1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7 #include <linux/sched/clock.h>
8
9 #include "i915_drv.h"
10 #include "i915_irq.h"
11 #include "intel_gt.h"
12 #include "intel_gt_irq.h"
13 #include "intel_uncore.h"
14
guc_irq_handler(struct intel_guc * guc,u16 iir)15 static void guc_irq_handler(struct intel_guc *guc, u16 iir)
16 {
17 if (iir & GUC_INTR_GUC2HOST)
18 intel_guc_to_host_event_handler(guc);
19 }
20
21 static void
cs_irq_handler(struct intel_engine_cs * engine,u32 iir)22 cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
23 {
24 bool tasklet = false;
25
26 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
27 tasklet = true;
28
29 if (iir & GT_RENDER_USER_INTERRUPT) {
30 intel_engine_breadcrumbs_irq(engine);
31 tasklet |= intel_engine_needs_breadcrumb_tasklet(engine);
32 }
33
34 if (tasklet)
35 tasklet_hi_schedule(&engine->execlists.tasklet);
36 }
37
38 static u32
gen11_gt_engine_identity(struct intel_gt * gt,const unsigned int bank,const unsigned int bit)39 gen11_gt_engine_identity(struct intel_gt *gt,
40 const unsigned int bank, const unsigned int bit)
41 {
42 void __iomem * const regs = gt->uncore->regs;
43 u32 timeout_ts;
44 u32 ident;
45
46 lockdep_assert_held(>->irq_lock);
47
48 raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
49
50 /*
51 * NB: Specs do not specify how long to spin wait,
52 * so we do ~100us as an educated guess.
53 */
54 timeout_ts = (local_clock() >> 10) + 100;
55 do {
56 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
57 } while (!(ident & GEN11_INTR_DATA_VALID) &&
58 !time_after32(local_clock() >> 10, timeout_ts));
59
60 if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
61 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
62 bank, bit, ident);
63 return 0;
64 }
65
66 raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
67 GEN11_INTR_DATA_VALID);
68
69 return ident;
70 }
71
72 static void
gen11_other_irq_handler(struct intel_gt * gt,const u8 instance,const u16 iir)73 gen11_other_irq_handler(struct intel_gt *gt, const u8 instance,
74 const u16 iir)
75 {
76 if (instance == OTHER_GUC_INSTANCE)
77 return guc_irq_handler(>->uc.guc, iir);
78
79 if (instance == OTHER_GTPM_INSTANCE)
80 return gen11_rps_irq_handler(gt, iir);
81
82 WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
83 instance, iir);
84 }
85
86 static void
gen11_engine_irq_handler(struct intel_gt * gt,const u8 class,const u8 instance,const u16 iir)87 gen11_engine_irq_handler(struct intel_gt *gt, const u8 class,
88 const u8 instance, const u16 iir)
89 {
90 struct intel_engine_cs *engine;
91
92 if (instance <= MAX_ENGINE_INSTANCE)
93 engine = gt->engine_class[class][instance];
94 else
95 engine = NULL;
96
97 if (likely(engine))
98 return cs_irq_handler(engine, iir);
99
100 WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
101 class, instance);
102 }
103
104 static void
gen11_gt_identity_handler(struct intel_gt * gt,const u32 identity)105 gen11_gt_identity_handler(struct intel_gt *gt, const u32 identity)
106 {
107 const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
108 const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
109 const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
110
111 if (unlikely(!intr))
112 return;
113
114 if (class <= COPY_ENGINE_CLASS)
115 return gen11_engine_irq_handler(gt, class, instance, intr);
116
117 if (class == OTHER_CLASS)
118 return gen11_other_irq_handler(gt, instance, intr);
119
120 WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
121 class, instance, intr);
122 }
123
124 static void
gen11_gt_bank_handler(struct intel_gt * gt,const unsigned int bank)125 gen11_gt_bank_handler(struct intel_gt *gt, const unsigned int bank)
126 {
127 void __iomem * const regs = gt->uncore->regs;
128 unsigned long intr_dw;
129 unsigned int bit;
130
131 lockdep_assert_held(>->irq_lock);
132
133 intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
134
135 for_each_set_bit(bit, &intr_dw, 32) {
136 const u32 ident = gen11_gt_engine_identity(gt, bank, bit);
137
138 gen11_gt_identity_handler(gt, ident);
139 }
140
141 /* Clear must be after shared has been served for engine */
142 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
143 }
144
gen11_gt_irq_handler(struct intel_gt * gt,const u32 master_ctl)145 void gen11_gt_irq_handler(struct intel_gt *gt, const u32 master_ctl)
146 {
147 unsigned int bank;
148
149 spin_lock(>->irq_lock);
150
151 for (bank = 0; bank < 2; bank++) {
152 if (master_ctl & GEN11_GT_DW_IRQ(bank))
153 gen11_gt_bank_handler(gt, bank);
154 }
155
156 spin_unlock(>->irq_lock);
157 }
158
gen11_gt_reset_one_iir(struct intel_gt * gt,const unsigned int bank,const unsigned int bit)159 bool gen11_gt_reset_one_iir(struct intel_gt *gt,
160 const unsigned int bank, const unsigned int bit)
161 {
162 void __iomem * const regs = gt->uncore->regs;
163 u32 dw;
164
165 lockdep_assert_held(>->irq_lock);
166
167 dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
168 if (dw & BIT(bit)) {
169 /*
170 * According to the BSpec, DW_IIR bits cannot be cleared without
171 * first servicing the Selector & Shared IIR registers.
172 */
173 gen11_gt_engine_identity(gt, bank, bit);
174
175 /*
176 * We locked GT INT DW by reading it. If we want to (try
177 * to) recover from this successfully, we need to clear
178 * our bit, otherwise we are locking the register for
179 * everybody.
180 */
181 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
182
183 return true;
184 }
185
186 return false;
187 }
188
gen11_gt_irq_reset(struct intel_gt * gt)189 void gen11_gt_irq_reset(struct intel_gt *gt)
190 {
191 struct intel_uncore *uncore = gt->uncore;
192
193 /* Disable RCS, BCS, VCS and VECS class engines. */
194 intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0);
195 intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0);
196
197 /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
198 intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~0);
199 intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~0);
200 intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~0);
201 intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~0);
202 intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~0);
203
204 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
205 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
206 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
207 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0);
208 }
209
gen11_gt_irq_postinstall(struct intel_gt * gt)210 void gen11_gt_irq_postinstall(struct intel_gt *gt)
211 {
212 const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
213 struct intel_uncore *uncore = gt->uncore;
214 const u32 dmask = irqs << 16 | irqs;
215 const u32 smask = irqs << 16;
216
217 BUILD_BUG_ON(irqs & 0xffff0000);
218
219 /* Enable RCS, BCS, VCS and VECS class interrupts. */
220 intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask);
221 intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask);
222
223 /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
224 intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~smask);
225 intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~smask);
226 intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~dmask);
227 intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~dmask);
228 intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~dmask);
229
230 /*
231 * RPS interrupts will get enabled/disabled on demand when RPS itself
232 * is enabled/disabled.
233 */
234 gt->pm_ier = 0x0;
235 gt->pm_imr = ~gt->pm_ier;
236 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
237 intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
238
239 /* Same thing for GuC interrupts */
240 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
241 intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0);
242 }
243
gen5_gt_irq_handler(struct intel_gt * gt,u32 gt_iir)244 void gen5_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
245 {
246 if (gt_iir & GT_RENDER_USER_INTERRUPT)
247 intel_engine_breadcrumbs_irq(gt->engine_class[RENDER_CLASS][0]);
248 if (gt_iir & ILK_BSD_USER_INTERRUPT)
249 intel_engine_breadcrumbs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0]);
250 }
251
gen7_parity_error_irq_handler(struct intel_gt * gt,u32 iir)252 static void gen7_parity_error_irq_handler(struct intel_gt *gt, u32 iir)
253 {
254 if (!HAS_L3_DPF(gt->i915))
255 return;
256
257 spin_lock(>->irq_lock);
258 gen5_gt_disable_irq(gt, GT_PARITY_ERROR(gt->i915));
259 spin_unlock(>->irq_lock);
260
261 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
262 gt->i915->l3_parity.which_slice |= 1 << 1;
263
264 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
265 gt->i915->l3_parity.which_slice |= 1 << 0;
266
267 schedule_work(>->i915->l3_parity.error_work);
268 }
269
gen6_gt_irq_handler(struct intel_gt * gt,u32 gt_iir)270 void gen6_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
271 {
272 if (gt_iir & GT_RENDER_USER_INTERRUPT)
273 intel_engine_breadcrumbs_irq(gt->engine_class[RENDER_CLASS][0]);
274 if (gt_iir & GT_BSD_USER_INTERRUPT)
275 intel_engine_breadcrumbs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0]);
276 if (gt_iir & GT_BLT_USER_INTERRUPT)
277 intel_engine_breadcrumbs_irq(gt->engine_class[COPY_ENGINE_CLASS][0]);
278
279 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
280 GT_BSD_CS_ERROR_INTERRUPT |
281 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
282 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
283
284 if (gt_iir & GT_PARITY_ERROR(gt->i915))
285 gen7_parity_error_irq_handler(gt, gt_iir);
286 }
287
gen8_gt_irq_ack(struct intel_gt * gt,u32 master_ctl,u32 gt_iir[4])288 void gen8_gt_irq_ack(struct intel_gt *gt, u32 master_ctl, u32 gt_iir[4])
289 {
290 void __iomem * const regs = gt->uncore->regs;
291
292 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
293 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
294 if (likely(gt_iir[0]))
295 raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
296 }
297
298 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
299 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
300 if (likely(gt_iir[1]))
301 raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
302 }
303
304 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
305 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
306 if (likely(gt_iir[2]))
307 raw_reg_write(regs, GEN8_GT_IIR(2), gt_iir[2]);
308 }
309
310 if (master_ctl & GEN8_GT_VECS_IRQ) {
311 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
312 if (likely(gt_iir[3]))
313 raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
314 }
315 }
316
gen8_gt_irq_handler(struct intel_gt * gt,u32 master_ctl,u32 gt_iir[4])317 void gen8_gt_irq_handler(struct intel_gt *gt, u32 master_ctl, u32 gt_iir[4])
318 {
319 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
320 cs_irq_handler(gt->engine_class[RENDER_CLASS][0],
321 gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
322 cs_irq_handler(gt->engine_class[COPY_ENGINE_CLASS][0],
323 gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
324 }
325
326 if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
327 cs_irq_handler(gt->engine_class[VIDEO_DECODE_CLASS][0],
328 gt_iir[1] >> GEN8_VCS0_IRQ_SHIFT);
329 cs_irq_handler(gt->engine_class[VIDEO_DECODE_CLASS][1],
330 gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
331 }
332
333 if (master_ctl & GEN8_GT_VECS_IRQ) {
334 cs_irq_handler(gt->engine_class[VIDEO_ENHANCEMENT_CLASS][0],
335 gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
336 }
337
338 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
339 gen6_rps_irq_handler(gt->i915, gt_iir[2]);
340 guc_irq_handler(>->uc.guc, gt_iir[2] >> 16);
341 }
342 }
343
gen8_gt_irq_reset(struct intel_gt * gt)344 void gen8_gt_irq_reset(struct intel_gt *gt)
345 {
346 struct intel_uncore *uncore = gt->uncore;
347
348 GEN8_IRQ_RESET_NDX(uncore, GT, 0);
349 GEN8_IRQ_RESET_NDX(uncore, GT, 1);
350 GEN8_IRQ_RESET_NDX(uncore, GT, 2);
351 GEN8_IRQ_RESET_NDX(uncore, GT, 3);
352 }
353
gen8_gt_irq_postinstall(struct intel_gt * gt)354 void gen8_gt_irq_postinstall(struct intel_gt *gt)
355 {
356 struct intel_uncore *uncore = gt->uncore;
357
358 /* These are interrupts we'll toggle with the ring mask register */
359 u32 gt_interrupts[] = {
360 (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
361 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
362 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
363 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT),
364
365 (GT_RENDER_USER_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
366 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS0_IRQ_SHIFT |
367 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
368 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT),
369
370 0,
371
372 (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
373 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT)
374 };
375
376 gt->pm_ier = 0x0;
377 gt->pm_imr = ~gt->pm_ier;
378 GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
379 GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
380 /*
381 * RPS interrupts will get enabled/disabled on demand when RPS itself
382 * is enabled/disabled. Same wil be the case for GuC interrupts.
383 */
384 GEN8_IRQ_INIT_NDX(uncore, GT, 2, gt->pm_imr, gt->pm_ier);
385 GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
386 }
387
gen5_gt_update_irq(struct intel_gt * gt,u32 interrupt_mask,u32 enabled_irq_mask)388 static void gen5_gt_update_irq(struct intel_gt *gt,
389 u32 interrupt_mask,
390 u32 enabled_irq_mask)
391 {
392 lockdep_assert_held(>->irq_lock);
393
394 GEM_BUG_ON(enabled_irq_mask & ~interrupt_mask);
395
396 gt->gt_imr &= ~interrupt_mask;
397 gt->gt_imr |= (~enabled_irq_mask & interrupt_mask);
398 intel_uncore_write(gt->uncore, GTIMR, gt->gt_imr);
399 }
400
gen5_gt_enable_irq(struct intel_gt * gt,u32 mask)401 void gen5_gt_enable_irq(struct intel_gt *gt, u32 mask)
402 {
403 gen5_gt_update_irq(gt, mask, mask);
404 intel_uncore_posting_read_fw(gt->uncore, GTIMR);
405 }
406
gen5_gt_disable_irq(struct intel_gt * gt,u32 mask)407 void gen5_gt_disable_irq(struct intel_gt *gt, u32 mask)
408 {
409 gen5_gt_update_irq(gt, mask, 0);
410 }
411
gen5_gt_irq_reset(struct intel_gt * gt)412 void gen5_gt_irq_reset(struct intel_gt *gt)
413 {
414 struct intel_uncore *uncore = gt->uncore;
415
416 GEN3_IRQ_RESET(uncore, GT);
417 if (INTEL_GEN(gt->i915) >= 6)
418 GEN3_IRQ_RESET(uncore, GEN6_PM);
419 }
420
gen5_gt_irq_postinstall(struct intel_gt * gt)421 void gen5_gt_irq_postinstall(struct intel_gt *gt)
422 {
423 struct intel_uncore *uncore = gt->uncore;
424 u32 pm_irqs = 0;
425 u32 gt_irqs = 0;
426
427 gt->gt_imr = ~0;
428 if (HAS_L3_DPF(gt->i915)) {
429 /* L3 parity interrupt is always unmasked. */
430 gt->gt_imr = ~GT_PARITY_ERROR(gt->i915);
431 gt_irqs |= GT_PARITY_ERROR(gt->i915);
432 }
433
434 gt_irqs |= GT_RENDER_USER_INTERRUPT;
435 if (IS_GEN(gt->i915, 5))
436 gt_irqs |= ILK_BSD_USER_INTERRUPT;
437 else
438 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
439
440 GEN3_IRQ_INIT(uncore, GT, gt->gt_imr, gt_irqs);
441
442 if (INTEL_GEN(gt->i915) >= 6) {
443 /*
444 * RPS interrupts will get enabled/disabled on demand when RPS
445 * itself is enabled/disabled.
446 */
447 if (HAS_ENGINE(gt->i915, VECS0)) {
448 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
449 gt->pm_ier |= PM_VEBOX_USER_INTERRUPT;
450 }
451
452 gt->pm_imr = 0xffffffff;
453 GEN3_IRQ_INIT(uncore, GEN6_PM, gt->pm_imr, pm_irqs);
454 }
455 }
456