 	}
3770 
3771 	return true;
3772 }
3773 
intel_get_ddb_size(struct drm_i915_private * dev_priv,const struct intel_crtc_state * cstate,const unsigned int total_data_rate,const int num_active,struct skl_ddb_allocation * ddb)3774 static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
3775 				       const struct intel_crtc_state *cstate,
3776 				       const unsigned int total_data_rate,
3777 				       const int num_active,
3778 				       struct skl_ddb_allocation *ddb)
3779 {
3780 	const struct drm_display_mode *adjusted_mode;
3781 	u64 total_data_bw;
3782 	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3783 
3784 	WARN_ON(ddb_size == 0);
3785 
3786 	if (INTEL_GEN(dev_priv) < 11)
3787 		return ddb_size - 4; /* 4 blocks for bypass path allocation */
3788 
3789 	adjusted_mode = &cstate->base.adjusted_mode;
3790 	total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3791 
3792 	/*
3793 	 * 12GB/s is maximum BW supported by single DBuf slice.
3794 	 */
3795 	if (total_data_bw >= GBps(12) || num_active > 1) {
3796 		ddb->enabled_slices = 2;
3797 	} else {
3798 		ddb->enabled_slices = 1;
3799 		ddb_size /= 2;
3800 	}
3801 
3802 	return ddb_size;
3803 }
3804 
3805 static void
skl_ddb_get_pipe_allocation_limits(struct drm_device * dev,const struct intel_crtc_state * cstate,const unsigned int total_data_rate,struct skl_ddb_allocation * ddb,struct skl_ddb_entry * alloc,int * num_active)3806 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3807 				   const struct intel_crtc_state *cstate,
3808 				   const unsigned int total_data_rate,
3809 				   struct skl_ddb_allocation *ddb,
3810 				   struct skl_ddb_entry *alloc, /* out */
3811 				   int *num_active /* out */)
3812 {
3813 	struct drm_atomic_state *state = cstate->base.state;
3814 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3815 	struct drm_i915_private *dev_priv = to_i915(dev);
3816 	struct drm_crtc *for_crtc = cstate->base.crtc;
3817 	unsigned int pipe_size, ddb_size;
3818 	int nth_active_pipe;
3819 
3820 	if (WARN_ON(!state) || !cstate->base.active) {
3821 		alloc->start = 0;
3822 		alloc->end = 0;
3823 		*num_active = hweight32(dev_priv->active_crtcs);
3824 		return;
3825 	}
3826 
3827 	if (intel_state->active_pipe_changes)
3828 		*num_active = hweight32(intel_state->active_crtcs);
3829 	else
3830 		*num_active = hweight32(dev_priv->active_crtcs);
3831 
3832 	ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3833 				      *num_active, ddb);
3834 
3835 	/*
3836 	 * If the state doesn't change the active CRTC's, then there's
3837 	 * no need to recalculate; the existing pipe allocation limits
3838 	 * should remain unchanged.  Note that we're safe from racing
3839 	 * commits since any racing commit that changes the active CRTC
3840 	 * list would need to grab _all_ crtc locks, including the one
3841 	 * we currently hold.
3842 	 */
3843 	if (!intel_state->active_pipe_changes) {
3844 		/*
3845 		 * alloc may be cleared by clear_intel_crtc_state,
3846 		 * copy from old state to be sure
3847 		 */
3848 		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3849 		return;
3850 	}
3851 
3852 	nth_active_pipe = hweight32(intel_state->active_crtcs &
3853 				    (drm_crtc_mask(for_crtc) - 1));
3854 	pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3855 	alloc->start = nth_active_pipe * ddb_size / *num_active;
3856 	alloc->end = alloc->start + pipe_size;
3857 }
3858 
skl_cursor_allocation(int num_active)3859 static unsigned int skl_cursor_allocation(int num_active)
3860 {
3861 	if (num_active == 1)
3862 		return 32;
3863 
3864 	return 8;
3865 }
3866 
skl_ddb_entry_init_from_hw(struct drm_i915_private * dev_priv,struct skl_ddb_entry * entry,u32 reg)3867 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3868 				       struct skl_ddb_entry *entry, u32 reg)
3869 {
3870 	u16 mask;
3871 
3872 	if (INTEL_GEN(dev_priv) >= 11)
3873 		mask = ICL_DDB_ENTRY_MASK;
3874 	else
3875 		mask = SKL_DDB_ENTRY_MASK;
3876 	entry->start = reg & mask;
3877 	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3878 
3879 	if (entry->end)
3880 		entry->end += 1;
3881 }
3882 
3883 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_allocation * ddb)3884 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3885 			   const enum pipe pipe,
3886 			   const enum plane_id plane_id,
3887 			   struct skl_ddb_allocation *ddb /* out */)
3888 {
3889 	u32 val, val2 = 0;
3890 	int fourcc, pixel_format;
3891 
3892 	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
3893 	if (plane_id == PLANE_CURSOR) {
3894 		val = I915_READ(CUR_BUF_CFG(pipe));
3895 		skl_ddb_entry_init_from_hw(dev_priv,
3896 					   &ddb->plane[pipe][plane_id], val);
3897 		return;
3898 	}
3899 
3900 	val = I915_READ(PLANE_CTL(pipe, plane_id));
3901 
3902 	/* No DDB allocated for disabled planes */
3903 	if (!(val & PLANE_CTL_ENABLE))
3904 		return;
3905 
3906 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
3907 	fourcc = skl_format_to_fourcc(pixel_format,
3908 				      val & PLANE_CTL_ORDER_RGBX,
3909 				      val & PLANE_CTL_ALPHA_MASK);
3910 
3911 	val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3912 	val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3913 
3914 	if (fourcc == DRM_FORMAT_NV12) {
3915 		skl_ddb_entry_init_from_hw(dev_priv,
3916 					   &ddb->plane[pipe][plane_id], val2);
3917 		skl_ddb_entry_init_from_hw(dev_priv,
3918 					   &ddb->uv_plane[pipe][plane_id], val);
3919 	} else {
3920 		skl_ddb_entry_init_from_hw(dev_priv,
3921 					   &ddb->plane[pipe][plane_id], val);
3922 	}
3923 }
3924 
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)3925 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3926 			  struct skl_ddb_allocation *ddb /* out */)
3927 {
3928 	struct intel_crtc *crtc;
3929 
3930 	memset(ddb, 0, sizeof(*ddb));
3931 
3932 	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3933 
3934 	for_each_intel_crtc(&dev_priv->drm, crtc) {
3935 		enum intel_display_power_domain power_domain;
3936 		enum plane_id plane_id;
3937 		enum pipe pipe = crtc->pipe;
3938 
3939 		power_domain = POWER_DOMAIN_PIPE(pipe);
3940 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3941 			continue;
3942 
3943 		for_each_plane_id_on_crtc(crtc, plane_id)
3944 			skl_ddb_get_hw_plane_state(dev_priv, pipe,
3945 						   plane_id, ddb);
3946 
3947 		intel_display_power_put(dev_priv, power_domain);
3948 	}
3949 }
3950 
3951 /*
3952  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3953  * The bspec defines downscale amount as:
3954  *
3955  * """
3956  * Horizontal down scale amount = maximum[1, Horizontal source size /
3957  *                                           Horizontal destination size]
3958  * Vertical down scale amount = maximum[1, Vertical source size /
3959  *                                         Vertical destination size]
3960  * Total down scale amount = Horizontal down scale amount *
3961  *                           Vertical down scale amount
3962  * """
3963  *
3964  * Return value is provided in 16.16 fixed point form to retain fractional part.
3965  * Caller should take care of dividing & rounding off the value.
3966  */
3967 static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate)3968 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3969 			   const struct intel_plane_state *pstate)
3970 {
3971 	struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3972 	uint32_t src_w, src_h, dst_w, dst_h;
3973 	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3974 	uint_fixed_16_16_t downscale_h, downscale_w;
3975 
3976 	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3977 		return u32_to_fixed16(0);
3978 
3979 	/* n.b., src is 16.16 fixed point, dst is whole integer */
3980 	if (plane->id == PLANE_CURSOR) {
3981 		/*
3982 		 * Cursors only support 0/180 degree rotation,
3983 		 * hence no need to account for rotation here.
3984 		 */
3985 		src_w = pstate->base.src_w >> 16;
3986 		src_h = pstate->base.src_h >> 16;
3987 		dst_w = pstate->base.crtc_w;
3988 		dst_h = pstate->base.crtc_h;
3989 	} else {
3990 		/*
3991 		 * Src coordinates are already rotated by 270 degrees for
3992 		 * the 90/270 degree plane rotation cases (to match the
3993 		 * GTT mapping), hence no need to account for rotation here.
3994 		 */
3995 		src_w = drm_rect_width(&pstate->base.src) >> 16;
3996 		src_h = drm_rect_height(&pstate->base.src) >> 16;
3997 		dst_w = drm_rect_width(&pstate->base.dst);
3998 		dst_h = drm_rect_height(&pstate->base.dst);
3999 	}
4000 
4001 	fp_w_ratio = div_fixed16(src_w, dst_w);
4002 	fp_h_ratio = div_fixed16(src_h, dst_h);
4003 	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4004 	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4005 
4006 	return mul_fixed16(downscale_w, downscale_h);
4007 }
4008 
4009 static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state * crtc_state)4010 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4011 {
4012 	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4013 
4014 	if (!crtc_state->base.enable)
4015 		return pipe_downscale;
4016 
4017 	if (crtc_state->pch_pfit.enabled) {
4018 		uint32_t src_w, src_h, dst_w, dst_h;
4019 		uint32_t pfit_size = crtc_state->pch_pfit.size;
4020 		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4021 		uint_fixed_16_16_t downscale_h, downscale_w;
4022 
4023 		src_w = crtc_state->pipe_src_w;
4024 		src_h = crtc_state->pipe_src_h;
4025 		dst_w = pfit_size >> 16;
4026 		dst_h = pfit_size & 0xffff;
4027 
4028 		if (!dst_w || !dst_h)
4029 			return pipe_downscale;
4030 
4031 		fp_w_ratio = div_fixed16(src_w, dst_w);
4032 		fp_h_ratio = div_fixed16(src_h, dst_h);
4033 		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4034 		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4035 
4036 		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4037 	}
4038 
4039 	return pipe_downscale;
4040 }
4041 
skl_check_pipe_max_pixel_rate(struct intel_crtc * intel_crtc,struct intel_crtc_state * cstate)4042 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4043 				  struct intel_crtc_state *cstate)
4044 {
4045 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4046 	struct drm_crtc_state *crtc_state = &cstate->base;
4047 	struct drm_atomic_state *state = crtc_state->state;
4048 	struct drm_plane *plane;
4049 	const struct drm_plane_state *pstate;
4050 	struct intel_plane_state *intel_pstate;
4051 	int crtc_clock, dotclk;
4052 	uint32_t pipe_max_pixel_rate;
4053 	uint_fixed_16_16_t pipe_downscale;
4054 	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4055 
4056 	if (!cstate->base.enable)
4057 		return 0;
4058 
4059 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4060 		uint_fixed_16_16_t plane_downscale;
4061 		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4062 		int bpp;
4063 
4064 		if (!intel_wm_plane_visible(cstate,
4065 					    to_intel_plane_state(pstate)))
4066 			continue;
4067 
4068 		if (WARN_ON(!pstate->fb))
4069 			return -EINVAL;
4070 
4071 		intel_pstate = to_intel_plane_state(pstate);
4072 		plane_downscale = skl_plane_downscale_amount(cstate,
4073 							     intel_pstate);
4074 		bpp = pstate->fb->format->cpp[0] * 8;
4075 		if (bpp == 64)
4076 			plane_downscale = mul_fixed16(plane_downscale,
4077 						      fp_9_div_8);
4078 
4079 		max_downscale = max_fixed16(plane_downscale, max_downscale);
4080 	}
4081 	pipe_downscale = skl_pipe_downscale_amount(cstate);
4082 
4083 	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4084 
4085 	crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4086 	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4087 
4088 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4089 		dotclk *= 2;
4090 
4091 	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4092 
4093 	if (pipe_max_pixel_rate < crtc_clock) {
4094 		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4095 		return -EINVAL;
4096 	}
4097 
4098 	return 0;
4099 }
4100 
4101 static unsigned int
skl_plane_relative_data_rate(const struct intel_crtc_state * cstate,const struct drm_plane_state * pstate,const int plane)4102 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4103 			     const struct drm_plane_state *pstate,
4104 			     const int plane)
4105 {
4106 	struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4107 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4108 	uint32_t data_rate;
4109 	uint32_t width = 0, height = 0;
4110 	struct drm_framebuffer *fb;
4111 	u32 format;
4112 	uint_fixed_16_16_t down_scale_amount;
4113 
4114 	if (!intel_pstate->base.visible)
4115 		return 0;
4116 
4117 	fb = pstate->fb;
4118 	format = fb->format->format;
4119 
4120 	if (intel_plane->id == PLANE_CURSOR)
4121 		return 0;
4122 	if (plane == 1 && format != DRM_FORMAT_NV12)
4123 		return 0;
4124 
4125 	/*
4126 	 * Src coordinates are already rotated by 270 degrees for
4127 	 * the 90/270 degree plane rotation cases (to match the
4128 	 * GTT mapping), hence no need to account for rotation here.
4129 	 */
4130 	width = drm_rect_width(&intel_pstate->base.src) >> 16;
4131 	height = drm_rect_height(&intel_pstate->base.src) >> 16;
4132 
4133 	/* UV plane does 1/2 pixel sub-sampling */
4134 	if (plane == 1 && format == DRM_FORMAT_NV12) {
4135 		width /= 2;
4136 		height /= 2;
4137 	}
4138 
4139 	data_rate = width * height * fb->format->cpp[plane];
4140 
4141 	down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4142 
4143 	return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4144 }
4145 
4146 /*
4147  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4148  * a 8192x4096@32bpp framebuffer:
4149  *   3 * 4096 * 8192  * 4 < 2^32
4150  */
4151 static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc_state * intel_cstate,unsigned int * plane_data_rate,unsigned int * uv_plane_data_rate)4152 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4153 				 unsigned int *plane_data_rate,
4154 				 unsigned int *uv_plane_data_rate)
4155 {
4156 	struct drm_crtc_state *cstate = &intel_cstate->base;
4157 	struct drm_atomic_state *state = cstate->state;
4158 	struct drm_plane *plane;
4159 	const struct drm_plane_state *pstate;
4160 	unsigned int total_data_rate = 0;
4161 
4162 	if (WARN_ON(!state))
4163 		return 0;
4164 
4165 	/* Calculate and cache data rate for each plane */
4166 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4167 		enum plane_id plane_id = to_intel_plane(plane)->id;
4168 		unsigned int rate;
4169 
4170 		/* packed/y */
4171 		rate = skl_plane_relative_data_rate(intel_cstate,
4172 						    pstate, 0);
4173 		plane_data_rate[plane_id] = rate;
4174 
4175 		total_data_rate += rate;
4176 
4177 		/* uv-plane */
4178 		rate = skl_plane_relative_data_rate(intel_cstate,
4179 						    pstate, 1);
4180 		uv_plane_data_rate[plane_id] = rate;
4181 
4182 		total_data_rate += rate;
4183 	}
4184 
4185 	return total_data_rate;
4186 }
4187 
4188 static uint16_t
skl_ddb_min_alloc(const struct drm_plane_state * pstate,const int plane)4189 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4190 {
4191 	struct drm_framebuffer *fb = pstate->fb;
4192 	struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4193 	uint32_t src_w, src_h;
4194 	uint32_t min_scanlines = 8;
4195 	uint8_t plane_bpp;
4196 
4197 	if (WARN_ON(!fb))
4198 		return 0;
4199 
4200 	/* For packed formats, and uv-plane, return 0 */
4201 	if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4202 		return 0;
4203 
4204 	/* For Non Y-tile return 8-blocks */
4205 	if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4206 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4207 	    fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4208 	    fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4209 		return 8;
4210 
4211 	/*
4212 	 * Src coordinates are already rotated by 270 degrees for
4213 	 * the 90/270 degree plane rotation cases (to match the
4214 	 * GTT mapping), hence no need to account for rotation here.
4215 	 */
4216 	src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4217 	src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4218 
4219 	/* Halve UV plane width and height for NV12 */
4220 	if (plane == 1) {
4221 		src_w /= 2;
4222 		src_h /= 2;
4223 	}
4224 
4225 	plane_bpp = fb->format->cpp[plane];
4226 
4227 	if (drm_rotation_90_or_270(pstate->rotation)) {
4228 		switch (plane_bpp) {
4229 		case 1:
4230 			min_scanlines = 32;
4231 			break;
4232 		case 2:
4233 			min_scanlines = 16;
4234 			break;
4235 		case 4:
4236 			min_scanlines = 8;
4237 			break;
4238 		case 8:
4239 			min_scanlines = 4;
4240 			break;
4241 		default:
4242 			WARN(1, "Unsupported pixel depth %u for rotation",
4243 			     plane_bpp);
4244 			min_scanlines = 32;
4245 		}
4246 	}
4247 
4248 	return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4249 }
4250 
4251 static void
skl_ddb_calc_min(const struct intel_crtc_state * cstate,int num_active,uint16_t * minimum,uint16_t * uv_minimum)4252 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4253 		 uint16_t *minimum, uint16_t *uv_minimum)
4254 {
4255 	const struct drm_plane_state *pstate;
4256 	struct drm_plane *plane;
4257 
4258 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4259 		enum plane_id plane_id = to_intel_plane(plane)->id;
4260 
4261 		if (plane_id == PLANE_CURSOR)
4262 			continue;
4263 
4264 		if (!pstate->visible)
4265 			continue;
4266 
4267 		minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4268 		uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4269 	}
4270 
4271 	minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4272 }
4273 
4274 static int
skl_allocate_pipe_ddb(struct intel_crtc_state * cstate,struct skl_ddb_allocation * ddb)4275 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4276 		      struct skl_ddb_allocation *ddb /* out */)
4277 {
4278 	struct drm_atomic_state *state = cstate->base.state;
4279 	struct drm_crtc *crtc = cstate->base.crtc;
4280 	struct drm_device *dev = crtc->dev;
4281 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4282 	enum pipe pipe = intel_crtc->pipe;
4283 	struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4284 	uint16_t alloc_size, start;
4285 	uint16_t minimum[I915_MAX_PLANES] = {};
4286 	uint16_t uv_minimum[I915_MAX_PLANES] = {};
4287 	unsigned int total_data_rate;
4288 	enum plane_id plane_id;
4289 	int num_active;
4290 	unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4291 	unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4292 	uint16_t total_min_blocks = 0;
4293 
4294 	/* Clear the partitioning for disabled planes. */
4295 	memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4296 	memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4297 
4298 	if (WARN_ON(!state))
4299 		return 0;
4300 
4301 	if (!cstate->base.active) {
4302 		alloc->start = alloc->end = 0;
4303 		return 0;
4304 	}
4305 
4306 	total_data_rate = skl_get_total_relative_data_rate(cstate,
4307 							   plane_data_rate,
4308 							   uv_plane_data_rate);
4309 	skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4310 					   alloc, &num_active);
4311 	alloc_size = skl_ddb_entry_size(alloc);
4312 	if (alloc_size == 0)
4313 		return 0;
4314 
4315 	skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4316 
4317 	/*
4318 	 * 1. Allocate the mininum required blocks for each active plane
4319 	 * and allocate the cursor, it doesn't require extra allocation
4320 	 * proportional to the data rate.
4321 	 */
4322 
4323 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4324 		total_min_blocks += minimum[plane_id];
4325 		total_min_blocks += uv_minimum[plane_id];
4326 	}
4327 
4328 	if (total_min_blocks > alloc_size) {
4329 		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4330 		DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4331 							alloc_size);
4332 		return -EINVAL;
4333 	}
4334 
4335 	alloc_size -= total_min_blocks;
4336 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4337 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4338 
4339 	/*
4340 	 * 2. Distribute the remaining space in proportion to the amount of
4341 	 * data each plane needs to fetch from memory.
4342 	 *
4343 	 * FIXME: we may not allocate every single block here.
4344 	 */
4345 	if (total_data_rate == 0)
4346 		return 0;
4347 
4348 	start = alloc->start;
4349 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4350 		unsigned int data_rate, uv_data_rate;
4351 		uint16_t plane_blocks, uv_plane_blocks;
4352 
4353 		if (plane_id == PLANE_CURSOR)
4354 			continue;
4355 
4356 		data_rate = plane_data_rate[plane_id];
4357 
4358 		/*
4359 		 * allocation for (packed formats) or (uv-plane part of planar format):
4360 		 * promote the expression to 64 bits to avoid overflowing, the
4361 		 * result is < available as data_rate / total_data_rate < 1
4362 		 */
4363 		plane_blocks = minimum[plane_id];
4364 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4365 					total_data_rate);
4366 
4367 		/* Leave disabled planes at (0,0) */
4368 		if (data_rate) {
4369 			ddb->plane[pipe][plane_id].start = start;
4370 			ddb->plane[pipe][plane_id].end = start + plane_blocks;
4371 		}
4372 
4373 		start += plane_blocks;
4374 
4375 		/* Allocate DDB for UV plane for planar format/NV12 */
4376 		uv_data_rate = uv_plane_data_rate[plane_id];
4377 
4378 		uv_plane_blocks = uv_minimum[plane_id];
4379 		uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4380 					   total_data_rate);
4381 
4382 		if (uv_data_rate) {
4383 			ddb->uv_plane[pipe][plane_id].start = start;
4384 			ddb->uv_plane[pipe][plane_id].end =
4385 				start + uv_plane_blocks;
4386 		}
4387 
4388 		start += uv_plane_blocks;
4389 	}
4390 
4391 	return 0;
4392 }
4393 
4394 /*
4395  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4396  * for the read latency) and cpp should always be <= 8, so that
4397  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4398  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4399 */
4400 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,uint32_t pixel_rate,uint8_t cpp,uint32_t latency,uint32_t dbuf_block_size)4401 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4402 	       uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4403 {
4404 	uint32_t wm_intermediate_val;
4405 	uint_fixed_16_16_t ret;
4406 
4407 	if (latency == 0)
4408 		return FP_16_16_MAX;
4409 
4410 	wm_intermediate_val = latency * pixel_rate * cpp;
4411 	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4412 
4413 	if (INTEL_GEN(dev_priv) >= 10)
4414 		ret = add_fixed16_u32(ret, 1);
4415 
4416 	return ret;
4417 }
4418 
skl_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t latency,uint_fixed_16_16_t plane_blocks_per_line)4419 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4420 			uint32_t pipe_htotal,
4421 			uint32_t latency,
4422 			uint_fixed_16_16_t plane_blocks_per_line)
4423 {
4424 	uint32_t wm_intermediate_val;
4425 	uint_fixed_16_16_t ret;
4426 
4427 	if (latency == 0)
4428 		return FP_16_16_MAX;
4429 
4430 	wm_intermediate_val = latency * pixel_rate;
4431 	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4432 					   pipe_htotal * 1000);
4433 	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4434 	return ret;
4435 }
4436 
4437 static uint_fixed_16_16_t
intel_get_linetime_us(struct intel_crtc_state * cstate)4438 intel_get_linetime_us(struct intel_crtc_state *cstate)
4439 {
4440 	uint32_t pixel_rate;
4441 	uint32_t crtc_htotal;
4442 	uint_fixed_16_16_t linetime_us;
4443 
4444 	if (!cstate->base.active)
4445 		return u32_to_fixed16(0);
4446 
4447 	pixel_rate = cstate->pixel_rate;
4448 
4449 	if (WARN_ON(pixel_rate == 0))
4450 		return u32_to_fixed16(0);
4451 
4452 	crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4453 	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4454 
4455 	return linetime_us;
4456 }
4457 
4458 static uint32_t
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate)4459 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4460 			      const struct intel_plane_state *pstate)
4461 {
4462 	uint64_t adjusted_pixel_rate;
4463 	uint_fixed_16_16_t downscale_amount;
4464 
4465 	/* Shouldn't reach here on disabled planes... */
4466 	if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4467 		return 0;
4468 
4469 	/*
4470 	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4471 	 * with additional adjustments for plane-specific scaling.
4472 	 */
4473 	adjusted_pixel_rate = cstate->pixel_rate;
4474 	downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4475 
4476 	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4477 					    downscale_amount);
4478 }
4479 
4480 static int
skl_compute_plane_wm_params(const struct drm_i915_private * dev_priv,struct intel_crtc_state * cstate,const struct intel_plane_state * intel_pstate,struct skl_wm_params * wp,int plane_id)4481 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4482 			    struct intel_crtc_state *cstate,
4483 			    const struct intel_plane_state *intel_pstate,
4484 			    struct skl_wm_params *wp, int plane_id)
4485 {
4486 	struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4487 	const struct drm_plane_state *pstate = &intel_pstate->base;
4488 	const struct drm_framebuffer *fb = pstate->fb;
4489 	uint32_t interm_pbpl;
4490 	struct intel_atomic_state *state =
4491 		to_intel_atomic_state(cstate->base.state);
4492 	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4493 
4494 	if (!intel_wm_plane_visible(cstate, intel_pstate))
4495 		return 0;
4496 
4497 	/* only NV12 format has two planes */
4498 	if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4499 		DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4500 		return -EINVAL;
4501 	}
4502 
4503 	wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4504 		      fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4505 		      fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4506 		      fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4507 	wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4508 	wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4509 			 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4510 	wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4511 
4512 	if (plane->id == PLANE_CURSOR) {
4513 		wp->width = intel_pstate->base.crtc_w;
4514 	} else {
4515 		/*
4516 		 * Src coordinates are already rotated by 270 degrees for
4517 		 * the 90/270 degree plane rotation cases (to match the
4518 		 * GTT mapping), hence no need to account for rotation here.
4519 		 */
4520 		wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4521 	}
4522 
4523 	if (plane_id == 1 && wp->is_planar)
4524 		wp->width /= 2;
4525 
4526 	wp->cpp = fb->format->cpp[plane_id];
4527 	wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4528 							     intel_pstate);
4529 
4530 	if (INTEL_GEN(dev_priv) >= 11 &&
4531 	    fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4532 		wp->dbuf_block_size = 256;
4533 	else
4534 		wp->dbuf_block_size = 512;
4535 
4536 	if (drm_rotation_90_or_270(pstate->rotation)) {
4537 
4538 		switch (wp->cpp) {
4539 		case 1:
4540 			wp->y_min_scanlines = 16;
4541 			break;
4542 		case 2:
4543 			wp->y_min_scanlines = 8;
4544 			break;
4545 		case 4:
4546 			wp->y_min_scanlines = 4;
4547 			break;
4548 		default:
4549 			MISSING_CASE(wp->cpp);
4550 			return -EINVAL;
4551 		}
4552 	} else {
4553 		wp->y_min_scanlines = 4;
4554 	}
4555 
4556 	if (apply_memory_bw_wa)
4557 		wp->y_min_scanlines *= 2;
4558 
4559 	wp->plane_bytes_per_line = wp->width * wp->cpp;
4560 	if (wp->y_tiled) {
4561 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4562 					   wp->y_min_scanlines,
4563 					   wp->dbuf_block_size);
4564 
4565 		if (INTEL_GEN(dev_priv) >= 10)
4566 			interm_pbpl++;
4567 
4568 		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4569 							wp->y_min_scanlines);
4570 	} else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4571 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4572 					   wp->dbuf_block_size);
4573 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4574 	} else {
4575 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4576 					   wp->dbuf_block_size) + 1;
4577 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4578 	}
4579 
4580 	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4581 					     wp->plane_blocks_per_line);
4582 	wp->linetime_us = fixed16_to_u32_round_up(
4583 					intel_get_linetime_us(cstate));
4584 
4585 	return 0;
4586 }
4587 
skl_compute_plane_wm(const struct drm_i915_private * dev_priv,struct intel_crtc_state * cstate,const struct intel_plane_state * intel_pstate,uint16_t ddb_allocation,int level,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)4588 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4589 				struct intel_crtc_state *cstate,
4590 				const struct intel_plane_state *intel_pstate,
4591 				uint16_t ddb_allocation,
4592 				int level,
4593 				const struct skl_wm_params *wp,
4594 				const struct skl_wm_level *result_prev,
4595 				struct skl_wm_level *result /* out */)
4596 {
4597 	const struct drm_plane_state *pstate = &intel_pstate->base;
4598 	uint32_t latency = dev_priv->wm.skl_latency[level];
4599 	uint_fixed_16_16_t method1, method2;
4600 	uint_fixed_16_16_t selected_result;
4601 	uint32_t res_blocks, res_lines;
4602 	struct intel_atomic_state *state =
4603 		to_intel_atomic_state(cstate->base.state);
4604 	bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4605 	uint32_t min_disp_buf_needed;
4606 
4607 	if (latency == 0 ||
4608 	    !intel_wm_plane_visible(cstate, intel_pstate)) {
4609 		result->plane_en = false;
4610 		return 0;
4611 	}
4612 
4613 	/* Display WA #1141: kbl,cfl */
4614 	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4615 	    IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4616 	    dev_priv->ipc_enabled)
4617 		latency += 4;
4618 
4619 	if (apply_memory_bw_wa && wp->x_tiled)
4620 		latency += 15;
4621 
4622 	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4623 				 wp->cpp, latency, wp->dbuf_block_size);
4624 	method2 = skl_wm_method2(wp->plane_pixel_rate,
4625 				 cstate->base.adjusted_mode.crtc_htotal,
4626 				 latency,
4627 				 wp->plane_blocks_per_line);
4628 
4629 	if (wp->y_tiled) {
4630 		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4631 	} else {
4632 		if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4633 		     wp->dbuf_block_size < 1) &&
4634 		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4635 			selected_result = method2;
4636 		else if (ddb_allocation >=
4637 			 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4638 			selected_result = min_fixed16(method1, method2);
4639 		else if (latency >= wp->linetime_us)
4640 			selected_result = min_fixed16(method1, method2);
4641 		else
4642 			selected_result = method1;
4643 	}
4644 
4645 	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4646 	res_lines = div_round_up_fixed16(selected_result,
4647 					 wp->plane_blocks_per_line);
4648 
4649 	/* Display WA #1125: skl,bxt,kbl,glk */
4650 	if (level == 0 && wp->rc_surface)
4651 		res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4652 
4653 	/* Display WA #1126: skl,bxt,kbl,glk */
4654 	if (level >= 1 && level <= 7) {
4655 		if (wp->y_tiled) {
4656 			res_blocks += fixed16_to_u32_round_up(
4657 							wp->y_tile_minimum);
4658 			res_lines += wp->y_min_scanlines;
4659 		} else {
4660 			res_blocks++;
4661 		}
4662 
4663 		/*
4664 		 * Make sure result blocks for higher latency levels are atleast
4665 		 * as high as level below the current level.
4666 		 * Assumption in DDB algorithm optimization for special cases.
4667 		 * Also covers Display WA #1125 for RC.
4668 		 */
4669 		if (result_prev->plane_res_b > res_blocks)
4670 			res_blocks = result_prev->plane_res_b;
4671 	}
4672 
4673 	if (INTEL_GEN(dev_priv) >= 11) {
4674 		if (wp->y_tiled) {
4675 			uint32_t extra_lines;
4676 			uint_fixed_16_16_t fp_min_disp_buf_needed;
4677 
4678 			if (res_lines % wp->y_min_scanlines == 0)
4679 				extra_lines = wp->y_min_scanlines;
4680 			else
4681 				extra_lines = wp->y_min_scanlines * 2 -
4682 					      res_lines % wp->y_min_scanlines;
4683 
4684 			fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4685 						extra_lines,
4686 						wp->plane_blocks_per_line);
4687 			min_disp_buf_needed = fixed16_to_u32_round_up(
4688 						fp_min_disp_buf_needed);
4689 		} else {
4690 			min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4691 		}
4692 	} else {
4693 		min_disp_buf_needed = res_blocks;
4694 	}
4695 
4696 	if ((level > 0 && res_lines > 31) ||
4697 	    res_blocks >= ddb_allocation ||
4698 	    min_disp_buf_needed >= ddb_allocation) {
4699 		result->plane_en = false;
4700 
4701 		/*
4702 		 * If there are no valid level 0 watermarks, then we can't
4703 		 * support this display configuration.
4704 		 */
4705 		if (level) {
4706 			return 0;
4707 		} else {
4708 			struct drm_plane *plane = pstate->plane;
4709 
4710 			DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4711 			DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4712 				      plane->base.id, plane->name,
4713 				      res_blocks, ddb_allocation, res_lines);
4714 			return -EINVAL;
4715 		}
4716 	}
4717 
4718 	/*
4719 	 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4720 	 * disable wm level 1-7 on NV12 planes
4721 	 */
4722 	if (wp->is_planar && level >= 1 &&
4723 	    (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4724 	     IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4725 		result->plane_en = false;
4726 		return 0;
4727 	}
4728 
4729 	/* The number of lines are ignored for the level 0 watermark. */
4730 	result->plane_res_b = res_blocks;
4731 	result->plane_res_l = res_lines;
4732 	result->plane_en = true;
4733 
4734 	return 0;
4735 }
4736 
4737 static int
skl_compute_wm_levels(const struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb,struct intel_crtc_state * cstate,const struct intel_plane_state * intel_pstate,const struct skl_wm_params * wm_params,struct skl_plane_wm * wm,int plane_id)4738 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4739 		      struct skl_ddb_allocation *ddb,
4740 		      struct intel_crtc_state *cstate,
4741 		      const struct intel_plane_state *intel_pstate,
4742 		      const struct skl_wm_params *wm_params,
4743 		      struct skl_plane_wm *wm,
4744 		      int plane_id)
4745 {
4746 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4747 	struct drm_plane *plane = intel_pstate->base.plane;
4748 	struct intel_plane *intel_plane = to_intel_plane(plane);
4749 	uint16_t ddb_blocks;
4750 	enum pipe pipe = intel_crtc->pipe;
4751 	int level, max_level = ilk_wm_max_level(dev_priv);
4752 	enum plane_id intel_plane_id = intel_plane->id;
4753 	int ret;
4754 
4755 	if (WARN_ON(!intel_pstate->base.fb))
4756 		return -EINVAL;
4757 
4758 	ddb_blocks = plane_id ?
4759 		     skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4760 		     skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4761 
4762 	for (level = 0; level <= max_level; level++) {
4763 		struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4764 							  &wm->wm[level];
4765 		struct skl_wm_level *result_prev;
4766 
4767 		if (level)
4768 			result_prev = plane_id ? &wm->uv_wm[level - 1] :
4769 						  &wm->wm[level - 1];
4770 		else
4771 			result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4772 
4773 		ret = skl_compute_plane_wm(dev_priv,
4774 					   cstate,
4775 					   intel_pstate,
4776 					   ddb_blocks,
4777 					   level,
4778 					   wm_params,
4779 					   result_prev,
4780 					   result);
4781 		if (ret)
4782 			return ret;
4783 	}
4784 
4785 	if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4786 		wm->is_planar = true;
4787 
4788 	return 0;
4789 }
4790 
4791 static uint32_t
skl_compute_linetime_wm(struct intel_crtc_state * cstate)4792 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4793 {
4794 	struct drm_atomic_state *state = cstate->base.state;
4795 	struct drm_i915_private *dev_priv = to_i915(state->dev);
4796 	uint_fixed_16_16_t linetime_us;
4797 	uint32_t linetime_wm;
4798 
4799 	linetime_us = intel_get_linetime_us(cstate);
4800 
4801 	if (is_fixed16_zero(linetime_us))
4802 		return 0;
4803 
4804 	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4805 
4806 	/* Display WA #1135: bxt:ALL GLK:ALL */
4807 	if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4808 	    dev_priv->ipc_enabled)
4809 		linetime_wm /= 2;
4810 
4811 	return linetime_wm;
4812 }
4813 
skl_compute_transition_wm(struct intel_crtc_state * cstate,struct skl_wm_params * wp,struct skl_wm_level * wm_l0,uint16_t ddb_allocation,struct skl_wm_level * trans_wm)4814 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4815 				      struct skl_wm_params *wp,
4816 				      struct skl_wm_level *wm_l0,
4817 				      uint16_t ddb_allocation,
4818 				      struct skl_wm_level *trans_wm /* out */)
4819 {
4820 	struct drm_device *dev = cstate->base.crtc->dev;
4821 	const struct drm_i915_private *dev_priv = to_i915(dev);
4822 	uint16_t trans_min, trans_y_tile_min;
4823 	const uint16_t trans_amount = 10; /* This is configurable amount */
4824 	uint16_t trans_offset_b, res_blocks;
4825 
4826 	if (!cstate->base.active)
4827 		goto exit;
4828 
4829 	/* Transition WM are not recommended by HW team for GEN9 */
4830 	if (INTEL_GEN(dev_priv) <= 9)
4831 		goto exit;
4832 
4833 	/* Transition WM don't make any sense if ipc is disabled */
4834 	if (!dev_priv->ipc_enabled)
4835 		goto exit;
4836 
4837 	trans_min = 0;
4838 	if (INTEL_GEN(dev_priv) >= 10)
4839 		trans_min = 4;
4840 
4841 	trans_offset_b = trans_min + trans_amount;
4842 
4843 	if (wp->y_tiled) {
4844 		trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4845 							wp->y_tile_minimum);
4846 		res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4847 				trans_offset_b;
4848 	} else {
4849 		res_blocks = wm_l0->plane_res_b + trans_offset_b;
4850 
4851 		/* WA BUG:1938466 add one block for non y-tile planes */
4852 		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4853 			res_blocks += 1;
4854 
4855 	}
4856 
4857 	res_blocks += 1;
4858 
4859 	if (res_blocks < ddb_allocation) {
4860 		trans_wm->plane_res_b = res_blocks;
4861 		trans_wm->plane_en = true;
4862 		return;
4863 	}
4864 
4865 exit:
4866 	trans_wm->plane_en = false;
4867 }
4868 
skl_build_pipe_wm(struct intel_crtc_state * cstate,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm)4869 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4870 			     struct skl_ddb_allocation *ddb,
4871 			     struct skl_pipe_wm *pipe_wm)
4872 {
4873 	struct drm_device *dev = cstate->base.crtc->dev;
4874 	struct drm_crtc_state *crtc_state = &cstate->base;
4875 	const struct drm_i915_private *dev_priv = to_i915(dev);
4876 	struct drm_plane *plane;
4877 	const struct drm_plane_state *pstate;
4878 	struct skl_plane_wm *wm;
4879 	int ret;
4880 
4881 	/*
4882 	 * We'll only calculate watermarks for planes that are actually
4883 	 * enabled, so make sure all other planes are set as disabled.
4884 	 */
4885 	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4886 
4887 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4888 		const struct intel_plane_state *intel_pstate =
4889 						to_intel_plane_state(pstate);
4890 		enum plane_id plane_id = to_intel_plane(plane)->id;
4891 		struct skl_wm_params wm_params;
4892 		enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4893 		uint16_t ddb_blocks;
4894 
4895 		wm = &pipe_wm->planes[plane_id];
4896 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4897 
4898 		ret = skl_compute_plane_wm_params(dev_priv, cstate,
4899 						  intel_pstate, &wm_params, 0);
4900 		if (ret)
4901 			return ret;
4902 
4903 		ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4904 					    intel_pstate, &wm_params, wm, 0);
4905 		if (ret)
4906 			return ret;
4907 
4908 		skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4909 					  ddb_blocks, &wm->trans_wm);
4910 
4911 		/* uv plane watermarks must also be validated for NV12/Planar */
4912 		if (wm_params.is_planar) {
4913 			memset(&wm_params, 0, sizeof(struct skl_wm_params));
4914 			wm->is_planar = true;
4915 
4916 			ret = skl_compute_plane_wm_params(dev_priv, cstate,
4917 							  intel_pstate,
4918 							  &wm_params, 1);
4919 			if (ret)
4920 				return ret;
4921 
4922 			ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4923 						    intel_pstate, &wm_params,
4924 						    wm, 1);
4925 			if (ret)
4926 				return ret;
4927 		}
4928 	}
4929 
4930 	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4931 
4932 	return 0;
4933 }
4934 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)4935 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4936 				i915_reg_t reg,
4937 				const struct skl_ddb_entry *entry)
4938 {
4939 	if (entry->end)
4940 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4941 	else
4942 		I915_WRITE(reg, 0);
4943 }
4944 
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)4945 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4946 			       i915_reg_t reg,
4947 			       const struct skl_wm_level *level)
4948 {
4949 	uint32_t val = 0;
4950 
4951 	if (level->plane_en) {
4952 		val |= PLANE_WM_EN;
4953 		val |= level->plane_res_b;
4954 		val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4955 	}
4956 
4957 	I915_WRITE(reg, val);
4958 }
4959 
skl_write_plane_wm(struct intel_crtc * intel_crtc,const struct skl_plane_wm * wm,const struct skl_ddb_allocation * ddb,enum plane_id plane_id)4960 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4961 			       const struct skl_plane_wm *wm,
4962 			       const struct skl_ddb_allocation *ddb,
4963 			       enum plane_id plane_id)
4964 {
4965 	struct drm_crtc *crtc = &intel_crtc->base;
4966 	struct drm_device *dev = crtc->dev;
4967 	struct drm_i915_private *dev_priv = to_i915(dev);
4968 	int level, max_level = ilk_wm_max_level(dev_priv);
4969 	enum pipe pipe = intel_crtc->pipe;
4970 
4971 	for (level = 0; level <= max_level; level++) {
4972 		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4973 				   &wm->wm[level]);
4974 	}
4975 	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4976 			   &wm->trans_wm);
4977 
4978 	skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4979 			    &ddb->plane[pipe][plane_id]);
4980 	if (INTEL_GEN(dev_priv) >= 11)
4981 		return skl_ddb_entry_write(dev_priv,
4982 					   PLANE_BUF_CFG(pipe, plane_id),
4983 					   &ddb->plane[pipe][plane_id]);
4984 	if (wm->is_planar) {
4985 		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4986 				    &ddb->uv_plane[pipe][plane_id]);
4987 		skl_ddb_entry_write(dev_priv,
4988 				    PLANE_NV12_BUF_CFG(pipe, plane_id),
4989 				    &ddb->plane[pipe][plane_id]);
4990 	} else {
4991 		skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4992 				    &ddb->plane[pipe][plane_id]);
4993 		I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
4994 	}
4995 }
4996 
skl_write_cursor_wm(struct intel_crtc * intel_crtc,const struct skl_plane_wm * wm,const struct skl_ddb_allocation * ddb)4997 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4998 				const struct skl_plane_wm *wm,
4999 				const struct skl_ddb_allocation *ddb)
5000 {
5001 	struct drm_crtc *crtc = &intel_crtc->base;
5002 	struct drm_device *dev = crtc->dev;
5003 	struct drm_i915_private *dev_priv = to_i915(dev);
5004 	int level, max_level = ilk_wm_max_level(dev_priv);
5005 	enum pipe pipe = intel_crtc->pipe;
5006 
5007 	for (level = 0; level <= max_level; level++) {
5008 		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5009 				   &wm->wm[level]);
5010 	}
5011 	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5012 
5013 	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5014 			    &ddb->plane[pipe][PLANE_CURSOR]);
5015 }
5016 
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5017 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5018 			 const struct skl_wm_level *l2)
5019 {
5020 	if (l1->plane_en != l2->plane_en)
5021 		return false;
5022 
5023 	/* If both planes aren't enabled, the rest shouldn't matter */
5024 	if (!l1->plane_en)
5025 		return true;
5026 
5027 	return (l1->plane_res_l == l2->plane_res_l &&
5028 		l1->plane_res_b == l2->plane_res_b);
5029 }
5030 
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5031 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5032 					   const struct skl_ddb_entry *b)
5033 {
5034 	return a->start < b->end && b->start < a->end;
5035 }
5036 
skl_ddb_allocation_overlaps(struct drm_i915_private * dev_priv,const struct skl_ddb_entry ** entries,const struct skl_ddb_entry * ddb,int ignore)5037 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5038 				 const struct skl_ddb_entry **entries,
5039 				 const struct skl_ddb_entry *ddb,
5040 				 int ignore)
5041 {
5042 	enum pipe pipe;
5043 
5044 	for_each_pipe(dev_priv, pipe) {
5045 		if (pipe != ignore && entries[pipe] &&
5046 		    skl_ddb_entries_overlap(ddb, entries[pipe]))
5047 			return true;
5048 	}
5049 
5050 	return false;
5051 }
5052 
skl_update_pipe_wm(struct drm_crtc_state * cstate,const struct skl_pipe_wm * old_pipe_wm,struct skl_pipe_wm * pipe_wm,struct skl_ddb_allocation * ddb,bool * changed)5053 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5054 			      const struct skl_pipe_wm *old_pipe_wm,
5055 			      struct skl_pipe_wm *pipe_wm, /* out */
5056 			      struct skl_ddb_allocation *ddb, /* out */
5057 			      bool *changed /* out */)
5058 {
5059 	struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5060 	int ret;
5061 
5062 	ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5063 	if (ret)
5064 		return ret;
5065 
5066 	if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5067 		*changed = false;
5068 	else
5069 		*changed = true;
5070 
5071 	return 0;
5072 }
5073 
5074 static uint32_t
pipes_modified(struct drm_atomic_state * state)5075 pipes_modified(struct drm_atomic_state *state)
5076 {
5077 	struct drm_crtc *crtc;
5078 	struct drm_crtc_state *cstate;
5079 	uint32_t i, ret = 0;
5080 
5081 	for_each_new_crtc_in_state(state, crtc, cstate, i)
5082 		ret |= drm_crtc_mask(crtc);
5083 
5084 	return ret;
5085 }
5086 
5087 static int
skl_ddb_add_affected_planes(struct intel_crtc_state * cstate)5088 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5089 {
5090 	struct drm_atomic_state *state = cstate->base.state;
5091 	struct drm_device *dev = state->dev;
5092 	struct drm_crtc *crtc = cstate->base.crtc;
5093 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5094 	struct drm_i915_private *dev_priv = to_i915(dev);
5095 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5096 	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5097 	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5098 	struct drm_plane_state *plane_state;
5099 	struct drm_plane *plane;
5100 	enum pipe pipe = intel_crtc->pipe;
5101 
5102 	drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5103 		enum plane_id plane_id = to_intel_plane(plane)->id;
5104 
5105 		if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5106 					&new_ddb->plane[pipe][plane_id]) &&
5107 		    skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5108 					&new_ddb->uv_plane[pipe][plane_id]))
5109 			continue;
5110 
5111 		plane_state = drm_atomic_get_plane_state(state, plane);
5112 		if (IS_ERR(plane_state))
5113 			return PTR_ERR(plane_state);
5114 	}
5115 
5116 	return 0;
5117 }
5118 
5119 static int
skl_compute_ddb(struct drm_atomic_state * state)5120 skl_compute_ddb(struct drm_atomic_state *state)
5121 {
5122 	const struct drm_i915_private *dev_priv = to_i915(state->dev);
5123 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5124 	struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5125 	struct intel_crtc *crtc;
5126 	struct intel_crtc_state *cstate;
5127 	int ret, i;
5128 
5129 	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5130 
5131 	for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5132 		ret = skl_allocate_pipe_ddb(cstate, ddb);
5133 		if (ret)
5134 			return ret;
5135 
5136 		ret = skl_ddb_add_affected_planes(cstate);
5137 		if (ret)
5138 			return ret;
5139 	}
5140 
5141 	return 0;
5142 }
5143 
5144 static void
skl_copy_ddb_for_pipe(struct skl_ddb_values * dst,struct skl_ddb_values * src,enum pipe pipe)5145 skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
5146 		      struct skl_ddb_values *src,
5147 		      enum pipe pipe)
5148 {
5149 	memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
5150 	       sizeof(dst->ddb.uv_plane[pipe]));
5151 	memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
5152 	       sizeof(dst->ddb.plane[pipe]));
5153 }
5154 
5155 static void
skl_print_wm_changes(const struct drm_atomic_state * state)5156 skl_print_wm_changes(const struct drm_atomic_state *state)
5157 {
5158 	const struct drm_device *dev = state->dev;
5159 	const struct drm_i915_private *dev_priv = to_i915(dev);
5160 	const struct intel_atomic_state *intel_state =
5161 		to_intel_atomic_state(state);
5162 	const struct drm_crtc *crtc;
5163 	const struct drm_crtc_state *cstate;
5164 	const struct intel_plane *intel_plane;
5165 	const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5166 	const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5167 	int i;
5168 
5169 	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5170 		const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5171 		enum pipe pipe = intel_crtc->pipe;
5172 
5173 		for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5174 			enum plane_id plane_id = intel_plane->id;
5175 			const struct skl_ddb_entry *old, *new;
5176 
5177 			old = &old_ddb->plane[pipe][plane_id];
5178 			new = &new_ddb->plane[pipe][plane_id];
5179 
5180 			if (skl_ddb_entry_equal(old, new))
5181 				continue;
5182 
5183 			DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5184 					 intel_plane->base.base.id,
5185 					 intel_plane->base.name,
5186 					 old->start, old->end,
5187 					 new->start, new->end);
5188 		}
5189 	}
5190 }
5191 
5192 static int
skl_ddb_add_affected_pipes(struct drm_atomic_state * state,bool * changed)5193 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5194 {
5195 	struct drm_device *dev = state->dev;
5196 	const struct drm_i915_private *dev_priv = to_i915(dev);
5197 	const struct drm_crtc *crtc;
5198 	const struct drm_crtc_state *cstate;
5199 	struct intel_crtc *intel_crtc;
5200 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5201 	uint32_t realloc_pipes = pipes_modified(state);
5202 	int ret, i;
5203 
5204 	/*
5205 	 * When we distrust bios wm we always need to recompute to set the
5206 	 * expected DDB allocations for each CRTC.
5207 	 */
5208 	if (dev_priv->wm.distrust_bios_wm)
5209 		(*changed) = true;
5210 
5211 	/*
5212 	 * If this transaction isn't actually touching any CRTC's, don't
5213 	 * bother with watermark calculation.  Note that if we pass this
5214 	 * test, we're guaranteed to hold at least one CRTC state mutex,
5215 	 * which means we can safely use values like dev_priv->active_crtcs
5216 	 * since any racing commits that want to update them would need to
5217 	 * hold _all_ CRTC state mutexes.
5218 	 */
5219 	for_each_new_crtc_in_state(state, crtc, cstate, i)
5220 		(*changed) = true;
5221 
5222 	if (!*changed)
5223 		return 0;
5224 
5225 	/*
5226 	 * If this is our first atomic update following hardware readout,
5227 	 * we can't trust the DDB that the BIOS programmed for us.  Let's
5228 	 * pretend that all pipes switched active status so that we'll
5229 	 * ensure a full DDB recompute.
5230 	 */
5231 	if (dev_priv->wm.distrust_bios_wm) {
5232 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5233 				       state->acquire_ctx);
5234 		if (ret)
5235 			return ret;
5236 
5237 		intel_state->active_pipe_changes = ~0;
5238 
5239 		/*
5240 		 * We usually only initialize intel_state->active_crtcs if we
5241 		 * we're doing a modeset; make sure this field is always
5242 		 * initialized during the sanitization process that happens
5243 		 * on the first commit too.
5244 		 */
5245 		if (!intel_state->modeset)
5246 			intel_state->active_crtcs = dev_priv->active_crtcs;
5247 	}
5248 
5249 	/*
5250 	 * If the modeset changes which CRTC's are active, we need to
5251 	 * recompute the DDB allocation for *all* active pipes, even
5252 	 * those that weren't otherwise being modified in any way by this
5253 	 * atomic commit.  Due to the shrinking of the per-pipe allocations
5254 	 * when new active CRTC's are added, it's possible for a pipe that
5255 	 * we were already using and aren't changing at all here to suddenly
5256 	 * become invalid if its DDB needs exceeds its new allocation.
5257 	 *
5258 	 * Note that if we wind up doing a full DDB recompute, we can't let
5259 	 * any other display updates race with this transaction, so we need
5260 	 * to grab the lock on *all* CRTC's.
5261 	 */
5262 	if (intel_state->active_pipe_changes) {
5263 		realloc_pipes = ~0;
5264 		intel_state->wm_results.dirty_pipes = ~0;
5265 	}
5266 
5267 	/*
5268 	 * We're not recomputing for the pipes not included in the commit, so
5269 	 * make sure we start with the current state.
5270 	 */
5271 	for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5272 		struct intel_crtc_state *cstate;
5273 
5274 		cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5275 		if (IS_ERR(cstate))
5276 			return PTR_ERR(cstate);
5277 	}
5278 
5279 	return 0;
5280 }
5281 
5282 static int
skl_compute_wm(struct drm_atomic_state * state)5283 skl_compute_wm(struct drm_atomic_state *state)
5284 {
5285 	struct drm_crtc *crtc;
5286 	struct drm_crtc_state *cstate;
5287 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5288 	struct skl_ddb_values *results = &intel_state->wm_results;
5289 	struct skl_pipe_wm *pipe_wm;
5290 	bool changed = false;
5291 	int ret, i;
5292 
5293 	/* Clear all dirty flags */
5294 	results->dirty_pipes = 0;
5295 
5296 	ret = skl_ddb_add_affected_pipes(state, &changed);
5297 	if (ret || !changed)
5298 		return ret;
5299 
5300 	ret = skl_compute_ddb(state);
5301 	if (ret)
5302 		return ret;
5303 
5304 	/*
5305 	 * Calculate WM's for all pipes that are part of this transaction.
5306 	 * Note that the DDB allocation above may have added more CRTC's that
5307 	 * weren't otherwise being modified (and set bits in dirty_pipes) if
5308 	 * pipe allocations had to change.
5309 	 *
5310 	 * FIXME:  Now that we're doing this in the atomic check phase, we
5311 	 * should allow skl_update_pipe_wm() to return failure in cases where
5312 	 * no suitable watermark values can be found.
5313 	 */
5314 	for_each_new_crtc_in_state(state, crtc, cstate, i) {
5315 		struct intel_crtc_state *intel_cstate =
5316 			to_intel_crtc_state(cstate);
5317 		const struct skl_pipe_wm *old_pipe_wm =
5318 			&to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5319 
5320 		pipe_wm = &intel_cstate->wm.skl.optimal;
5321 		ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5322 					 &results->ddb, &changed);
5323 		if (ret)
5324 			return ret;
5325 
5326 		if (changed)
5327 			results->dirty_pipes |= drm_crtc_mask(crtc);
5328 
5329 		if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5330 			/* This pipe's WM's did not change */
5331 			continue;
5332 
5333 		intel_cstate->update_wm_pre = true;
5334 	}
5335 
5336 	skl_print_wm_changes(state);
5337 
5338 	return 0;
5339 }
5340 
skl_atomic_update_crtc_wm(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5341 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5342 				      struct intel_crtc_state *cstate)
5343 {
5344 	struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5345 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5346 	struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5347 	const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5348 	enum pipe pipe = crtc->pipe;
5349 	enum plane_id plane_id;
5350 
5351 	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5352 		return;
5353 
5354 	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5355 
5356 	for_each_plane_id_on_crtc(crtc, plane_id) {
5357 		if (plane_id != PLANE_CURSOR)
5358 			skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5359 					   ddb, plane_id);
5360 		else
5361 			skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5362 					    ddb);
5363 	}
5364 }
5365 
skl_initial_wm(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5366 static void skl_initial_wm(struct intel_atomic_state *state,
5367 			   struct intel_crtc_state *cstate)
5368 {
5369 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5370 	struct drm_device *dev = intel_crtc->base.dev;
5371 	struct drm_i915_private *dev_priv = to_i915(dev);
5372 	struct skl_ddb_values *results = &state->wm_results;
5373 	struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5374 	enum pipe pipe = intel_crtc->pipe;
5375 
5376 	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5377 		return;
5378 
5379 	mutex_lock(&dev_priv->wm.wm_mutex);
5380 
5381 	if (cstate->base.active_changed)
5382 		skl_atomic_update_crtc_wm(state, cstate);
5383 
5384 	skl_copy_ddb_for_pipe(hw_vals, results, pipe);
5385 
5386 	mutex_unlock(&dev_priv->wm.wm_mutex);
5387 }
5388 
ilk_compute_wm_config(struct drm_device * dev,struct intel_wm_config * config)5389 static void ilk_compute_wm_config(struct drm_device *dev,
5390 				  struct intel_wm_config *config)
5391 {
5392 	struct intel_crtc *crtc;
5393 
5394 	/* Compute the currently _active_ config */
5395 	for_each_intel_crtc(dev, crtc) {
5396 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5397 
5398 		if (!wm->pipe_enabled)
5399 			continue;
5400 
5401 		config->sprites_enabled |= wm->sprites_enabled;
5402 		config->sprites_scaled |= wm->sprites_scaled;
5403 		config->num_pipes_active++;
5404 	}
5405 }
5406 
ilk_program_watermarks(struct drm_i915_private * dev_priv)5407 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5408 {
5409 	struct drm_device *dev = &dev_priv->drm;
5410 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5411 	struct ilk_wm_maximums max;
5412 	struct intel_wm_config config = {};
5413 	struct ilk_wm_values results = {};
5414 	enum intel_ddb_partitioning partitioning;
5415 
5416 	ilk_compute_wm_config(dev, &config);
5417 
5418 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5419 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5420 
5421 	/* 5/6 split only in single pipe config on IVB+ */
5422 	if (INTEL_GEN(dev_priv) >= 7 &&
5423 	    config.num_pipes_active == 1 && config.sprites_enabled) {
5424 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5425 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5426 
5427 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5428 	} else {
5429 		best_lp_wm = &lp_wm_1_2;
5430 	}
5431 
5432 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5433 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5434 
5435 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5436 
5437 	ilk_write_wm_values(dev_priv, &results);
5438 }
5439 
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5440 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5441 				   struct intel_crtc_state *cstate)
5442 {
5443 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5444 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5445 
5446 	mutex_lock(&dev_priv->wm.wm_mutex);
5447 	intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5448 	ilk_program_watermarks(dev_priv);
5449 	mutex_unlock(&dev_priv->wm.wm_mutex);
5450 }
5451 
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * cstate)5452 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5453 				    struct intel_crtc_state *cstate)
5454 {
5455 	struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5456 	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5457 
5458 	mutex_lock(&dev_priv->wm.wm_mutex);
5459 	if (cstate->wm.need_postvbl_update) {
5460 		intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5461 		ilk_program_watermarks(dev_priv);
5462 	}
5463 	mutex_unlock(&dev_priv->wm.wm_mutex);
5464 }
5465 
skl_wm_level_from_reg_val(uint32_t val,struct skl_wm_level * level)5466 static inline void skl_wm_level_from_reg_val(uint32_t val,
5467 					     struct skl_wm_level *level)
5468 {
5469 	level->plane_en = val & PLANE_WM_EN;
5470 	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5471 	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5472 		PLANE_WM_LINES_MASK;
5473 }
5474 
skl_pipe_wm_get_hw_state(struct drm_crtc * crtc,struct skl_pipe_wm * out)5475 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5476 			      struct skl_pipe_wm *out)
5477 {
5478 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5479 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5480 	enum pipe pipe = intel_crtc->pipe;
5481 	int level, max_level;
5482 	enum plane_id plane_id;
5483 	uint32_t val;
5484 
5485 	max_level = ilk_wm_max_level(dev_priv);
5486 
5487 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5488 		struct skl_plane_wm *wm = &out->planes[plane_id];
5489 
5490 		for (level = 0; level <= max_level; level++) {
5491 			if (plane_id != PLANE_CURSOR)
5492 				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5493 			else
5494 				val = I915_READ(CUR_WM(pipe, level));
5495 
5496 			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5497 		}
5498 
5499 		if (plane_id != PLANE_CURSOR)
5500 			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5501 		else
5502 			val = I915_READ(CUR_WM_TRANS(pipe));
5503 
5504 		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5505 	}
5506 
5507 	if (!intel_crtc->active)
5508 		return;
5509 
5510 	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5511 }
5512 
skl_wm_get_hw_state(struct drm_device * dev)5513 void skl_wm_get_hw_state(struct drm_device *dev)
5514 {
5515 	struct drm_i915_private *dev_priv = to_i915(dev);
5516 	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5517 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5518 	struct drm_crtc *crtc;
5519 	struct intel_crtc *intel_crtc;
5520 	struct intel_crtc_state *cstate;
5521 
5522 	skl_ddb_get_hw_state(dev_priv, ddb);
5523 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5524 		intel_crtc = to_intel_crtc(crtc);
5525 		cstate = to_intel_crtc_state(crtc->state);
5526 
5527 		skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5528 
5529 		if (intel_crtc->active)
5530 			hw->dirty_pipes |= drm_crtc_mask(crtc);
5531 	}
5532 
5533 	if (dev_priv->active_crtcs) {
5534 		/* Fully recompute DDB on first atomic commit */
5535 		dev_priv->wm.distrust_bios_wm = true;
5536 	} else {
5537 		/*
5538 		 * Easy/common case; just sanitize DDB now if everything off
5539 		 * Keep dbuf slice info intact
5540 		 */
5541 		memset(ddb->plane, 0, sizeof(ddb->plane));
5542 		memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5543 	}
5544 }
5545 
ilk_pipe_wm_get_hw_state(struct drm_crtc * crtc)5546 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5547 {
5548 	struct drm_device *dev = crtc->dev;
5549 	struct drm_i915_private *dev_priv = to_i915(dev);
5550 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5551 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5552 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5553 	struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5554 	enum pipe pipe = intel_crtc->pipe;
5555 	static const i915_reg_t wm0_pipe_reg[] = {
5556 		[PIPE_A] = WM0_PIPEA_ILK,
5557 		[PIPE_B] = WM0_PIPEB_ILK,
5558 		[PIPE_C] = WM0_PIPEC_IVB,
5559 	};
5560 
5561 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5562 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5563 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5564 
5565 	memset(active, 0, sizeof(*active));
5566 
5567 	active->pipe_enabled = intel_crtc->active;
5568 
5569 	if (active->pipe_enabled) {
5570 		u32 tmp = hw->wm_pipe[pipe];
5571 
5572 		/*
5573 		 * For active pipes LP0 watermark is marked as
5574 		 * enabled, and LP1+ watermaks as disabled since
5575 		 * we can't really reverse compute them in case
5576 		 * multiple pipes are active.
5577 		 */
5578 		active->wm[0].enable = true;
5579 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5580 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5581 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5582 		active->linetime = hw->wm_linetime[pipe];
5583 	} else {
5584 		int level, max_level = ilk_wm_max_level(dev_priv);
5585 
5586 		/*
5587 		 * For inactive pipes, all watermark levels
5588 		 * should be marked as enabled but zeroed,
5589 		 * which is what we'd compute them to.
5590 		 */
5591 		for (level = 0; level <= max_level; level++)
5592 			active->wm[level].enable = true;
5593 	}
5594 
5595 	intel_crtc->wm.active.ilk = *active;
5596 }
5597 
5598 #define _FW_WM(value, plane) \
5599 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5600 #define _FW_WM_VLV(value, plane) \
5601 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5602 
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)5603 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5604 			       struct g4x_wm_values *wm)
5605 {
5606 	uint32_t tmp;
5607 
5608 	tmp = I915_READ(DSPFW1);
5609 	wm->sr.plane = _FW_WM(tmp, SR);
5610 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5611 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5612 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5613 
5614 	tmp = I915_READ(DSPFW2);
5615 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5616 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5617 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5618 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5619 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5620 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5621 
5622 	tmp = I915_READ(DSPFW3);
5623 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5624 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5625 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5626 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5627 }
5628 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)5629 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5630 			       struct vlv_wm_values *wm)
5631 {
5632 	enum pipe pipe;
5633 	uint32_t tmp;
5634 
5635 	for_each_pipe(dev_priv, pipe) {
5636 		tmp = I915_READ(VLV_DDL(pipe));
5637 
5638 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5639 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5640 		wm->ddl[pipe].plane[PLANE_CURSOR] =
5641 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5642 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5643 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5644 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5645 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5646 	}
5647 
5648 	tmp = I915_READ(DSPFW1);
5649 	wm->sr.plane = _FW_WM(tmp, SR);
5650 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5651 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5652 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5653 
5654 	tmp = I915_READ(DSPFW2);
5655 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5656 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5657 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5658 
5659 	tmp = I915_READ(DSPFW3);
5660 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5661 
5662 	if (IS_CHERRYVIEW(dev_priv)) {
5663 		tmp = I915_READ(DSPFW7_CHV);
5664 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5665 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5666 
5667 		tmp = I915_READ(DSPFW8_CHV);
5668 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5669 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5670 
5671 		tmp = I915_READ(DSPFW9_CHV);
5672 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5673 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5674 
5675 		tmp = I915_READ(DSPHOWM);
5676 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5677 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5678 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5679 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5680 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5681 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5682 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5683 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5684 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5685 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5686 	} else {
5687 		tmp = I915_READ(DSPFW7);
5688 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5689 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5690 
5691 		tmp = I915_READ(DSPHOWM);
5692 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5693 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5694 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5695 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5696 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5697 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5698 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5699 	}
5700 }
5701 
5702 #undef _FW_WM
5703 #undef _FW_WM_VLV
5704 
g4x_wm_get_hw_state(struct drm_device * dev)5705 void g4x_wm_get_hw_state(struct drm_device *dev)
5706 {
5707 	struct drm_i915_private *dev_priv = to_i915(dev);
5708 	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5709 	struct intel_crtc *crtc;
5710 
5711 	g4x_read_wm_values(dev_priv, wm);
5712 
5713 	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5714 
5715 	for_each_intel_crtc(dev, crtc) {
5716 		struct intel_crtc_state *crtc_state =
5717 			to_intel_crtc_state(crtc->base.state);
5718 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
5719 		struct g4x_pipe_wm *raw;
5720 		enum pipe pipe = crtc->pipe;
5721 		enum plane_id plane_id;
5722 		int level, max_level;
5723 
5724 		active->cxsr = wm->cxsr;
5725 		active->hpll_en = wm->hpll_en;
5726 		active->fbc_en = wm->fbc_en;
5727 
5728 		active->sr = wm->sr;
5729 		active->hpll = wm->hpll;
5730 
5731 		for_each_plane_id_on_crtc(crtc, plane_id) {
5732 			active->wm.plane[plane_id] =
5733 				wm->pipe[pipe].plane[plane_id];
5734 		}
5735 
5736 		if (wm->cxsr && wm->hpll_en)
5737 			max_level = G4X_WM_LEVEL_HPLL;
5738 		else if (wm->cxsr)
5739 			max_level = G4X_WM_LEVEL_SR;
5740 		else
5741 			max_level = G4X_WM_LEVEL_NORMAL;
5742 
5743 		level = G4X_WM_LEVEL_NORMAL;
5744 		raw = &crtc_state->wm.g4x.raw[level];
5745 		for_each_plane_id_on_crtc(crtc, plane_id)
5746 			raw->plane[plane_id] = active->wm.plane[plane_id];
5747 
5748 		if (++level > max_level)
5749 			goto out;
5750 
5751 		raw = &crtc_state->wm.g4x.raw[level];
5752 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
5753 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
5754 		raw->plane[PLANE_SPRITE0] = 0;
5755 		raw->fbc = active->sr.fbc;
5756 
5757 		if (++level > max_level)
5758 			goto out;
5759 
5760 		raw = &crtc_state->wm.g4x.raw[level];
5761 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5762 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5763 		raw->plane[PLANE_SPRITE0] = 0;
5764 		raw->fbc = active->hpll.fbc;
5765 
5766 	out:
5767 		for_each_plane_id_on_crtc(crtc, plane_id)
5768 			g4x_raw_plane_wm_set(crtc_state, level,
5769 					     plane_id, USHRT_MAX);
5770 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5771 
5772 		crtc_state->wm.g4x.optimal = *active;
5773 		crtc_state->wm.g4x.intermediate = *active;
5774 
5775 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5776 			      pipe_name(pipe),
5777 			      wm->pipe[pipe].plane[PLANE_PRIMARY],
5778 			      wm->pipe[pipe].plane[PLANE_CURSOR],
5779 			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
5780 	}
5781 
5782 	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5783 		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5784 	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5785 		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5786 	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5787 		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5788 }
5789 
g4x_wm_sanitize(struct drm_i915_private * dev_priv)5790 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5791 {
5792 	struct intel_plane *plane;
5793 	struct intel_crtc *crtc;
5794 
5795 	mutex_lock(&dev_priv->wm.wm_mutex);
5796 
5797 	for_each_intel_plane(&dev_priv->drm, plane) {
5798 		struct intel_crtc *crtc =
5799 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5800 		struct intel_crtc_state *crtc_state =
5801 			to_intel_crtc_state(crtc->base.state);
5802 		struct intel_plane_state *plane_state =
5803 			to_intel_plane_state(plane->base.state);
5804 		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5805 		enum plane_id plane_id = plane->id;
5806 		int level;
5807 
5808 		if (plane_state->base.visible)
5809 			continue;
5810 
5811 		for (level = 0; level < 3; level++) {
5812 			struct g4x_pipe_wm *raw =
5813 				&crtc_state->wm.g4x.raw[level];
5814 
5815 			raw->plane[plane_id] = 0;
5816 			wm_state->wm.plane[plane_id] = 0;
5817 		}
5818 
5819 		if (plane_id == PLANE_PRIMARY) {
5820 			for (level = 0; level < 3; level++) {
5821 				struct g4x_pipe_wm *raw =
5822 					&crtc_state->wm.g4x.raw[level];
5823 				raw->fbc = 0;
5824 			}
5825 
5826 			wm_state->sr.fbc = 0;
5827 			wm_state->hpll.fbc = 0;
5828 			wm_state->fbc_en = false;
5829 		}
5830 	}
5831 
5832 	for_each_intel_crtc(&dev_priv->drm, crtc) {
5833 		struct intel_crtc_state *crtc_state =
5834 			to_intel_crtc_state(crtc->base.state);
5835 
5836 		crtc_state->wm.g4x.intermediate =
5837 			crtc_state->wm.g4x.optimal;
5838 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5839 	}
5840 
5841 	g4x_program_watermarks(dev_priv);
5842 
5843 	mutex_unlock(&dev_priv->wm.wm_mutex);
5844 }
5845 
vlv_wm_get_hw_state(struct drm_device * dev)5846 void vlv_wm_get_hw_state(struct drm_device *dev)
5847 {
5848 	struct drm_i915_private *dev_priv = to_i915(dev);
5849 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5850 	struct intel_crtc *crtc;
5851 	u32 val;
5852 
5853 	vlv_read_wm_values(dev_priv, wm);
5854 
5855 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5856 	wm->level = VLV_WM_LEVEL_PM2;
5857 
5858 	if (IS_CHERRYVIEW(dev_priv)) {
5859 		mutex_lock(&dev_priv->pcu_lock);
5860 
5861 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5862 		if (val & DSP_MAXFIFO_PM5_ENABLE)
5863 			wm->level = VLV_WM_LEVEL_PM5;
5864 
5865 		/*
5866 		 * If DDR DVFS is disabled in the BIOS, Punit
5867 		 * will never ack the request. So if that happens
5868 		 * assume we don't have to enable/disable DDR DVFS
5869 		 * dynamically. To test that just set the REQ_ACK
5870 		 * bit to poke the Punit, but don't change the
5871 		 * HIGH/LOW bits so that we don't actually change
5872 		 * the current state.
5873 		 */
5874 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5875 		val |= FORCE_DDR_FREQ_REQ_ACK;
5876 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5877 
5878 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5879 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5880 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5881 				      "assuming DDR DVFS is disabled\n");
5882 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5883 		} else {
5884 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5885 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5886 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
5887 		}
5888 
5889 		mutex_unlock(&dev_priv->pcu_lock);
5890 	}
5891 
5892 	for_each_intel_crtc(dev, crtc) {
5893 		struct intel_crtc_state *crtc_state =
5894 			to_intel_crtc_state(crtc->base.state);
5895 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
5896 		const struct vlv_fifo_state *fifo_state =
5897 			&crtc_state->wm.vlv.fifo_state;
5898 		enum pipe pipe = crtc->pipe;
5899 		enum plane_id plane_id;
5900 		int level;
5901 
5902 		vlv_get_fifo_size(crtc_state);
5903 
5904 		active->num_levels = wm->level + 1;
5905 		active->cxsr = wm->cxsr;
5906 
5907 		for (level = 0; level < active->num_levels; level++) {
5908 			struct g4x_pipe_wm *raw =
5909 				&crtc_state->wm.vlv.raw[level];
5910 
5911 			active->sr[level].plane = wm->sr.plane;
5912 			active->sr[level].cursor = wm->sr.cursor;
5913 
5914 			for_each_plane_id_on_crtc(crtc, plane_id) {
5915 				active->wm[level].plane[plane_id] =
5916 					wm->pipe[pipe].plane[plane_id];
5917 
5918 				raw->plane[plane_id] =
5919 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
5920 							    fifo_state->plane[plane_id]);
5921 			}
5922 		}
5923 
5924 		for_each_plane_id_on_crtc(crtc, plane_id)
5925 			vlv_raw_plane_wm_set(crtc_state, level,
5926 					     plane_id, USHRT_MAX);
5927 		vlv_invalidate_wms(crtc, active, level);
5928 
5929 		crtc_state->wm.vlv.optimal = *active;
5930 		crtc_state->wm.vlv.intermediate = *active;
5931 
5932 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5933 			      pipe_name(pipe),
5934 			      wm->pipe[pipe].plane[PLANE_PRIMARY],
5935 			      wm->pipe[pipe].plane[PLANE_CURSOR],
5936 			      wm->pipe[pipe].plane[PLANE_SPRITE0],
5937 			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
5938 	}
5939 
5940 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5941 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5942 }
5943 
vlv_wm_sanitize(struct drm_i915_private * dev_priv)5944 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5945 {
5946 	struct intel_plane *plane;
5947 	struct intel_crtc *crtc;
5948 
5949 	mutex_lock(&dev_priv->wm.wm_mutex);
5950 
5951 	for_each_intel_plane(&dev_priv->drm, plane) {
5952 		struct intel_crtc *crtc =
5953 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5954 		struct intel_crtc_state *crtc_state =
5955 			to_intel_crtc_state(crtc->base.state);
5956 		struct intel_plane_state *plane_state =
5957 			to_intel_plane_state(plane->base.state);
5958 		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5959 		const struct vlv_fifo_state *fifo_state =
5960 			&crtc_state->wm.vlv.fifo_state;
5961 		enum plane_id plane_id = plane->id;
5962 		int level;
5963 
5964 		if (plane_state->base.visible)
5965 			continue;
5966 
5967 		for (level = 0; level < wm_state->num_levels; level++) {
5968 			struct g4x_pipe_wm *raw =
5969 				&crtc_state->wm.vlv.raw[level];
5970 
5971 			raw->plane[plane_id] = 0;
5972 
5973 			wm_state->wm[level].plane[plane_id] =
5974 				vlv_invert_wm_value(raw->plane[plane_id],
5975 						    fifo_state->plane[plane_id]);
5976 		}
5977 	}
5978 
5979 	for_each_intel_crtc(&dev_priv->drm, crtc) {
5980 		struct intel_crtc_state *crtc_state =
5981 			to_intel_crtc_state(crtc->base.state);
5982 
5983 		crtc_state->wm.vlv.intermediate =
5984 			crtc_state->wm.vlv.optimal;
5985 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5986 	}
5987 
5988 	vlv_program_watermarks(dev_priv);
5989 
5990 	mutex_unlock(&dev_priv->wm.wm_mutex);
5991 }
5992 
5993 /*
5994  * FIXME should probably kill this and improve
5995  * the real watermark readout/sanitation instead
5996  */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)5997 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5998 {
5999 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6000 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6001 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6002 
6003 	/*
6004 	 * Don't touch WM1S_LP_EN here.
6005 	 * Doing so could cause underruns.
6006 	 */
6007 }
6008 
ilk_wm_get_hw_state(struct drm_device * dev)6009 void ilk_wm_get_hw_state(struct drm_device *dev)
6010 {
6011 	struct drm_i915_private *dev_priv = to_i915(dev);
6012 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6013 	struct drm_crtc *crtc;
6014 
6015 	ilk_init_lp_watermarks(dev_priv);
6016 
6017 	for_each_crtc(dev, crtc)
6018 		ilk_pipe_wm_get_hw_state(crtc);
6019 
6020 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6021 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6022 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6023 
6024 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6025 	if (INTEL_GEN(dev_priv) >= 7) {
6026 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6027 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6028 	}
6029 
6030 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6031 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6032 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6033 	else if (IS_IVYBRIDGE(dev_priv))
6034 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6035 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6036 
6037 	hw->enable_fbc_wm =
6038 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6039 }
6040 
6041 /**
6042  * intel_update_watermarks - update FIFO watermark values based on current modes
6043  * @crtc: the #intel_crtc on which to compute the WM
6044  *
6045  * Calculate watermark values for the various WM regs based on current mode
6046  * and plane configuration.
6047  *
6048  * There are several cases to deal with here:
6049  *   - normal (i.e. non-self-refresh)
6050  *   - self-refresh (SR) mode
6051  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6052  *   - lines are small relative to FIFO size (buffer can hold more than 2
6053  *     lines), so need to account for TLB latency
6054  *
6055  *   The normal calculation is:
6056  *     watermark = dotclock * bytes per pixel * latency
6057  *   where latency is platform & configuration dependent (we assume pessimal
6058  *   values here).
6059  *
6060  *   The SR calculation is:
6061  *     watermark = (trunc(latency/line time)+1) * surface width *
6062  *       bytes per pixel
6063  *   where
6064  *     line time = htotal / dotclock
6065  *     surface width = hdisplay for normal plane and 64 for cursor
6066  *   and latency is assumed to be high, as above.
6067  *
6068  * The final value programmed to the register should always be rounded up,
6069  * and include an extra 2 entries to account for clock crossings.
6070  *
6071  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6072  * to set the non-SR watermarks to 8.
6073  */
intel_update_watermarks(struct intel_crtc * crtc)6074 void intel_update_watermarks(struct intel_crtc *crtc)
6075 {
6076 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6077 
6078 	if (dev_priv->display.update_wm)
6079 		dev_priv->display.update_wm(crtc);
6080 }
6081 
intel_enable_ipc(struct drm_i915_private * dev_priv)6082 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6083 {
6084 	u32 val;
6085 
6086 	/* Display WA #0477 WaDisableIPC: skl */
6087 	if (IS_SKYLAKE(dev_priv)) {
6088 		dev_priv->ipc_enabled = false;
6089 		return;
6090 	}
6091 
6092 	val = I915_READ(DISP_ARB_CTL2);
6093 
6094 	if (dev_priv->ipc_enabled)
6095 		val |= DISP_IPC_ENABLE;
6096 	else
6097 		val &= ~DISP_IPC_ENABLE;
6098 
6099 	I915_WRITE(DISP_ARB_CTL2, val);
6100 }
6101 
intel_init_ipc(struct drm_i915_private * dev_priv)6102 void intel_init_ipc(struct drm_i915_private *dev_priv)
6103 {
6104 	dev_priv->ipc_enabled = false;
6105 	if (!HAS_IPC(dev_priv))
6106 		return;
6107 
6108 	dev_priv->ipc_enabled = true;
6109 	intel_enable_ipc(dev_priv);
6110 }
6111 
6112 /*
6113  * Lock protecting IPS related data structures
6114  */
6115 DEFINE_SPINLOCK(mchdev_lock);
6116 
6117 /* Global for IPS driver to get at the current i915 device. Protected by
6118  * mchdev_lock. */
6119 static struct drm_i915_private *i915_mch_dev;
6120 
ironlake_set_drps(struct drm_i915_private * dev_priv,u8 val)6121 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6122 {
6123 	u16 rgvswctl;
6124 
6125 	lockdep_assert_held(&mchdev_lock);
6126 
6127 	rgvswctl = I915_READ16(MEMSWCTL);
6128 	if (rgvswctl & MEMCTL_CMD_STS) {
6129 		DRM_DEBUG("gpu busy, RCS change rejected\n");
6130 		return false; /* still busy with another command */
6131 	}
6132 
6133 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6134 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6135 	I915_WRITE16(MEMSWCTL, rgvswctl);
6136 	POSTING_READ16(MEMSWCTL);
6137 
6138 	rgvswctl |= MEMCTL_CMD_STS;
6139 	I915_WRITE16(MEMSWCTL, rgvswctl);
6140 
6141 	return true;
6142 }
6143 
ironlake_enable_drps(struct drm_i915_private * dev_priv)6144 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6145 {
6146 	u32 rgvmodectl;
6147 	u8 fmax, fmin, fstart, vstart;
6148 
6149 	spin_lock_irq(&mchdev_lock);
6150 
6151 	rgvmodectl = I915_READ(MEMMODECTL);
6152 
6153 	/* Enable temp reporting */
6154 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6155 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6156 
6157 	/* 100ms RC evaluation intervals */
6158 	I915_WRITE(RCUPEI, 100000);
6159 	I915_WRITE(RCDNEI, 100000);
6160 
6161 	/* Set max/min thresholds to 90ms and 80ms respectively */
6162 	I915_WRITE(RCBMAXAVG, 90000);
6163 	I915_WRITE(RCBMINAVG, 80000);
6164 
6165 	I915_WRITE(MEMIHYST, 1);
6166 
6167 	/* Set up min, max, and cur for interrupt handling */
6168 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6169 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6170 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6171 		MEMMODE_FSTART_SHIFT;
6172 
6173 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6174 		PXVFREQ_PX_SHIFT;
6175 
6176 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6177 	dev_priv->ips.fstart = fstart;
6178 
6179 	dev_priv->ips.max_delay = fstart;
6180 	dev_priv->ips.min_delay = fmin;
6181 	dev_priv->ips.cur_delay = fstart;
6182 
6183 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6184 			 fmax, fmin, fstart);
6185 
6186 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6187 
6188 	/*
6189 	 * Interrupts will be enabled in ironlake_irq_postinstall
6190 	 */
6191 
6192 	I915_WRITE(VIDSTART, vstart);
6193 	POSTING_READ(VIDSTART);
6194 
6195 	rgvmodectl |= MEMMODE_SWMODE_EN;
6196 	I915_WRITE(MEMMODECTL, rgvmodectl);
6197 
6198 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6199 		DRM_ERROR("stuck trying to change perf mode\n");
6200 	mdelay(1);
6201 
6202 	ironlake_set_drps(dev_priv, fstart);
6203 
6204 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6205 		I915_READ(DDREC) + I915_READ(CSIEC);
6206 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6207 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
6208 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6209 
6210 	spin_unlock_irq(&mchdev_lock);
6211 }
6212 
ironlake_disable_drps(struct drm_i915_private * dev_priv)6213 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6214 {
6215 	u16 rgvswctl;
6216 
6217 	spin_lock_irq(&mchdev_lock);
6218 
6219 	rgvswctl = I915_READ16(MEMSWCTL);
6220 
6221 	/* Ack interrupts, disable EFC interrupt */
6222 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6223 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6224 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6225 	I915_WRITE(DEIIR, DE_PCU_EVENT);
6226 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6227 
6228 	/* Go back to the starting frequency */
6229 	ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6230 	mdelay(1);
6231 	rgvswctl |= MEMCTL_CMD_STS;
6232 	I915_WRITE(MEMSWCTL, rgvswctl);
6233 	mdelay(1);
6234 
6235 	spin_unlock_irq(&mchdev_lock);
6236 }
6237 
6238 /* There's a funny hw issue where the hw returns all 0 when reading from
6239  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6240  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6241  * all limits and the gpu stuck at whatever frequency it is at atm).
6242  */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)6243 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6244 {
6245 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6246 	u32 limits;
6247 
6248 	/* Only set the down limit when we've reached the lowest level to avoid
6249 	 * getting more interrupts, otherwise leave this clear. This prevents a
6250 	 * race in the hw when coming out of rc6: There's a tiny window where
6251 	 * the hw runs at the minimal clock before selecting the desired
6252 	 * frequency, if the down threshold expires in that window we will not
6253 	 * receive a down interrupt. */
6254 	if (INTEL_GEN(dev_priv) >= 9) {
6255 		limits = (rps->max_freq_softlimit) << 23;
6256 		if (val <= rps->min_freq_softlimit)
6257 			limits |= (rps->min_freq_softlimit) << 14;
6258 	} else {
6259 		limits = rps->max_freq_softlimit << 24;
6260 		if (val <= rps->min_freq_softlimit)
6261 			limits |= rps->min_freq_softlimit << 16;
6262 	}
6263 
6264 	return limits;
6265 }
6266 
rps_set_power(struct drm_i915_private * dev_priv,int new_power)6267 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6268 {
6269 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6270 	u32 threshold_up = 0, threshold_down = 0; /* in % */
6271 	u32 ei_up = 0, ei_down = 0;
6272 
6273 	lockdep_assert_held(&rps->power.mutex);
6274 
6275 	if (new_power == rps->power.mode)
6276 		return;
6277 
6278 	/* Note the units here are not exactly 1us, but 1280ns. */
6279 	switch (new_power) {
6280 	case LOW_POWER:
6281 		/* Upclock if more than 95% busy over 16ms */
6282 		ei_up = 16000;
6283 		threshold_up = 95;
6284 
6285 		/* Downclock if less than 85% busy over 32ms */
6286 		ei_down = 32000;
6287 		threshold_down = 85;
6288 		break;
6289 
6290 	case BETWEEN:
6291 		/* Upclock if more than 90% busy over 13ms */
6292 		ei_up = 13000;
6293 		threshold_up = 90;
6294 
6295 		/* Downclock if less than 75% busy over 32ms */
6296 		ei_down = 32000;
6297 		threshold_down = 75;
6298 		break;
6299 
6300 	case HIGH_POWER:
6301 		/* Upclock if more than 85% busy over 10ms */
6302 		ei_up = 10000;
6303 		threshold_up = 85;
6304 
6305 		/* Downclock if less than 60% busy over 32ms */
6306 		ei_down = 32000;
6307 		threshold_down = 60;
6308 		break;
6309 	}
6310 
6311 	/* When byt can survive without system hang with dynamic
6312 	 * sw freq adjustments, this restriction can be lifted.
6313 	 */
6314 	if (IS_VALLEYVIEW(dev_priv))
6315 		goto skip_hw_write;
6316 
6317 	I915_WRITE(GEN6_RP_UP_EI,
6318 		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6319 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6320 		   GT_INTERVAL_FROM_US(dev_priv,
6321 				       ei_up * threshold_up / 100));
6322 
6323 	I915_WRITE(GEN6_RP_DOWN_EI,
6324 		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6325 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6326 		   GT_INTERVAL_FROM_US(dev_priv,
6327 				       ei_down * threshold_down / 100));
6328 
6329 	I915_WRITE(GEN6_RP_CONTROL,
6330 		   GEN6_RP_MEDIA_TURBO |
6331 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6332 		   GEN6_RP_MEDIA_IS_GFX |
6333 		   GEN6_RP_ENABLE |
6334 		   GEN6_RP_UP_BUSY_AVG |
6335 		   GEN6_RP_DOWN_IDLE_AVG);
6336 
6337 skip_hw_write:
6338 	rps->power.mode = new_power;
6339 	rps->power.up_threshold = threshold_up;
6340 	rps->power.down_threshold = threshold_down;
6341 }
6342 
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)6343 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6344 {
6345 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6346 	int new_power;
6347 
6348 	new_power = rps->power.mode;
6349 	switch (rps->power.mode) {
6350 	case LOW_POWER:
6351 		if (val > rps->efficient_freq + 1 &&
6352 		    val > rps->cur_freq)
6353 			new_power = BETWEEN;
6354 		break;
6355 
6356 	case BETWEEN:
6357 		if (val <= rps->efficient_freq &&
6358 		    val < rps->cur_freq)
6359 			new_power = LOW_POWER;
6360 		else if (val >= rps->rp0_freq &&
6361 			 val > rps->cur_freq)
6362 			new_power = HIGH_POWER;
6363 		break;
6364 
6365 	case HIGH_POWER:
6366 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6367 		    val < rps->cur_freq)
6368 			new_power = BETWEEN;
6369 		break;
6370 	}
6371 	/* Max/min bins are special */
6372 	if (val <= rps->min_freq_softlimit)
6373 		new_power = LOW_POWER;
6374 	if (val >= rps->max_freq_softlimit)
6375 		new_power = HIGH_POWER;
6376 
6377 	mutex_lock(&rps->power.mutex);
6378 	if (rps->power.interactive)
6379 		new_power = HIGH_POWER;
6380 	rps_set_power(dev_priv, new_power);
6381 	mutex_unlock(&rps->power.mutex);
6382 	rps->last_adj = 0;
6383 }
6384 
intel_rps_mark_interactive(struct drm_i915_private * i915,bool interactive)6385 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6386 {
6387 	struct intel_rps *rps = &i915->gt_pm.rps;
6388 
6389 	if (INTEL_GEN(i915) < 6)
6390 		return;
6391 
6392 	mutex_lock(&rps->power.mutex);
6393 	if (interactive) {
6394 		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6395 			rps_set_power(i915, HIGH_POWER);
6396 	} else {
6397 		GEM_BUG_ON(!rps->power.interactive);
6398 		rps->power.interactive--;
6399 	}
6400 	mutex_unlock(&rps->power.mutex);
6401 }
6402 
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)6403 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6404 {
6405 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6406 	u32 mask = 0;
6407 
6408 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6409 	if (val > rps->min_freq_softlimit)
6410 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6411 	if (val < rps->max_freq_softlimit)
6412 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6413 
6414 	mask &= dev_priv->pm_rps_events;
6415 
6416 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6417 }
6418 
6419 /* gen6_set_rps is called to update the frequency request, but should also be
6420  * called when the range (min_delay and max_delay) is modified so that we can
6421  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_i915_private * dev_priv,u8 val)6422 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6423 {
6424 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6425 
6426 	/* min/max delay may still have been modified so be sure to
6427 	 * write the limits value.
6428 	 */
6429 	if (val != rps->cur_freq) {
6430 		gen6_set_rps_thresholds(dev_priv, val);
6431 
6432 		if (INTEL_GEN(dev_priv) >= 9)
6433 			I915_WRITE(GEN6_RPNSWREQ,
6434 				   GEN9_FREQUENCY(val));
6435 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6436 			I915_WRITE(GEN6_RPNSWREQ,
6437 				   HSW_FREQUENCY(val));
6438 		else
6439 			I915_WRITE(GEN6_RPNSWREQ,
6440 				   GEN6_FREQUENCY(val) |
6441 				   GEN6_OFFSET(0) |
6442 				   GEN6_AGGRESSIVE_TURBO);
6443 	}
6444 
6445 	/* Make sure we continue to get interrupts
6446 	 * until we hit the minimum or maximum frequencies.
6447 	 */
6448 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6449 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6450 
6451 	rps->cur_freq = val;
6452 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6453 
6454 	return 0;
6455 }
6456 
valleyview_set_rps(struct drm_i915_private * dev_priv,u8 val)6457 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6458 {
6459 	int err;
6460 
6461 	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6462 		      "Odd GPU freq value\n"))
6463 		val &= ~1;
6464 
6465 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6466 
6467 	if (val != dev_priv->gt_pm.rps.cur_freq) {
6468 		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6469 		if (err)
6470 			return err;
6471 
6472 		gen6_set_rps_thresholds(dev_priv, val);
6473 	}
6474 
6475 	dev_priv->gt_pm.rps.cur_freq = val;
6476 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6477 
6478 	return 0;
6479 }
6480 
6481 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6482  *
6483  * * If Gfx is Idle, then
6484  * 1. Forcewake Media well.
6485  * 2. Request idle freq.
6486  * 3. Release Forcewake of Media well.
6487 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)6488 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6489 {
6490 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6491 	u32 val = rps->idle_freq;
6492 	int err;
6493 
6494 	if (rps->cur_freq <= val)
6495 		return;
6496 
6497 	/* The punit delays the write of the frequency and voltage until it
6498 	 * determines the GPU is awake. During normal usage we don't want to
6499 	 * waste power changing the frequency if the GPU is sleeping (rc6).
6500 	 * However, the GPU and driver is now idle and we do not want to delay
6501 	 * switching to minimum voltage (reducing power whilst idle) as we do
6502 	 * not expect to be woken in the near future and so must flush the
6503 	 * change by waking the device.
6504 	 *
6505 	 * We choose to take the media powerwell (either would do to trick the
6506 	 * punit into committing the voltage change) as that takes a lot less
6507 	 * power than the render powerwell.
6508 	 */
6509 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6510 	err = valleyview_set_rps(dev_priv, val);
6511 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6512 
6513 	if (err)
6514 		DRM_ERROR("Failed to set RPS for idle\n");
6515 }
6516 
gen6_rps_busy(struct drm_i915_private * dev_priv)6517 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6518 {
6519 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6520 
6521 	mutex_lock(&dev_priv->pcu_lock);
6522 	if (rps->enabled) {
6523 		u8 freq;
6524 
6525 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6526 			gen6_rps_reset_ei(dev_priv);
6527 		I915_WRITE(GEN6_PMINTRMSK,
6528 			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6529 
6530 		gen6_enable_rps_interrupts(dev_priv);
6531 
6532 		/* Use the user's desired frequency as a guide, but for better
6533 		 * performance, jump directly to RPe as our starting frequency.
6534 		 */
6535 		freq = max(rps->cur_freq,
6536 			   rps->efficient_freq);
6537 
6538 		if (intel_set_rps(dev_priv,
6539 				  clamp(freq,
6540 					rps->min_freq_softlimit,
6541 					rps->max_freq_softlimit)))
6542 			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6543 	}
6544 	mutex_unlock(&dev_priv->pcu_lock);
6545 }
6546 
gen6_rps_idle(struct drm_i915_private * dev_priv)6547 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6548 {
6549 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6550 
6551 	/* Flush our bottom-half so that it does not race with us
6552 	 * setting the idle frequency and so that it is bounded by
6553 	 * our rpm wakeref. And then disable the interrupts to stop any
6554 	 * futher RPS reclocking whilst we are asleep.
6555 	 */
6556 	gen6_disable_rps_interrupts(dev_priv);
6557 
6558 	mutex_lock(&dev_priv->pcu_lock);
6559 	if (rps->enabled) {
6560 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6561 			vlv_set_rps_idle(dev_priv);
6562 		else
6563 			gen6_set_rps(dev_priv, rps->idle_freq);
6564 		rps->last_adj = 0;
6565 		I915_WRITE(GEN6_PMINTRMSK,
6566 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6567 	}
6568 	mutex_unlock(&dev_priv->pcu_lock);
6569 }
6570 
gen6_rps_boost(struct i915_request * rq,struct intel_rps_client * rps_client)6571 void gen6_rps_boost(struct i915_request *rq,
6572 		    struct intel_rps_client *rps_client)
6573 {
6574 	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6575 	unsigned long flags;
6576 	bool boost;
6577 
6578 	/* This is intentionally racy! We peek at the state here, then
6579 	 * validate inside the RPS worker.
6580 	 */
6581 	if (!rps->enabled)
6582 		return;
6583 
6584 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6585 		return;
6586 
6587 	/* Serializes with i915_request_retire() */
6588 	boost = false;
6589 	spin_lock_irqsave(&rq->lock, flags);
6590 	if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6591 		boost = !atomic_fetch_inc(&rps->num_waiters);
6592 		rq->waitboost = true;
6593 	}
6594 	spin_unlock_irqrestore(&rq->lock, flags);
6595 	if (!boost)
6596 		return;
6597 
6598 	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6599 		schedule_work(&rps->work);
6600 
6601 	atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6602 }
6603 
intel_set_rps(struct drm_i915_private * dev_priv,u8 val)6604 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6605 {
6606 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6607 	int err;
6608 
6609 	lockdep_assert_held(&dev_priv->pcu_lock);
6610 	GEM_BUG_ON(val > rps->max_freq);
6611 	GEM_BUG_ON(val < rps->min_freq);
6612 
6613 	if (!rps->enabled) {
6614 		rps->cur_freq = val;
6615 		return 0;
6616 	}
6617 
6618 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6619 		err = valleyview_set_rps(dev_priv, val);
6620 	else
6621 		err = gen6_set_rps(dev_priv, val);
6622 
6623 	return err;
6624 }
6625 
gen9_disable_rc6(struct drm_i915_private * dev_priv)6626 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6627 {
6628 	I915_WRITE(GEN6_RC_CONTROL, 0);
6629 	I915_WRITE(GEN9_PG_ENABLE, 0);
6630 }
6631 
gen9_disable_rps(struct drm_i915_private * dev_priv)6632 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6633 {
6634 	I915_WRITE(GEN6_RP_CONTROL, 0);
6635 }
6636 
gen6_disable_rc6(struct drm_i915_private * dev_priv)6637 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6638 {
6639 	I915_WRITE(GEN6_RC_CONTROL, 0);
6640 }
6641 
gen6_disable_rps(struct drm_i915_private * dev_priv)6642 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6643 {
6644 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6645 	I915_WRITE(GEN6_RP_CONTROL, 0);
6646 }
6647 
cherryview_disable_rc6(struct drm_i915_private * dev_priv)6648 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6649 {
6650 	I915_WRITE(GEN6_RC_CONTROL, 0);
6651 }
6652 
cherryview_disable_rps(struct drm_i915_private * dev_priv)6653 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6654 {
6655 	I915_WRITE(GEN6_RP_CONTROL, 0);
6656 }
6657 
valleyview_disable_rc6(struct drm_i915_private * dev_priv)6658 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6659 {
6660 	/* We're doing forcewake before Disabling RC6,
6661 	 * This what the BIOS expects when going into suspend */
6662 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6663 
6664 	I915_WRITE(GEN6_RC_CONTROL, 0);
6665 
6666 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6667 }
6668 
valleyview_disable_rps(struct drm_i915_private * dev_priv)6669 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6670 {
6671 	I915_WRITE(GEN6_RP_CONTROL, 0);
6672 }
6673 
bxt_check_bios_rc6_setup(struct drm_i915_private * dev_priv)6674 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6675 {
6676 	bool enable_rc6 = true;
6677 	unsigned long rc6_ctx_base;
6678 	u32 rc_ctl;
6679 	int rc_sw_target;
6680 
6681 	rc_ctl = I915_READ(GEN6_RC_CONTROL);
6682 	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6683 		       RC_SW_TARGET_STATE_SHIFT;
6684 	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6685 			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6686 			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6687 			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6688 			 rc_sw_target);
6689 
6690 	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6691 		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6692 		enable_rc6 = false;
6693 	}
6694 
6695 	/*
6696 	 * The exact context size is not known for BXT, so assume a page size
6697 	 * for this check.
6698 	 */
6699 	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6700 	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6701 	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6702 		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6703 		enable_rc6 = false;
6704 	}
6705 
6706 	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6707 	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6708 	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6709 	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6710 		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6711 		enable_rc6 = false;
6712 	}
6713 
6714 	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6715 	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6716 	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6717 		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6718 		enable_rc6 = false;
6719 	}
6720 
6721 	if (!I915_READ(GEN6_GFXPAUSE)) {
6722 		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6723 		enable_rc6 = false;
6724 	}
6725 
6726 	if (!I915_READ(GEN8_MISC_CTRL0)) {
6727 		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6728 		enable_rc6 = false;
6729 	}
6730 
6731 	return enable_rc6;
6732 }
6733 
sanitize_rc6(struct drm_i915_private * i915)6734 static bool sanitize_rc6(struct drm_i915_private *i915)
6735 {
6736 	struct intel_device_info *info = mkwrite_device_info(i915);
6737 
6738 	/* Powersaving is controlled by the host when inside a VM */
6739 	if (intel_vgpu_active(i915))
6740 		info->has_rc6 = 0;
6741 
6742 	if (info->has_rc6 &&
6743 	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6744 		DRM_INFO("RC6 disabled by BIOS\n");
6745 		info->has_rc6 = 0;
6746 	}
6747 
6748 	/*
6749 	 * We assume that we do not have any deep rc6 levels if we don't have
6750 	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
6751 	 * as the initial coarse check for rc6 in general, moving on to
6752 	 * progressively finer/deeper levels.
6753 	 */
6754 	if (!info->has_rc6 && info->has_rc6p)
6755 		info->has_rc6p = 0;
6756 
6757 	return info->has_rc6;
6758 }
6759 
gen6_init_rps_frequencies(struct drm_i915_private * dev_priv)6760 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6761 {
6762 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6763 
6764 	/* All of these values are in units of 50MHz */
6765 
6766 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6767 	if (IS_GEN9_LP(dev_priv)) {
6768 		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6769 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6770 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6771 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
6772 	} else {
6773 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6774 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
6775 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6776 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
6777 	}
6778 	/* hw_max = RP0 until we check for overclocking */
6779 	rps->max_freq = rps->rp0_freq;
6780 
6781 	rps->efficient_freq = rps->rp1_freq;
6782 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6783 	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6784 		u32 ddcc_status = 0;
6785 
6786 		if (sandybridge_pcode_read(dev_priv,
6787 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6788 					   &ddcc_status) == 0)
6789 			rps->efficient_freq =
6790 				clamp_t(u8,
6791 					((ddcc_status >> 8) & 0xff),
6792 					rps->min_freq,
6793 					rps->max_freq);
6794 	}
6795 
6796 	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6797 		/* Store the frequency values in 16.66 MHZ units, which is
6798 		 * the natural hardware unit for SKL
6799 		 */
6800 		rps->rp0_freq *= GEN9_FREQ_SCALER;
6801 		rps->rp1_freq *= GEN9_FREQ_SCALER;
6802 		rps->min_freq *= GEN9_FREQ_SCALER;
6803 		rps->max_freq *= GEN9_FREQ_SCALER;
6804 		rps->efficient_freq *= GEN9_FREQ_SCALER;
6805 	}
6806 }
6807 
reset_rps(struct drm_i915_private * dev_priv,int (* set)(struct drm_i915_private *,u8))6808 static void reset_rps(struct drm_i915_private *dev_priv,
6809 		      int (*set)(struct drm_i915_private *, u8))
6810 {
6811 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6812 	u8 freq = rps->cur_freq;
6813 
6814 	/* force a reset */
6815 	rps->power.mode = -1;
6816 	rps->cur_freq = -1;
6817 
6818 	if (set(dev_priv, freq))
6819 		DRM_ERROR("Failed to reset RPS to initial values\n");
6820 }
6821 
6822 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_i915_private * dev_priv)6823 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6824 {
6825 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6826 
6827 	/* Program defaults and thresholds for RPS */
6828 	if (IS_GEN9(dev_priv))
6829 		I915_WRITE(GEN6_RC_VIDEO_FREQ,
6830 			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6831 
6832 	/* 1 second timeout*/
6833 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6834 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
6835 
6836 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6837 
6838 	/* Leaning on the below call to gen6_set_rps to program/setup the
6839 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6840 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6841 	reset_rps(dev_priv, gen6_set_rps);
6842 
6843 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6844 }
6845 
gen9_enable_rc6(struct drm_i915_private * dev_priv)6846 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6847 {
6848 	struct intel_engine_cs *engine;
6849 	enum intel_engine_id id;
6850 	u32 rc6_mode;
6851 
6852 	/* 1a: Software RC state - RC0 */
6853 	I915_WRITE(GEN6_RC_STATE, 0);
6854 
6855 	/* 1b: Get forcewake during program sequence. Although the driver
6856 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6857 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6858 
6859 	/* 2a: Disable RC states. */
6860 	I915_WRITE(GEN6_RC_CONTROL, 0);
6861 
6862 	/* 2b: Program RC6 thresholds.*/
6863 	if (INTEL_GEN(dev_priv) >= 10) {
6864 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6865 		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6866 	} else if (IS_SKYLAKE(dev_priv)) {
6867 		/*
6868 		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6869 		 * when CPG is enabled
6870 		 */
6871 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6872 	} else {
6873 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6874 	}
6875 
6876 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6877 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6878 	for_each_engine(engine, dev_priv, id)
6879 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6880 
6881 	if (HAS_GUC(dev_priv))
6882 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6883 
6884 	I915_WRITE(GEN6_RC_SLEEP, 0);
6885 
6886 	/*
6887 	 * 2c: Program Coarse Power Gating Policies.
6888 	 *
6889 	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6890 	 * use instead is a more conservative estimate for the maximum time
6891 	 * it takes us to service a CS interrupt and submit a new ELSP - that
6892 	 * is the time which the GPU is idle waiting for the CPU to select the
6893 	 * next request to execute. If the idle hysteresis is less than that
6894 	 * interrupt service latency, the hardware will automatically gate
6895 	 * the power well and we will then incur the wake up cost on top of
6896 	 * the service latency. A similar guide from intel_pstate is that we
6897 	 * do not want the enable hysteresis to less than the wakeup latency.
6898 	 *
6899 	 * igt/gem_exec_nop/sequential provides a rough estimate for the
6900 	 * service latency, and puts it around 10us for Broadwell (and other
6901 	 * big core) and around 40us for Broxton (and other low power cores).
6902 	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
6903 	 * However, the wakeup latency on Broxton is closer to 100us. To be
6904 	 * conservative, we have to factor in a context switch on top (due
6905 	 * to ksoftirqd).
6906 	 */
6907 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6908 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6909 
6910 	/* 3a: Enable RC6 */
6911 	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6912 
6913 	/* WaRsUseTimeoutMode:cnl (pre-prod) */
6914 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6915 		rc6_mode = GEN7_RC_CTL_TO_MODE;
6916 	else
6917 		rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6918 
6919 	I915_WRITE(GEN6_RC_CONTROL,
6920 		   GEN6_RC_CTL_HW_ENABLE |
6921 		   GEN6_RC_CTL_RC6_ENABLE |
6922 		   rc6_mode);
6923 
6924 	/*
6925 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6926 	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6927 	 */
6928 	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6929 		I915_WRITE(GEN9_PG_ENABLE, 0);
6930 	else
6931 		I915_WRITE(GEN9_PG_ENABLE,
6932 			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6933 
6934 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6935 }
6936 
gen8_enable_rc6(struct drm_i915_private * dev_priv)6937 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6938 {
6939 	struct intel_engine_cs *engine;
6940 	enum intel_engine_id id;
6941 
6942 	/* 1a: Software RC state - RC0 */
6943 	I915_WRITE(GEN6_RC_STATE, 0);
6944 
6945 	/* 1b: Get forcewake during program sequence. Although the driver
6946 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6947 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6948 
6949 	/* 2a: Disable RC states. */
6950 	I915_WRITE(GEN6_RC_CONTROL, 0);
6951 
6952 	/* 2b: Program RC6 thresholds.*/
6953 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6954 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6955 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6956 	for_each_engine(engine, dev_priv, id)
6957 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6958 	I915_WRITE(GEN6_RC_SLEEP, 0);
6959 	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6960 
6961 	/* 3: Enable RC6 */
6962 
6963 	I915_WRITE(GEN6_RC_CONTROL,
6964 		   GEN6_RC_CTL_HW_ENABLE |
6965 		   GEN7_RC_CTL_TO_MODE |
6966 		   GEN6_RC_CTL_RC6_ENABLE);
6967 
6968 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6969 }
6970 
gen8_enable_rps(struct drm_i915_private * dev_priv)6971 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6972 {
6973 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6974 
6975 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6976 
6977 	/* 1 Program defaults and thresholds for RPS*/
6978 	I915_WRITE(GEN6_RPNSWREQ,
6979 		   HSW_FREQUENCY(rps->rp1_freq));
6980 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
6981 		   HSW_FREQUENCY(rps->rp1_freq));
6982 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6983 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6984 
6985 	/* Docs recommend 900MHz, and 300 MHz respectively */
6986 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6987 		   rps->max_freq_softlimit << 24 |
6988 		   rps->min_freq_softlimit << 16);
6989 
6990 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6991 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6992 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6993 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6994 
6995 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6996 
6997 	/* 2: Enable RPS */
6998 	I915_WRITE(GEN6_RP_CONTROL,
6999 		   GEN6_RP_MEDIA_TURBO |
7000 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7001 		   GEN6_RP_MEDIA_IS_GFX |
7002 		   GEN6_RP_ENABLE |
7003 		   GEN6_RP_UP_BUSY_AVG |
7004 		   GEN6_RP_DOWN_IDLE_AVG);
7005 
7006 	reset_rps(dev_priv, gen6_set_rps);
7007 
7008 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7009 }
7010 
gen6_enable_rc6(struct drm_i915_private * dev_priv)7011 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7012 {
7013 	struct intel_engine_cs *engine;
7014 	enum intel_engine_id id;
7015 	u32 rc6vids, rc6_mask;
7016 	u32 gtfifodbg;
7017 	int ret;
7018 
7019 	I915_WRITE(GEN6_RC_STATE, 0);
7020 
7021 	/* Clear the DBG now so we don't confuse earlier errors */
7022 	gtfifodbg = I915_READ(GTFIFODBG);
7023 	if (gtfifodbg) {
7024 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7025 		I915_WRITE(GTFIFODBG, gtfifodbg);
7026 	}
7027 
7028 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7029 
7030 	/* disable the counters and set deterministic thresholds */
7031 	I915_WRITE(GEN6_RC_CONTROL, 0);
7032 
7033 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7034 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7035 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7036 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7037 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7038 
7039 	for_each_engine(engine, dev_priv, id)
7040 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7041 
7042 	I915_WRITE(GEN6_RC_SLEEP, 0);
7043 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7044 	if (IS_IVYBRIDGE(dev_priv))
7045 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7046 	else
7047 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7048 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7049 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7050 
7051 	/* We don't use those on Haswell */
7052 	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7053 	if (HAS_RC6p(dev_priv))
7054 		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7055 	if (HAS_RC6pp(dev_priv))
7056 		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7057 	I915_WRITE(GEN6_RC_CONTROL,
7058 		   rc6_mask |
7059 		   GEN6_RC_CTL_EI_MODE(1) |
7060 		   GEN6_RC_CTL_HW_ENABLE);
7061 
7062 	rc6vids = 0;
7063 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7064 	if (IS_GEN6(dev_priv) && ret) {
7065 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7066 	} else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7067 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7068 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7069 		rc6vids &= 0xffff00;
7070 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
7071 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7072 		if (ret)
7073 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7074 	}
7075 
7076 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7077 }
7078 
gen6_enable_rps(struct drm_i915_private * dev_priv)7079 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7080 {
7081 	/* Here begins a magic sequence of register writes to enable
7082 	 * auto-downclocking.
7083 	 *
7084 	 * Perhaps there might be some value in exposing these to
7085 	 * userspace...
7086 	 */
7087 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7088 
7089 	/* Power down if completely idle for over 50ms */
7090 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7091 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7092 
7093 	reset_rps(dev_priv, gen6_set_rps);
7094 
7095 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7096 }
7097 
gen6_update_ring_freq(struct drm_i915_private * dev_priv)7098 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7099 {
7100 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7101 	const int min_freq = 15;
7102 	const int scaling_factor = 180;
7103 	unsigned int gpu_freq;
7104 	unsigned int max_ia_freq, min_ring_freq;
7105 	unsigned int max_gpu_freq, min_gpu_freq;
7106 	struct cpufreq_policy *policy;
7107 
7108 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7109 
7110 	if (rps->max_freq <= rps->min_freq)
7111 		return;
7112 
7113 	policy = cpufreq_cpu_get(0);
7114 	if (policy) {
7115 		max_ia_freq = policy->cpuinfo.max_freq;
7116 		cpufreq_cpu_put(policy);
7117 	} else {
7118 		/*
7119 		 * Default to measured freq if none found, PCU will ensure we
7120 		 * don't go over
7121 		 */
7122 		max_ia_freq = tsc_khz;
7123 	}
7124 
7125 	/* Convert from kHz to MHz */
7126 	max_ia_freq /= 1000;
7127 
7128 	min_ring_freq = I915_READ(DCLK) & 0xf;
7129 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
7130 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7131 
7132 	min_gpu_freq = rps->min_freq;
7133 	max_gpu_freq = rps->max_freq;
7134 	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7135 		/* Convert GT frequency to 50 HZ units */
7136 		min_gpu_freq /= GEN9_FREQ_SCALER;
7137 		max_gpu_freq /= GEN9_FREQ_SCALER;
7138 	}
7139 
7140 	/*
7141 	 * For each potential GPU frequency, load a ring frequency we'd like
7142 	 * to use for memory access.  We do this by specifying the IA frequency
7143 	 * the PCU should use as a reference to determine the ring frequency.
7144 	 */
7145 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7146 		const int diff = max_gpu_freq - gpu_freq;
7147 		unsigned int ia_freq = 0, ring_freq = 0;
7148 
7149 		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7150 			/*
7151 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7152 			 * No floor required for ring frequency on SKL.
7153 			 */
7154 			ring_freq = gpu_freq;
7155 		} else if (INTEL_GEN(dev_priv) >= 8) {
7156 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
7157 			ring_freq = max(min_ring_freq, gpu_freq);
7158 		} else if (IS_HASWELL(dev_priv)) {
7159 			ring_freq = mult_frac(gpu_freq, 5, 4);
7160 			ring_freq = max(min_ring_freq, ring_freq);
7161 			/* leave ia_freq as the default, chosen by cpufreq */
7162 		} else {
7163 			/* On older processors, there is no separate ring
7164 			 * clock domain, so in order to boost the bandwidth
7165 			 * of the ring, we need to upclock the CPU (ia_freq).
7166 			 *
7167 			 * For GPU frequencies less than 750MHz,
7168 			 * just use the lowest ring freq.
7169 			 */
7170 			if (gpu_freq < min_freq)
7171 				ia_freq = 800;
7172 			else
7173 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7174 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7175 		}
7176 
7177 		sandybridge_pcode_write(dev_priv,
7178 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7179 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7180 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7181 					gpu_freq);
7182 	}
7183 }
7184 
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)7185 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7186 {
7187 	u32 val, rp0;
7188 
7189 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7190 
7191 	switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7192 	case 8:
7193 		/* (2 * 4) config */
7194 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7195 		break;
7196 	case 12:
7197 		/* (2 * 6) config */
7198 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7199 		break;
7200 	case 16:
7201 		/* (2 * 8) config */
7202 	default:
7203 		/* Setting (2 * 8) Min RP0 for any other combination */
7204 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7205 		break;
7206 	}
7207 
7208 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7209 
7210 	return rp0;
7211 }
7212 
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)7213 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7214 {
7215 	u32 val, rpe;
7216 
7217 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7218 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7219 
7220 	return rpe;
7221 }
7222 
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)7223 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7224 {
7225 	u32 val, rp1;
7226 
7227 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7228 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7229 
7230 	return rp1;
7231 }
7232 
cherryview_rps_min_freq(struct drm_i915_private * dev_priv)7233 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7234 {
7235 	u32 val, rpn;
7236 
7237 	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7238 	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7239 		       FB_GFX_FREQ_FUSE_MASK);
7240 
7241 	return rpn;
7242 }
7243 
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)7244 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7245 {
7246 	u32 val, rp1;
7247 
7248 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7249 
7250 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7251 
7252 	return rp1;
7253 }
7254 
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)7255 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7256 {
7257 	u32 val, rp0;
7258 
7259 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7260 
7261 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7262 	/* Clamp to max */
7263 	rp0 = min_t(u32, rp0, 0xea);
7264 
7265 	return rp0;
7266 }
7267 
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)7268 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7269 {
7270 	u32 val, rpe;
7271 
7272 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7273 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7274 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7275 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7276 
7277 	return rpe;
7278 }
7279 
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)7280 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7281 {
7282 	u32 val;
7283 
7284 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7285 	/*
7286 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7287 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7288 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7289 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7290 	 * to make sure it matches what Punit accepts.
7291 	 */
7292 	return max_t(u32, val, 0xc0);
7293 }
7294 
7295 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)7296 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7297 {
7298 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7299 
7300 	WARN_ON(pctx_addr != dev_priv->dsm.start +
7301 			     dev_priv->vlv_pctx->stolen->start);
7302 }
7303 
7304 
7305 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)7306 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7307 {
7308 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7309 
7310 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7311 }
7312 
cherryview_setup_pctx(struct drm_i915_private * dev_priv)7313 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7314 {
7315 	resource_size_t pctx_paddr, paddr;
7316 	resource_size_t pctx_size = 32*1024;
7317 	u32 pcbr;
7318 
7319 	pcbr = I915_READ(VLV_PCBR);
7320 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7321 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7322 		paddr = dev_priv->dsm.end + 1 - pctx_size;
7323 		GEM_BUG_ON(paddr > U32_MAX);
7324 
7325 		pctx_paddr = (paddr & (~4095));
7326 		I915_WRITE(VLV_PCBR, pctx_paddr);
7327 	}
7328 
7329 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7330 }
7331 
valleyview_setup_pctx(struct drm_i915_private * dev_priv)7332 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7333 {
7334 	struct drm_i915_gem_object *pctx;
7335 	resource_size_t pctx_paddr;
7336 	resource_size_t pctx_size = 24*1024;
7337 	u32 pcbr;
7338 
7339 	pcbr = I915_READ(VLV_PCBR);
7340 	if (pcbr) {
7341 		/* BIOS set it up already, grab the pre-alloc'd space */
7342 		resource_size_t pcbr_offset;
7343 
7344 		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7345 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7346 								      pcbr_offset,
7347 								      I915_GTT_OFFSET_NONE,
7348 								      pctx_size);
7349 		goto out;
7350 	}
7351 
7352 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7353 
7354 	/*
7355 	 * From the Gunit register HAS:
7356 	 * The Gfx driver is expected to program this register and ensure
7357 	 * proper allocation within Gfx stolen memory.  For example, this
7358 	 * register should be programmed such than the PCBR range does not
7359 	 * overlap with other ranges, such as the frame buffer, protected
7360 	 * memory, or any other relevant ranges.
7361 	 */
7362 	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7363 	if (!pctx) {
7364 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7365 		goto out;
7366 	}
7367 
7368 	GEM_BUG_ON(range_overflows_t(u64,
7369 				     dev_priv->dsm.start,
7370 				     pctx->stolen->start,
7371 				     U32_MAX));
7372 	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7373 	I915_WRITE(VLV_PCBR, pctx_paddr);
7374 
7375 out:
7376 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7377 	dev_priv->vlv_pctx = pctx;
7378 }
7379 
valleyview_cleanup_pctx(struct drm_i915_private * dev_priv)7380 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7381 {
7382 	struct drm_i915_gem_object *pctx;
7383 
7384 	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7385 	if (pctx)
7386 		i915_gem_object_put(pctx);
7387 }
7388 
vlv_init_gpll_ref_freq(struct drm_i915_private * dev_priv)7389 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7390 {
7391 	dev_priv->gt_pm.rps.gpll_ref_freq =
7392 		vlv_get_cck_clock(dev_priv, "GPLL ref",
7393 				  CCK_GPLL_CLOCK_CONTROL,
7394 				  dev_priv->czclk_freq);
7395 
7396 	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7397 			 dev_priv->gt_pm.rps.gpll_ref_freq);
7398 }
7399 
valleyview_init_gt_powersave(struct drm_i915_private * dev_priv)7400 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7401 {
7402 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7403 	u32 val;
7404 
7405 	valleyview_setup_pctx(dev_priv);
7406 
7407 	vlv_init_gpll_ref_freq(dev_priv);
7408 
7409 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7410 	switch ((val >> 6) & 3) {
7411 	case 0:
7412 	case 1:
7413 		dev_priv->mem_freq = 800;
7414 		break;
7415 	case 2:
7416 		dev_priv->mem_freq = 1066;
7417 		break;
7418 	case 3:
7419 		dev_priv->mem_freq = 1333;
7420 		break;
7421 	}
7422 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7423 
7424 	rps->max_freq = valleyview_rps_max_freq(dev_priv);
7425 	rps->rp0_freq = rps->max_freq;
7426 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7427 			 intel_gpu_freq(dev_priv, rps->max_freq),
7428 			 rps->max_freq);
7429 
7430 	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7431 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7432 			 intel_gpu_freq(dev_priv, rps->efficient_freq),
7433 			 rps->efficient_freq);
7434 
7435 	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7436 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7437 			 intel_gpu_freq(dev_priv, rps->rp1_freq),
7438 			 rps->rp1_freq);
7439 
7440 	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7441 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7442 			 intel_gpu_freq(dev_priv, rps->min_freq),
7443 			 rps->min_freq);
7444 }
7445 
cherryview_init_gt_powersave(struct drm_i915_private * dev_priv)7446 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7447 {
7448 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7449 	u32 val;
7450 
7451 	cherryview_setup_pctx(dev_priv);
7452 
7453 	vlv_init_gpll_ref_freq(dev_priv);
7454 
7455 	mutex_lock(&dev_priv->sb_lock);
7456 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7457 	mutex_unlock(&dev_priv->sb_lock);
7458 
7459 	switch ((val >> 2) & 0x7) {
7460 	case 3:
7461 		dev_priv->mem_freq = 2000;
7462 		break;
7463 	default:
7464 		dev_priv->mem_freq = 1600;
7465 		break;
7466 	}
7467 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7468 
7469 	rps->max_freq = cherryview_rps_max_freq(dev_priv);
7470 	rps->rp0_freq = rps->max_freq;
7471 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7472 			 intel_gpu_freq(dev_priv, rps->max_freq),
7473 			 rps->max_freq);
7474 
7475 	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7476 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7477 			 intel_gpu_freq(dev_priv, rps->efficient_freq),
7478 			 rps->efficient_freq);
7479 
7480 	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7481 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7482 			 intel_gpu_freq(dev_priv, rps->rp1_freq),
7483 			 rps->rp1_freq);
7484 
7485 	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7486 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7487 			 intel_gpu_freq(dev_priv, rps->min_freq),
7488 			 rps->min_freq);
7489 
7490 	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7491 		   rps->min_freq) & 1,
7492 		  "Odd GPU freq values\n");
7493 }
7494 
valleyview_cleanup_gt_powersave(struct drm_i915_private * dev_priv)7495 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7496 {
7497 	valleyview_cleanup_pctx(dev_priv);
7498 }
7499 
cherryview_enable_rc6(struct drm_i915_private * dev_priv)7500 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7501 {
7502 	struct intel_engine_cs *engine;
7503 	enum intel_engine_id id;
7504 	u32 gtfifodbg, rc6_mode, pcbr;
7505 
7506 	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7507 					     GT_FIFO_FREE_ENTRIES_CHV);
7508 	if (gtfifodbg) {
7509 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7510 				 gtfifodbg);
7511 		I915_WRITE(GTFIFODBG, gtfifodbg);
7512 	}
7513 
7514 	cherryview_check_pctx(dev_priv);
7515 
7516 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
7517 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7518 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7519 
7520 	/*  Disable RC states. */
7521 	I915_WRITE(GEN6_RC_CONTROL, 0);
7522 
7523 	/* 2a: Program RC6 thresholds.*/
7524 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7525 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7526 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7527 
7528 	for_each_engine(engine, dev_priv, id)
7529 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7530 	I915_WRITE(GEN6_RC_SLEEP, 0);
7531 
7532 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7533 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7534 
7535 	/* Allows RC6 residency counter to work */
7536 	I915_WRITE(VLV_COUNTER_CONTROL,
7537 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7538 				      VLV_MEDIA_RC6_COUNT_EN |
7539 				      VLV_RENDER_RC6_COUNT_EN));
7540 
7541 	/* For now we assume BIOS is allocating and populating the PCBR  */
7542 	pcbr = I915_READ(VLV_PCBR);
7543 
7544 	/* 3: Enable RC6 */
7545 	rc6_mode = 0;
7546 	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7547 		rc6_mode = GEN7_RC_CTL_TO_MODE;
7548 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7549 
7550 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7551 }
7552 
cherryview_enable_rps(struct drm_i915_private * dev_priv)7553 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7554 {
7555 	u32 val;
7556 
7557 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7558 
7559 	/* 1: Program defaults and thresholds for RPS*/
7560 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7561 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7562 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7563 	I915_WRITE(GEN6_RP_UP_EI, 66000);
7564 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7565 
7566 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7567 
7568 	/* 2: Enable RPS */
7569 	I915_WRITE(GEN6_RP_CONTROL,
7570 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7571 		   GEN6_RP_MEDIA_IS_GFX |
7572 		   GEN6_RP_ENABLE |
7573 		   GEN6_RP_UP_BUSY_AVG |
7574 		   GEN6_RP_DOWN_IDLE_AVG);
7575 
7576 	/* Setting Fixed Bias */
7577 	val = VLV_OVERRIDE_EN |
7578 		  VLV_SOC_TDP_EN |
7579 		  CHV_BIAS_CPU_50_SOC_50;
7580 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7581 
7582 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7583 
7584 	/* RPS code assumes GPLL is used */
7585 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7586 
7587 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7588 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7589 
7590 	reset_rps(dev_priv, valleyview_set_rps);
7591 
7592 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7593 }
7594 
valleyview_enable_rc6(struct drm_i915_private * dev_priv)7595 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7596 {
7597 	struct intel_engine_cs *engine;
7598 	enum intel_engine_id id;
7599 	u32 gtfifodbg;
7600 
7601 	valleyview_check_pctx(dev_priv);
7602 
7603 	gtfifodbg = I915_READ(GTFIFODBG);
7604 	if (gtfifodbg) {
7605 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7606 				 gtfifodbg);
7607 		I915_WRITE(GTFIFODBG, gtfifodbg);
7608 	}
7609 
7610 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7611 
7612 	/*  Disable RC states. */
7613 	I915_WRITE(GEN6_RC_CONTROL, 0);
7614 
7615 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7616 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7617 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7618 
7619 	for_each_engine(engine, dev_priv, id)
7620 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7621 
7622 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7623 
7624 	/* Allows RC6 residency counter to work */
7625 	I915_WRITE(VLV_COUNTER_CONTROL,
7626 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7627 				      VLV_MEDIA_RC0_COUNT_EN |
7628 				      VLV_RENDER_RC0_COUNT_EN |
7629 				      VLV_MEDIA_RC6_COUNT_EN |
7630 				      VLV_RENDER_RC6_COUNT_EN));
7631 
7632 	I915_WRITE(GEN6_RC_CONTROL,
7633 		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7634 
7635 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7636 }
7637 
valleyview_enable_rps(struct drm_i915_private * dev_priv)7638 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7639 {
7640 	u32 val;
7641 
7642 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7643 
7644 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7645 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7646 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7647 	I915_WRITE(GEN6_RP_UP_EI, 66000);
7648 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7649 
7650 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7651 
7652 	I915_WRITE(GEN6_RP_CONTROL,
7653 		   GEN6_RP_MEDIA_TURBO |
7654 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7655 		   GEN6_RP_MEDIA_IS_GFX |
7656 		   GEN6_RP_ENABLE |
7657 		   GEN6_RP_UP_BUSY_AVG |
7658 		   GEN6_RP_DOWN_IDLE_CONT);
7659 
7660 	/* Setting Fixed Bias */
7661 	val = VLV_OVERRIDE_EN |
7662 		  VLV_SOC_TDP_EN |
7663 		  VLV_BIAS_CPU_125_SOC_875;
7664 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7665 
7666 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7667 
7668 	/* RPS code assumes GPLL is used */
7669 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7670 
7671 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7672 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7673 
7674 	reset_rps(dev_priv, valleyview_set_rps);
7675 
7676 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7677 }
7678 
intel_pxfreq(u32 vidfreq)7679 static unsigned long intel_pxfreq(u32 vidfreq)
7680 {
7681 	unsigned long freq;
7682 	int div = (vidfreq & 0x3f0000) >> 16;
7683 	int post = (vidfreq & 0x3000) >> 12;
7684 	int pre = (vidfreq & 0x7);
7685 
7686 	if (!pre)
7687 		return 0;
7688 
7689 	freq = ((div * 133333) / ((1<<post) * pre));
7690 
7691 	return freq;
7692 }
7693 
7694 static const struct cparams {
7695 	u16 i;
7696 	u16 t;
7697 	u16 m;
7698 	u16 c;
7699 } cparams[] = {
7700 	{ 1, 1333, 301, 28664 },
7701 	{ 1, 1066, 294, 24460 },
7702 	{ 1, 800, 294, 25192 },
7703 	{ 0, 1333, 276, 27605 },
7704 	{ 0, 1066, 276, 27605 },
7705 	{ 0, 800, 231, 23784 },
7706 };
7707 
__i915_chipset_val(struct drm_i915_private * dev_priv)7708 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7709 {
7710 	u64 total_count, diff, ret;
7711 	u32 count1, count2, count3, m = 0, c = 0;
7712 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
7713 	int i;
7714 
7715 	lockdep_assert_held(&mchdev_lock);
7716 
7717 	diff1 = now - dev_priv->ips.last_time1;
7718 
7719 	/* Prevent division-by-zero if we are asking too fast.
7720 	 * Also, we don't get interesting results if we are polling
7721 	 * faster than once in 10ms, so just return the saved value
7722 	 * in such cases.
7723 	 */
7724 	if (diff1 <= 10)
7725 		return dev_priv->ips.chipset_power;
7726 
7727 	count1 = I915_READ(DMIEC);
7728 	count2 = I915_READ(DDREC);
7729 	count3 = I915_READ(CSIEC);
7730 
7731 	total_count = count1 + count2 + count3;
7732 
7733 	/* FIXME: handle per-counter overflow */
7734 	if (total_count < dev_priv->ips.last_count1) {
7735 		diff = ~0UL - dev_priv->ips.last_count1;
7736 		diff += total_count;
7737 	} else {
7738 		diff = total_count - dev_priv->ips.last_count1;
7739 	}
7740 
7741 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7742 		if (cparams[i].i == dev_priv->ips.c_m &&
7743 		    cparams[i].t == dev_priv->ips.r_t) {
7744 			m = cparams[i].m;
7745 			c = cparams[i].c;
7746 			break;
7747 		}
7748 	}
7749 
7750 	diff = div_u64(diff, diff1);
7751 	ret = ((m * diff) + c);
7752 	ret = div_u64(ret, 10);
7753 
7754 	dev_priv->ips.last_count1 = total_count;
7755 	dev_priv->ips.last_time1 = now;
7756 
7757 	dev_priv->ips.chipset_power = ret;
7758 
7759 	return ret;
7760 }
7761 
i915_chipset_val(struct drm_i915_private * dev_priv)7762 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7763 {
7764 	unsigned long val;
7765 
7766 	if (!IS_GEN5(dev_priv))
7767 		return 0;
7768 
7769 	spin_lock_irq(&mchdev_lock);
7770 
7771 	val = __i915_chipset_val(dev_priv);
7772 
7773 	spin_unlock_irq(&mchdev_lock);
7774 
7775 	return val;
7776 }
7777 
i915_mch_val(struct drm_i915_private * dev_priv)7778 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7779 {
7780 	unsigned long m, x, b;
7781 	u32 tsfs;
7782 
7783 	tsfs = I915_READ(TSFS);
7784 
7785 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7786 	x = I915_READ8(TR1);
7787 
7788 	b = tsfs & TSFS_INTR_MASK;
7789 
7790 	return ((m * x) / 127) - b;
7791 }
7792 
_pxvid_to_vd(u8 pxvid)7793 static int _pxvid_to_vd(u8 pxvid)
7794 {
7795 	if (pxvid == 0)
7796 		return 0;
7797 
7798 	if (pxvid >= 8 && pxvid < 31)
7799 		pxvid = 31;
7800 
7801 	return (pxvid + 2) * 125;
7802 }
7803 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)7804 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7805 {
7806 	const int vd = _pxvid_to_vd(pxvid);
7807 	const int vm = vd - 1125;
7808 
7809 	if (INTEL_INFO(dev_priv)->is_mobile)
7810 		return vm > 0 ? vm : 0;
7811 
7812 	return vd;
7813 }
7814 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)7815 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7816 {
7817 	u64 now, diff, diffms;
7818 	u32 count;
7819 
7820 	lockdep_assert_held(&mchdev_lock);
7821 
7822 	now = ktime_get_raw_ns();
7823 	diffms = now - dev_priv->ips.last_time2;
7824 	do_div(diffms, NSEC_PER_MSEC);
7825 
7826 	/* Don't divide by 0 */
7827 	if (!diffms)
7828 		return;
7829 
7830 	count = I915_READ(GFXEC);
7831 
7832 	if (count < dev_priv->ips.last_count2) {
7833 		diff = ~0UL - dev_priv->ips.last_count2;
7834 		diff += count;
7835 	} else {
7836 		diff = count - dev_priv->ips.last_count2;
7837 	}
7838 
7839 	dev_priv->ips.last_count2 = count;
7840 	dev_priv->ips.last_time2 = now;
7841 
7842 	/* More magic constants... */
7843 	diff = diff * 1181;
7844 	diff = div_u64(diff, diffms * 10);
7845 	dev_priv->ips.gfx_power = diff;
7846 }
7847 
i915_update_gfx_val(struct drm_i915_private * dev_priv)7848 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7849 {
7850 	if (!IS_GEN5(dev_priv))
7851 		return;
7852 
7853 	spin_lock_irq(&mchdev_lock);
7854 
7855 	__i915_update_gfx_val(dev_priv);
7856 
7857 	spin_unlock_irq(&mchdev_lock);
7858 }
7859 
__i915_gfx_val(struct drm_i915_private * dev_priv)7860 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7861 {
7862 	unsigned long t, corr, state1, corr2, state2;
7863 	u32 pxvid, ext_v;
7864 
7865 	lockdep_assert_held(&mchdev_lock);
7866 
7867 	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7868 	pxvid = (pxvid >> 24) & 0x7f;
7869 	ext_v = pvid_to_extvid(dev_priv, pxvid);
7870 
7871 	state1 = ext_v;
7872 
7873 	t = i915_mch_val(dev_priv);
7874 
7875 	/* Revel in the empirically derived constants */
7876 
7877 	/* Correction factor in 1/100000 units */
7878 	if (t > 80)
7879 		corr = ((t * 2349) + 135940);
7880 	else if (t >= 50)
7881 		corr = ((t * 964) + 29317);
7882 	else /* < 50 */
7883 		corr = ((t * 301) + 1004);
7884 
7885 	corr = corr * ((150142 * state1) / 10000 - 78642);
7886 	corr /= 100000;
7887 	corr2 = (corr * dev_priv->ips.corr);
7888 
7889 	state2 = (corr2 * state1) / 10000;
7890 	state2 /= 100; /* convert to mW */
7891 
7892 	__i915_update_gfx_val(dev_priv);
7893 
7894 	return dev_priv->ips.gfx_power + state2;
7895 }
7896 
i915_gfx_val(struct drm_i915_private * dev_priv)7897 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7898 {
7899 	unsigned long val;
7900 
7901 	if (!IS_GEN5(dev_priv))
7902 		return 0;
7903 
7904 	spin_lock_irq(&mchdev_lock);
7905 
7906 	val = __i915_gfx_val(dev_priv);
7907 
7908 	spin_unlock_irq(&mchdev_lock);
7909 
7910 	return val;
7911 }
7912 
7913 /**
7914  * i915_read_mch_val - return value for IPS use
7915  *
7916  * Calculate and return a value for the IPS driver to use when deciding whether
7917  * we have thermal and power headroom to increase CPU or GPU power budget.
7918  */
i915_read_mch_val(void)7919 unsigned long i915_read_mch_val(void)
7920 {
7921 	struct drm_i915_private *dev_priv;
7922 	unsigned long chipset_val, graphics_val, ret = 0;
7923 
7924 	spin_lock_irq(&mchdev_lock);
7925 	if (!i915_mch_dev)
7926 		goto out_unlock;
7927 	dev_priv = i915_mch_dev;
7928 
7929 	chipset_val = __i915_chipset_val(dev_priv);
7930 	graphics_val = __i915_gfx_val(dev_priv);
7931 
7932 	ret = chipset_val + graphics_val;
7933 
7934 out_unlock:
7935 	spin_unlock_irq(&mchdev_lock);
7936 
7937 	return ret;
7938 }
7939 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7940 
7941 /**
7942  * i915_gpu_raise - raise GPU frequency limit
7943  *
7944  * Raise the limit; IPS indicates we have thermal headroom.
7945  */
i915_gpu_raise(void)7946 bool i915_gpu_raise(void)
7947 {
7948 	struct drm_i915_private *dev_priv;
7949 	bool ret = true;
7950 
7951 	spin_lock_irq(&mchdev_lock);
7952 	if (!i915_mch_dev) {
7953 		ret = false;
7954 		goto out_unlock;
7955 	}
7956 	dev_priv = i915_mch_dev;
7957 
7958 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7959 		dev_priv->ips.max_delay--;
7960 
7961 out_unlock:
7962 	spin_unlock_irq(&mchdev_lock);
7963 
7964 	return ret;
7965 }
7966 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7967 
7968 /**
7969  * i915_gpu_lower - lower GPU frequency limit
7970  *
7971  * IPS indicates we're close to a thermal limit, so throttle back the GPU
7972  * frequency maximum.
7973  */
i915_gpu_lower(void)7974 bool i915_gpu_lower(void)
7975 {
7976 	struct drm_i915_private *dev_priv;
7977 	bool ret = true;
7978 
7979 	spin_lock_irq(&mchdev_lock);
7980 	if (!i915_mch_dev) {
7981 		ret = false;
7982 		goto out_unlock;
7983 	}
7984 	dev_priv = i915_mch_dev;
7985 
7986 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7987 		dev_priv->ips.max_delay++;
7988 
7989 out_unlock:
7990 	spin_unlock_irq(&mchdev_lock);
7991 
7992 	return ret;
7993 }
7994 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7995 
7996 /**
7997  * i915_gpu_busy - indicate GPU business to IPS
7998  *
7999  * Tell the IPS driver whether or not the GPU is busy.
8000  */
i915_gpu_busy(void)8001 bool i915_gpu_busy(void)
8002 {
8003 	bool ret = false;
8004 
8005 	spin_lock_irq(&mchdev_lock);
8006 	if (i915_mch_dev)
8007 		ret = i915_mch_dev->gt.awake;
8008 	spin_unlock_irq(&mchdev_lock);
8009 
8010 	return ret;
8011 }
8012 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8013 
8014 /**
8015  * i915_gpu_turbo_disable - disable graphics turbo
8016  *
8017  * Disable graphics turbo by resetting the max frequency and setting the
8018  * current frequency to the default.
8019  */
i915_gpu_turbo_disable(void)8020 bool i915_gpu_turbo_disable(void)
8021 {
8022 	struct drm_i915_private *dev_priv;
8023 	bool ret = true;
8024 
8025 	spin_lock_irq(&mchdev_lock);
8026 	if (!i915_mch_dev) {
8027 		ret = false;
8028 		goto out_unlock;
8029 	}
8030 	dev_priv = i915_mch_dev;
8031 
8032 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
8033 
8034 	if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8035 		ret = false;
8036 
8037 out_unlock:
8038 	spin_unlock_irq(&mchdev_lock);
8039 
8040 	return ret;
8041 }
8042 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8043 
8044 /**
8045  * Tells the intel_ips driver that the i915 driver is now loaded, if
8046  * IPS got loaded first.
8047  *
8048  * This awkward dance is so that neither module has to depend on the
8049  * other in order for IPS to do the appropriate communication of
8050  * GPU turbo limits to i915.
8051  */
8052 static void
ips_ping_for_i915_load(void)8053 ips_ping_for_i915_load(void)
8054 {
8055 	void (*link)(void);
8056 
8057 	link = symbol_get(ips_link_to_i915_driver);
8058 	if (link) {
8059 		link();
8060 		symbol_put(ips_link_to_i915_driver);
8061 	}
8062 }
8063 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)8064 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8065 {
8066 	/* We only register the i915 ips part with intel-ips once everything is
8067 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8068 	spin_lock_irq(&mchdev_lock);
8069 	i915_mch_dev = dev_priv;
8070 	spin_unlock_irq(&mchdev_lock);
8071 
8072 	ips_ping_for_i915_load();
8073 }
8074 
intel_gpu_ips_teardown(void)8075 void intel_gpu_ips_teardown(void)
8076 {
8077 	spin_lock_irq(&mchdev_lock);
8078 	i915_mch_dev = NULL;
8079 	spin_unlock_irq(&mchdev_lock);
8080 }
8081 
intel_init_emon(struct drm_i915_private * dev_priv)8082 static void intel_init_emon(struct drm_i915_private *dev_priv)
8083 {
8084 	u32 lcfuse;
8085 	u8 pxw[16];
8086 	int i;
8087 
8088 	/* Disable to program */
8089 	I915_WRITE(ECR, 0);
8090 	POSTING_READ(ECR);
8091 
8092 	/* Program energy weights for various events */
8093 	I915_WRITE(SDEW, 0x15040d00);
8094 	I915_WRITE(CSIEW0, 0x007f0000);
8095 	I915_WRITE(CSIEW1, 0x1e220004);
8096 	I915_WRITE(CSIEW2, 0x04000004);
8097 
8098 	for (i = 0; i < 5; i++)
8099 		I915_WRITE(PEW(i), 0);
8100 	for (i = 0; i < 3; i++)
8101 		I915_WRITE(DEW(i), 0);
8102 
8103 	/* Program P-state weights to account for frequency power adjustment */
8104 	for (i = 0; i < 16; i++) {
8105 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8106 		unsigned long freq = intel_pxfreq(pxvidfreq);
8107 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8108 			PXVFREQ_PX_SHIFT;
8109 		unsigned long val;
8110 
8111 		val = vid * vid;
8112 		val *= (freq / 1000);
8113 		val *= 255;
8114 		val /= (127*127*900);
8115 		if (val > 0xff)
8116 			DRM_ERROR("bad pxval: %ld\n", val);
8117 		pxw[i] = val;
8118 	}
8119 	/* Render standby states get 0 weight */
8120 	pxw[14] = 0;
8121 	pxw[15] = 0;
8122 
8123 	for (i = 0; i < 4; i++) {
8124 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8125 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8126 		I915_WRITE(PXW(i), val);
8127 	}
8128 
8129 	/* Adjust magic regs to magic values (more experimental results) */
8130 	I915_WRITE(OGW0, 0);
8131 	I915_WRITE(OGW1, 0);
8132 	I915_WRITE(EG0, 0x00007f00);
8133 	I915_WRITE(EG1, 0x0000000e);
8134 	I915_WRITE(EG2, 0x000e0000);
8135 	I915_WRITE(EG3, 0x68000300);
8136 	I915_WRITE(EG4, 0x42000000);
8137 	I915_WRITE(EG5, 0x00140031);
8138 	I915_WRITE(EG6, 0);
8139 	I915_WRITE(EG7, 0);
8140 
8141 	for (i = 0; i < 8; i++)
8142 		I915_WRITE(PXWL(i), 0);
8143 
8144 	/* Enable PMON + select events */
8145 	I915_WRITE(ECR, 0x80000019);
8146 
8147 	lcfuse = I915_READ(LCFUSE02);
8148 
8149 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8150 }
8151 
intel_init_gt_powersave(struct drm_i915_private * dev_priv)8152 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8153 {
8154 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8155 
8156 	/*
8157 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8158 	 * requirement.
8159 	 */
8160 	if (!sanitize_rc6(dev_priv)) {
8161 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8162 		intel_runtime_pm_get(dev_priv);
8163 	}
8164 
8165 	mutex_lock(&dev_priv->pcu_lock);
8166 
8167 	/* Initialize RPS limits (for userspace) */
8168 	if (IS_CHERRYVIEW(dev_priv))
8169 		cherryview_init_gt_powersave(dev_priv);
8170 	else if (IS_VALLEYVIEW(dev_priv))
8171 		valleyview_init_gt_powersave(dev_priv);
8172 	else if (INTEL_GEN(dev_priv) >= 6)
8173 		gen6_init_rps_frequencies(dev_priv);
8174 
8175 	/* Derive initial user preferences/limits from the hardware limits */
8176 	rps->idle_freq = rps->min_freq;
8177 	rps->cur_freq = rps->idle_freq;
8178 
8179 	rps->max_freq_softlimit = rps->max_freq;
8180 	rps->min_freq_softlimit = rps->min_freq;
8181 
8182 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8183 		rps->min_freq_softlimit =
8184 			max_t(int,
8185 			      rps->efficient_freq,
8186 			      intel_freq_opcode(dev_priv, 450));
8187 
8188 	/* After setting max-softlimit, find the overclock max freq */
8189 	if (IS_GEN6(dev_priv) ||
8190 	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8191 		u32 params = 0;
8192 
8193 		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8194 		if (params & BIT(31)) { /* OC supported */
8195 			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8196 					 (rps->max_freq & 0xff) * 50,
8197 					 (params & 0xff) * 50);
8198 			rps->max_freq = params & 0xff;
8199 		}
8200 	}
8201 
8202 	/* Finally allow us to boost to max by default */
8203 	rps->boost_freq = rps->max_freq;
8204 
8205 	mutex_unlock(&dev_priv->pcu_lock);
8206 }
8207 
intel_cleanup_gt_powersave(struct drm_i915_private * dev_priv)8208 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8209 {
8210 	if (IS_VALLEYVIEW(dev_priv))
8211 		valleyview_cleanup_gt_powersave(dev_priv);
8212 
8213 	if (!HAS_RC6(dev_priv))
8214 		intel_runtime_pm_put(dev_priv);
8215 }
8216 
8217 /**
8218  * intel_suspend_gt_powersave - suspend PM work and helper threads
8219  * @dev_priv: i915 device
8220  *
8221  * We don't want to disable RC6 or other features here, we just want
8222  * to make sure any work we've queued has finished and won't bother
8223  * us while we're suspended.
8224  */
intel_suspend_gt_powersave(struct drm_i915_private * dev_priv)8225 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8226 {
8227 	if (INTEL_GEN(dev_priv) < 6)
8228 		return;
8229 
8230 	/* gen6_rps_idle() will be called later to disable interrupts */
8231 }
8232 
intel_sanitize_gt_powersave(struct drm_i915_private * dev_priv)8233 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8234 {
8235 	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8236 	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8237 	intel_disable_gt_powersave(dev_priv);
8238 
8239 	if (INTEL_GEN(dev_priv) >= 11)
8240 		gen11_reset_rps_interrupts(dev_priv);
8241 	else
8242 		gen6_reset_rps_interrupts(dev_priv);
8243 }
8244 
intel_disable_llc_pstate(struct drm_i915_private * i915)8245 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8246 {
8247 	lockdep_assert_held(&i915->pcu_lock);
8248 
8249 	if (!i915->gt_pm.llc_pstate.enabled)
8250 		return;
8251 
8252 	/* Currently there is no HW configuration to be done to disable. */
8253 
8254 	i915->gt_pm.llc_pstate.enabled = false;
8255 }
8256 
intel_disable_rc6(struct drm_i915_private * dev_priv)8257 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8258 {
8259 	lockdep_assert_held(&dev_priv->pcu_lock);
8260 
8261 	if (!dev_priv->gt_pm.rc6.enabled)
8262 		return;
8263 
8264 	if (INTEL_GEN(dev_priv) >= 9)
8265 		gen9_disable_rc6(dev_priv);
8266 	else if (IS_CHERRYVIEW(dev_priv))
8267 		cherryview_disable_rc6(dev_priv);
8268 	else if (IS_VALLEYVIEW(dev_priv))
8269 		valleyview_disable_rc6(dev_priv);
8270 	else if (INTEL_GEN(dev_priv) >= 6)
8271 		gen6_disable_rc6(dev_priv);
8272 
8273 	dev_priv->gt_pm.rc6.enabled = false;
8274 }
8275 
intel_disable_rps(struct drm_i915_private * dev_priv)8276 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8277 {
8278 	lockdep_assert_held(&dev_priv->pcu_lock);
8279 
8280 	if (!dev_priv->gt_pm.rps.enabled)
8281 		return;
8282 
8283 	if (INTEL_GEN(dev_priv) >= 9)
8284 		gen9_disable_rps(dev_priv);
8285 	else if (IS_CHERRYVIEW(dev_priv))
8286 		cherryview_disable_rps(dev_priv);
8287 	else if (IS_VALLEYVIEW(dev_priv))
8288 		valleyview_disable_rps(dev_priv);
8289 	else if (INTEL_GEN(dev_priv) >= 6)
8290 		gen6_disable_rps(dev_priv);
8291 	else if (IS_IRONLAKE_M(dev_priv))
8292 		ironlake_disable_drps(dev_priv);
8293 
8294 	dev_priv->gt_pm.rps.enabled = false;
8295 }
8296 
intel_disable_gt_powersave(struct drm_i915_private * dev_priv)8297 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8298 {
8299 	mutex_lock(&dev_priv->pcu_lock);
8300 
8301 	intel_disable_rc6(dev_priv);
8302 	intel_disable_rps(dev_priv);
8303 	if (HAS_LLC(dev_priv))
8304 		intel_disable_llc_pstate(dev_priv);
8305 
8306 	mutex_unlock(&dev_priv->pcu_lock);
8307 }
8308 
intel_enable_llc_pstate(struct drm_i915_private * i915)8309 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8310 {
8311 	lockdep_assert_held(&i915->pcu_lock);
8312 
8313 	if (i915->gt_pm.llc_pstate.enabled)
8314 		return;
8315 
8316 	gen6_update_ring_freq(i915);
8317 
8318 	i915->gt_pm.llc_pstate.enabled = true;
8319 }
8320 
intel_enable_rc6(struct drm_i915_private * dev_priv)8321 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8322 {
8323 	lockdep_assert_held(&dev_priv->pcu_lock);
8324 
8325 	if (dev_priv->gt_pm.rc6.enabled)
8326 		return;
8327 
8328 	if (IS_CHERRYVIEW(dev_priv))
8329 		cherryview_enable_rc6(dev_priv);
8330 	else if (IS_VALLEYVIEW(dev_priv))
8331 		valleyview_enable_rc6(dev_priv);
8332 	else if (INTEL_GEN(dev_priv) >= 9)
8333 		gen9_enable_rc6(dev_priv);
8334 	else if (IS_BROADWELL(dev_priv))
8335 		gen8_enable_rc6(dev_priv);
8336 	else if (INTEL_GEN(dev_priv) >= 6)
8337 		gen6_enable_rc6(dev_priv);
8338 
8339 	dev_priv->gt_pm.rc6.enabled = true;
8340 }
8341 
intel_enable_rps(struct drm_i915_private * dev_priv)8342 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8343 {
8344 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8345 
8346 	lockdep_assert_held(&dev_priv->pcu_lock);
8347 
8348 	if (rps->enabled)
8349 		return;
8350 
8351 	if (IS_CHERRYVIEW(dev_priv)) {
8352 		cherryview_enable_rps(dev_priv);
8353 	} else if (IS_VALLEYVIEW(dev_priv)) {
8354 		valleyview_enable_rps(dev_priv);
8355 	} else if (INTEL_GEN(dev_priv) >= 9) {
8356 		gen9_enable_rps(dev_priv);
8357 	} else if (IS_BROADWELL(dev_priv)) {
8358 		gen8_enable_rps(dev_priv);
8359 	} else if (INTEL_GEN(dev_priv) >= 6) {
8360 		gen6_enable_rps(dev_priv);
8361 	} else if (IS_IRONLAKE_M(dev_priv)) {
8362 		ironlake_enable_drps(dev_priv);
8363 		intel_init_emon(dev_priv);
8364 	}
8365 
8366 	WARN_ON(rps->max_freq < rps->min_freq);
8367 	WARN_ON(rps->idle_freq > rps->max_freq);
8368 
8369 	WARN_ON(rps->efficient_freq < rps->min_freq);
8370 	WARN_ON(rps->efficient_freq > rps->max_freq);
8371 
8372 	rps->enabled = true;
8373 }
8374 
intel_enable_gt_powersave(struct drm_i915_private * dev_priv)8375 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8376 {
8377 	/* Powersaving is controlled by the host when inside a VM */
8378 	if (intel_vgpu_active(dev_priv))
8379 		return;
8380 
8381 	mutex_lock(&dev_priv->pcu_lock);
8382 
8383 	if (HAS_RC6(dev_priv))
8384 		intel_enable_rc6(dev_priv);
8385 	intel_enable_rps(dev_priv);
8386 	if (HAS_LLC(dev_priv))
8387 		intel_enable_llc_pstate(dev_priv);
8388 
8389 	mutex_unlock(&dev_priv->pcu_lock);
8390 }
8391 
ibx_init_clock_gating(struct drm_i915_private * dev_priv)8392 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8393 {
8394 	/*
8395 	 * On Ibex Peak and Cougar Point, we need to disable clock
8396 	 * gating for the panel power sequencer or it will fail to
8397 	 * start up when no ports are active.
8398 	 */
8399 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8400 }
8401 
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)8402 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8403 {
8404 	enum pipe pipe;
8405 
8406 	for_each_pipe(dev_priv, pipe) {
8407 		I915_WRITE(DSPCNTR(pipe),
8408 			   I915_READ(DSPCNTR(pipe)) |
8409 			   DISPPLANE_TRICKLE_FEED_DISABLE);
8410 
8411 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8412 		POSTING_READ(DSPSURF(pipe));
8413 	}
8414 }
8415 
ilk_init_clock_gating(struct drm_i915_private * dev_priv)8416 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8417 {
8418 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8419 
8420 	/*
8421 	 * Required for FBC
8422 	 * WaFbcDisableDpfcClockGating:ilk
8423 	 */
8424 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8425 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8426 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8427 
8428 	I915_WRITE(PCH_3DCGDIS0,
8429 		   MARIUNIT_CLOCK_GATE_DISABLE |
8430 		   SVSMUNIT_CLOCK_GATE_DISABLE);
8431 	I915_WRITE(PCH_3DCGDIS1,
8432 		   VFMUNIT_CLOCK_GATE_DISABLE);
8433 
8434 	/*
8435 	 * According to the spec the following bits should be set in
8436 	 * order to enable memory self-refresh
8437 	 * The bit 22/21 of 0x42004
8438 	 * The bit 5 of 0x42020
8439 	 * The bit 15 of 0x45000
8440 	 */
8441 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8442 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8443 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8444 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8445 	I915_WRITE(DISP_ARB_CTL,
8446 		   (I915_READ(DISP_ARB_CTL) |
8447 		    DISP_FBC_WM_DIS));
8448 
8449 	/*
8450 	 * Based on the document from hardware guys the following bits
8451 	 * should be set unconditionally in order to enable FBC.
8452 	 * The bit 22 of 0x42000
8453 	 * The bit 22 of 0x42004
8454 	 * The bit 7,8,9 of 0x42020.
8455 	 */
8456 	if (IS_IRONLAKE_M(dev_priv)) {
8457 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8458 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
8459 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
8460 			   ILK_FBCQ_DIS);
8461 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
8462 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
8463 			   ILK_DPARB_GATE);
8464 	}
8465 
8466 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8467 
8468 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8469 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8470 		   ILK_ELPIN_409_SELECT);
8471 	I915_WRITE(_3D_CHICKEN2,
8472 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8473 		   _3D_CHICKEN2_WM_READ_PIPELINED);
8474 
8475 	/* WaDisableRenderCachePipelinedFlush:ilk */
8476 	I915_WRITE(CACHE_MODE_0,
8477 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8478 
8479 	/* WaDisable_RenderCache_OperationalFlush:ilk */
8480 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8481 
8482 	g4x_disable_trickle_feed(dev_priv);
8483 
8484 	ibx_init_clock_gating(dev_priv);
8485 }
8486 
cpt_init_clock_gating(struct drm_i915_private * dev_priv)8487 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8488 {
8489 	int pipe;
8490 	uint32_t val;
8491 
8492 	/*
8493 	 * On Ibex Peak and Cougar Point, we need to disable clock
8494 	 * gating for the panel power sequencer or it will fail to
8495 	 * start up when no ports are active.
8496 	 */
8497 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8498 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8499 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8500 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8501 		   DPLS_EDP_PPS_FIX_DIS);
8502 	/* The below fixes the weird display corruption, a few pixels shifted
8503 	 * downward, on (only) LVDS of some HP laptops with IVY.
8504 	 */
8505 	for_each_pipe(dev_priv, pipe) {
8506 		val = I915_READ(TRANS_CHICKEN2(pipe));
8507 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8508 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8509 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
8510 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8511 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8512 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8513 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8514 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
8515 	}
8516 	/* WADP0ClockGatingDisable */
8517 	for_each_pipe(dev_priv, pipe) {
8518 		I915_WRITE(TRANS_CHICKEN1(pipe),
8519 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8520 	}
8521 }
8522 
gen6_check_mch_setup(struct drm_i915_private * dev_priv)8523 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8524 {
8525 	uint32_t tmp;
8526 
8527 	tmp = I915_READ(MCH_SSKPD);
8528 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8529 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8530 			      tmp);
8531 }
8532 
gen6_init_clock_gating(struct drm_i915_private * dev_priv)8533 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8534 {
8535 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8536 
8537 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8538 
8539 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8540 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8541 		   ILK_ELPIN_409_SELECT);
8542 
8543 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8544 	I915_WRITE(_3D_CHICKEN,
8545 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8546 
8547 	/* WaDisable_RenderCache_OperationalFlush:snb */
8548 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8549 
8550 	/*
8551 	 * BSpec recoomends 8x4 when MSAA is used,
8552 	 * however in practice 16x4 seems fastest.
8553 	 *
8554 	 * Note that PS/WM thread counts depend on the WIZ hashing
8555 	 * disable bit, which we don't touch here, but it's good
8556 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8557 	 */
8558 	I915_WRITE(GEN6_GT_MODE,
8559 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8560 
8561 	I915_WRITE(CACHE_MODE_0,
8562 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8563 
8564 	I915_WRITE(GEN6_UCGCTL1,
8565 		   I915_READ(GEN6_UCGCTL1) |
8566 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8567 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8568 
8569 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8570 	 * gating disable must be set.  Failure to set it results in
8571 	 * flickering pixels due to Z write ordering failures after
8572 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
8573 	 * Sanctuary and Tropics, and apparently anything else with
8574 	 * alpha test or pixel discard.
8575 	 *
8576 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
8577 	 * but we didn't debug actual testcases to find it out.
8578 	 *
8579 	 * WaDisableRCCUnitClockGating:snb
8580 	 * WaDisableRCPBUnitClockGating:snb
8581 	 */
8582 	I915_WRITE(GEN6_UCGCTL2,
8583 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8584 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8585 
8586 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
8587 	I915_WRITE(_3D_CHICKEN3,
8588 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8589 
8590 	/*
8591 	 * Bspec says:
8592 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8593 	 * 3DSTATE_SF number of SF output attributes is more than 16."
8594 	 */
8595 	I915_WRITE(_3D_CHICKEN3,
8596 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8597 
8598 	/*
8599 	 * According to the spec the following bits should be
8600 	 * set in order to enable memory self-refresh and fbc:
8601 	 * The bit21 and bit22 of 0x42000
8602 	 * The bit21 and bit22 of 0x42004
8603 	 * The bit5 and bit7 of 0x42020
8604 	 * The bit14 of 0x70180
8605 	 * The bit14 of 0x71180
8606 	 *
8607 	 * WaFbcAsynchFlipDisableFbcQueue:snb
8608 	 */
8609 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
8610 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
8611 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8612 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8613 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8614 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8615 	I915_WRITE(ILK_DSPCLK_GATE_D,
8616 		   I915_READ(ILK_DSPCLK_GATE_D) |
8617 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8618 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8619 
8620 	g4x_disable_trickle_feed(dev_priv);
8621 
8622 	cpt_init_clock_gating(dev_priv);
8623 
8624 	gen6_check_mch_setup(dev_priv);
8625 }
8626 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)8627 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8628 {
8629 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8630 
8631 	/*
8632 	 * WaVSThreadDispatchOverride:ivb,vlv
8633 	 *
8634 	 * This actually overrides the dispatch
8635 	 * mode for all thread types.
8636 	 */
8637 	reg &= ~GEN7_FF_SCHED_MASK;
8638 	reg |= GEN7_FF_TS_SCHED_HW;
8639 	reg |= GEN7_FF_VS_SCHED_HW;
8640 	reg |= GEN7_FF_DS_SCHED_HW;
8641 
8642 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8643 }
8644 
lpt_init_clock_gating(struct drm_i915_private * dev_priv)8645 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8646 {
8647 	/*
8648 	 * TODO: this bit should only be enabled when really needed, then
8649 	 * disabled when not needed anymore in order to save power.
8650 	 */
8651 	if (HAS_PCH_LPT_LP(dev_priv))
8652 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
8653 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
8654 			   PCH_LP_PARTITION_LEVEL_DISABLE);
8655 
8656 	/* WADPOClockGatingDisable:hsw */
8657 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8658 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8659 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8660 }
8661 
lpt_suspend_hw(struct drm_i915_private * dev_priv)8662 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8663 {
8664 	if (HAS_PCH_LPT_LP(dev_priv)) {
8665 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8666 
8667 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8668 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8669 	}
8670 }
8671 
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)8672 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8673 				   int general_prio_credits,
8674 				   int high_prio_credits)
8675 {
8676 	u32 misccpctl;
8677 	u32 val;
8678 
8679 	/* WaTempDisableDOPClkGating:bdw */
8680 	misccpctl = I915_READ(GEN7_MISCCPCTL);
8681 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8682 
8683 	val = I915_READ(GEN8_L3SQCREG1);
8684 	val &= ~L3_PRIO_CREDITS_MASK;
8685 	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8686 	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8687 	I915_WRITE(GEN8_L3SQCREG1, val);
8688 
8689 	/*
8690 	 * Wait at least 100 clocks before re-enabling clock gating.
8691 	 * See the definition of L3SQCREG1 in BSpec.
8692 	 */
8693 	POSTING_READ(GEN8_L3SQCREG1);
8694 	udelay(1);
8695 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8696 }
8697 
icl_init_clock_gating(struct drm_i915_private * dev_priv)8698 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8699 {
8700 	/* This is not an Wa. Enable to reduce Sampler power */
8701 	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8702 		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8703 }
8704 
cnp_init_clock_gating(struct drm_i915_private * dev_priv)8705 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8706 {
8707 	if (!HAS_PCH_CNP(dev_priv))
8708 		return;
8709 
8710 	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8711 	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8712 		   CNP_PWM_CGE_GATING_DISABLE);
8713 }
8714 
cnl_init_clock_gating(struct drm_i915_private * dev_priv)8715 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8716 {
8717 	u32 val;
8718 	cnp_init_clock_gating(dev_priv);
8719 
8720 	/* This is not an Wa. Enable for better image quality */
8721 	I915_WRITE(_3D_CHICKEN3,
8722 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8723 
8724 	/* WaEnableChickenDCPR:cnl */
8725 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
8726 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8727 
8728 	/* WaFbcWakeMemOn:cnl */
8729 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8730 		   DISP_FBC_MEMORY_WAKE);
8731 
8732 	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8733 	/* ReadHitWriteOnlyDisable:cnl */
8734 	val |= RCCUNIT_CLKGATE_DIS;
8735 	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8736 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8737 		val |= SARBUNIT_CLKGATE_DIS;
8738 	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8739 
8740 	/* Wa_2201832410:cnl */
8741 	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8742 	val |= GWUNIT_CLKGATE_DIS;
8743 	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8744 
8745 	/* WaDisableVFclkgate:cnl */
8746 	/* WaVFUnitClockGatingDisable:cnl */
8747 	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8748 	val |= VFUNIT_CLKGATE_DIS;
8749 	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8750 }
8751 
cfl_init_clock_gating(struct drm_i915_private * dev_priv)8752 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8753 {
8754 	cnp_init_clock_gating(dev_priv);
8755 	gen9_init_clock_gating(dev_priv);
8756 
8757 	/* WaFbcNukeOnHostModify:cfl */
8758 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8759 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8760 }
8761 
kbl_init_clock_gating(struct drm_i915_private * dev_priv)8762 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8763 {
8764 	gen9_init_clock_gating(dev_priv);
8765 
8766 	/* WaDisableSDEUnitClockGating:kbl */
8767 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8768 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8769 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8770 
8771 	/* WaDisableGamClockGating:kbl */
8772 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8773 		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8774 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8775 
8776 	/* WaFbcNukeOnHostModify:kbl */
8777 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8778 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8779 }
8780 
skl_init_clock_gating(struct drm_i915_private * dev_priv)8781 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8782 {
8783 	gen9_init_clock_gating(dev_priv);
8784 
8785 	/* WAC6entrylatency:skl */
8786 	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8787 		   FBC_LLC_FULLY_OPEN);
8788 
8789 	/* WaFbcNukeOnHostModify:skl */
8790 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8791 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8792 }
8793 
bdw_init_clock_gating(struct drm_i915_private * dev_priv)8794 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8795 {
8796 	/* The GTT cache must be disabled if the system is using 2M pages. */
8797 	bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8798 						 I915_GTT_PAGE_SIZE_2M);
8799 	enum pipe pipe;
8800 
8801 	/* WaSwitchSolVfFArbitrationPriority:bdw */
8802 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8803 
8804 	/* WaPsrDPAMaskVBlankInSRD:bdw */
8805 	I915_WRITE(CHICKEN_PAR1_1,
8806 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8807 
8808 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8809 	for_each_pipe(dev_priv, pipe) {
8810 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
8811 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
8812 			   BDW_DPRS_MASK_VBLANK_SRD);
8813 	}
8814 
8815 	/* WaVSRefCountFullforceMissDisable:bdw */
8816 	/* WaDSRefCountFullforceMissDisable:bdw */
8817 	I915_WRITE(GEN7_FF_THREAD_MODE,
8818 		   I915_READ(GEN7_FF_THREAD_MODE) &
8819 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8820 
8821 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8822 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8823 
8824 	/* WaDisableSDEUnitClockGating:bdw */
8825 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8826 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8827 
8828 	/* WaProgramL3SqcReg1Default:bdw */
8829 	gen8_set_l3sqc_credits(dev_priv, 30, 2);
8830 
8831 	/* WaGttCachingOffByDefault:bdw */
8832 	I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8833 
8834 	/* WaKVMNotificationOnConfigChange:bdw */
8835 	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8836 		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8837 
8838 	lpt_init_clock_gating(dev_priv);
8839 
8840 	/* WaDisableDopClockGating:bdw
8841 	 *
8842 	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8843 	 * clock gating.
8844 	 */
8845 	I915_WRITE(GEN6_UCGCTL1,
8846 		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8847 }
8848 
hsw_init_clock_gating(struct drm_i915_private * dev_priv)8849 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8850 {
8851 	/* L3 caching of data atomics doesn't work -- disable it. */
8852 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8853 	I915_WRITE(HSW_ROW_CHICKEN3,
8854 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8855 
8856 	/* This is required by WaCatErrorRejectionIssue:hsw */
8857 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8858 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8859 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8860 
8861 	/* WaVSRefCountFullforceMissDisable:hsw */
8862 	I915_WRITE(GEN7_FF_THREAD_MODE,
8863 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8864 
8865 	/* WaDisable_RenderCache_OperationalFlush:hsw */
8866 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8867 
8868 	/* enable HiZ Raw Stall Optimization */
8869 	I915_WRITE(CACHE_MODE_0_GEN7,
8870 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8871 
8872 	/* WaDisable4x2SubspanOptimization:hsw */
8873 	I915_WRITE(CACHE_MODE_1,
8874 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8875 
8876 	/*
8877 	 * BSpec recommends 8x4 when MSAA is used,
8878 	 * however in practice 16x4 seems fastest.
8879 	 *
8880 	 * Note that PS/WM thread counts depend on the WIZ hashing
8881 	 * disable bit, which we don't touch here, but it's good
8882 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8883 	 */
8884 	I915_WRITE(GEN7_GT_MODE,
8885 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8886 
8887 	/* WaSampleCChickenBitEnable:hsw */
8888 	I915_WRITE(HALF_SLICE_CHICKEN3,
8889 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8890 
8891 	/* WaSwitchSolVfFArbitrationPriority:hsw */
8892 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8893 
8894 	lpt_init_clock_gating(dev_priv);
8895 }
8896 
ivb_init_clock_gating(struct drm_i915_private * dev_priv)8897 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8898 {
8899 	uint32_t snpcr;
8900 
8901 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8902 
8903 	/* WaDisableEarlyCull:ivb */
8904 	I915_WRITE(_3D_CHICKEN3,
8905 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8906 
8907 	/* WaDisableBackToBackFlipFix:ivb */
8908 	I915_WRITE(IVB_CHICKEN3,
8909 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8910 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8911 
8912 	/* WaDisablePSDDualDispatchEnable:ivb */
8913 	if (IS_IVB_GT1(dev_priv))
8914 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8915 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8916 
8917 	/* WaDisable_RenderCache_OperationalFlush:ivb */
8918 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8919 
8920 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8921 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8922 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8923 
8924 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
8925 	I915_WRITE(GEN7_L3CNTLREG1,
8926 			GEN7_WA_FOR_GEN7_L3_CONTROL);
8927 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8928 		   GEN7_WA_L3_CHICKEN_MODE);
8929 	if (IS_IVB_GT1(dev_priv))
8930 		I915_WRITE(GEN7_ROW_CHICKEN2,
8931 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8932 	else {
8933 		/* must write both registers */
8934 		I915_WRITE(GEN7_ROW_CHICKEN2,
8935 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8936 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8937 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8938 	}
8939 
8940 	/* WaForceL3Serialization:ivb */
8941 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8942 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8943 
8944 	/*
8945 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8946 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8947 	 */
8948 	I915_WRITE(GEN6_UCGCTL2,
8949 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8950 
8951 	/* This is required by WaCatErrorRejectionIssue:ivb */
8952 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8953 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8954 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8955 
8956 	g4x_disable_trickle_feed(dev_priv);
8957 
8958 	gen7_setup_fixed_func_scheduler(dev_priv);
8959 
8960 	if (0) { /* causes HiZ corruption on ivb:gt1 */
8961 		/* enable HiZ Raw Stall Optimization */
8962 		I915_WRITE(CACHE_MODE_0_GEN7,
8963 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8964 	}
8965 
8966 	/* WaDisable4x2SubspanOptimization:ivb */
8967 	I915_WRITE(CACHE_MODE_1,
8968 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8969 
8970 	/*
8971 	 * BSpec recommends 8x4 when MSAA is used,
8972 	 * however in practice 16x4 seems fastest.
8973 	 *
8974 	 * Note that PS/WM thread counts depend on the WIZ hashing
8975 	 * disable bit, which we don't touch here, but it's good
8976 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8977 	 */
8978 	I915_WRITE(GEN7_GT_MODE,
8979 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8980 
8981 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8982 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
8983 	snpcr |= GEN6_MBC_SNPCR_MED;
8984 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8985 
8986 	if (!HAS_PCH_NOP(dev_priv))
8987 		cpt_init_clock_gating(dev_priv);
8988 
8989 	gen6_check_mch_setup(dev_priv);
8990 }
8991 
vlv_init_clock_gating(struct drm_i915_private * dev_priv)8992 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8993 {
8994 	/* WaDisableEarlyCull:vlv */
8995 	I915_WRITE(_3D_CHICKEN3,
8996 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8997 
8998 	/* WaDisableBackToBackFlipFix:vlv */
8999 	I915_WRITE(IVB_CHICKEN3,
9000 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9001 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
9002 
9003 	/* WaPsdDispatchEnable:vlv */
9004 	/* WaDisablePSDDualDispatchEnable:vlv */
9005 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9006 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9007 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9008 
9009 	/* WaDisable_RenderCache_OperationalFlush:vlv */
9010 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9011 
9012 	/* WaForceL3Serialization:vlv */
9013 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9014 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9015 
9016 	/* WaDisableDopClockGating:vlv */
9017 	I915_WRITE(GEN7_ROW_CHICKEN2,
9018 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9019 
9020 	/* This is required by WaCatErrorRejectionIssue:vlv */
9021 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9022 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9023 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9024 
9025 	gen7_setup_fixed_func_scheduler(dev_priv);
9026 
9027 	/*
9028 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9029 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9030 	 */
9031 	I915_WRITE(GEN6_UCGCTL2,
9032 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9033 
9034 	/* WaDisableL3Bank2xClockGate:vlv
9035 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
9036 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9037 	I915_WRITE(GEN7_UCGCTL4,
9038 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9039 
9040 	/*
9041 	 * BSpec says this must be set, even though
9042 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9043 	 */
9044 	I915_WRITE(CACHE_MODE_1,
9045 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9046 
9047 	/*
9048 	 * BSpec recommends 8x4 when MSAA is used,
9049 	 * however in practice 16x4 seems fastest.
9050 	 *
9051 	 * Note that PS/WM thread counts depend on the WIZ hashing
9052 	 * disable bit, which we don't touch here, but it's good
9053 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9054 	 */
9055 	I915_WRITE(GEN7_GT_MODE,
9056 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9057 
9058 	/*
9059 	 * WaIncreaseL3CreditsForVLVB0:vlv
9060 	 * This is the hardware default actually.
9061 	 */
9062 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9063 
9064 	/*
9065 	 * WaDisableVLVClockGating_VBIIssue:vlv
9066 	 * Disable clock gating on th GCFG unit to prevent a delay
9067 	 * in the reporting of vblank events.
9068 	 */
9069 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9070 }
9071 
chv_init_clock_gating(struct drm_i915_private * dev_priv)9072 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9073 {
9074 	/* WaVSRefCountFullforceMissDisable:chv */
9075 	/* WaDSRefCountFullforceMissDisable:chv */
9076 	I915_WRITE(GEN7_FF_THREAD_MODE,
9077 		   I915_READ(GEN7_FF_THREAD_MODE) &
9078 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9079 
9080 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
9081 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9082 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9083 
9084 	/* WaDisableCSUnitClockGating:chv */
9085 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9086 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9087 
9088 	/* WaDisableSDEUnitClockGating:chv */
9089 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9090 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9091 
9092 	/*
9093 	 * WaProgramL3SqcReg1Default:chv
9094 	 * See gfxspecs/Related Documents/Performance Guide/
9095 	 * LSQC Setting Recommendations.
9096 	 */
9097 	gen8_set_l3sqc_credits(dev_priv, 38, 2);
9098 
9099 	/*
9100 	 * GTT cache may not work with big pages, so if those
9101 	 * are ever enabled GTT cache may need to be disabled.
9102 	 */
9103 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9104 }
9105 
g4x_init_clock_gating(struct drm_i915_private * dev_priv)9106 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9107 {
9108 	uint32_t dspclk_gate;
9109 
9110 	I915_WRITE(RENCLK_GATE_D1, 0);
9111 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9112 		   GS_UNIT_CLOCK_GATE_DISABLE |
9113 		   CL_UNIT_CLOCK_GATE_DISABLE);
9114 	I915_WRITE(RAMCLK_GATE_D, 0);
9115 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9116 		OVRUNIT_CLOCK_GATE_DISABLE |
9117 		OVCUNIT_CLOCK_GATE_DISABLE;
9118 	if (IS_GM45(dev_priv))
9119 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9120 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9121 
9122 	/* WaDisableRenderCachePipelinedFlush */
9123 	I915_WRITE(CACHE_MODE_0,
9124 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9125 
9126 	/* WaDisable_RenderCache_OperationalFlush:g4x */
9127 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9128 
9129 	g4x_disable_trickle_feed(dev_priv);
9130 }
9131 
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)9132 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9133 {
9134 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9135 	I915_WRITE(RENCLK_GATE_D2, 0);
9136 	I915_WRITE(DSPCLK_GATE_D, 0);
9137 	I915_WRITE(RAMCLK_GATE_D, 0);
9138 	I915_WRITE16(DEUC, 0);
9139 	I915_WRITE(MI_ARB_STATE,
9140 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9141 
9142 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
9143 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9144 }
9145 
i965g_init_clock_gating(struct drm_i915_private * dev_priv)9146 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9147 {
9148 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9149 		   I965_RCC_CLOCK_GATE_DISABLE |
9150 		   I965_RCPB_CLOCK_GATE_DISABLE |
9151 		   I965_ISC_CLOCK_GATE_DISABLE |
9152 		   I965_FBC_CLOCK_GATE_DISABLE);
9153 	I915_WRITE(RENCLK_GATE_D2, 0);
9154 	I915_WRITE(MI_ARB_STATE,
9155 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9156 
9157 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
9158 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9159 }
9160 
gen3_init_clock_gating(struct drm_i915_private * dev_priv)9161 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9162 {
9163 	u32 dstate = I915_READ(D_STATE);
9164 
9165 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9166 		DSTATE_DOT_CLOCK_GATING;
9167 	I915_WRITE(D_STATE, dstate);
9168 
9169 	if (IS_PINEVIEW(dev_priv))
9170 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9171 
9172 	/* IIR "flip pending" means done if this bit is set */
9173 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9174 
9175 	/* interrupts should cause a wake up from C3 */
9176 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9177 
9178 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9179 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9180 
9181 	I915_WRITE(MI_ARB_STATE,
9182 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9183 }
9184 
i85x_init_clock_gating(struct drm_i915_private * dev_priv)9185 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9186 {
9187 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9188 
9189 	/* interrupts should cause a wake up from C3 */
9190 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9191 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9192 
9193 	I915_WRITE(MEM_MODE,
9194 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9195 }
9196 
i830_init_clock_gating(struct drm_i915_private * dev_priv)9197 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9198 {
9199 	I915_WRITE(MEM_MODE,
9200 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9201 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9202 }
9203 
intel_init_clock_gating(struct drm_i915_private * dev_priv)9204 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9205 {
9206 	dev_priv->display.init_clock_gating(dev_priv);
9207 }
9208 
intel_suspend_hw(struct drm_i915_private * dev_priv)9209 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9210 {
9211 	if (HAS_PCH_LPT(dev_priv))
9212 		lpt_suspend_hw(dev_priv);
9213 }
9214 
nop_init_clock_gating(struct drm_i915_private * dev_priv)9215 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9216 {
9217 	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9218 }
9219 
9220 /**
9221  * intel_init_clock_gating_hooks - setup the clock gating hooks
9222  * @dev_priv: device private
9223  *
9224  * Setup the hooks that configure which clocks of a given platform can be
9225  * gated and also apply various GT and display specific workarounds for these
9226  * platforms. Note that some GT specific workarounds are applied separately
9227  * when GPU contexts or batchbuffers start their execution.
9228  */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)9229 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9230 {
9231 	if (IS_ICELAKE(dev_priv))
9232 		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9233 	else if (IS_CANNONLAKE(dev_priv))
9234 		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9235 	else if (IS_COFFEELAKE(dev_priv))
9236 		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9237 	else if (IS_SKYLAKE(dev_priv))
9238 		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9239 	else if (IS_KABYLAKE(dev_priv))
9240 		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9241 	else if (IS_BROXTON(dev_priv))
9242 		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9243 	else if (IS_GEMINILAKE(dev_priv))
9244 		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9245 	else if (IS_BROADWELL(dev_priv))
9246 		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9247 	else if (IS_CHERRYVIEW(dev_priv))
9248 		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9249 	else if (IS_HASWELL(dev_priv))
9250 		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9251 	else if (IS_IVYBRIDGE(dev_priv))
9252 		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9253 	else if (IS_VALLEYVIEW(dev_priv))
9254 		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9255 	else if (IS_GEN6(dev_priv))
9256 		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9257 	else if (IS_GEN5(dev_priv))
9258 		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9259 	else if (IS_G4X(dev_priv))
9260 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9261 	else if (IS_I965GM(dev_priv))
9262 		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9263 	else if (IS_I965G(dev_priv))
9264 		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9265 	else if (IS_GEN3(dev_priv))
9266 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9267 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9268 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9269 	else if (IS_GEN2(dev_priv))
9270 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
9271 	else {
9272 		MISSING_CASE(INTEL_DEVID(dev_priv));
9273 		dev_priv->display.init_clock_gating = nop_init_clock_gating;
9274 	}
9275 }
9276 
9277 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)9278 void intel_init_pm(struct drm_i915_private *dev_priv)
9279 {
9280 	intel_fbc_init(dev_priv);
9281 
9282 	/* For cxsr */
9283 	if (IS_PINEVIEW(dev_priv))
9284 		i915_pineview_get_mem_freq(dev_priv);
9285 	else if (IS_GEN5(dev_priv))
9286 		i915_ironlake_get_mem_freq(dev_priv);
9287 
9288 	/* For FIFO watermark updates */
9289 	if (INTEL_GEN(dev_priv) >= 9) {
9290 		skl_setup_wm_latency(dev_priv);
9291 		dev_priv->display.initial_watermarks = skl_initial_wm;
9292 		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9293 		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9294 	} else if (HAS_PCH_SPLIT(dev_priv)) {
9295 		ilk_setup_wm_latency(dev_priv);
9296 
9297 		if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9298 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9299 		    (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9300 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9301 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9302 			dev_priv->display.compute_intermediate_wm =
9303 				ilk_compute_intermediate_wm;
9304 			dev_priv->display.initial_watermarks =
9305 				ilk_initial_watermarks;
9306 			dev_priv->display.optimize_watermarks =
9307 				ilk_optimize_watermarks;
9308 		} else {
9309 			DRM_DEBUG_KMS("Failed to read display plane latency. "
9310 				      "Disable CxSR\n");
9311 		}
9312 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9313 		vlv_setup_wm_latency(dev_priv);
9314 		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9315 		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9316 		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9317 		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9318 		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9319 	} else if (IS_G4X(dev_priv)) {
9320 		g4x_setup_wm_latency(dev_priv);
9321 		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9322 		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9323 		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9324 		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9325 	} else if (IS_PINEVIEW(dev_priv)) {
9326 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9327 					    dev_priv->is_ddr3,
9328 					    dev_priv->fsb_freq,
9329 					    dev_priv->mem_freq)) {
9330 			DRM_INFO("failed to find known CxSR latency "
9331 				 "(found ddr%s fsb freq %d, mem freq %d), "
9332 				 "disabling CxSR\n",
9333 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9334 				 dev_priv->fsb_freq, dev_priv->mem_freq);
9335 			/* Disable CxSR and never update its watermark again */
9336 			intel_set_memory_cxsr(dev_priv, false);
9337 			dev_priv->display.update_wm = NULL;
9338 		} else
9339 			dev_priv->display.update_wm = pineview_update_wm;
9340 	} else if (IS_GEN4(dev_priv)) {
9341 		dev_priv->display.update_wm = i965_update_wm;
9342 	} else if (IS_GEN3(dev_priv)) {
9343 		dev_priv->display.update_wm = i9xx_update_wm;
9344 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9345 	} else if (IS_GEN2(dev_priv)) {
9346 		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9347 			dev_priv->display.update_wm = i845_update_wm;
9348 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9349 		} else {
9350 			dev_priv->display.update_wm = i9xx_update_wm;
9351 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9352 		}
9353 	} else {
9354 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9355 	}
9356 }
9357 
gen6_check_mailbox_status(struct drm_i915_private * dev_priv)9358 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9359 {
9360 	uint32_t flags =
9361 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9362 
9363 	switch (flags) {
9364 	case GEN6_PCODE_SUCCESS:
9365 		return 0;
9366 	case GEN6_PCODE_UNIMPLEMENTED_CMD:
9367 		return -ENODEV;
9368 	case GEN6_PCODE_ILLEGAL_CMD:
9369 		return -ENXIO;
9370 	case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9371 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9372 		return -EOVERFLOW;
9373 	case GEN6_PCODE_TIMEOUT:
9374 		return -ETIMEDOUT;
9375 	default:
9376 		MISSING_CASE(flags);
9377 		return 0;
9378 	}
9379 }
9380 
gen7_check_mailbox_status(struct drm_i915_private * dev_priv)9381 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9382 {
9383 	uint32_t flags =
9384 		I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9385 
9386 	switch (flags) {
9387 	case GEN6_PCODE_SUCCESS:
9388 		return 0;
9389 	case GEN6_PCODE_ILLEGAL_CMD:
9390 		return -ENXIO;
9391 	case GEN7_PCODE_TIMEOUT:
9392 		return -ETIMEDOUT;
9393 	case GEN7_PCODE_ILLEGAL_DATA:
9394 		return -EINVAL;
9395 	case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9396 		return -EOVERFLOW;
9397 	default:
9398 		MISSING_CASE(flags);
9399 		return 0;
9400 	}
9401 }
9402 
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u32 mbox,u32 * val)9403 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9404 {
9405 	int status;
9406 
9407 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9408 
9409 	/* GEN6_PCODE_* are outside of the forcewake domain, we can
9410 	 * use te fw I915_READ variants to reduce the amount of work
9411 	 * required when reading/writing.
9412 	 */
9413 
9414 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9415 		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9416 				 mbox, __builtin_return_address(0));
9417 		return -EAGAIN;
9418 	}
9419 
9420 	I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9421 	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9422 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9423 
9424 	if (__intel_wait_for_register_fw(dev_priv,
9425 					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9426 					 500, 0, NULL)) {
9427 		DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9428 			  mbox, __builtin_return_address(0));
9429 		return -ETIMEDOUT;
9430 	}
9431 
9432 	*val = I915_READ_FW(GEN6_PCODE_DATA);
9433 	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9434 
9435 	if (INTEL_GEN(dev_priv) > 6)
9436 		status = gen7_check_mailbox_status(dev_priv);
9437 	else
9438 		status = gen6_check_mailbox_status(dev_priv);
9439 
9440 	if (status) {
9441 		DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9442 				 mbox, __builtin_return_address(0), status);
9443 		return status;
9444 	}
9445 
9446 	return 0;
9447 }
9448 
sandybridge_pcode_write_timeout(struct drm_i915_private * dev_priv,u32 mbox,u32 val,int fast_timeout_us,int slow_timeout_ms)9449 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9450 				    u32 mbox, u32 val,
9451 				    int fast_timeout_us, int slow_timeout_ms)
9452 {
9453 	int status;
9454 
9455 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9456 
9457 	/* GEN6_PCODE_* are outside of the forcewake domain, we can
9458 	 * use te fw I915_READ variants to reduce the amount of work
9459 	 * required when reading/writing.
9460 	 */
9461 
9462 	if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9463 		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9464 				 val, mbox, __builtin_return_address(0));
9465 		return -EAGAIN;
9466 	}
9467 
9468 	I915_WRITE_FW(GEN6_PCODE_DATA, val);
9469 	I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9470 	I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9471 
9472 	if (__intel_wait_for_register_fw(dev_priv,
9473 					 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9474 					 fast_timeout_us, slow_timeout_ms,
9475 					 NULL)) {
9476 		DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9477 			  val, mbox, __builtin_return_address(0));
9478 		return -ETIMEDOUT;
9479 	}
9480 
9481 	I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9482 
9483 	if (INTEL_GEN(dev_priv) > 6)
9484 		status = gen7_check_mailbox_status(dev_priv);
9485 	else
9486 		status = gen6_check_mailbox_status(dev_priv);
9487 
9488 	if (status) {
9489 		DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9490 				 val, mbox, __builtin_return_address(0), status);
9491 		return status;
9492 	}
9493 
9494 	return 0;
9495 }
9496 
skl_pcode_try_request(struct drm_i915_private * dev_priv,u32 mbox,u32 request,u32 reply_mask,u32 reply,u32 * status)9497 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9498 				  u32 request, u32 reply_mask, u32 reply,
9499 				  u32 *status)
9500 {
9501 	u32 val = request;
9502 
9503 	*status = sandybridge_pcode_read(dev_priv, mbox, &val);
9504 
9505 	return *status || ((val & reply_mask) == reply);
9506 }
9507 
9508 /**
9509  * skl_pcode_request - send PCODE request until acknowledgment
9510  * @dev_priv: device private
9511  * @mbox: PCODE mailbox ID the request is targeted for
9512  * @request: request ID
9513  * @reply_mask: mask used to check for request acknowledgment
9514  * @reply: value used to check for request acknowledgment
9515  * @timeout_base_ms: timeout for polling with preemption enabled
9516  *
9517  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9518  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9519  * The request is acknowledged once the PCODE reply dword equals @reply after
9520  * applying @reply_mask. Polling is first attempted with preemption enabled
9521  * for @timeout_base_ms and if this times out for another 50 ms with
9522  * preemption disabled.
9523  *
9524  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9525  * other error as reported by PCODE.
9526  */
skl_pcode_request(struct drm_i915_private * dev_priv,u32 mbox,u32 request,u32 reply_mask,u32 reply,int timeout_base_ms)9527 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9528 		      u32 reply_mask, u32 reply, int timeout_base_ms)
9529 {
9530 	u32 status;
9531 	int ret;
9532 
9533 	WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9534 
9535 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9536 				   &status)
9537 
9538 	/*
9539 	 * Prime the PCODE by doing a request first. Normally it guarantees
9540 	 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9541 	 * _wait_for() doesn't guarantee when its passed condition is evaluated
9542 	 * first, so send the first request explicitly.
9543 	 */
9544 	if (COND) {
9545 		ret = 0;
9546 		goto out;
9547 	}
9548 	ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9549 	if (!ret)
9550 		goto out;
9551 
9552 	/*
9553 	 * The above can time out if the number of requests was low (2 in the
9554 	 * worst case) _and_ PCODE was busy for some reason even after a
9555 	 * (queued) request and @timeout_base_ms delay. As a workaround retry
9556 	 * the poll with preemption disabled to maximize the number of
9557 	 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9558 	 * account for interrupts that could reduce the number of these
9559 	 * requests, and for any quirks of the PCODE firmware that delays
9560 	 * the request completion.
9561 	 */
9562 	DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9563 	WARN_ON_ONCE(timeout_base_ms > 3);
9564 	preempt_disable();
9565 	ret = wait_for_atomic(COND, 50);
9566 	preempt_enable();
9567 
9568 out:
9569 	return ret ? ret : status;
9570 #undef COND
9571 }
9572 
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)9573 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9574 {
9575 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9576 
9577 	/*
9578 	 * N = val - 0xb7
9579 	 * Slow = Fast = GPLL ref * N
9580 	 */
9581 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9582 }
9583 
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)9584 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9585 {
9586 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9587 
9588 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9589 }
9590 
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)9591 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9592 {
9593 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9594 
9595 	/*
9596 	 * N = val / 2
9597 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9598 	 */
9599 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9600 }
9601 
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)9602 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9603 {
9604 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9605 
9606 	/* CHV needs even values */
9607 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9608 }
9609 
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)9610 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9611 {
9612 	if (INTEL_GEN(dev_priv) >= 9)
9613 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9614 					 GEN9_FREQ_SCALER);
9615 	else if (IS_CHERRYVIEW(dev_priv))
9616 		return chv_gpu_freq(dev_priv, val);
9617 	else if (IS_VALLEYVIEW(dev_priv))
9618 		return byt_gpu_freq(dev_priv, val);
9619 	else
9620 		return val * GT_FREQUENCY_MULTIPLIER;
9621 }
9622 
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)9623 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9624 {
9625 	if (INTEL_GEN(dev_priv) >= 9)
9626 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9627 					 GT_FREQUENCY_MULTIPLIER);
9628 	else if (IS_CHERRYVIEW(dev_priv))
9629 		return chv_freq_opcode(dev_priv, val);
9630 	else if (IS_VALLEYVIEW(dev_priv))
9631 		return byt_freq_opcode(dev_priv, val);
9632 	else
9633 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9634 }
9635 
intel_pm_setup(struct drm_i915_private * dev_priv)9636 void intel_pm_setup(struct drm_i915_private *dev_priv)
9637 {
9638 	mutex_init(&dev_priv->pcu_lock);
9639 	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9640 
9641 	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9642 
9643 	dev_priv->runtime_pm.suspended = false;
9644 	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9645 }
9646 
vlv_residency_raw(struct drm_i915_private * dev_priv,const i915_reg_t reg)9647 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9648 			     const i915_reg_t reg)
9649 {
9650 	u32 lower, upper, tmp;
9651 	int loop = 2;
9652 
9653 	/*
9654 	 * The register accessed do not need forcewake. We borrow
9655 	 * uncore lock to prevent concurrent access to range reg.
9656 	 */
9657 	lockdep_assert_held(&dev_priv->uncore.lock);
9658 
9659 	/*
9660 	 * vlv and chv residency counters are 40 bits in width.
9661 	 * With a control bit, we can choose between upper or lower
9662 	 * 32bit window into this counter.
9663 	 *
9664 	 * Although we always use the counter in high-range mode elsewhere,
9665 	 * userspace may attempt to read the value before rc6 is initialised,
9666 	 * before we have set the default VLV_COUNTER_CONTROL value. So always
9667 	 * set the high bit to be safe.
9668 	 */
9669 	I915_WRITE_FW(VLV_COUNTER_CONTROL,
9670 		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9671 	upper = I915_READ_FW(reg);
9672 	do {
9673 		tmp = upper;
9674 
9675 		I915_WRITE_FW(VLV_COUNTER_CONTROL,
9676 			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9677 		lower = I915_READ_FW(reg);
9678 
9679 		I915_WRITE_FW(VLV_COUNTER_CONTROL,
9680 			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9681 		upper = I915_READ_FW(reg);
9682 	} while (upper != tmp && --loop);
9683 
9684 	/*
9685 	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9686 	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9687 	 * now.
9688 	 */
9689 
9690 	return lower | (u64)upper << 8;
9691 }
9692 
intel_rc6_residency_ns(struct drm_i915_private * dev_priv,const i915_reg_t reg)9693 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9694 			   const i915_reg_t reg)
9695 {
9696 	u64 time_hw, prev_hw, overflow_hw;
9697 	unsigned int fw_domains;
9698 	unsigned long flags;
9699 	unsigned int i;
9700 	u32 mul, div;
9701 
9702 	if (!HAS_RC6(dev_priv))
9703 		return 0;
9704 
9705 	/*
9706 	 * Store previous hw counter values for counter wrap-around handling.
9707 	 *
9708 	 * There are only four interesting registers and they live next to each
9709 	 * other so we can use the relative address, compared to the smallest
9710 	 * one as the index into driver storage.
9711 	 */
9712 	i = (i915_mmio_reg_offset(reg) -
9713 	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9714 	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9715 		return 0;
9716 
9717 	fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9718 
9719 	spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9720 	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9721 
9722 	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9723 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9724 		mul = 1000000;
9725 		div = dev_priv->czclk_freq;
9726 		overflow_hw = BIT_ULL(40);
9727 		time_hw = vlv_residency_raw(dev_priv, reg);
9728 	} else {
9729 		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9730 		if (IS_GEN9_LP(dev_priv)) {
9731 			mul = 10000;
9732 			div = 12;
9733 		} else {
9734 			mul = 1280;
9735 			div = 1;
9736 		}
9737 
9738 		overflow_hw = BIT_ULL(32);
9739 		time_hw = I915_READ_FW(reg);
9740 	}
9741 
9742 	/*
9743 	 * Counter wrap handling.
9744 	 *
9745 	 * But relying on a sufficient frequency of queries otherwise counters
9746 	 * can still wrap.
9747 	 */
9748 	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9749 	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9750 
9751 	/* RC6 delta from last sample. */
9752 	if (time_hw >= prev_hw)
9753 		time_hw -= prev_hw;
9754 	else
9755 		time_hw += overflow_hw - prev_hw;
9756 
9757 	/* Add delta to RC6 extended raw driver copy. */
9758 	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9759 	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9760 
9761 	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9762 	spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9763 
9764 	return mul_u64_u32_div(time_hw, mul, div);
9765 }
9766 
intel_get_cagf(struct drm_i915_private * dev_priv,u32 rpstat)9767 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9768 {
9769 	u32 cagf;
9770 
9771 	if (INTEL_GEN(dev_priv) >= 9)
9772 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9773 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9774 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9775 	else
9776 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9777 
9778 	return  cagf;
9779 }
9780