1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/cpuidle.h>
33 #include <linux/slab.h>
34 #include <linux/sysrq.h>
35
36 #include <drm/drm_drv.h>
37 #include <drm/drm_irq.h>
38 #include <drm/i915_drm.h>
39
40 #include "display/intel_display_types.h"
41 #include "display/intel_fifo_underrun.h"
42 #include "display/intel_hotplug.h"
43 #include "display/intel_lpe_audio.h"
44 #include "display/intel_psr.h"
45
46 #include "gt/intel_gt.h"
47 #include "gt/intel_gt_irq.h"
48 #include "gt/intel_gt_pm_irq.h"
49
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54
55 /**
56 * DOC: interrupt handling
57 *
58 * These functions provide the basic support for enabling and disabling the
59 * interrupt handling support. There's a lot more functionality in i915_irq.c
60 * and related files, but that will be described in separate chapters.
61 */
62
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64
65 static const u32 hpd_ilk[HPD_NUM_PINS] = {
66 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
67 };
68
69 static const u32 hpd_ivb[HPD_NUM_PINS] = {
70 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
71 };
72
73 static const u32 hpd_bdw[HPD_NUM_PINS] = {
74 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
75 };
76
77 static const u32 hpd_ibx[HPD_NUM_PINS] = {
78 [HPD_CRT] = SDE_CRT_HOTPLUG,
79 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
80 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
81 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
82 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
83 };
84
85 static const u32 hpd_cpt[HPD_NUM_PINS] = {
86 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
87 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
88 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
89 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
90 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
91 };
92
93 static const u32 hpd_spt[HPD_NUM_PINS] = {
94 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
95 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
96 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
97 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
98 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
99 };
100
101 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
102 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
103 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
104 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
105 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
106 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
107 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
108 };
109
110 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
111 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
112 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
113 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
114 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
115 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
116 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
117 };
118
119 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
120 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
121 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
122 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
123 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
124 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
125 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
126 };
127
128 /* BXT hpd list */
129 static const u32 hpd_bxt[HPD_NUM_PINS] = {
130 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
131 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
132 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
133 };
134
135 static const u32 hpd_gen11[HPD_NUM_PINS] = {
136 [HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
137 [HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
138 [HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
139 [HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
140 };
141
142 static const u32 hpd_gen12[HPD_NUM_PINS] = {
143 [HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
144 [HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
145 [HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
146 [HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
147 [HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
148 [HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
149 };
150
151 static const u32 hpd_icp[HPD_NUM_PINS] = {
152 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
153 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
154 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
155 [HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
156 [HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
157 [HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
158 };
159
160 static const u32 hpd_mcc[HPD_NUM_PINS] = {
161 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
162 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
163 [HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
164 };
165
166 static const u32 hpd_tgp[HPD_NUM_PINS] = {
167 [HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
168 [HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
169 [HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
170 [HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
171 [HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
172 [HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
173 [HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
174 [HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
175 [HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
176 };
177
gen3_irq_reset(struct intel_uncore * uncore,i915_reg_t imr,i915_reg_t iir,i915_reg_t ier)178 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
179 i915_reg_t iir, i915_reg_t ier)
180 {
181 intel_uncore_write(uncore, imr, 0xffffffff);
182 intel_uncore_posting_read(uncore, imr);
183
184 intel_uncore_write(uncore, ier, 0);
185
186 /* IIR can theoretically queue up two events. Be paranoid. */
187 intel_uncore_write(uncore, iir, 0xffffffff);
188 intel_uncore_posting_read(uncore, iir);
189 intel_uncore_write(uncore, iir, 0xffffffff);
190 intel_uncore_posting_read(uncore, iir);
191 }
192
gen2_irq_reset(struct intel_uncore * uncore)193 void gen2_irq_reset(struct intel_uncore *uncore)
194 {
195 intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
196 intel_uncore_posting_read16(uncore, GEN2_IMR);
197
198 intel_uncore_write16(uncore, GEN2_IER, 0);
199
200 /* IIR can theoretically queue up two events. Be paranoid. */
201 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
202 intel_uncore_posting_read16(uncore, GEN2_IIR);
203 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
204 intel_uncore_posting_read16(uncore, GEN2_IIR);
205 }
206
207 /*
208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
209 */
gen3_assert_iir_is_zero(struct intel_uncore * uncore,i915_reg_t reg)210 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
211 {
212 u32 val = intel_uncore_read(uncore, reg);
213
214 if (val == 0)
215 return;
216
217 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
218 i915_mmio_reg_offset(reg), val);
219 intel_uncore_write(uncore, reg, 0xffffffff);
220 intel_uncore_posting_read(uncore, reg);
221 intel_uncore_write(uncore, reg, 0xffffffff);
222 intel_uncore_posting_read(uncore, reg);
223 }
224
gen2_assert_iir_is_zero(struct intel_uncore * uncore)225 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
226 {
227 u16 val = intel_uncore_read16(uncore, GEN2_IIR);
228
229 if (val == 0)
230 return;
231
232 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
233 i915_mmio_reg_offset(GEN2_IIR), val);
234 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
235 intel_uncore_posting_read16(uncore, GEN2_IIR);
236 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
237 intel_uncore_posting_read16(uncore, GEN2_IIR);
238 }
239
gen3_irq_init(struct intel_uncore * uncore,i915_reg_t imr,u32 imr_val,i915_reg_t ier,u32 ier_val,i915_reg_t iir)240 void gen3_irq_init(struct intel_uncore *uncore,
241 i915_reg_t imr, u32 imr_val,
242 i915_reg_t ier, u32 ier_val,
243 i915_reg_t iir)
244 {
245 gen3_assert_iir_is_zero(uncore, iir);
246
247 intel_uncore_write(uncore, ier, ier_val);
248 intel_uncore_write(uncore, imr, imr_val);
249 intel_uncore_posting_read(uncore, imr);
250 }
251
gen2_irq_init(struct intel_uncore * uncore,u32 imr_val,u32 ier_val)252 void gen2_irq_init(struct intel_uncore *uncore,
253 u32 imr_val, u32 ier_val)
254 {
255 gen2_assert_iir_is_zero(uncore);
256
257 intel_uncore_write16(uncore, GEN2_IER, ier_val);
258 intel_uncore_write16(uncore, GEN2_IMR, imr_val);
259 intel_uncore_posting_read16(uncore, GEN2_IMR);
260 }
261
262 /* For display hotplug interrupt */
263 static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private * dev_priv,u32 mask,u32 bits)264 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
265 u32 mask,
266 u32 bits)
267 {
268 u32 val;
269
270 lockdep_assert_held(&dev_priv->irq_lock);
271 WARN_ON(bits & ~mask);
272
273 val = I915_READ(PORT_HOTPLUG_EN);
274 val &= ~mask;
275 val |= bits;
276 I915_WRITE(PORT_HOTPLUG_EN, val);
277 }
278
279 /**
280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
281 * @dev_priv: driver private
282 * @mask: bits to update
283 * @bits: bits to enable
284 * NOTE: the HPD enable bits are modified both inside and outside
285 * of an interrupt context. To avoid that read-modify-write cycles
286 * interfer, these bits are protected by a spinlock. Since this
287 * function is usually not called from a context where the lock is
288 * held already, this function acquires the lock itself. A non-locking
289 * version is also available.
290 */
i915_hotplug_interrupt_update(struct drm_i915_private * dev_priv,u32 mask,u32 bits)291 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
292 u32 mask,
293 u32 bits)
294 {
295 spin_lock_irq(&dev_priv->irq_lock);
296 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
297 spin_unlock_irq(&dev_priv->irq_lock);
298 }
299
300 /**
301 * ilk_update_display_irq - update DEIMR
302 * @dev_priv: driver private
303 * @interrupt_mask: mask of interrupt bits to update
304 * @enabled_irq_mask: mask of interrupt bits to enable
305 */
ilk_update_display_irq(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)306 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
307 u32 interrupt_mask,
308 u32 enabled_irq_mask)
309 {
310 u32 new_val;
311
312 lockdep_assert_held(&dev_priv->irq_lock);
313
314 WARN_ON(enabled_irq_mask & ~interrupt_mask);
315
316 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
317 return;
318
319 new_val = dev_priv->irq_mask;
320 new_val &= ~interrupt_mask;
321 new_val |= (~enabled_irq_mask & interrupt_mask);
322
323 if (new_val != dev_priv->irq_mask) {
324 dev_priv->irq_mask = new_val;
325 I915_WRITE(DEIMR, dev_priv->irq_mask);
326 POSTING_READ(DEIMR);
327 }
328 }
329
gen6_pm_iir(struct drm_i915_private * dev_priv)330 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
331 {
332 WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
333
334 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
335 }
336
gen11_reset_rps_interrupts(struct drm_i915_private * dev_priv)337 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
338 {
339 struct intel_gt *gt = &dev_priv->gt;
340
341 spin_lock_irq(>->irq_lock);
342
343 while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
344 ;
345
346 dev_priv->gt_pm.rps.pm_iir = 0;
347
348 spin_unlock_irq(>->irq_lock);
349 }
350
gen6_reset_rps_interrupts(struct drm_i915_private * dev_priv)351 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353 struct intel_gt *gt = &dev_priv->gt;
354
355 spin_lock_irq(>->irq_lock);
356 gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
357 dev_priv->gt_pm.rps.pm_iir = 0;
358 spin_unlock_irq(>->irq_lock);
359 }
360
gen6_enable_rps_interrupts(struct drm_i915_private * dev_priv)361 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
362 {
363 struct intel_gt *gt = &dev_priv->gt;
364 struct intel_rps *rps = &dev_priv->gt_pm.rps;
365
366 if (READ_ONCE(rps->interrupts_enabled))
367 return;
368
369 spin_lock_irq(>->irq_lock);
370 WARN_ON_ONCE(rps->pm_iir);
371
372 if (INTEL_GEN(dev_priv) >= 11)
373 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
374 else
375 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
376
377 rps->interrupts_enabled = true;
378 gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
379
380 spin_unlock_irq(>->irq_lock);
381 }
382
gen6_sanitize_rps_pm_mask(const struct drm_i915_private * i915,u32 mask)383 u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
384 {
385 return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
386 }
387
gen6_disable_rps_interrupts(struct drm_i915_private * dev_priv)388 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
389 {
390 struct intel_rps *rps = &dev_priv->gt_pm.rps;
391 struct intel_gt *gt = &dev_priv->gt;
392
393 if (!READ_ONCE(rps->interrupts_enabled))
394 return;
395
396 spin_lock_irq(>->irq_lock);
397 rps->interrupts_enabled = false;
398
399 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
400
401 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
402
403 spin_unlock_irq(>->irq_lock);
404 intel_synchronize_irq(dev_priv);
405
406 /* Now that we will not be generating any more work, flush any
407 * outstanding tasks. As we are called on the RPS idle path,
408 * we will reset the GPU to minimum frequencies, so the current
409 * state of the worker can be discarded.
410 */
411 cancel_work_sync(&rps->work);
412 if (INTEL_GEN(dev_priv) >= 11)
413 gen11_reset_rps_interrupts(dev_priv);
414 else
415 gen6_reset_rps_interrupts(dev_priv);
416 }
417
gen9_reset_guc_interrupts(struct intel_guc * guc)418 void gen9_reset_guc_interrupts(struct intel_guc *guc)
419 {
420 struct intel_gt *gt = guc_to_gt(guc);
421
422 assert_rpm_wakelock_held(>->i915->runtime_pm);
423
424 spin_lock_irq(>->irq_lock);
425 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
426 spin_unlock_irq(>->irq_lock);
427 }
428
gen9_enable_guc_interrupts(struct intel_guc * guc)429 void gen9_enable_guc_interrupts(struct intel_guc *guc)
430 {
431 struct intel_gt *gt = guc_to_gt(guc);
432
433 assert_rpm_wakelock_held(>->i915->runtime_pm);
434
435 spin_lock_irq(>->irq_lock);
436 if (!guc->interrupts.enabled) {
437 WARN_ON_ONCE(intel_uncore_read(gt->uncore,
438 gen6_pm_iir(gt->i915)) &
439 gt->pm_guc_events);
440 guc->interrupts.enabled = true;
441 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
442 }
443 spin_unlock_irq(>->irq_lock);
444 }
445
gen9_disable_guc_interrupts(struct intel_guc * guc)446 void gen9_disable_guc_interrupts(struct intel_guc *guc)
447 {
448 struct intel_gt *gt = guc_to_gt(guc);
449
450 assert_rpm_wakelock_held(>->i915->runtime_pm);
451
452 spin_lock_irq(>->irq_lock);
453 guc->interrupts.enabled = false;
454
455 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
456
457 spin_unlock_irq(>->irq_lock);
458 intel_synchronize_irq(gt->i915);
459
460 gen9_reset_guc_interrupts(guc);
461 }
462
gen11_reset_guc_interrupts(struct intel_guc * guc)463 void gen11_reset_guc_interrupts(struct intel_guc *guc)
464 {
465 struct intel_gt *gt = guc_to_gt(guc);
466
467 spin_lock_irq(>->irq_lock);
468 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
469 spin_unlock_irq(>->irq_lock);
470 }
471
gen11_enable_guc_interrupts(struct intel_guc * guc)472 void gen11_enable_guc_interrupts(struct intel_guc *guc)
473 {
474 struct intel_gt *gt = guc_to_gt(guc);
475
476 spin_lock_irq(>->irq_lock);
477 if (!guc->interrupts.enabled) {
478 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
479
480 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
481 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
482 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
483 guc->interrupts.enabled = true;
484 }
485 spin_unlock_irq(>->irq_lock);
486 }
487
gen11_disable_guc_interrupts(struct intel_guc * guc)488 void gen11_disable_guc_interrupts(struct intel_guc *guc)
489 {
490 struct intel_gt *gt = guc_to_gt(guc);
491
492 spin_lock_irq(>->irq_lock);
493 guc->interrupts.enabled = false;
494
495 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
496 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
497
498 spin_unlock_irq(>->irq_lock);
499 intel_synchronize_irq(gt->i915);
500
501 gen11_reset_guc_interrupts(guc);
502 }
503
504 /**
505 * bdw_update_port_irq - update DE port interrupt
506 * @dev_priv: driver private
507 * @interrupt_mask: mask of interrupt bits to update
508 * @enabled_irq_mask: mask of interrupt bits to enable
509 */
bdw_update_port_irq(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)510 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
511 u32 interrupt_mask,
512 u32 enabled_irq_mask)
513 {
514 u32 new_val;
515 u32 old_val;
516
517 lockdep_assert_held(&dev_priv->irq_lock);
518
519 WARN_ON(enabled_irq_mask & ~interrupt_mask);
520
521 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
522 return;
523
524 old_val = I915_READ(GEN8_DE_PORT_IMR);
525
526 new_val = old_val;
527 new_val &= ~interrupt_mask;
528 new_val |= (~enabled_irq_mask & interrupt_mask);
529
530 if (new_val != old_val) {
531 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
532 POSTING_READ(GEN8_DE_PORT_IMR);
533 }
534 }
535
536 /**
537 * bdw_update_pipe_irq - update DE pipe interrupt
538 * @dev_priv: driver private
539 * @pipe: pipe whose interrupt to update
540 * @interrupt_mask: mask of interrupt bits to update
541 * @enabled_irq_mask: mask of interrupt bits to enable
542 */
bdw_update_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,u32 interrupt_mask,u32 enabled_irq_mask)543 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
544 enum pipe pipe,
545 u32 interrupt_mask,
546 u32 enabled_irq_mask)
547 {
548 u32 new_val;
549
550 lockdep_assert_held(&dev_priv->irq_lock);
551
552 WARN_ON(enabled_irq_mask & ~interrupt_mask);
553
554 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
555 return;
556
557 new_val = dev_priv->de_irq_mask[pipe];
558 new_val &= ~interrupt_mask;
559 new_val |= (~enabled_irq_mask & interrupt_mask);
560
561 if (new_val != dev_priv->de_irq_mask[pipe]) {
562 dev_priv->de_irq_mask[pipe] = new_val;
563 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
564 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
565 }
566 }
567
568 /**
569 * ibx_display_interrupt_update - update SDEIMR
570 * @dev_priv: driver private
571 * @interrupt_mask: mask of interrupt bits to update
572 * @enabled_irq_mask: mask of interrupt bits to enable
573 */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)574 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
575 u32 interrupt_mask,
576 u32 enabled_irq_mask)
577 {
578 u32 sdeimr = I915_READ(SDEIMR);
579 sdeimr &= ~interrupt_mask;
580 sdeimr |= (~enabled_irq_mask & interrupt_mask);
581
582 WARN_ON(enabled_irq_mask & ~interrupt_mask);
583
584 lockdep_assert_held(&dev_priv->irq_lock);
585
586 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
587 return;
588
589 I915_WRITE(SDEIMR, sdeimr);
590 POSTING_READ(SDEIMR);
591 }
592
i915_pipestat_enable_mask(struct drm_i915_private * dev_priv,enum pipe pipe)593 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
594 enum pipe pipe)
595 {
596 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
597 u32 enable_mask = status_mask << 16;
598
599 lockdep_assert_held(&dev_priv->irq_lock);
600
601 if (INTEL_GEN(dev_priv) < 5)
602 goto out;
603
604 /*
605 * On pipe A we don't support the PSR interrupt yet,
606 * on pipe B and C the same bit MBZ.
607 */
608 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
609 return 0;
610 /*
611 * On pipe B and C we don't support the PSR interrupt yet, on pipe
612 * A the same bit is for perf counters which we don't use either.
613 */
614 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
615 return 0;
616
617 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
618 SPRITE0_FLIP_DONE_INT_EN_VLV |
619 SPRITE1_FLIP_DONE_INT_EN_VLV);
620 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
621 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
622 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
623 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
624
625 out:
626 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
627 status_mask & ~PIPESTAT_INT_STATUS_MASK,
628 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
629 pipe_name(pipe), enable_mask, status_mask);
630
631 return enable_mask;
632 }
633
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)634 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
635 enum pipe pipe, u32 status_mask)
636 {
637 i915_reg_t reg = PIPESTAT(pipe);
638 u32 enable_mask;
639
640 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
641 "pipe %c: status_mask=0x%x\n",
642 pipe_name(pipe), status_mask);
643
644 lockdep_assert_held(&dev_priv->irq_lock);
645 WARN_ON(!intel_irqs_enabled(dev_priv));
646
647 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
648 return;
649
650 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
651 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
652
653 I915_WRITE(reg, enable_mask | status_mask);
654 POSTING_READ(reg);
655 }
656
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)657 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
658 enum pipe pipe, u32 status_mask)
659 {
660 i915_reg_t reg = PIPESTAT(pipe);
661 u32 enable_mask;
662
663 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
664 "pipe %c: status_mask=0x%x\n",
665 pipe_name(pipe), status_mask);
666
667 lockdep_assert_held(&dev_priv->irq_lock);
668 WARN_ON(!intel_irqs_enabled(dev_priv));
669
670 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
671 return;
672
673 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
674 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
675
676 I915_WRITE(reg, enable_mask | status_mask);
677 POSTING_READ(reg);
678 }
679
i915_has_asle(struct drm_i915_private * dev_priv)680 static bool i915_has_asle(struct drm_i915_private *dev_priv)
681 {
682 if (!dev_priv->opregion.asle)
683 return false;
684
685 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
686 }
687
688 /**
689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
690 * @dev_priv: i915 device private
691 */
i915_enable_asle_pipestat(struct drm_i915_private * dev_priv)692 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
693 {
694 if (!i915_has_asle(dev_priv))
695 return;
696
697 spin_lock_irq(&dev_priv->irq_lock);
698
699 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
700 if (INTEL_GEN(dev_priv) >= 4)
701 i915_enable_pipestat(dev_priv, PIPE_A,
702 PIPE_LEGACY_BLC_EVENT_STATUS);
703
704 spin_unlock_irq(&dev_priv->irq_lock);
705 }
706
707 /*
708 * This timing diagram depicts the video signal in and
709 * around the vertical blanking period.
710 *
711 * Assumptions about the fictitious mode used in this example:
712 * vblank_start >= 3
713 * vsync_start = vblank_start + 1
714 * vsync_end = vblank_start + 2
715 * vtotal = vblank_start + 3
716 *
717 * start of vblank:
718 * latch double buffered registers
719 * increment frame counter (ctg+)
720 * generate start of vblank interrupt (gen4+)
721 * |
722 * | frame start:
723 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
724 * | may be shifted forward 1-3 extra lines via PIPECONF
725 * | |
726 * | | start of vsync:
727 * | | generate vsync interrupt
728 * | | |
729 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
730 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
731 * ----va---> <-----------------vb--------------------> <--------va-------------
732 * | | <----vs-----> |
733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
736 * | | |
737 * last visible pixel first visible pixel
738 * | increment frame counter (gen3/4)
739 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
740 *
741 * x = horizontal active
742 * _ = horizontal blanking
743 * hs = horizontal sync
744 * va = vertical active
745 * vb = vertical blanking
746 * vs = vertical sync
747 * vbs = vblank_start (number)
748 *
749 * Summary:
750 * - most events happen at the start of horizontal sync
751 * - frame start happens at the start of horizontal blank, 1-4 lines
752 * (depending on PIPECONF settings) after the start of vblank
753 * - gen3/4 pixel and frame counter are synchronized with the start
754 * of horizontal active on the first line of vertical active
755 */
756
757 /* Called from drm generic code, passed a 'crtc', which
758 * we use as a pipe index
759 */
i915_get_vblank_counter(struct drm_crtc * crtc)760 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
761 {
762 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
763 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
764 const struct drm_display_mode *mode = &vblank->hwmode;
765 enum pipe pipe = to_intel_crtc(crtc)->pipe;
766 i915_reg_t high_frame, low_frame;
767 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
768 unsigned long irqflags;
769
770 /*
771 * On i965gm TV output the frame counter only works up to
772 * the point when we enable the TV encoder. After that the
773 * frame counter ceases to work and reads zero. We need a
774 * vblank wait before enabling the TV encoder and so we
775 * have to enable vblank interrupts while the frame counter
776 * is still in a working state. However the core vblank code
777 * does not like us returning non-zero frame counter values
778 * when we've told it that we don't have a working frame
779 * counter. Thus we must stop non-zero values leaking out.
780 */
781 if (!vblank->max_vblank_count)
782 return 0;
783
784 htotal = mode->crtc_htotal;
785 hsync_start = mode->crtc_hsync_start;
786 vbl_start = mode->crtc_vblank_start;
787 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788 vbl_start = DIV_ROUND_UP(vbl_start, 2);
789
790 /* Convert to pixel count */
791 vbl_start *= htotal;
792
793 /* Start of vblank event occurs at start of hsync */
794 vbl_start -= htotal - hsync_start;
795
796 high_frame = PIPEFRAME(pipe);
797 low_frame = PIPEFRAMEPIXEL(pipe);
798
799 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
800
801 /*
802 * High & low register fields aren't synchronized, so make sure
803 * we get a low value that's stable across two reads of the high
804 * register.
805 */
806 do {
807 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
808 low = I915_READ_FW(low_frame);
809 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
810 } while (high1 != high2);
811
812 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
813
814 high1 >>= PIPE_FRAME_HIGH_SHIFT;
815 pixel = low & PIPE_PIXEL_MASK;
816 low >>= PIPE_FRAME_LOW_SHIFT;
817
818 /*
819 * The frame counter increments at beginning of active.
820 * Cook up a vblank counter by also checking the pixel
821 * counter against vblank start.
822 */
823 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
824 }
825
g4x_get_vblank_counter(struct drm_crtc * crtc)826 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
827 {
828 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
829 enum pipe pipe = to_intel_crtc(crtc)->pipe;
830
831 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
832 }
833
834 /*
835 * On certain encoders on certain platforms, pipe
836 * scanline register will not work to get the scanline,
837 * since the timings are driven from the PORT or issues
838 * with scanline register updates.
839 * This function will use Framestamp and current
840 * timestamp registers to calculate the scanline.
841 */
__intel_get_crtc_scanline_from_timestamp(struct intel_crtc * crtc)842 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
843 {
844 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
845 struct drm_vblank_crtc *vblank =
846 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
847 const struct drm_display_mode *mode = &vblank->hwmode;
848 u32 vblank_start = mode->crtc_vblank_start;
849 u32 vtotal = mode->crtc_vtotal;
850 u32 htotal = mode->crtc_htotal;
851 u32 clock = mode->crtc_clock;
852 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
853
854 /*
855 * To avoid the race condition where we might cross into the
856 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
857 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
858 * during the same frame.
859 */
860 do {
861 /*
862 * This field provides read back of the display
863 * pipe frame time stamp. The time stamp value
864 * is sampled at every start of vertical blank.
865 */
866 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
867
868 /*
869 * The TIMESTAMP_CTR register has the current
870 * time stamp value.
871 */
872 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
873
874 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
875 } while (scan_post_time != scan_prev_time);
876
877 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
878 clock), 1000 * htotal);
879 scanline = min(scanline, vtotal - 1);
880 scanline = (scanline + vblank_start) % vtotal;
881
882 return scanline;
883 }
884
885 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
__intel_get_crtc_scanline(struct intel_crtc * crtc)886 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
887 {
888 struct drm_device *dev = crtc->base.dev;
889 struct drm_i915_private *dev_priv = to_i915(dev);
890 const struct drm_display_mode *mode;
891 struct drm_vblank_crtc *vblank;
892 enum pipe pipe = crtc->pipe;
893 int position, vtotal;
894
895 if (!crtc->active)
896 return -1;
897
898 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
899 mode = &vblank->hwmode;
900
901 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
902 return __intel_get_crtc_scanline_from_timestamp(crtc);
903
904 vtotal = mode->crtc_vtotal;
905 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
906 vtotal /= 2;
907
908 if (IS_GEN(dev_priv, 2))
909 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
910 else
911 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
912
913 /*
914 * On HSW, the DSL reg (0x70000) appears to return 0 if we
915 * read it just before the start of vblank. So try it again
916 * so we don't accidentally end up spanning a vblank frame
917 * increment, causing the pipe_update_end() code to squak at us.
918 *
919 * The nature of this problem means we can't simply check the ISR
920 * bit and return the vblank start value; nor can we use the scanline
921 * debug register in the transcoder as it appears to have the same
922 * problem. We may need to extend this to include other platforms,
923 * but so far testing only shows the problem on HSW.
924 */
925 if (HAS_DDI(dev_priv) && !position) {
926 int i, temp;
927
928 for (i = 0; i < 100; i++) {
929 udelay(1);
930 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
931 if (temp != position) {
932 position = temp;
933 break;
934 }
935 }
936 }
937
938 /*
939 * See update_scanline_offset() for the details on the
940 * scanline_offset adjustment.
941 */
942 return (position + crtc->scanline_offset) % vtotal;
943 }
944
i915_get_crtc_scanoutpos(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)945 bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
946 bool in_vblank_irq, int *vpos, int *hpos,
947 ktime_t *stime, ktime_t *etime,
948 const struct drm_display_mode *mode)
949 {
950 struct drm_i915_private *dev_priv = to_i915(dev);
951 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
952 pipe);
953 int position;
954 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
955 unsigned long irqflags;
956 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
957 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
958 mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
959
960 if (WARN_ON(!mode->crtc_clock)) {
961 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
962 "pipe %c\n", pipe_name(pipe));
963 return false;
964 }
965
966 htotal = mode->crtc_htotal;
967 hsync_start = mode->crtc_hsync_start;
968 vtotal = mode->crtc_vtotal;
969 vbl_start = mode->crtc_vblank_start;
970 vbl_end = mode->crtc_vblank_end;
971
972 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
973 vbl_start = DIV_ROUND_UP(vbl_start, 2);
974 vbl_end /= 2;
975 vtotal /= 2;
976 }
977
978 /*
979 * Lock uncore.lock, as we will do multiple timing critical raw
980 * register reads, potentially with preemption disabled, so the
981 * following code must not block on uncore.lock.
982 */
983 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
984
985 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
986
987 /* Get optional system timestamp before query. */
988 if (stime)
989 *stime = ktime_get();
990
991 if (use_scanline_counter) {
992 /* No obvious pixelcount register. Only query vertical
993 * scanout position from Display scan line register.
994 */
995 position = __intel_get_crtc_scanline(intel_crtc);
996 } else {
997 /* Have access to pixelcount since start of frame.
998 * We can split this into vertical and horizontal
999 * scanout position.
1000 */
1001 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003 /* convert to pixel counts */
1004 vbl_start *= htotal;
1005 vbl_end *= htotal;
1006 vtotal *= htotal;
1007
1008 /*
1009 * In interlaced modes, the pixel counter counts all pixels,
1010 * so one field will have htotal more pixels. In order to avoid
1011 * the reported position from jumping backwards when the pixel
1012 * counter is beyond the length of the shorter field, just
1013 * clamp the position the length of the shorter field. This
1014 * matches how the scanline counter based position works since
1015 * the scanline counter doesn't count the two half lines.
1016 */
1017 if (position >= vtotal)
1018 position = vtotal - 1;
1019
1020 /*
1021 * Start of vblank interrupt is triggered at start of hsync,
1022 * just prior to the first active line of vblank. However we
1023 * consider lines to start at the leading edge of horizontal
1024 * active. So, should we get here before we've crossed into
1025 * the horizontal active of the first line in vblank, we would
1026 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027 * always add htotal-hsync_start to the current pixel position.
1028 */
1029 position = (position + htotal - hsync_start) % vtotal;
1030 }
1031
1032 /* Get optional system timestamp after query. */
1033 if (etime)
1034 *etime = ktime_get();
1035
1036 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
1040 /*
1041 * While in vblank, position will be negative
1042 * counting up towards 0 at vbl_end. And outside
1043 * vblank, position will be positive counting
1044 * up since vbl_end.
1045 */
1046 if (position >= vbl_start)
1047 position -= vbl_end;
1048 else
1049 position += vtotal - vbl_end;
1050
1051 if (use_scanline_counter) {
1052 *vpos = position;
1053 *hpos = 0;
1054 } else {
1055 *vpos = position / htotal;
1056 *hpos = position - (*vpos * htotal);
1057 }
1058
1059 return true;
1060 }
1061
intel_get_crtc_scanline(struct intel_crtc * crtc)1062 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063 {
1064 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065 unsigned long irqflags;
1066 int position;
1067
1068 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069 position = __intel_get_crtc_scanline(crtc);
1070 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072 return position;
1073 }
1074
ironlake_rps_change_irq_handler(struct drm_i915_private * dev_priv)1075 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076 {
1077 struct intel_uncore *uncore = &dev_priv->uncore;
1078 u32 busy_up, busy_down, max_avg, min_avg;
1079 u8 new_delay;
1080
1081 spin_lock(&mchdev_lock);
1082
1083 intel_uncore_write16(uncore,
1084 MEMINTRSTS,
1085 intel_uncore_read(uncore, MEMINTRSTS));
1086
1087 new_delay = dev_priv->ips.cur_delay;
1088
1089 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095 /* Handle RCS change request from hw */
1096 if (busy_up > max_avg) {
1097 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098 new_delay = dev_priv->ips.cur_delay - 1;
1099 if (new_delay < dev_priv->ips.max_delay)
1100 new_delay = dev_priv->ips.max_delay;
1101 } else if (busy_down < min_avg) {
1102 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103 new_delay = dev_priv->ips.cur_delay + 1;
1104 if (new_delay > dev_priv->ips.min_delay)
1105 new_delay = dev_priv->ips.min_delay;
1106 }
1107
1108 if (ironlake_set_drps(dev_priv, new_delay))
1109 dev_priv->ips.cur_delay = new_delay;
1110
1111 spin_unlock(&mchdev_lock);
1112
1113 return;
1114 }
1115
vlv_c0_read(struct drm_i915_private * dev_priv,struct intel_rps_ei * ei)1116 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117 struct intel_rps_ei *ei)
1118 {
1119 ei->ktime = ktime_get_raw();
1120 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122 }
1123
gen6_rps_reset_ei(struct drm_i915_private * dev_priv)1124 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125 {
1126 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127 }
1128
vlv_wa_c0_ei(struct drm_i915_private * dev_priv,u32 pm_iir)1129 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130 {
1131 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132 const struct intel_rps_ei *prev = &rps->ei;
1133 struct intel_rps_ei now;
1134 u32 events = 0;
1135
1136 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137 return 0;
1138
1139 vlv_c0_read(dev_priv, &now);
1140
1141 if (prev->ktime) {
1142 u64 time, c0;
1143 u32 render, media;
1144
1145 time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147 time *= dev_priv->czclk_freq;
1148
1149 /* Workload can be split between render + media,
1150 * e.g. SwapBuffers being blitted in X after being rendered in
1151 * mesa. To account for this we need to combine both engines
1152 * into our activity counter.
1153 */
1154 render = now.render_c0 - prev->render_c0;
1155 media = now.media_c0 - prev->media_c0;
1156 c0 = max(render, media);
1157 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159 if (c0 > time * rps->power.up_threshold)
1160 events = GEN6_PM_RP_UP_THRESHOLD;
1161 else if (c0 < time * rps->power.down_threshold)
1162 events = GEN6_PM_RP_DOWN_THRESHOLD;
1163 }
1164
1165 rps->ei = now;
1166 return events;
1167 }
1168
gen6_pm_rps_work(struct work_struct * work)1169 static void gen6_pm_rps_work(struct work_struct *work)
1170 {
1171 struct drm_i915_private *dev_priv =
1172 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173 struct intel_gt *gt = &dev_priv->gt;
1174 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175 bool client_boost = false;
1176 int new_delay, adj, min, max;
1177 u32 pm_iir = 0;
1178
1179 spin_lock_irq(>->irq_lock);
1180 if (rps->interrupts_enabled) {
1181 pm_iir = fetch_and_zero(&rps->pm_iir);
1182 client_boost = atomic_read(&rps->num_waiters);
1183 }
1184 spin_unlock_irq(>->irq_lock);
1185
1186 /* Make sure we didn't queue anything we're not going to process. */
1187 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189 goto out;
1190
1191 mutex_lock(&rps->lock);
1192
1193 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195 adj = rps->last_adj;
1196 new_delay = rps->cur_freq;
1197 min = rps->min_freq_softlimit;
1198 max = rps->max_freq_softlimit;
1199 if (client_boost)
1200 max = rps->max_freq;
1201 if (client_boost && new_delay < rps->boost_freq) {
1202 new_delay = rps->boost_freq;
1203 adj = 0;
1204 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205 if (adj > 0)
1206 adj *= 2;
1207 else /* CHV needs even encode values */
1208 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210 if (new_delay >= rps->max_freq_softlimit)
1211 adj = 0;
1212 } else if (client_boost) {
1213 adj = 0;
1214 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215 if (rps->cur_freq > rps->efficient_freq)
1216 new_delay = rps->efficient_freq;
1217 else if (rps->cur_freq > rps->min_freq_softlimit)
1218 new_delay = rps->min_freq_softlimit;
1219 adj = 0;
1220 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221 if (adj < 0)
1222 adj *= 2;
1223 else /* CHV needs even encode values */
1224 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226 if (new_delay <= rps->min_freq_softlimit)
1227 adj = 0;
1228 } else { /* unknown event */
1229 adj = 0;
1230 }
1231
1232 rps->last_adj = adj;
1233
1234 /*
1235 * Limit deboosting and boosting to keep ourselves at the extremes
1236 * when in the respective power modes (i.e. slowly decrease frequencies
1237 * while in the HIGH_POWER zone and slowly increase frequencies while
1238 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239 * to the next level quickly, and conversely if busy we expect to
1240 * hit a waitboost and rapidly switch into max power.
1241 */
1242 if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243 (adj > 0 && rps->power.mode == LOW_POWER))
1244 rps->last_adj = 0;
1245
1246 /* sysfs frequency interfaces may have snuck in while servicing the
1247 * interrupt
1248 */
1249 new_delay += adj;
1250 new_delay = clamp_t(int, new_delay, min, max);
1251
1252 if (intel_set_rps(dev_priv, new_delay)) {
1253 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254 rps->last_adj = 0;
1255 }
1256
1257 mutex_unlock(&rps->lock);
1258
1259 out:
1260 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261 spin_lock_irq(>->irq_lock);
1262 if (rps->interrupts_enabled)
1263 gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264 spin_unlock_irq(>->irq_lock);
1265 }
1266
1267
1268 /**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
ivybridge_parity_work(struct work_struct * work)1277 static void ivybridge_parity_work(struct work_struct *work)
1278 {
1279 struct drm_i915_private *dev_priv =
1280 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281 struct intel_gt *gt = &dev_priv->gt;
1282 u32 error_status, row, bank, subbank;
1283 char *parity_event[6];
1284 u32 misccpctl;
1285 u8 slice = 0;
1286
1287 /* We must turn off DOP level clock gating to access the L3 registers.
1288 * In order to prevent a get/put style interface, acquire struct mutex
1289 * any time we access those registers.
1290 */
1291 mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293 /* If we've screwed up tracking, just let the interrupt fire again */
1294 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295 goto out;
1296
1297 misccpctl = I915_READ(GEN7_MISCCPCTL);
1298 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299 POSTING_READ(GEN7_MISCCPCTL);
1300
1301 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302 i915_reg_t reg;
1303
1304 slice--;
1305 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306 break;
1307
1308 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310 reg = GEN7_L3CDERRST1(slice);
1311
1312 error_status = I915_READ(reg);
1313 row = GEN7_PARITY_ERROR_ROW(error_status);
1314 bank = GEN7_PARITY_ERROR_BANK(error_status);
1315 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318 POSTING_READ(reg);
1319
1320 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325 parity_event[5] = NULL;
1326
1327 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328 KOBJ_CHANGE, parity_event);
1329
1330 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331 slice, row, bank, subbank);
1332
1333 kfree(parity_event[4]);
1334 kfree(parity_event[3]);
1335 kfree(parity_event[2]);
1336 kfree(parity_event[1]);
1337 }
1338
1339 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341 out:
1342 WARN_ON(dev_priv->l3_parity.which_slice);
1343 spin_lock_irq(>->irq_lock);
1344 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345 spin_unlock_irq(>->irq_lock);
1346
1347 mutex_unlock(&dev_priv->drm.struct_mutex);
1348 }
1349
gen11_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1350 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351 {
1352 switch (pin) {
1353 case HPD_PORT_C:
1354 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355 case HPD_PORT_D:
1356 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357 case HPD_PORT_E:
1358 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359 case HPD_PORT_F:
1360 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361 default:
1362 return false;
1363 }
1364 }
1365
gen12_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1366 static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367 {
1368 switch (pin) {
1369 case HPD_PORT_D:
1370 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371 case HPD_PORT_E:
1372 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373 case HPD_PORT_F:
1374 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375 case HPD_PORT_G:
1376 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377 case HPD_PORT_H:
1378 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379 case HPD_PORT_I:
1380 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381 default:
1382 return false;
1383 }
1384 }
1385
bxt_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1386 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387 {
1388 switch (pin) {
1389 case HPD_PORT_A:
1390 return val & PORTA_HOTPLUG_LONG_DETECT;
1391 case HPD_PORT_B:
1392 return val & PORTB_HOTPLUG_LONG_DETECT;
1393 case HPD_PORT_C:
1394 return val & PORTC_HOTPLUG_LONG_DETECT;
1395 default:
1396 return false;
1397 }
1398 }
1399
icp_ddi_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1400 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401 {
1402 switch (pin) {
1403 case HPD_PORT_A:
1404 return val & ICP_DDIA_HPD_LONG_DETECT;
1405 case HPD_PORT_B:
1406 return val & ICP_DDIB_HPD_LONG_DETECT;
1407 case HPD_PORT_C:
1408 return val & TGP_DDIC_HPD_LONG_DETECT;
1409 default:
1410 return false;
1411 }
1412 }
1413
icp_tc_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1414 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415 {
1416 switch (pin) {
1417 case HPD_PORT_C:
1418 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419 case HPD_PORT_D:
1420 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421 case HPD_PORT_E:
1422 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423 case HPD_PORT_F:
1424 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425 default:
1426 return false;
1427 }
1428 }
1429
tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1430 static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1431 {
1432 switch (pin) {
1433 case HPD_PORT_A:
1434 return val & ICP_DDIA_HPD_LONG_DETECT;
1435 case HPD_PORT_B:
1436 return val & ICP_DDIB_HPD_LONG_DETECT;
1437 case HPD_PORT_C:
1438 return val & TGP_DDIC_HPD_LONG_DETECT;
1439 default:
1440 return false;
1441 }
1442 }
1443
tgp_tc_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1444 static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445 {
1446 switch (pin) {
1447 case HPD_PORT_D:
1448 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449 case HPD_PORT_E:
1450 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451 case HPD_PORT_F:
1452 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453 case HPD_PORT_G:
1454 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455 case HPD_PORT_H:
1456 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457 case HPD_PORT_I:
1458 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459 default:
1460 return false;
1461 }
1462 }
1463
spt_port_hotplug2_long_detect(enum hpd_pin pin,u32 val)1464 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465 {
1466 switch (pin) {
1467 case HPD_PORT_E:
1468 return val & PORTE_HOTPLUG_LONG_DETECT;
1469 default:
1470 return false;
1471 }
1472 }
1473
spt_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1474 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475 {
1476 switch (pin) {
1477 case HPD_PORT_A:
1478 return val & PORTA_HOTPLUG_LONG_DETECT;
1479 case HPD_PORT_B:
1480 return val & PORTB_HOTPLUG_LONG_DETECT;
1481 case HPD_PORT_C:
1482 return val & PORTC_HOTPLUG_LONG_DETECT;
1483 case HPD_PORT_D:
1484 return val & PORTD_HOTPLUG_LONG_DETECT;
1485 default:
1486 return false;
1487 }
1488 }
1489
ilk_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1490 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491 {
1492 switch (pin) {
1493 case HPD_PORT_A:
1494 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495 default:
1496 return false;
1497 }
1498 }
1499
pch_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1500 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501 {
1502 switch (pin) {
1503 case HPD_PORT_B:
1504 return val & PORTB_HOTPLUG_LONG_DETECT;
1505 case HPD_PORT_C:
1506 return val & PORTC_HOTPLUG_LONG_DETECT;
1507 case HPD_PORT_D:
1508 return val & PORTD_HOTPLUG_LONG_DETECT;
1509 default:
1510 return false;
1511 }
1512 }
1513
i9xx_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1514 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515 {
1516 switch (pin) {
1517 case HPD_PORT_B:
1518 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519 case HPD_PORT_C:
1520 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521 case HPD_PORT_D:
1522 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523 default:
1524 return false;
1525 }
1526 }
1527
1528 /*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
intel_get_hpd_pins(struct drm_i915_private * dev_priv,u32 * pin_mask,u32 * long_mask,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 hpd[HPD_NUM_PINS],bool long_pulse_detect (enum hpd_pin pin,u32 val))1535 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536 u32 *pin_mask, u32 *long_mask,
1537 u32 hotplug_trigger, u32 dig_hotplug_reg,
1538 const u32 hpd[HPD_NUM_PINS],
1539 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540 {
1541 enum hpd_pin pin;
1542
1543 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1544
1545 for_each_hpd_pin(pin) {
1546 if ((hpd[pin] & hotplug_trigger) == 0)
1547 continue;
1548
1549 *pin_mask |= BIT(pin);
1550
1551 if (long_pulse_detect(pin, dig_hotplug_reg))
1552 *long_mask |= BIT(pin);
1553 }
1554
1555 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1557
1558 }
1559
gmbus_irq_handler(struct drm_i915_private * dev_priv)1560 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561 {
1562 wake_up_all(&dev_priv->gmbus_wait_queue);
1563 }
1564
dp_aux_irq_handler(struct drm_i915_private * dev_priv)1565 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566 {
1567 wake_up_all(&dev_priv->gmbus_wait_queue);
1568 }
1569
1570 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,u32 crc0,u32 crc1,u32 crc2,u32 crc3,u32 crc4)1571 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572 enum pipe pipe,
1573 u32 crc0, u32 crc1,
1574 u32 crc2, u32 crc3,
1575 u32 crc4)
1576 {
1577 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581 trace_intel_pipe_crc(crtc, crcs);
1582
1583 spin_lock(&pipe_crc->lock);
1584 /*
1585 * For some not yet identified reason, the first CRC is
1586 * bonkers. So let's just wait for the next vblank and read
1587 * out the buggy result.
1588 *
1589 * On GEN8+ sometimes the second CRC is bonkers as well, so
1590 * don't trust that one either.
1591 */
1592 if (pipe_crc->skipped <= 0 ||
1593 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594 pipe_crc->skipped++;
1595 spin_unlock(&pipe_crc->lock);
1596 return;
1597 }
1598 spin_unlock(&pipe_crc->lock);
1599
1600 drm_crtc_add_crc_entry(&crtc->base, true,
1601 drm_crtc_accurate_vblank_count(&crtc->base),
1602 crcs);
1603 }
1604 #else
1605 static inline void
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,u32 crc0,u32 crc1,u32 crc2,u32 crc3,u32 crc4)1606 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607 enum pipe pipe,
1608 u32 crc0, u32 crc1,
1609 u32 crc2, u32 crc3,
1610 u32 crc4) {}
1611 #endif
1612
1613
hsw_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1614 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615 enum pipe pipe)
1616 {
1617 display_pipe_crc_irq_handler(dev_priv, pipe,
1618 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619 0, 0, 0, 0);
1620 }
1621
ivb_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1622 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623 enum pipe pipe)
1624 {
1625 display_pipe_crc_irq_handler(dev_priv, pipe,
1626 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631 }
1632
i9xx_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1633 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634 enum pipe pipe)
1635 {
1636 u32 res1, res2;
1637
1638 if (INTEL_GEN(dev_priv) >= 3)
1639 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640 else
1641 res1 = 0;
1642
1643 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645 else
1646 res2 = 0;
1647
1648 display_pipe_crc_irq_handler(dev_priv, pipe,
1649 I915_READ(PIPE_CRC_RES_RED(pipe)),
1650 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652 res1, res2);
1653 }
1654
1655 /* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
gen11_rps_irq_handler(struct intel_gt * gt,u32 pm_iir)1658 void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659 {
1660 struct drm_i915_private *i915 = gt->i915;
1661 struct intel_rps *rps = &i915->gt_pm.rps;
1662 const u32 events = i915->pm_rps_events & pm_iir;
1663
1664 lockdep_assert_held(>->irq_lock);
1665
1666 if (unlikely(!events))
1667 return;
1668
1669 gen6_gt_pm_mask_irq(gt, events);
1670
1671 if (!rps->interrupts_enabled)
1672 return;
1673
1674 rps->pm_iir |= events;
1675 schedule_work(&rps->work);
1676 }
1677
gen6_rps_irq_handler(struct drm_i915_private * dev_priv,u32 pm_iir)1678 void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679 {
1680 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681 struct intel_gt *gt = &dev_priv->gt;
1682
1683 if (pm_iir & dev_priv->pm_rps_events) {
1684 spin_lock(>->irq_lock);
1685 gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686 if (rps->interrupts_enabled) {
1687 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688 schedule_work(&rps->work);
1689 }
1690 spin_unlock(>->irq_lock);
1691 }
1692
1693 if (INTEL_GEN(dev_priv) >= 8)
1694 return;
1695
1696 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697 intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701 }
1702
i9xx_pipestat_irq_reset(struct drm_i915_private * dev_priv)1703 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704 {
1705 enum pipe pipe;
1706
1707 for_each_pipe(dev_priv, pipe) {
1708 I915_WRITE(PIPESTAT(pipe),
1709 PIPESTAT_INT_STATUS_MASK |
1710 PIPE_FIFO_UNDERRUN_STATUS);
1711
1712 dev_priv->pipestat_irq_mask[pipe] = 0;
1713 }
1714 }
1715
i9xx_pipestat_irq_ack(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1716 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718 {
1719 int pipe;
1720
1721 spin_lock(&dev_priv->irq_lock);
1722
1723 if (!dev_priv->display_irqs_enabled) {
1724 spin_unlock(&dev_priv->irq_lock);
1725 return;
1726 }
1727
1728 for_each_pipe(dev_priv, pipe) {
1729 i915_reg_t reg;
1730 u32 status_mask, enable_mask, iir_bit = 0;
1731
1732 /*
1733 * PIPESTAT bits get signalled even when the interrupt is
1734 * disabled with the mask bits, and some of the status bits do
1735 * not generate interrupts at all (like the underrun bit). Hence
1736 * we need to be careful that we only handle what we want to
1737 * handle.
1738 */
1739
1740 /* fifo underruns are filterered in the underrun handler. */
1741 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743 switch (pipe) {
1744 case PIPE_A:
1745 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746 break;
1747 case PIPE_B:
1748 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749 break;
1750 case PIPE_C:
1751 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752 break;
1753 }
1754 if (iir & iir_bit)
1755 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757 if (!status_mask)
1758 continue;
1759
1760 reg = PIPESTAT(pipe);
1761 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764 /*
1765 * Clear the PIPE*STAT regs before the IIR
1766 *
1767 * Toggle the enable bits to make sure we get an
1768 * edge in the ISR pipe event bit if we don't clear
1769 * all the enabled status bits. Otherwise the edge
1770 * triggered IIR on i965/g4x wouldn't notice that
1771 * an interrupt is still pending.
1772 */
1773 if (pipe_stats[pipe]) {
1774 I915_WRITE(reg, pipe_stats[pipe]);
1775 I915_WRITE(reg, enable_mask);
1776 }
1777 }
1778 spin_unlock(&dev_priv->irq_lock);
1779 }
1780
i8xx_pipestat_irq_handler(struct drm_i915_private * dev_priv,u16 iir,u32 pipe_stats[I915_MAX_PIPES])1781 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783 {
1784 enum pipe pipe;
1785
1786 for_each_pipe(dev_priv, pipe) {
1787 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788 drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795 }
1796 }
1797
i915_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1798 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800 {
1801 bool blc_event = false;
1802 enum pipe pipe;
1803
1804 for_each_pipe(dev_priv, pipe) {
1805 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806 drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809 blc_event = true;
1810
1811 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816 }
1817
1818 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819 intel_opregion_asle_intr(dev_priv);
1820 }
1821
i965_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1822 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824 {
1825 bool blc_event = false;
1826 enum pipe pipe;
1827
1828 for_each_pipe(dev_priv, pipe) {
1829 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830 drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833 blc_event = true;
1834
1835 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840 }
1841
1842 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843 intel_opregion_asle_intr(dev_priv);
1844
1845 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846 gmbus_irq_handler(dev_priv);
1847 }
1848
valleyview_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 pipe_stats[I915_MAX_PIPES])1849 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850 u32 pipe_stats[I915_MAX_PIPES])
1851 {
1852 enum pipe pipe;
1853
1854 for_each_pipe(dev_priv, pipe) {
1855 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856 drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863 }
1864
1865 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866 gmbus_irq_handler(dev_priv);
1867 }
1868
i9xx_hpd_irq_ack(struct drm_i915_private * dev_priv)1869 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870 {
1871 u32 hotplug_status = 0, hotplug_status_mask;
1872 int i;
1873
1874 if (IS_G4X(dev_priv) ||
1875 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878 else
1879 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881 /*
1882 * We absolutely have to clear all the pending interrupt
1883 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884 * interrupt bit won't have an edge, and the i965/g4x
1885 * edge triggered IIR will not notice that an interrupt
1886 * is still pending. We can't use PORT_HOTPLUG_EN to
1887 * guarantee the edge as the act of toggling the enable
1888 * bits can itself generate a new hotplug interrupt :(
1889 */
1890 for (i = 0; i < 10; i++) {
1891 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893 if (tmp == 0)
1894 return hotplug_status;
1895
1896 hotplug_status |= tmp;
1897 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898 }
1899
1900 WARN_ONCE(1,
1901 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902 I915_READ(PORT_HOTPLUG_STAT));
1903
1904 return hotplug_status;
1905 }
1906
i9xx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_status)1907 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908 u32 hotplug_status)
1909 {
1910 u32 pin_mask = 0, long_mask = 0;
1911
1912 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913 IS_CHERRYVIEW(dev_priv)) {
1914 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916 if (hotplug_trigger) {
1917 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918 hotplug_trigger, hotplug_trigger,
1919 hpd_status_g4x,
1920 i9xx_port_hotplug_long_detect);
1921
1922 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923 }
1924
1925 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926 dp_aux_irq_handler(dev_priv);
1927 } else {
1928 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930 if (hotplug_trigger) {
1931 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932 hotplug_trigger, hotplug_trigger,
1933 hpd_status_i915,
1934 i9xx_port_hotplug_long_detect);
1935 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936 }
1937 }
1938 }
1939
valleyview_irq_handler(int irq,void * arg)1940 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941 {
1942 struct drm_i915_private *dev_priv = arg;
1943 irqreturn_t ret = IRQ_NONE;
1944
1945 if (!intel_irqs_enabled(dev_priv))
1946 return IRQ_NONE;
1947
1948 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951 do {
1952 u32 iir, gt_iir, pm_iir;
1953 u32 pipe_stats[I915_MAX_PIPES] = {};
1954 u32 hotplug_status = 0;
1955 u32 ier = 0;
1956
1957 gt_iir = I915_READ(GTIIR);
1958 pm_iir = I915_READ(GEN6_PMIIR);
1959 iir = I915_READ(VLV_IIR);
1960
1961 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962 break;
1963
1964 ret = IRQ_HANDLED;
1965
1966 /*
1967 * Theory on interrupt generation, based on empirical evidence:
1968 *
1969 * x = ((VLV_IIR & VLV_IER) ||
1970 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972 *
1973 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975 * guarantee the CPU interrupt will be raised again even if we
1976 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977 * bits this time around.
1978 */
1979 I915_WRITE(VLV_MASTER_IER, 0);
1980 ier = I915_READ(VLV_IER);
1981 I915_WRITE(VLV_IER, 0);
1982
1983 if (gt_iir)
1984 I915_WRITE(GTIIR, gt_iir);
1985 if (pm_iir)
1986 I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991 /* Call regardless, as some status bits might not be
1992 * signalled in iir */
1993 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996 I915_LPE_PIPE_B_INTERRUPT))
1997 intel_lpe_audio_irq_handler(dev_priv);
1998
1999 /*
2000 * VLV_IIR is single buffered, and reflects the level
2001 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002 */
2003 if (iir)
2004 I915_WRITE(VLV_IIR, iir);
2005
2006 I915_WRITE(VLV_IER, ier);
2007 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009 if (gt_iir)
2010 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011 if (pm_iir)
2012 gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014 if (hotplug_status)
2015 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018 } while (0);
2019
2020 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022 return ret;
2023 }
2024
cherryview_irq_handler(int irq,void * arg)2025 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026 {
2027 struct drm_i915_private *dev_priv = arg;
2028 irqreturn_t ret = IRQ_NONE;
2029
2030 if (!intel_irqs_enabled(dev_priv))
2031 return IRQ_NONE;
2032
2033 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036 do {
2037 u32 master_ctl, iir;
2038 u32 pipe_stats[I915_MAX_PIPES] = {};
2039 u32 hotplug_status = 0;
2040 u32 gt_iir[4];
2041 u32 ier = 0;
2042
2043 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044 iir = I915_READ(VLV_IIR);
2045
2046 if (master_ctl == 0 && iir == 0)
2047 break;
2048
2049 ret = IRQ_HANDLED;
2050
2051 /*
2052 * Theory on interrupt generation, based on empirical evidence:
2053 *
2054 * x = ((VLV_IIR & VLV_IER) ||
2055 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057 *
2058 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060 * guarantee the CPU interrupt will be raised again even if we
2061 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062 * bits this time around.
2063 */
2064 I915_WRITE(GEN8_MASTER_IRQ, 0);
2065 ier = I915_READ(VLV_IER);
2066 I915_WRITE(VLV_IER, 0);
2067
2068 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073 /* Call regardless, as some status bits might not be
2074 * signalled in iir */
2075 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078 I915_LPE_PIPE_B_INTERRUPT |
2079 I915_LPE_PIPE_C_INTERRUPT))
2080 intel_lpe_audio_irq_handler(dev_priv);
2081
2082 /*
2083 * VLV_IIR is single buffered, and reflects the level
2084 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085 */
2086 if (iir)
2087 I915_WRITE(VLV_IIR, iir);
2088
2089 I915_WRITE(VLV_IER, ier);
2090 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094 if (hotplug_status)
2095 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098 } while (0);
2099
2100 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102 return ret;
2103 }
2104
ibx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2105 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106 u32 hotplug_trigger,
2107 const u32 hpd[HPD_NUM_PINS])
2108 {
2109 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111 /*
2112 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113 * unless we touch the hotplug register, even if hotplug_trigger is
2114 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115 * errors.
2116 */
2117 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118 if (!hotplug_trigger) {
2119 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120 PORTD_HOTPLUG_STATUS_MASK |
2121 PORTC_HOTPLUG_STATUS_MASK |
2122 PORTB_HOTPLUG_STATUS_MASK;
2123 dig_hotplug_reg &= ~mask;
2124 }
2125
2126 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127 if (!hotplug_trigger)
2128 return;
2129
2130 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131 dig_hotplug_reg, hpd,
2132 pch_port_hotplug_long_detect);
2133
2134 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135 }
2136
ibx_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)2137 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138 {
2139 int pipe;
2140 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146 SDE_AUDIO_POWER_SHIFT);
2147 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148 port_name(port));
2149 }
2150
2151 if (pch_iir & SDE_AUX_MASK)
2152 dp_aux_irq_handler(dev_priv);
2153
2154 if (pch_iir & SDE_GMBUS)
2155 gmbus_irq_handler(dev_priv);
2156
2157 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163 if (pch_iir & SDE_POISON)
2164 DRM_ERROR("PCH poison interrupt\n");
2165
2166 if (pch_iir & SDE_FDI_MASK)
2167 for_each_pipe(dev_priv, pipe)
2168 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2169 pipe_name(pipe),
2170 I915_READ(FDI_RX_IIR(pipe)));
2171
2172 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
2178 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183 }
2184
ivb_err_int_handler(struct drm_i915_private * dev_priv)2185 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186 {
2187 u32 err_int = I915_READ(GEN7_ERR_INT);
2188 enum pipe pipe;
2189
2190 if (err_int & ERR_INT_POISON)
2191 DRM_ERROR("Poison interrupt\n");
2192
2193 for_each_pipe(dev_priv, pipe) {
2194 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2196
2197 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198 if (IS_IVYBRIDGE(dev_priv))
2199 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200 else
2201 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202 }
2203 }
2204
2205 I915_WRITE(GEN7_ERR_INT, err_int);
2206 }
2207
cpt_serr_int_handler(struct drm_i915_private * dev_priv)2208 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209 {
2210 u32 serr_int = I915_READ(SERR_INT);
2211 enum pipe pipe;
2212
2213 if (serr_int & SERR_INT_POISON)
2214 DRM_ERROR("PCH poison interrupt\n");
2215
2216 for_each_pipe(dev_priv, pipe)
2217 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2219
2220 I915_WRITE(SERR_INT, serr_int);
2221 }
2222
cpt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)2223 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224 {
2225 int pipe;
2226 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232 SDE_AUDIO_POWER_SHIFT_CPT);
2233 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234 port_name(port));
2235 }
2236
2237 if (pch_iir & SDE_AUX_MASK_CPT)
2238 dp_aux_irq_handler(dev_priv);
2239
2240 if (pch_iir & SDE_GMBUS_CPT)
2241 gmbus_irq_handler(dev_priv);
2242
2243 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249 if (pch_iir & SDE_FDI_MASK_CPT)
2250 for_each_pipe(dev_priv, pipe)
2251 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2252 pipe_name(pipe),
2253 I915_READ(FDI_RX_IIR(pipe)));
2254
2255 if (pch_iir & SDE_ERROR_CPT)
2256 cpt_serr_int_handler(dev_priv);
2257 }
2258
icp_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir,const u32 * pins)2259 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260 const u32 *pins)
2261 {
2262 u32 ddi_hotplug_trigger;
2263 u32 tc_hotplug_trigger;
2264 u32 pin_mask = 0, long_mask = 0;
2265
2266 if (HAS_PCH_MCC(dev_priv)) {
2267 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268 tc_hotplug_trigger = 0;
2269 } else {
2270 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272 }
2273
2274 if (ddi_hotplug_trigger) {
2275 u32 dig_hotplug_reg;
2276
2277 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2279
2280 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281 ddi_hotplug_trigger,
2282 dig_hotplug_reg, pins,
2283 icp_ddi_port_hotplug_long_detect);
2284 }
2285
2286 if (tc_hotplug_trigger) {
2287 u32 dig_hotplug_reg;
2288
2289 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2291
2292 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293 tc_hotplug_trigger,
2294 dig_hotplug_reg, pins,
2295 icp_tc_port_hotplug_long_detect);
2296 }
2297
2298 if (pin_mask)
2299 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300
2301 if (pch_iir & SDE_GMBUS_ICP)
2302 gmbus_irq_handler(dev_priv);
2303 }
2304
tgp_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)2305 static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306 {
2307 u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308 u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309 u32 pin_mask = 0, long_mask = 0;
2310
2311 if (ddi_hotplug_trigger) {
2312 u32 dig_hotplug_reg;
2313
2314 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318 ddi_hotplug_trigger,
2319 dig_hotplug_reg, hpd_tgp,
2320 tgp_ddi_port_hotplug_long_detect);
2321 }
2322
2323 if (tc_hotplug_trigger) {
2324 u32 dig_hotplug_reg;
2325
2326 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330 tc_hotplug_trigger,
2331 dig_hotplug_reg, hpd_tgp,
2332 tgp_tc_port_hotplug_long_detect);
2333 }
2334
2335 if (pin_mask)
2336 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338 if (pch_iir & SDE_GMBUS_ICP)
2339 gmbus_irq_handler(dev_priv);
2340 }
2341
spt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)2342 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2343 {
2344 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345 ~SDE_PORTE_HOTPLUG_SPT;
2346 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347 u32 pin_mask = 0, long_mask = 0;
2348
2349 if (hotplug_trigger) {
2350 u32 dig_hotplug_reg;
2351
2352 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356 hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357 spt_port_hotplug_long_detect);
2358 }
2359
2360 if (hotplug2_trigger) {
2361 u32 dig_hotplug_reg;
2362
2363 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367 hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368 spt_port_hotplug2_long_detect);
2369 }
2370
2371 if (pin_mask)
2372 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374 if (pch_iir & SDE_GMBUS_CPT)
2375 gmbus_irq_handler(dev_priv);
2376 }
2377
ilk_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2378 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379 u32 hotplug_trigger,
2380 const u32 hpd[HPD_NUM_PINS])
2381 {
2382 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388 dig_hotplug_reg, hpd,
2389 ilk_port_hotplug_long_detect);
2390
2391 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392 }
2393
ilk_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)2394 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395 u32 de_iir)
2396 {
2397 enum pipe pipe;
2398 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400 if (hotplug_trigger)
2401 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403 if (de_iir & DE_AUX_CHANNEL_A)
2404 dp_aux_irq_handler(dev_priv);
2405
2406 if (de_iir & DE_GSE)
2407 intel_opregion_asle_intr(dev_priv);
2408
2409 if (de_iir & DE_POISON)
2410 DRM_ERROR("Poison interrupt\n");
2411
2412 for_each_pipe(dev_priv, pipe) {
2413 if (de_iir & DE_PIPE_VBLANK(pipe))
2414 drm_handle_vblank(&dev_priv->drm, pipe);
2415
2416 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2421 }
2422
2423 /* check event from PCH */
2424 if (de_iir & DE_PCH_EVENT) {
2425 u32 pch_iir = I915_READ(SDEIIR);
2426
2427 if (HAS_PCH_CPT(dev_priv))
2428 cpt_irq_handler(dev_priv, pch_iir);
2429 else
2430 ibx_irq_handler(dev_priv, pch_iir);
2431
2432 /* should clear PCH hotplug event before clear CPU irq */
2433 I915_WRITE(SDEIIR, pch_iir);
2434 }
2435
2436 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437 ironlake_rps_change_irq_handler(dev_priv);
2438 }
2439
ivb_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)2440 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441 u32 de_iir)
2442 {
2443 enum pipe pipe;
2444 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446 if (hotplug_trigger)
2447 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449 if (de_iir & DE_ERR_INT_IVB)
2450 ivb_err_int_handler(dev_priv);
2451
2452 if (de_iir & DE_EDP_PSR_INT_HSW) {
2453 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455 intel_psr_irq_handler(dev_priv, psr_iir);
2456 I915_WRITE(EDP_PSR_IIR, psr_iir);
2457 }
2458
2459 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460 dp_aux_irq_handler(dev_priv);
2461
2462 if (de_iir & DE_GSE_IVB)
2463 intel_opregion_asle_intr(dev_priv);
2464
2465 for_each_pipe(dev_priv, pipe) {
2466 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467 drm_handle_vblank(&dev_priv->drm, pipe);
2468 }
2469
2470 /* check event from PCH */
2471 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472 u32 pch_iir = I915_READ(SDEIIR);
2473
2474 cpt_irq_handler(dev_priv, pch_iir);
2475
2476 /* clear PCH hotplug event before clear CPU irq */
2477 I915_WRITE(SDEIIR, pch_iir);
2478 }
2479 }
2480
2481 /*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
ironlake_irq_handler(int irq,void * arg)2489 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490 {
2491 struct drm_i915_private *dev_priv = arg;
2492 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493 irqreturn_t ret = IRQ_NONE;
2494
2495 if (!intel_irqs_enabled(dev_priv))
2496 return IRQ_NONE;
2497
2498 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501 /* disable master interrupt before clearing iir */
2502 de_ier = I915_READ(DEIER);
2503 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2504
2505 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2506 * interrupts will will be stored on its back queue, and then we'll be
2507 * able to process them after we restore SDEIER (as soon as we restore
2508 * it, we'll get an interrupt if SDEIIR still has something to process
2509 * due to its back queue). */
2510 if (!HAS_PCH_NOP(dev_priv)) {
2511 sde_ier = I915_READ(SDEIER);
2512 I915_WRITE(SDEIER, 0);
2513 }
2514
2515 /* Find, clear, then process each source of interrupt */
2516
2517 gt_iir = I915_READ(GTIIR);
2518 if (gt_iir) {
2519 I915_WRITE(GTIIR, gt_iir);
2520 ret = IRQ_HANDLED;
2521 if (INTEL_GEN(dev_priv) >= 6)
2522 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523 else
2524 gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525 }
2526
2527 de_iir = I915_READ(DEIIR);
2528 if (de_iir) {
2529 I915_WRITE(DEIIR, de_iir);
2530 ret = IRQ_HANDLED;
2531 if (INTEL_GEN(dev_priv) >= 7)
2532 ivb_display_irq_handler(dev_priv, de_iir);
2533 else
2534 ilk_display_irq_handler(dev_priv, de_iir);
2535 }
2536
2537 if (INTEL_GEN(dev_priv) >= 6) {
2538 u32 pm_iir = I915_READ(GEN6_PMIIR);
2539 if (pm_iir) {
2540 I915_WRITE(GEN6_PMIIR, pm_iir);
2541 ret = IRQ_HANDLED;
2542 gen6_rps_irq_handler(dev_priv, pm_iir);
2543 }
2544 }
2545
2546 I915_WRITE(DEIER, de_ier);
2547 if (!HAS_PCH_NOP(dev_priv))
2548 I915_WRITE(SDEIER, sde_ier);
2549
2550 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553 return ret;
2554 }
2555
bxt_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger,const u32 hpd[HPD_NUM_PINS])2556 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557 u32 hotplug_trigger,
2558 const u32 hpd[HPD_NUM_PINS])
2559 {
2560 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566 dig_hotplug_reg, hpd,
2567 bxt_port_hotplug_long_detect);
2568
2569 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570 }
2571
gen11_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 iir)2572 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573 {
2574 u32 pin_mask = 0, long_mask = 0;
2575 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577 long_pulse_detect_func long_pulse_detect;
2578 const u32 *hpd;
2579
2580 if (INTEL_GEN(dev_priv) >= 12) {
2581 long_pulse_detect = gen12_port_hotplug_long_detect;
2582 hpd = hpd_gen12;
2583 } else {
2584 long_pulse_detect = gen11_port_hotplug_long_detect;
2585 hpd = hpd_gen11;
2586 }
2587
2588 if (trigger_tc) {
2589 u32 dig_hotplug_reg;
2590
2591 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2593
2594 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595 dig_hotplug_reg, hpd, long_pulse_detect);
2596 }
2597
2598 if (trigger_tbt) {
2599 u32 dig_hotplug_reg;
2600
2601 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605 dig_hotplug_reg, hpd, long_pulse_detect);
2606 }
2607
2608 if (pin_mask)
2609 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610 else
2611 DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612 }
2613
gen8_de_port_aux_mask(struct drm_i915_private * dev_priv)2614 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615 {
2616 u32 mask;
2617
2618 if (INTEL_GEN(dev_priv) >= 12)
2619 /* TODO: Add AUX entries for USBC */
2620 return TGL_DE_PORT_AUX_DDIA |
2621 TGL_DE_PORT_AUX_DDIB |
2622 TGL_DE_PORT_AUX_DDIC;
2623
2624 mask = GEN8_AUX_CHANNEL_A;
2625 if (INTEL_GEN(dev_priv) >= 9)
2626 mask |= GEN9_AUX_CHANNEL_B |
2627 GEN9_AUX_CHANNEL_C |
2628 GEN9_AUX_CHANNEL_D;
2629
2630 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631 mask |= CNL_AUX_CHANNEL_F;
2632
2633 if (IS_GEN(dev_priv, 11))
2634 mask |= ICL_AUX_CHANNEL_E;
2635
2636 return mask;
2637 }
2638
gen8_de_pipe_fault_mask(struct drm_i915_private * dev_priv)2639 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640 {
2641 if (INTEL_GEN(dev_priv) >= 9)
2642 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643 else
2644 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645 }
2646
2647 static void
gen8_de_misc_irq_handler(struct drm_i915_private * dev_priv,u32 iir)2648 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649 {
2650 bool found = false;
2651
2652 if (iir & GEN8_DE_MISC_GSE) {
2653 intel_opregion_asle_intr(dev_priv);
2654 found = true;
2655 }
2656
2657 if (iir & GEN8_DE_EDP_PSR) {
2658 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2659
2660 intel_psr_irq_handler(dev_priv, psr_iir);
2661 I915_WRITE(EDP_PSR_IIR, psr_iir);
2662 found = true;
2663 }
2664
2665 if (!found)
2666 DRM_ERROR("Unexpected DE Misc interrupt\n");
2667 }
2668
2669 static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private * dev_priv,u32 master_ctl)2670 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671 {
2672 irqreturn_t ret = IRQ_NONE;
2673 u32 iir;
2674 enum pipe pipe;
2675
2676 if (master_ctl & GEN8_DE_MISC_IRQ) {
2677 iir = I915_READ(GEN8_DE_MISC_IIR);
2678 if (iir) {
2679 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680 ret = IRQ_HANDLED;
2681 gen8_de_misc_irq_handler(dev_priv, iir);
2682 } else {
2683 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684 }
2685 }
2686
2687 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688 iir = I915_READ(GEN11_DE_HPD_IIR);
2689 if (iir) {
2690 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691 ret = IRQ_HANDLED;
2692 gen11_hpd_irq_handler(dev_priv, iir);
2693 } else {
2694 DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695 }
2696 }
2697
2698 if (master_ctl & GEN8_DE_PORT_IRQ) {
2699 iir = I915_READ(GEN8_DE_PORT_IIR);
2700 if (iir) {
2701 u32 tmp_mask;
2702 bool found = false;
2703
2704 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705 ret = IRQ_HANDLED;
2706
2707 if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708 dp_aux_irq_handler(dev_priv);
2709 found = true;
2710 }
2711
2712 if (IS_GEN9_LP(dev_priv)) {
2713 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714 if (tmp_mask) {
2715 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716 hpd_bxt);
2717 found = true;
2718 }
2719 } else if (IS_BROADWELL(dev_priv)) {
2720 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721 if (tmp_mask) {
2722 ilk_hpd_irq_handler(dev_priv,
2723 tmp_mask, hpd_bdw);
2724 found = true;
2725 }
2726 }
2727
2728 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729 gmbus_irq_handler(dev_priv);
2730 found = true;
2731 }
2732
2733 if (!found)
2734 DRM_ERROR("Unexpected DE Port interrupt\n");
2735 }
2736 else
2737 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738 }
2739
2740 for_each_pipe(dev_priv, pipe) {
2741 u32 fault_errors;
2742
2743 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744 continue;
2745
2746 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747 if (!iir) {
2748 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749 continue;
2750 }
2751
2752 ret = IRQ_HANDLED;
2753 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755 if (iir & GEN8_PIPE_VBLANK)
2756 drm_handle_vblank(&dev_priv->drm, pipe);
2757
2758 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765 if (fault_errors)
2766 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767 pipe_name(pipe),
2768 fault_errors);
2769 }
2770
2771 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772 master_ctl & GEN8_DE_PCH_IRQ) {
2773 /*
2774 * FIXME(BDW): Assume for now that the new interrupt handling
2775 * scheme also closed the SDE interrupt handling race we've seen
2776 * on older pch-split platforms. But this needs testing.
2777 */
2778 iir = I915_READ(SDEIIR);
2779 if (iir) {
2780 I915_WRITE(SDEIIR, iir);
2781 ret = IRQ_HANDLED;
2782
2783 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784 tgp_irq_handler(dev_priv, iir);
2785 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786 icp_irq_handler(dev_priv, iir, hpd_mcc);
2787 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788 icp_irq_handler(dev_priv, iir, hpd_icp);
2789 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790 spt_irq_handler(dev_priv, iir);
2791 else
2792 cpt_irq_handler(dev_priv, iir);
2793 } else {
2794 /*
2795 * Like on previous PCH there seems to be something
2796 * fishy going on with forwarding PCH interrupts.
2797 */
2798 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799 }
2800 }
2801
2802 return ret;
2803 }
2804
gen8_master_intr_disable(void __iomem * const regs)2805 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806 {
2807 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2808
2809 /*
2810 * Now with master disabled, get a sample of level indications
2811 * for this interrupt. Indications will be cleared on related acks.
2812 * New indications can and will light up during processing,
2813 * and will generate new interrupt after enabling master.
2814 */
2815 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816 }
2817
gen8_master_intr_enable(void __iomem * const regs)2818 static inline void gen8_master_intr_enable(void __iomem * const regs)
2819 {
2820 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821 }
2822
gen8_irq_handler(int irq,void * arg)2823 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824 {
2825 struct drm_i915_private *dev_priv = arg;
2826 void __iomem * const regs = dev_priv->uncore.regs;
2827 u32 master_ctl;
2828 u32 gt_iir[4];
2829
2830 if (!intel_irqs_enabled(dev_priv))
2831 return IRQ_NONE;
2832
2833 master_ctl = gen8_master_intr_disable(regs);
2834 if (!master_ctl) {
2835 gen8_master_intr_enable(regs);
2836 return IRQ_NONE;
2837 }
2838
2839 /* Find, clear, then process each source of interrupt */
2840 gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843 if (master_ctl & ~GEN8_GT_IRQS) {
2844 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845 gen8_de_irq_handler(dev_priv, master_ctl);
2846 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847 }
2848
2849 gen8_master_intr_enable(regs);
2850
2851 gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2852
2853 return IRQ_HANDLED;
2854 }
2855
2856 static u32
gen11_gu_misc_irq_ack(struct intel_gt * gt,const u32 master_ctl)2857 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858 {
2859 void __iomem * const regs = gt->uncore->regs;
2860 u32 iir;
2861
2862 if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863 return 0;
2864
2865 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866 if (likely(iir))
2867 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869 return iir;
2870 }
2871
2872 static void
gen11_gu_misc_irq_handler(struct intel_gt * gt,const u32 iir)2873 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874 {
2875 if (iir & GEN11_GU_MISC_GSE)
2876 intel_opregion_asle_intr(gt->i915);
2877 }
2878
gen11_master_intr_disable(void __iomem * const regs)2879 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2880 {
2881 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2882
2883 /*
2884 * Now with master disabled, get a sample of level indications
2885 * for this interrupt. Indications will be cleared on related acks.
2886 * New indications can and will light up during processing,
2887 * and will generate new interrupt after enabling master.
2888 */
2889 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890 }
2891
gen11_master_intr_enable(void __iomem * const regs)2892 static inline void gen11_master_intr_enable(void __iomem * const regs)
2893 {
2894 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895 }
2896
gen11_irq_handler(int irq,void * arg)2897 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898 {
2899 struct drm_i915_private * const i915 = arg;
2900 void __iomem * const regs = i915->uncore.regs;
2901 struct intel_gt *gt = &i915->gt;
2902 u32 master_ctl;
2903 u32 gu_misc_iir;
2904
2905 if (!intel_irqs_enabled(i915))
2906 return IRQ_NONE;
2907
2908 master_ctl = gen11_master_intr_disable(regs);
2909 if (!master_ctl) {
2910 gen11_master_intr_enable(regs);
2911 return IRQ_NONE;
2912 }
2913
2914 /* Find, clear, then process each source of interrupt. */
2915 gen11_gt_irq_handler(gt, master_ctl);
2916
2917 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918 if (master_ctl & GEN11_DISPLAY_IRQ) {
2919 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2920
2921 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922 /*
2923 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924 * for the display related bits.
2925 */
2926 gen8_de_irq_handler(i915, disp_ctl);
2927 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928 }
2929
2930 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932 gen11_master_intr_enable(regs);
2933
2934 gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936 return IRQ_HANDLED;
2937 }
2938
2939 /* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
i8xx_enable_vblank(struct drm_crtc * crtc)2942 int i8xx_enable_vblank(struct drm_crtc *crtc)
2943 {
2944 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946 unsigned long irqflags;
2947
2948 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2950 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952 return 0;
2953 }
2954
i945gm_enable_vblank(struct drm_crtc * crtc)2955 int i945gm_enable_vblank(struct drm_crtc *crtc)
2956 {
2957 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958
2959 if (dev_priv->i945gm_vblank.enabled++ == 0)
2960 schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962 return i8xx_enable_vblank(crtc);
2963 }
2964
i965_enable_vblank(struct drm_crtc * crtc)2965 int i965_enable_vblank(struct drm_crtc *crtc)
2966 {
2967 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969 unsigned long irqflags;
2970
2971 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972 i915_enable_pipestat(dev_priv, pipe,
2973 PIPE_START_VBLANK_INTERRUPT_STATUS);
2974 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976 return 0;
2977 }
2978
ilk_enable_vblank(struct drm_crtc * crtc)2979 int ilk_enable_vblank(struct drm_crtc *crtc)
2980 {
2981 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983 unsigned long irqflags;
2984 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2986
2987 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988 ilk_enable_display_irq(dev_priv, bit);
2989 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991 /* Even though there is no DMC, frame counter can get stuck when
2992 * PSR is active as no frames are generated.
2993 */
2994 if (HAS_PSR(dev_priv))
2995 drm_crtc_vblank_restore(crtc);
2996
2997 return 0;
2998 }
2999
bdw_enable_vblank(struct drm_crtc * crtc)3000 int bdw_enable_vblank(struct drm_crtc *crtc)
3001 {
3002 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004 unsigned long irqflags;
3005
3006 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3008 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010 /* Even if there is no DMC, frame counter can get stuck when
3011 * PSR is active as no frames are generated, so check only for PSR.
3012 */
3013 if (HAS_PSR(dev_priv))
3014 drm_crtc_vblank_restore(crtc);
3015
3016 return 0;
3017 }
3018
3019 /* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
i8xx_disable_vblank(struct drm_crtc * crtc)3022 void i8xx_disable_vblank(struct drm_crtc *crtc)
3023 {
3024 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026 unsigned long irqflags;
3027
3028 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3030 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031 }
3032
i945gm_disable_vblank(struct drm_crtc * crtc)3033 void i945gm_disable_vblank(struct drm_crtc *crtc)
3034 {
3035 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037 i8xx_disable_vblank(crtc);
3038
3039 if (--dev_priv->i945gm_vblank.enabled == 0)
3040 schedule_work(&dev_priv->i945gm_vblank.work);
3041 }
3042
i965_disable_vblank(struct drm_crtc * crtc)3043 void i965_disable_vblank(struct drm_crtc *crtc)
3044 {
3045 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047 unsigned long irqflags;
3048
3049 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050 i915_disable_pipestat(dev_priv, pipe,
3051 PIPE_START_VBLANK_INTERRUPT_STATUS);
3052 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053 }
3054
ilk_disable_vblank(struct drm_crtc * crtc)3055 void ilk_disable_vblank(struct drm_crtc *crtc)
3056 {
3057 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059 unsigned long irqflags;
3060 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064 ilk_disable_display_irq(dev_priv, bit);
3065 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066 }
3067
bdw_disable_vblank(struct drm_crtc * crtc)3068 void bdw_disable_vblank(struct drm_crtc *crtc)
3069 {
3070 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072 unsigned long irqflags;
3073
3074 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3076 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077 }
3078
i945gm_vblank_work_func(struct work_struct * work)3079 static void i945gm_vblank_work_func(struct work_struct *work)
3080 {
3081 struct drm_i915_private *dev_priv =
3082 container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084 /*
3085 * Vblank interrupts fail to wake up the device from C3,
3086 * hence we want to prevent C3 usage while vblank interrupts
3087 * are enabled.
3088 */
3089 pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090 READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091 dev_priv->i945gm_vblank.c3_disable_latency :
3092 PM_QOS_DEFAULT_VALUE);
3093 }
3094
cstate_disable_latency(const char * name)3095 static int cstate_disable_latency(const char *name)
3096 {
3097 const struct cpuidle_driver *drv;
3098 int i;
3099
3100 drv = cpuidle_get_driver();
3101 if (!drv)
3102 return 0;
3103
3104 for (i = 0; i < drv->state_count; i++) {
3105 const struct cpuidle_state *state = &drv->states[i];
3106
3107 if (!strcmp(state->name, name))
3108 return state->exit_latency ?
3109 state->exit_latency - 1 : 0;
3110 }
3111
3112 return 0;
3113 }
3114
i945gm_vblank_work_init(struct drm_i915_private * dev_priv)3115 static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116 {
3117 INIT_WORK(&dev_priv->i945gm_vblank.work,
3118 i945gm_vblank_work_func);
3119
3120 dev_priv->i945gm_vblank.c3_disable_latency =
3121 cstate_disable_latency("C3");
3122 pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123 PM_QOS_CPU_DMA_LATENCY,
3124 PM_QOS_DEFAULT_VALUE);
3125 }
3126
i945gm_vblank_work_fini(struct drm_i915_private * dev_priv)3127 static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128 {
3129 cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130 pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131 }
3132
ibx_irq_reset(struct drm_i915_private * dev_priv)3133 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134 {
3135 struct intel_uncore *uncore = &dev_priv->uncore;
3136
3137 if (HAS_PCH_NOP(dev_priv))
3138 return;
3139
3140 GEN3_IRQ_RESET(uncore, SDE);
3141
3142 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143 I915_WRITE(SERR_INT, 0xffffffff);
3144 }
3145
3146 /*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
ibx_irq_pre_postinstall(struct drm_i915_private * dev_priv)3154 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155 {
3156 if (HAS_PCH_NOP(dev_priv))
3157 return;
3158
3159 WARN_ON(I915_READ(SDEIER) != 0);
3160 I915_WRITE(SDEIER, 0xffffffff);
3161 POSTING_READ(SDEIER);
3162 }
3163
vlv_display_irq_reset(struct drm_i915_private * dev_priv)3164 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3165 {
3166 struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168 if (IS_CHERRYVIEW(dev_priv))
3169 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170 else
3171 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176 i9xx_pipestat_irq_reset(dev_priv);
3177
3178 GEN3_IRQ_RESET(uncore, VLV_);
3179 dev_priv->irq_mask = ~0u;
3180 }
3181
vlv_display_irq_postinstall(struct drm_i915_private * dev_priv)3182 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183 {
3184 struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186 u32 pipestat_mask;
3187 u32 enable_mask;
3188 enum pipe pipe;
3189
3190 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193 for_each_pipe(dev_priv, pipe)
3194 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199 I915_LPE_PIPE_A_INTERRUPT |
3200 I915_LPE_PIPE_B_INTERRUPT;
3201
3202 if (IS_CHERRYVIEW(dev_priv))
3203 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204 I915_LPE_PIPE_C_INTERRUPT;
3205
3206 WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208 dev_priv->irq_mask = ~enable_mask;
3209
3210 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211 }
3212
3213 /* drm_dma.h hooks
3214 */
ironlake_irq_reset(struct drm_i915_private * dev_priv)3215 static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216 {
3217 struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219 GEN3_IRQ_RESET(uncore, DE);
3220 if (IS_GEN(dev_priv, 7))
3221 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223 if (IS_HASWELL(dev_priv)) {
3224 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3226 }
3227
3228 gen5_gt_irq_reset(&dev_priv->gt);
3229
3230 ibx_irq_reset(dev_priv);
3231 }
3232
valleyview_irq_reset(struct drm_i915_private * dev_priv)3233 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234 {
3235 I915_WRITE(VLV_MASTER_IER, 0);
3236 POSTING_READ(VLV_MASTER_IER);
3237
3238 gen5_gt_irq_reset(&dev_priv->gt);
3239
3240 spin_lock_irq(&dev_priv->irq_lock);
3241 if (dev_priv->display_irqs_enabled)
3242 vlv_display_irq_reset(dev_priv);
3243 spin_unlock_irq(&dev_priv->irq_lock);
3244 }
3245
gen8_irq_reset(struct drm_i915_private * dev_priv)3246 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247 {
3248 struct intel_uncore *uncore = &dev_priv->uncore;
3249 int pipe;
3250
3251 gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253 gen8_gt_irq_reset(&dev_priv->gt);
3254
3255 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258 for_each_pipe(dev_priv, pipe)
3259 if (intel_display_power_is_enabled(dev_priv,
3260 POWER_DOMAIN_PIPE(pipe)))
3261 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267 if (HAS_PCH_SPLIT(dev_priv))
3268 ibx_irq_reset(dev_priv);
3269 }
3270
gen11_irq_reset(struct drm_i915_private * dev_priv)3271 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272 {
3273 struct intel_uncore *uncore = &dev_priv->uncore;
3274 int pipe;
3275
3276 gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278 gen11_gt_irq_reset(&dev_priv->gt);
3279
3280 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285 for_each_pipe(dev_priv, pipe)
3286 if (intel_display_power_is_enabled(dev_priv,
3287 POWER_DOMAIN_PIPE(pipe)))
3288 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297 GEN3_IRQ_RESET(uncore, SDE);
3298 }
3299
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv,u8 pipe_mask)3300 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301 u8 pipe_mask)
3302 {
3303 struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306 enum pipe pipe;
3307
3308 spin_lock_irq(&dev_priv->irq_lock);
3309
3310 if (!intel_irqs_enabled(dev_priv)) {
3311 spin_unlock_irq(&dev_priv->irq_lock);
3312 return;
3313 }
3314
3315 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317 dev_priv->de_irq_mask[pipe],
3318 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320 spin_unlock_irq(&dev_priv->irq_lock);
3321 }
3322
gen8_irq_power_well_pre_disable(struct drm_i915_private * dev_priv,u8 pipe_mask)3323 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324 u8 pipe_mask)
3325 {
3326 struct intel_uncore *uncore = &dev_priv->uncore;
3327 enum pipe pipe;
3328
3329 spin_lock_irq(&dev_priv->irq_lock);
3330
3331 if (!intel_irqs_enabled(dev_priv)) {
3332 spin_unlock_irq(&dev_priv->irq_lock);
3333 return;
3334 }
3335
3336 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339 spin_unlock_irq(&dev_priv->irq_lock);
3340
3341 /* make sure we're done processing display irqs */
3342 intel_synchronize_irq(dev_priv);
3343 }
3344
cherryview_irq_reset(struct drm_i915_private * dev_priv)3345 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346 {
3347 struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349 I915_WRITE(GEN8_MASTER_IRQ, 0);
3350 POSTING_READ(GEN8_MASTER_IRQ);
3351
3352 gen8_gt_irq_reset(&dev_priv->gt);
3353
3354 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356 spin_lock_irq(&dev_priv->irq_lock);
3357 if (dev_priv->display_irqs_enabled)
3358 vlv_display_irq_reset(dev_priv);
3359 spin_unlock_irq(&dev_priv->irq_lock);
3360 }
3361
intel_hpd_enabled_irqs(struct drm_i915_private * dev_priv,const u32 hpd[HPD_NUM_PINS])3362 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363 const u32 hpd[HPD_NUM_PINS])
3364 {
3365 struct intel_encoder *encoder;
3366 u32 enabled_irqs = 0;
3367
3368 for_each_intel_encoder(&dev_priv->drm, encoder)
3369 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370 enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372 return enabled_irqs;
3373 }
3374
ibx_hpd_detection_setup(struct drm_i915_private * dev_priv)3375 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376 {
3377 u32 hotplug;
3378
3379 /*
3380 * Enable digital hotplug on the PCH, and configure the DP short pulse
3381 * duration to 2ms (which is the minimum in the Display Port spec).
3382 * The pulse duration bits are reserved on LPT+.
3383 */
3384 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386 PORTC_PULSE_DURATION_MASK |
3387 PORTD_PULSE_DURATION_MASK);
3388 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391 /*
3392 * When CPU and PCH are on the same package, port A
3393 * HPD must be enabled in both north and south.
3394 */
3395 if (HAS_PCH_LPT_LP(dev_priv))
3396 hotplug |= PORTA_HOTPLUG_ENABLE;
3397 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398 }
3399
ibx_hpd_irq_setup(struct drm_i915_private * dev_priv)3400 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401 {
3402 u32 hotplug_irqs, enabled_irqs;
3403
3404 if (HAS_PCH_IBX(dev_priv)) {
3405 hotplug_irqs = SDE_HOTPLUG_MASK;
3406 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407 } else {
3408 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410 }
3411
3412 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414 ibx_hpd_detection_setup(dev_priv);
3415 }
3416
icp_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 ddi_hotplug_enable_mask,u32 tc_hotplug_enable_mask)3417 static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418 u32 ddi_hotplug_enable_mask,
3419 u32 tc_hotplug_enable_mask)
3420 {
3421 u32 hotplug;
3422
3423 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424 hotplug |= ddi_hotplug_enable_mask;
3425 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427 if (tc_hotplug_enable_mask) {
3428 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429 hotplug |= tc_hotplug_enable_mask;
3430 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431 }
3432 }
3433
icp_hpd_irq_setup(struct drm_i915_private * dev_priv)3434 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435 {
3436 u32 hotplug_irqs, enabled_irqs;
3437
3438 hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444 ICP_TC_HPD_ENABLE_MASK);
3445 }
3446
mcc_hpd_irq_setup(struct drm_i915_private * dev_priv)3447 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448 {
3449 u32 hotplug_irqs, enabled_irqs;
3450
3451 hotplug_irqs = SDE_DDI_MASK_TGP;
3452 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457 }
3458
tgp_hpd_irq_setup(struct drm_i915_private * dev_priv)3459 static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460 {
3461 u32 hotplug_irqs, enabled_irqs;
3462
3463 hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467
3468 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469 TGP_TC_HPD_ENABLE_MASK);
3470 }
3471
gen11_hpd_detection_setup(struct drm_i915_private * dev_priv)3472 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473 {
3474 u32 hotplug;
3475
3476 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489 }
3490
gen11_hpd_irq_setup(struct drm_i915_private * dev_priv)3491 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492 {
3493 u32 hotplug_irqs, enabled_irqs;
3494 const u32 *hpd;
3495 u32 val;
3496
3497 hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499 hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501 val = I915_READ(GEN11_DE_HPD_IMR);
3502 val &= ~hotplug_irqs;
3503 I915_WRITE(GEN11_DE_HPD_IMR, val);
3504 POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506 gen11_hpd_detection_setup(dev_priv);
3507
3508 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509 tgp_hpd_irq_setup(dev_priv);
3510 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511 icp_hpd_irq_setup(dev_priv);
3512 }
3513
spt_hpd_detection_setup(struct drm_i915_private * dev_priv)3514 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515 {
3516 u32 val, hotplug;
3517
3518 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3519 if (HAS_PCH_CNP(dev_priv)) {
3520 val = I915_READ(SOUTH_CHICKEN1);
3521 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523 I915_WRITE(SOUTH_CHICKEN1, val);
3524 }
3525
3526 /* Enable digital hotplug on the PCH */
3527 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528 hotplug |= PORTA_HOTPLUG_ENABLE |
3529 PORTB_HOTPLUG_ENABLE |
3530 PORTC_HOTPLUG_ENABLE |
3531 PORTD_HOTPLUG_ENABLE;
3532 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535 hotplug |= PORTE_HOTPLUG_ENABLE;
3536 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537 }
3538
spt_hpd_irq_setup(struct drm_i915_private * dev_priv)3539 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540 {
3541 u32 hotplug_irqs, enabled_irqs;
3542
3543 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3545
3546 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548 spt_hpd_detection_setup(dev_priv);
3549 }
3550
ilk_hpd_detection_setup(struct drm_i915_private * dev_priv)3551 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552 {
3553 u32 hotplug;
3554
3555 /*
3556 * Enable digital hotplug on the CPU, and configure the DP short pulse
3557 * duration to 2ms (which is the minimum in the Display Port spec)
3558 * The pulse duration bits are reserved on HSW+.
3559 */
3560 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563 DIGITAL_PORTA_PULSE_DURATION_2ms;
3564 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565 }
3566
ilk_hpd_irq_setup(struct drm_i915_private * dev_priv)3567 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568 {
3569 u32 hotplug_irqs, enabled_irqs;
3570
3571 if (INTEL_GEN(dev_priv) >= 8) {
3572 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576 } else if (INTEL_GEN(dev_priv) >= 7) {
3577 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581 } else {
3582 hotplug_irqs = DE_DP_A_HOTPLUG;
3583 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586 }
3587
3588 ilk_hpd_detection_setup(dev_priv);
3589
3590 ibx_hpd_irq_setup(dev_priv);
3591 }
3592
__bxt_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enabled_irqs)3593 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594 u32 enabled_irqs)
3595 {
3596 u32 hotplug;
3597
3598 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599 hotplug |= PORTA_HOTPLUG_ENABLE |
3600 PORTB_HOTPLUG_ENABLE |
3601 PORTC_HOTPLUG_ENABLE;
3602
3603 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604 hotplug, enabled_irqs);
3605 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607 /*
3608 * For BXT invert bit has to be set based on AOB design
3609 * for HPD detection logic, update it based on VBT fields.
3610 */
3611 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613 hotplug |= BXT_DDIA_HPD_INVERT;
3614 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616 hotplug |= BXT_DDIB_HPD_INVERT;
3617 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619 hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622 }
3623
bxt_hpd_detection_setup(struct drm_i915_private * dev_priv)3624 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625 {
3626 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627 }
3628
bxt_hpd_irq_setup(struct drm_i915_private * dev_priv)3629 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630 {
3631 u32 hotplug_irqs, enabled_irqs;
3632
3633 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3639 }
3640
ibx_irq_postinstall(struct drm_i915_private * dev_priv)3641 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642 {
3643 u32 mask;
3644
3645 if (HAS_PCH_NOP(dev_priv))
3646 return;
3647
3648 if (HAS_PCH_IBX(dev_priv))
3649 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652 else
3653 mask = SDE_GMBUS_CPT;
3654
3655 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656 I915_WRITE(SDEIMR, ~mask);
3657
3658 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659 HAS_PCH_LPT(dev_priv))
3660 ibx_hpd_detection_setup(dev_priv);
3661 else
3662 spt_hpd_detection_setup(dev_priv);
3663 }
3664
ironlake_irq_postinstall(struct drm_i915_private * dev_priv)3665 static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666 {
3667 struct intel_uncore *uncore = &dev_priv->uncore;
3668 u32 display_mask, extra_mask;
3669
3670 if (INTEL_GEN(dev_priv) >= 7) {
3671 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675 DE_DP_A_HOTPLUG_IVB);
3676 } else {
3677 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679 DE_PIPEA_CRC_DONE | DE_POISON);
3680 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682 DE_DP_A_HOTPLUG);
3683 }
3684
3685 if (IS_HASWELL(dev_priv)) {
3686 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688 display_mask |= DE_EDP_PSR_INT_HSW;
3689 }
3690
3691 dev_priv->irq_mask = ~display_mask;
3692
3693 ibx_irq_pre_postinstall(dev_priv);
3694
3695 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696 display_mask | extra_mask);
3697
3698 gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700 ilk_hpd_detection_setup(dev_priv);
3701
3702 ibx_irq_postinstall(dev_priv);
3703
3704 if (IS_IRONLAKE_M(dev_priv)) {
3705 /* Enable PCU event interrupts
3706 *
3707 * spinlocking not required here for correctness since interrupt
3708 * setup is guaranteed to run in single-threaded context. But we
3709 * need it to make the assert_spin_locked happy. */
3710 spin_lock_irq(&dev_priv->irq_lock);
3711 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712 spin_unlock_irq(&dev_priv->irq_lock);
3713 }
3714 }
3715
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3716 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717 {
3718 lockdep_assert_held(&dev_priv->irq_lock);
3719
3720 if (dev_priv->display_irqs_enabled)
3721 return;
3722
3723 dev_priv->display_irqs_enabled = true;
3724
3725 if (intel_irqs_enabled(dev_priv)) {
3726 vlv_display_irq_reset(dev_priv);
3727 vlv_display_irq_postinstall(dev_priv);
3728 }
3729 }
3730
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3731 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732 {
3733 lockdep_assert_held(&dev_priv->irq_lock);
3734
3735 if (!dev_priv->display_irqs_enabled)
3736 return;
3737
3738 dev_priv->display_irqs_enabled = false;
3739
3740 if (intel_irqs_enabled(dev_priv))
3741 vlv_display_irq_reset(dev_priv);
3742 }
3743
3744
valleyview_irq_postinstall(struct drm_i915_private * dev_priv)3745 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746 {
3747 gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749 spin_lock_irq(&dev_priv->irq_lock);
3750 if (dev_priv->display_irqs_enabled)
3751 vlv_display_irq_postinstall(dev_priv);
3752 spin_unlock_irq(&dev_priv->irq_lock);
3753
3754 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755 POSTING_READ(VLV_MASTER_IER);
3756 }
3757
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3758 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759 {
3760 struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762 u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763 u32 de_pipe_enables;
3764 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765 u32 de_port_enables;
3766 u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767 enum pipe pipe;
3768
3769 if (INTEL_GEN(dev_priv) <= 10)
3770 de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772 if (INTEL_GEN(dev_priv) >= 9) {
3773 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775 GEN9_AUX_CHANNEL_D;
3776 if (IS_GEN9_LP(dev_priv))
3777 de_port_masked |= BXT_DE_PORT_GMBUS;
3778 } else {
3779 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780 }
3781
3782 if (INTEL_GEN(dev_priv) >= 11)
3783 de_port_masked |= ICL_AUX_CHANNEL_E;
3784
3785 if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786 de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789 GEN8_PIPE_FIFO_UNDERRUN;
3790
3791 de_port_enables = de_port_masked;
3792 if (IS_GEN9_LP(dev_priv))
3793 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794 else if (IS_BROADWELL(dev_priv))
3795 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3799
3800 for_each_pipe(dev_priv, pipe) {
3801 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
3803 if (intel_display_power_is_enabled(dev_priv,
3804 POWER_DOMAIN_PIPE(pipe)))
3805 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806 dev_priv->de_irq_mask[pipe],
3807 de_pipe_enables);
3808 }
3809
3810 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813 if (INTEL_GEN(dev_priv) >= 11) {
3814 u32 de_hpd_masked = 0;
3815 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816 GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819 de_hpd_enables);
3820 gen11_hpd_detection_setup(dev_priv);
3821 } else if (IS_GEN9_LP(dev_priv)) {
3822 bxt_hpd_detection_setup(dev_priv);
3823 } else if (IS_BROADWELL(dev_priv)) {
3824 ilk_hpd_detection_setup(dev_priv);
3825 }
3826 }
3827
gen8_irq_postinstall(struct drm_i915_private * dev_priv)3828 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829 {
3830 if (HAS_PCH_SPLIT(dev_priv))
3831 ibx_irq_pre_postinstall(dev_priv);
3832
3833 gen8_gt_irq_postinstall(&dev_priv->gt);
3834 gen8_de_irq_postinstall(dev_priv);
3835
3836 if (HAS_PCH_SPLIT(dev_priv))
3837 ibx_irq_postinstall(dev_priv);
3838
3839 gen8_master_intr_enable(dev_priv->uncore.regs);
3840 }
3841
icp_irq_postinstall(struct drm_i915_private * dev_priv)3842 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843 {
3844 u32 mask = SDE_GMBUS_ICP;
3845
3846 WARN_ON(I915_READ(SDEIER) != 0);
3847 I915_WRITE(SDEIER, 0xffffffff);
3848 POSTING_READ(SDEIER);
3849
3850 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851 I915_WRITE(SDEIMR, ~mask);
3852
3853 if (HAS_PCH_TGP(dev_priv))
3854 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855 TGP_TC_HPD_ENABLE_MASK);
3856 else if (HAS_PCH_MCC(dev_priv))
3857 icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858 else
3859 icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860 ICP_TC_HPD_ENABLE_MASK);
3861 }
3862
gen11_irq_postinstall(struct drm_i915_private * dev_priv)3863 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864 {
3865 struct intel_uncore *uncore = &dev_priv->uncore;
3866 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869 icp_irq_postinstall(dev_priv);
3870
3871 gen11_gt_irq_postinstall(&dev_priv->gt);
3872 gen8_de_irq_postinstall(dev_priv);
3873
3874 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878 gen11_master_intr_enable(uncore->regs);
3879 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880 }
3881
cherryview_irq_postinstall(struct drm_i915_private * dev_priv)3882 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883 {
3884 gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886 spin_lock_irq(&dev_priv->irq_lock);
3887 if (dev_priv->display_irqs_enabled)
3888 vlv_display_irq_postinstall(dev_priv);
3889 spin_unlock_irq(&dev_priv->irq_lock);
3890
3891 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892 POSTING_READ(GEN8_MASTER_IRQ);
3893 }
3894
i8xx_irq_reset(struct drm_i915_private * dev_priv)3895 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896 {
3897 struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899 i9xx_pipestat_irq_reset(dev_priv);
3900
3901 GEN2_IRQ_RESET(uncore);
3902 }
3903
i8xx_irq_postinstall(struct drm_i915_private * dev_priv)3904 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905 {
3906 struct intel_uncore *uncore = &dev_priv->uncore;
3907 u16 enable_mask;
3908
3909 intel_uncore_write16(uncore,
3910 EMR,
3911 ~(I915_ERROR_PAGE_TABLE |
3912 I915_ERROR_MEMORY_REFRESH));
3913
3914 /* Unmask the interrupts that we always want on. */
3915 dev_priv->irq_mask =
3916 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918 I915_MASTER_ERROR_INTERRUPT);
3919
3920 enable_mask =
3921 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923 I915_MASTER_ERROR_INTERRUPT |
3924 I915_USER_INTERRUPT;
3925
3926 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928 /* Interrupt setup is already guaranteed to be single-threaded, this is
3929 * just to make the assert_spin_locked check happy. */
3930 spin_lock_irq(&dev_priv->irq_lock);
3931 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933 spin_unlock_irq(&dev_priv->irq_lock);
3934 }
3935
i8xx_error_irq_ack(struct drm_i915_private * i915,u16 * eir,u16 * eir_stuck)3936 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937 u16 *eir, u16 *eir_stuck)
3938 {
3939 struct intel_uncore *uncore = &i915->uncore;
3940 u16 emr;
3941
3942 *eir = intel_uncore_read16(uncore, EIR);
3943
3944 if (*eir)
3945 intel_uncore_write16(uncore, EIR, *eir);
3946
3947 *eir_stuck = intel_uncore_read16(uncore, EIR);
3948 if (*eir_stuck == 0)
3949 return;
3950
3951 /*
3952 * Toggle all EMR bits to make sure we get an edge
3953 * in the ISR master error bit if we don't clear
3954 * all the EIR bits. Otherwise the edge triggered
3955 * IIR on i965/g4x wouldn't notice that an interrupt
3956 * is still pending. Also some EIR bits can't be
3957 * cleared except by handling the underlying error
3958 * (or by a GPU reset) so we mask any bit that
3959 * remains set.
3960 */
3961 emr = intel_uncore_read16(uncore, EMR);
3962 intel_uncore_write16(uncore, EMR, 0xffff);
3963 intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964 }
3965
i8xx_error_irq_handler(struct drm_i915_private * dev_priv,u16 eir,u16 eir_stuck)3966 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967 u16 eir, u16 eir_stuck)
3968 {
3969 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971 if (eir_stuck)
3972 DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973 }
3974
i9xx_error_irq_ack(struct drm_i915_private * dev_priv,u32 * eir,u32 * eir_stuck)3975 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976 u32 *eir, u32 *eir_stuck)
3977 {
3978 u32 emr;
3979
3980 *eir = I915_READ(EIR);
3981
3982 I915_WRITE(EIR, *eir);
3983
3984 *eir_stuck = I915_READ(EIR);
3985 if (*eir_stuck == 0)
3986 return;
3987
3988 /*
3989 * Toggle all EMR bits to make sure we get an edge
3990 * in the ISR master error bit if we don't clear
3991 * all the EIR bits. Otherwise the edge triggered
3992 * IIR on i965/g4x wouldn't notice that an interrupt
3993 * is still pending. Also some EIR bits can't be
3994 * cleared except by handling the underlying error
3995 * (or by a GPU reset) so we mask any bit that
3996 * remains set.
3997 */
3998 emr = I915_READ(EMR);
3999 I915_WRITE(EMR, 0xffffffff);
4000 I915_WRITE(EMR, emr | *eir_stuck);
4001 }
4002
i9xx_error_irq_handler(struct drm_i915_private * dev_priv,u32 eir,u32 eir_stuck)4003 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004 u32 eir, u32 eir_stuck)
4005 {
4006 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008 if (eir_stuck)
4009 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4010 }
4011
i8xx_irq_handler(int irq,void * arg)4012 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013 {
4014 struct drm_i915_private *dev_priv = arg;
4015 irqreturn_t ret = IRQ_NONE;
4016
4017 if (!intel_irqs_enabled(dev_priv))
4018 return IRQ_NONE;
4019
4020 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023 do {
4024 u32 pipe_stats[I915_MAX_PIPES] = {};
4025 u16 eir = 0, eir_stuck = 0;
4026 u16 iir;
4027
4028 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029 if (iir == 0)
4030 break;
4031
4032 ret = IRQ_HANDLED;
4033
4034 /* Call regardless, as some status bits might not be
4035 * signalled in iir */
4036 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038 if (iir & I915_MASTER_ERROR_INTERRUPT)
4039 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043 if (iir & I915_USER_INTERRUPT)
4044 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046 if (iir & I915_MASTER_ERROR_INTERRUPT)
4047 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050 } while (0);
4051
4052 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4053
4054 return ret;
4055 }
4056
i915_irq_reset(struct drm_i915_private * dev_priv)4057 static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058 {
4059 struct intel_uncore *uncore = &dev_priv->uncore;
4060
4061 if (I915_HAS_HOTPLUG(dev_priv)) {
4062 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064 }
4065
4066 i9xx_pipestat_irq_reset(dev_priv);
4067
4068 GEN3_IRQ_RESET(uncore, GEN2_);
4069 }
4070
i915_irq_postinstall(struct drm_i915_private * dev_priv)4071 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072 {
4073 struct intel_uncore *uncore = &dev_priv->uncore;
4074 u32 enable_mask;
4075
4076 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077 I915_ERROR_MEMORY_REFRESH));
4078
4079 /* Unmask the interrupts that we always want on. */
4080 dev_priv->irq_mask =
4081 ~(I915_ASLE_INTERRUPT |
4082 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084 I915_MASTER_ERROR_INTERRUPT);
4085
4086 enable_mask =
4087 I915_ASLE_INTERRUPT |
4088 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090 I915_MASTER_ERROR_INTERRUPT |
4091 I915_USER_INTERRUPT;
4092
4093 if (I915_HAS_HOTPLUG(dev_priv)) {
4094 /* Enable in IER... */
4095 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096 /* and unmask in IMR */
4097 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098 }
4099
4100 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4101
4102 /* Interrupt setup is already guaranteed to be single-threaded, this is
4103 * just to make the assert_spin_locked check happy. */
4104 spin_lock_irq(&dev_priv->irq_lock);
4105 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107 spin_unlock_irq(&dev_priv->irq_lock);
4108
4109 i915_enable_asle_pipestat(dev_priv);
4110 }
4111
i915_irq_handler(int irq,void * arg)4112 static irqreturn_t i915_irq_handler(int irq, void *arg)
4113 {
4114 struct drm_i915_private *dev_priv = arg;
4115 irqreturn_t ret = IRQ_NONE;
4116
4117 if (!intel_irqs_enabled(dev_priv))
4118 return IRQ_NONE;
4119
4120 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
4123 do {
4124 u32 pipe_stats[I915_MAX_PIPES] = {};
4125 u32 eir = 0, eir_stuck = 0;
4126 u32 hotplug_status = 0;
4127 u32 iir;
4128
4129 iir = I915_READ(GEN2_IIR);
4130 if (iir == 0)
4131 break;
4132
4133 ret = IRQ_HANDLED;
4134
4135 if (I915_HAS_HOTPLUG(dev_priv) &&
4136 iir & I915_DISPLAY_PORT_INTERRUPT)
4137 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139 /* Call regardless, as some status bits might not be
4140 * signalled in iir */
4141 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143 if (iir & I915_MASTER_ERROR_INTERRUPT)
4144 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146 I915_WRITE(GEN2_IIR, iir);
4147
4148 if (iir & I915_USER_INTERRUPT)
4149 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151 if (iir & I915_MASTER_ERROR_INTERRUPT)
4152 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4153
4154 if (hotplug_status)
4155 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4156
4157 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158 } while (0);
4159
4160 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4161
4162 return ret;
4163 }
4164
i965_irq_reset(struct drm_i915_private * dev_priv)4165 static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166 {
4167 struct intel_uncore *uncore = &dev_priv->uncore;
4168
4169 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4171
4172 i9xx_pipestat_irq_reset(dev_priv);
4173
4174 GEN3_IRQ_RESET(uncore, GEN2_);
4175 }
4176
i965_irq_postinstall(struct drm_i915_private * dev_priv)4177 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178 {
4179 struct intel_uncore *uncore = &dev_priv->uncore;
4180 u32 enable_mask;
4181 u32 error_mask;
4182
4183 /*
4184 * Enable some error detection, note the instruction error mask
4185 * bit is reserved, so we leave it masked.
4186 */
4187 if (IS_G4X(dev_priv)) {
4188 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189 GM45_ERROR_MEM_PRIV |
4190 GM45_ERROR_CP_PRIV |
4191 I915_ERROR_MEMORY_REFRESH);
4192 } else {
4193 error_mask = ~(I915_ERROR_PAGE_TABLE |
4194 I915_ERROR_MEMORY_REFRESH);
4195 }
4196 I915_WRITE(EMR, error_mask);
4197
4198 /* Unmask the interrupts that we always want on. */
4199 dev_priv->irq_mask =
4200 ~(I915_ASLE_INTERRUPT |
4201 I915_DISPLAY_PORT_INTERRUPT |
4202 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204 I915_MASTER_ERROR_INTERRUPT);
4205
4206 enable_mask =
4207 I915_ASLE_INTERRUPT |
4208 I915_DISPLAY_PORT_INTERRUPT |
4209 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211 I915_MASTER_ERROR_INTERRUPT |
4212 I915_USER_INTERRUPT;
4213
4214 if (IS_G4X(dev_priv))
4215 enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219 /* Interrupt setup is already guaranteed to be single-threaded, this is
4220 * just to make the assert_spin_locked check happy. */
4221 spin_lock_irq(&dev_priv->irq_lock);
4222 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225 spin_unlock_irq(&dev_priv->irq_lock);
4226
4227 i915_enable_asle_pipestat(dev_priv);
4228 }
4229
i915_hpd_irq_setup(struct drm_i915_private * dev_priv)4230 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231 {
4232 u32 hotplug_en;
4233
4234 lockdep_assert_held(&dev_priv->irq_lock);
4235
4236 /* Note HDMI and DP share hotplug bits */
4237 /* enable bits are the same for all generations */
4238 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239 /* Programming the CRT detection parameters tends
4240 to generate a spurious hotplug event about three
4241 seconds later. So just do it once.
4242 */
4243 if (IS_G4X(dev_priv))
4244 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247 /* Ignore TV since it's buggy */
4248 i915_hotplug_interrupt_update_locked(dev_priv,
4249 HOTPLUG_INT_EN_MASK |
4250 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252 hotplug_en);
4253 }
4254
i965_irq_handler(int irq,void * arg)4255 static irqreturn_t i965_irq_handler(int irq, void *arg)
4256 {
4257 struct drm_i915_private *dev_priv = arg;
4258 irqreturn_t ret = IRQ_NONE;
4259
4260 if (!intel_irqs_enabled(dev_priv))
4261 return IRQ_NONE;
4262
4263 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4265
4266 do {
4267 u32 pipe_stats[I915_MAX_PIPES] = {};
4268 u32 eir = 0, eir_stuck = 0;
4269 u32 hotplug_status = 0;
4270 u32 iir;
4271
4272 iir = I915_READ(GEN2_IIR);
4273 if (iir == 0)
4274 break;
4275
4276 ret = IRQ_HANDLED;
4277
4278 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281 /* Call regardless, as some status bits might not be
4282 * signalled in iir */
4283 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4284
4285 if (iir & I915_MASTER_ERROR_INTERRUPT)
4286 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4287
4288 I915_WRITE(GEN2_IIR, iir);
4289
4290 if (iir & I915_USER_INTERRUPT)
4291 intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293 if (iir & I915_BSD_USER_INTERRUPT)
4294 intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296 if (iir & I915_MASTER_ERROR_INTERRUPT)
4297 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299 if (hotplug_status)
4300 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303 } while (0);
4304
4305 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4306
4307 return ret;
4308 }
4309
4310 /**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
intel_irq_init(struct drm_i915_private * dev_priv)4317 void intel_irq_init(struct drm_i915_private *dev_priv)
4318 {
4319 struct drm_device *dev = &dev_priv->drm;
4320 struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321 int i;
4322
4323 if (IS_I945GM(dev_priv))
4324 i945gm_vblank_work_init(dev_priv);
4325
4326 intel_hpd_init_work(dev_priv);
4327
4328 INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331 for (i = 0; i < MAX_L3_SLICES; ++i)
4332 dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338 /* Let's track the enabled rps events */
4339 if (IS_VALLEYVIEW(dev_priv))
4340 /* WaGsvRC0ResidencyMethod:vlv */
4341 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342 else
4343 dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344 GEN6_PM_RP_DOWN_THRESHOLD |
4345 GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347 /* We share the register with other engine */
4348 if (INTEL_GEN(dev_priv) > 9)
4349 GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351 rps->pm_intrmsk_mbz = 0;
4352
4353 /*
4354 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355 * if GEN6_PM_UP_EI_EXPIRED is masked.
4356 *
4357 * TODO: verify if this can be reproduced on VLV,CHV.
4358 */
4359 if (INTEL_GEN(dev_priv) <= 7)
4360 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362 if (INTEL_GEN(dev_priv) >= 8)
4363 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4364
4365 dev->vblank_disable_immediate = true;
4366
4367 /* Most platforms treat the display irq block as an always-on
4368 * power domain. vlv/chv can disable it at runtime and need
4369 * special care to avoid writing any of the display block registers
4370 * outside of the power domain. We defer setting up the display irqs
4371 * in this case to the runtime pm.
4372 */
4373 dev_priv->display_irqs_enabled = true;
4374 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375 dev_priv->display_irqs_enabled = false;
4376
4377 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378 /* If we have MST support, we want to avoid doing short HPD IRQ storm
4379 * detection, as short HPD storms will occur as a natural part of
4380 * sideband messaging with MST.
4381 * On older platforms however, IRQ storms can occur with both long and
4382 * short pulses, as seen on some G4x systems.
4383 */
4384 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386 if (HAS_GMCH(dev_priv)) {
4387 if (I915_HAS_HOTPLUG(dev_priv))
4388 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389 } else {
4390 if (HAS_PCH_MCC(dev_priv))
4391 /* EHL doesn't need most of gen11_hpd_irq_setup */
4392 dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393 else if (INTEL_GEN(dev_priv) >= 11)
4394 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395 else if (IS_GEN9_LP(dev_priv))
4396 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399 else
4400 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401 }
4402 }
4403
4404 /**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
intel_irq_fini(struct drm_i915_private * i915)4410 void intel_irq_fini(struct drm_i915_private *i915)
4411 {
4412 int i;
4413
4414 if (IS_I945GM(i915))
4415 i945gm_vblank_work_fini(i915);
4416
4417 for (i = 0; i < MAX_L3_SLICES; ++i)
4418 kfree(i915->l3_parity.remap_info[i]);
4419 }
4420
intel_irq_handler(struct drm_i915_private * dev_priv)4421 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422 {
4423 if (HAS_GMCH(dev_priv)) {
4424 if (IS_CHERRYVIEW(dev_priv))
4425 return cherryview_irq_handler;
4426 else if (IS_VALLEYVIEW(dev_priv))
4427 return valleyview_irq_handler;
4428 else if (IS_GEN(dev_priv, 4))
4429 return i965_irq_handler;
4430 else if (IS_GEN(dev_priv, 3))
4431 return i915_irq_handler;
4432 else
4433 return i8xx_irq_handler;
4434 } else {
4435 if (INTEL_GEN(dev_priv) >= 11)
4436 return gen11_irq_handler;
4437 else if (INTEL_GEN(dev_priv) >= 8)
4438 return gen8_irq_handler;
4439 else
4440 return ironlake_irq_handler;
4441 }
4442 }
4443
intel_irq_reset(struct drm_i915_private * dev_priv)4444 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445 {
4446 if (HAS_GMCH(dev_priv)) {
4447 if (IS_CHERRYVIEW(dev_priv))
4448 cherryview_irq_reset(dev_priv);
4449 else if (IS_VALLEYVIEW(dev_priv))
4450 valleyview_irq_reset(dev_priv);
4451 else if (IS_GEN(dev_priv, 4))
4452 i965_irq_reset(dev_priv);
4453 else if (IS_GEN(dev_priv, 3))
4454 i915_irq_reset(dev_priv);
4455 else
4456 i8xx_irq_reset(dev_priv);
4457 } else {
4458 if (INTEL_GEN(dev_priv) >= 11)
4459 gen11_irq_reset(dev_priv);
4460 else if (INTEL_GEN(dev_priv) >= 8)
4461 gen8_irq_reset(dev_priv);
4462 else
4463 ironlake_irq_reset(dev_priv);
4464 }
4465 }
4466
intel_irq_postinstall(struct drm_i915_private * dev_priv)4467 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468 {
4469 if (HAS_GMCH(dev_priv)) {
4470 if (IS_CHERRYVIEW(dev_priv))
4471 cherryview_irq_postinstall(dev_priv);
4472 else if (IS_VALLEYVIEW(dev_priv))
4473 valleyview_irq_postinstall(dev_priv);
4474 else if (IS_GEN(dev_priv, 4))
4475 i965_irq_postinstall(dev_priv);
4476 else if (IS_GEN(dev_priv, 3))
4477 i915_irq_postinstall(dev_priv);
4478 else
4479 i8xx_irq_postinstall(dev_priv);
4480 } else {
4481 if (INTEL_GEN(dev_priv) >= 11)
4482 gen11_irq_postinstall(dev_priv);
4483 else if (INTEL_GEN(dev_priv) >= 8)
4484 gen8_irq_postinstall(dev_priv);
4485 else
4486 ironlake_irq_postinstall(dev_priv);
4487 }
4488 }
4489
4490 /**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
intel_irq_install(struct drm_i915_private * dev_priv)4501 int intel_irq_install(struct drm_i915_private *dev_priv)
4502 {
4503 int irq = dev_priv->drm.pdev->irq;
4504 int ret;
4505
4506 /*
4507 * We enable some interrupt sources in our postinstall hooks, so mark
4508 * interrupts as enabled _before_ actually enabling them to avoid
4509 * special cases in our ordering checks.
4510 */
4511 dev_priv->runtime_pm.irqs_enabled = true;
4512
4513 dev_priv->drm.irq_enabled = true;
4514
4515 intel_irq_reset(dev_priv);
4516
4517 ret = request_irq(irq, intel_irq_handler(dev_priv),
4518 IRQF_SHARED, DRIVER_NAME, dev_priv);
4519 if (ret < 0) {
4520 dev_priv->drm.irq_enabled = false;
4521 return ret;
4522 }
4523
4524 intel_irq_postinstall(dev_priv);
4525
4526 return ret;
4527 }
4528
4529 /**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
intel_irq_uninstall(struct drm_i915_private * dev_priv)4536 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537 {
4538 int irq = dev_priv->drm.pdev->irq;
4539
4540 /*
4541 * FIXME we can get called twice during driver load
4542 * error handling due to intel_modeset_cleanup()
4543 * calling us out of sequence. Would be nice if
4544 * it didn't do that...
4545 */
4546 if (!dev_priv->drm.irq_enabled)
4547 return;
4548
4549 dev_priv->drm.irq_enabled = false;
4550
4551 intel_irq_reset(dev_priv);
4552
4553 free_irq(irq, dev_priv);
4554
4555 intel_hpd_cancel_work(dev_priv);
4556 dev_priv->runtime_pm.irqs_enabled = false;
4557 }
4558
4559 /**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
intel_runtime_pm_disable_interrupts(struct drm_i915_private * dev_priv)4566 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567 {
4568 intel_irq_reset(dev_priv);
4569 dev_priv->runtime_pm.irqs_enabled = false;
4570 intel_synchronize_irq(dev_priv);
4571 }
4572
4573 /**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
intel_runtime_pm_enable_interrupts(struct drm_i915_private * dev_priv)4580 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581 {
4582 dev_priv->runtime_pm.irqs_enabled = true;
4583 intel_irq_reset(dev_priv);
4584 intel_irq_postinstall(dev_priv);
4585 }
4586
intel_irqs_enabled(struct drm_i915_private * dev_priv)4587 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588 {
4589 /*
4590 * We only use drm_irq_uninstall() at unload and VT switch, so
4591 * this is the only thing we need to check.
4592 */
4593 return dev_priv->runtime_pm.irqs_enabled;
4594 }
4595
intel_synchronize_irq(struct drm_i915_private * i915)4596 void intel_synchronize_irq(struct drm_i915_private *i915)
4597 {
4598 synchronize_irq(i915->drm.pdev->irq);
4599 }
4600