1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Greybus SPI library
4  *
5  * Copyright 2014-2016 Google Inc.
6  * Copyright 2014-2016 Linaro Ltd.
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/greybus.h>
14 #include <linux/spi/spi.h>
15 
16 #include "spilib.h"
17 
18 struct gb_spilib {
19 	struct gb_connection	*connection;
20 	struct device		*parent;
21 	struct spi_transfer	*first_xfer;
22 	struct spi_transfer	*last_xfer;
23 	struct spilib_ops	*ops;
24 	u32			rx_xfer_offset;
25 	u32			tx_xfer_offset;
26 	u32			last_xfer_size;
27 	unsigned int		op_timeout;
28 	u16			mode;
29 	u16			flags;
30 	u32			bits_per_word_mask;
31 	u8			num_chipselect;
32 	u32			min_speed_hz;
33 	u32			max_speed_hz;
34 };
35 
36 #define GB_SPI_STATE_MSG_DONE		((void *)0)
37 #define GB_SPI_STATE_MSG_IDLE		((void *)1)
38 #define GB_SPI_STATE_MSG_RUNNING	((void *)2)
39 #define GB_SPI_STATE_OP_READY		((void *)3)
40 #define GB_SPI_STATE_OP_DONE		((void *)4)
41 #define GB_SPI_STATE_MSG_ERROR		((void *)-1)
42 
43 #define XFER_TIMEOUT_TOLERANCE		200
44 
get_master_from_spi(struct gb_spilib * spi)45 static struct spi_master *get_master_from_spi(struct gb_spilib *spi)
46 {
47 	return gb_connection_get_data(spi->connection);
48 }
49 
tx_header_fit_operation(u32 tx_size,u32 count,size_t data_max)50 static int tx_header_fit_operation(u32 tx_size, u32 count, size_t data_max)
51 {
52 	size_t headers_size;
53 
54 	data_max -= sizeof(struct gb_spi_transfer_request);
55 	headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
56 
57 	return tx_size + headers_size > data_max ? 0 : 1;
58 }
59 
calc_rx_xfer_size(u32 rx_size,u32 * tx_xfer_size,u32 len,size_t data_max)60 static size_t calc_rx_xfer_size(u32 rx_size, u32 *tx_xfer_size, u32 len,
61 				size_t data_max)
62 {
63 	size_t rx_xfer_size;
64 
65 	data_max -= sizeof(struct gb_spi_transfer_response);
66 
67 	if (rx_size + len > data_max)
68 		rx_xfer_size = data_max - rx_size;
69 	else
70 		rx_xfer_size = len;
71 
72 	/* if this is a write_read, for symmetry read the same as write */
73 	if (*tx_xfer_size && rx_xfer_size > *tx_xfer_size)
74 		rx_xfer_size = *tx_xfer_size;
75 	if (*tx_xfer_size && rx_xfer_size < *tx_xfer_size)
76 		*tx_xfer_size = rx_xfer_size;
77 
78 	return rx_xfer_size;
79 }
80 
calc_tx_xfer_size(u32 tx_size,u32 count,size_t len,size_t data_max)81 static size_t calc_tx_xfer_size(u32 tx_size, u32 count, size_t len,
82 				size_t data_max)
83 {
84 	size_t headers_size;
85 
86 	data_max -= sizeof(struct gb_spi_transfer_request);
87 	headers_size = (count + 1) * sizeof(struct gb_spi_transfer);
88 
89 	if (tx_size + headers_size + len > data_max)
90 		return data_max - (tx_size + sizeof(struct gb_spi_transfer));
91 
92 	return len;
93 }
94 
clean_xfer_state(struct gb_spilib * spi)95 static void clean_xfer_state(struct gb_spilib *spi)
96 {
97 	spi->first_xfer = NULL;
98 	spi->last_xfer = NULL;
99 	spi->rx_xfer_offset = 0;
100 	spi->tx_xfer_offset = 0;
101 	spi->last_xfer_size = 0;
102 	spi->op_timeout = 0;
103 }
104 
is_last_xfer_done(struct gb_spilib * spi)105 static bool is_last_xfer_done(struct gb_spilib *spi)
106 {
107 	struct spi_transfer *last_xfer = spi->last_xfer;
108 
109 	if ((spi->tx_xfer_offset + spi->last_xfer_size == last_xfer->len) ||
110 	    (spi->rx_xfer_offset + spi->last_xfer_size == last_xfer->len))
111 		return true;
112 
113 	return false;
114 }
115 
setup_next_xfer(struct gb_spilib * spi,struct spi_message * msg)116 static int setup_next_xfer(struct gb_spilib *spi, struct spi_message *msg)
117 {
118 	struct spi_transfer *last_xfer = spi->last_xfer;
119 
120 	if (msg->state != GB_SPI_STATE_OP_DONE)
121 		return 0;
122 
123 	/*
124 	 * if we transferred all content of the last transfer, reset values and
125 	 * check if this was the last transfer in the message
126 	 */
127 	if (is_last_xfer_done(spi)) {
128 		spi->tx_xfer_offset = 0;
129 		spi->rx_xfer_offset = 0;
130 		spi->op_timeout = 0;
131 		if (last_xfer == list_last_entry(&msg->transfers,
132 						 struct spi_transfer,
133 						 transfer_list))
134 			msg->state = GB_SPI_STATE_MSG_DONE;
135 		else
136 			spi->first_xfer = list_next_entry(last_xfer,
137 							  transfer_list);
138 		return 0;
139 	}
140 
141 	spi->first_xfer = last_xfer;
142 	if (last_xfer->tx_buf)
143 		spi->tx_xfer_offset += spi->last_xfer_size;
144 
145 	if (last_xfer->rx_buf)
146 		spi->rx_xfer_offset += spi->last_xfer_size;
147 
148 	return 0;
149 }
150 
get_next_xfer(struct spi_transfer * xfer,struct spi_message * msg)151 static struct spi_transfer *get_next_xfer(struct spi_transfer *xfer,
152 					  struct spi_message *msg)
153 {
154 	if (xfer == list_last_entry(&msg->transfers, struct spi_transfer,
155 				    transfer_list))
156 		return NULL;
157 
158 	return list_next_entry(xfer, transfer_list);
159 }
160 
161 /* Routines to transfer data */
gb_spi_operation_create(struct gb_spilib * spi,struct gb_connection * connection,struct spi_message * msg)162 static struct gb_operation *gb_spi_operation_create(struct gb_spilib *spi,
163 		struct gb_connection *connection, struct spi_message *msg)
164 {
165 	struct gb_spi_transfer_request *request;
166 	struct spi_device *dev = msg->spi;
167 	struct spi_transfer *xfer;
168 	struct gb_spi_transfer *gb_xfer;
169 	struct gb_operation *operation;
170 	u32 tx_size = 0, rx_size = 0, count = 0, xfer_len = 0, request_size;
171 	u32 tx_xfer_size = 0, rx_xfer_size = 0, len;
172 	u32 total_len = 0;
173 	unsigned int xfer_timeout;
174 	size_t data_max;
175 	void *tx_data;
176 
177 	data_max = gb_operation_get_payload_size_max(connection);
178 	xfer = spi->first_xfer;
179 
180 	/* Find number of transfers queued and tx/rx length in the message */
181 
182 	while (msg->state != GB_SPI_STATE_OP_READY) {
183 		msg->state = GB_SPI_STATE_MSG_RUNNING;
184 		spi->last_xfer = xfer;
185 
186 		if (!xfer->tx_buf && !xfer->rx_buf) {
187 			dev_err(spi->parent,
188 				"bufferless transfer, length %u\n", xfer->len);
189 			msg->state = GB_SPI_STATE_MSG_ERROR;
190 			return NULL;
191 		}
192 
193 		tx_xfer_size = 0;
194 		rx_xfer_size = 0;
195 
196 		if (xfer->tx_buf) {
197 			len = xfer->len - spi->tx_xfer_offset;
198 			if (!tx_header_fit_operation(tx_size, count, data_max))
199 				break;
200 			tx_xfer_size = calc_tx_xfer_size(tx_size, count,
201 							 len, data_max);
202 			spi->last_xfer_size = tx_xfer_size;
203 		}
204 
205 		if (xfer->rx_buf) {
206 			len = xfer->len - spi->rx_xfer_offset;
207 			rx_xfer_size = calc_rx_xfer_size(rx_size, &tx_xfer_size,
208 							 len, data_max);
209 			spi->last_xfer_size = rx_xfer_size;
210 		}
211 
212 		tx_size += tx_xfer_size;
213 		rx_size += rx_xfer_size;
214 
215 		total_len += spi->last_xfer_size;
216 		count++;
217 
218 		xfer = get_next_xfer(xfer, msg);
219 		if (!xfer || total_len >= data_max)
220 			msg->state = GB_SPI_STATE_OP_READY;
221 	}
222 
223 	/*
224 	 * In addition to space for all message descriptors we need
225 	 * to have enough to hold all tx data.
226 	 */
227 	request_size = sizeof(*request);
228 	request_size += count * sizeof(*gb_xfer);
229 	request_size += tx_size;
230 
231 	/* Response consists only of incoming data */
232 	operation = gb_operation_create(connection, GB_SPI_TYPE_TRANSFER,
233 					request_size, rx_size, GFP_KERNEL);
234 	if (!operation)
235 		return NULL;
236 
237 	request = operation->request->payload;
238 	request->count = cpu_to_le16(count);
239 	request->mode = dev->mode;
240 	request->chip_select = spi_get_chipselect(dev, 0);
241 
242 	gb_xfer = &request->transfers[0];
243 	tx_data = gb_xfer + count;	/* place tx data after last gb_xfer */
244 
245 	/* Fill in the transfers array */
246 	xfer = spi->first_xfer;
247 	while (msg->state != GB_SPI_STATE_OP_DONE) {
248 		int xfer_delay;
249 
250 		if (xfer == spi->last_xfer)
251 			xfer_len = spi->last_xfer_size;
252 		else
253 			xfer_len = xfer->len;
254 
255 		/* make sure we do not timeout in a slow transfer */
256 		xfer_timeout = xfer_len * 8 * MSEC_PER_SEC / xfer->speed_hz;
257 		xfer_timeout += GB_OPERATION_TIMEOUT_DEFAULT;
258 
259 		if (xfer_timeout > spi->op_timeout)
260 			spi->op_timeout = xfer_timeout;
261 
262 		gb_xfer->speed_hz = cpu_to_le32(xfer->speed_hz);
263 		gb_xfer->len = cpu_to_le32(xfer_len);
264 		xfer_delay = spi_delay_to_ns(&xfer->delay, xfer) / 1000;
265 		xfer_delay = clamp_t(u16, xfer_delay, 0, U16_MAX);
266 		gb_xfer->delay_usecs = cpu_to_le16(xfer_delay);
267 		gb_xfer->cs_change = xfer->cs_change;
268 		gb_xfer->bits_per_word = xfer->bits_per_word;
269 
270 		/* Copy tx data */
271 		if (xfer->tx_buf) {
272 			gb_xfer->xfer_flags |= GB_SPI_XFER_WRITE;
273 			memcpy(tx_data, xfer->tx_buf + spi->tx_xfer_offset,
274 			       xfer_len);
275 			tx_data += xfer_len;
276 		}
277 
278 		if (xfer->rx_buf)
279 			gb_xfer->xfer_flags |= GB_SPI_XFER_READ;
280 
281 		if (xfer == spi->last_xfer) {
282 			if (!is_last_xfer_done(spi))
283 				gb_xfer->xfer_flags |= GB_SPI_XFER_INPROGRESS;
284 			msg->state = GB_SPI_STATE_OP_DONE;
285 			continue;
286 		}
287 
288 		gb_xfer++;
289 		xfer = get_next_xfer(xfer, msg);
290 	}
291 
292 	msg->actual_length += total_len;
293 
294 	return operation;
295 }
296 
gb_spi_decode_response(struct gb_spilib * spi,struct spi_message * msg,struct gb_spi_transfer_response * response)297 static void gb_spi_decode_response(struct gb_spilib *spi,
298 				   struct spi_message *msg,
299 				   struct gb_spi_transfer_response *response)
300 {
301 	struct spi_transfer *xfer = spi->first_xfer;
302 	void *rx_data = response->data;
303 	u32 xfer_len;
304 
305 	while (xfer) {
306 		/* Copy rx data */
307 		if (xfer->rx_buf) {
308 			if (xfer == spi->first_xfer)
309 				xfer_len = xfer->len - spi->rx_xfer_offset;
310 			else if (xfer == spi->last_xfer)
311 				xfer_len = spi->last_xfer_size;
312 			else
313 				xfer_len = xfer->len;
314 
315 			memcpy(xfer->rx_buf + spi->rx_xfer_offset, rx_data,
316 			       xfer_len);
317 			rx_data += xfer_len;
318 		}
319 
320 		if (xfer == spi->last_xfer)
321 			break;
322 
323 		xfer = list_next_entry(xfer, transfer_list);
324 	}
325 }
326 
gb_spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)327 static int gb_spi_transfer_one_message(struct spi_master *master,
328 				       struct spi_message *msg)
329 {
330 	struct gb_spilib *spi = spi_master_get_devdata(master);
331 	struct gb_connection *connection = spi->connection;
332 	struct gb_spi_transfer_response *response;
333 	struct gb_operation *operation;
334 	int ret = 0;
335 
336 	spi->first_xfer = list_first_entry_or_null(&msg->transfers,
337 						   struct spi_transfer,
338 						   transfer_list);
339 	if (!spi->first_xfer) {
340 		ret = -ENOMEM;
341 		goto out;
342 	}
343 
344 	msg->state = GB_SPI_STATE_MSG_IDLE;
345 
346 	while (msg->state != GB_SPI_STATE_MSG_DONE &&
347 	       msg->state != GB_SPI_STATE_MSG_ERROR) {
348 		operation = gb_spi_operation_create(spi, connection, msg);
349 		if (!operation) {
350 			msg->state = GB_SPI_STATE_MSG_ERROR;
351 			ret = -EINVAL;
352 			continue;
353 		}
354 
355 		ret = gb_operation_request_send_sync_timeout(operation,
356 							     spi->op_timeout);
357 		if (!ret) {
358 			response = operation->response->payload;
359 			if (response)
360 				gb_spi_decode_response(spi, msg, response);
361 		} else {
362 			dev_err(spi->parent,
363 				"transfer operation failed: %d\n", ret);
364 			msg->state = GB_SPI_STATE_MSG_ERROR;
365 		}
366 
367 		gb_operation_put(operation);
368 		setup_next_xfer(spi, msg);
369 	}
370 
371 out:
372 	msg->status = ret;
373 	clean_xfer_state(spi);
374 	spi_finalize_current_message(master);
375 
376 	return ret;
377 }
378 
gb_spi_prepare_transfer_hardware(struct spi_master * master)379 static int gb_spi_prepare_transfer_hardware(struct spi_master *master)
380 {
381 	struct gb_spilib *spi = spi_master_get_devdata(master);
382 
383 	return spi->ops->prepare_transfer_hardware(spi->parent);
384 }
385 
gb_spi_unprepare_transfer_hardware(struct spi_master * master)386 static int gb_spi_unprepare_transfer_hardware(struct spi_master *master)
387 {
388 	struct gb_spilib *spi = spi_master_get_devdata(master);
389 
390 	spi->ops->unprepare_transfer_hardware(spi->parent);
391 
392 	return 0;
393 }
394 
gb_spi_setup(struct spi_device * spi)395 static int gb_spi_setup(struct spi_device *spi)
396 {
397 	/* Nothing to do for now */
398 	return 0;
399 }
400 
gb_spi_cleanup(struct spi_device * spi)401 static void gb_spi_cleanup(struct spi_device *spi)
402 {
403 	/* Nothing to do for now */
404 }
405 
406 /* Routines to get controller information */
407 
408 /*
409  * Map Greybus spi mode bits/flags/bpw into Linux ones.
410  * All bits are same for now and so these macro's return same values.
411  */
412 #define gb_spi_mode_map(mode) mode
413 #define gb_spi_flags_map(flags) flags
414 
gb_spi_get_master_config(struct gb_spilib * spi)415 static int gb_spi_get_master_config(struct gb_spilib *spi)
416 {
417 	struct gb_spi_master_config_response response;
418 	u16 mode, flags;
419 	int ret;
420 
421 	ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_MASTER_CONFIG,
422 				NULL, 0, &response, sizeof(response));
423 	if (ret < 0)
424 		return ret;
425 
426 	mode = le16_to_cpu(response.mode);
427 	spi->mode = gb_spi_mode_map(mode);
428 
429 	flags = le16_to_cpu(response.flags);
430 	spi->flags = gb_spi_flags_map(flags);
431 
432 	spi->bits_per_word_mask = le32_to_cpu(response.bits_per_word_mask);
433 	spi->num_chipselect = response.num_chipselect;
434 
435 	spi->min_speed_hz = le32_to_cpu(response.min_speed_hz);
436 	spi->max_speed_hz = le32_to_cpu(response.max_speed_hz);
437 
438 	return 0;
439 }
440 
gb_spi_setup_device(struct gb_spilib * spi,u8 cs)441 static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs)
442 {
443 	struct spi_master *master = get_master_from_spi(spi);
444 	struct gb_spi_device_config_request request;
445 	struct gb_spi_device_config_response response;
446 	struct spi_board_info spi_board = { {0} };
447 	struct spi_device *spidev;
448 	int ret;
449 	u8 dev_type;
450 
451 	request.chip_select = cs;
452 
453 	ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_DEVICE_CONFIG,
454 				&request, sizeof(request),
455 				&response, sizeof(response));
456 	if (ret < 0)
457 		return ret;
458 
459 	dev_type = response.device_type;
460 
461 	if (dev_type == GB_SPI_SPI_DEV)
462 		strscpy(spi_board.modalias, "spidev",
463 			sizeof(spi_board.modalias));
464 	else if (dev_type == GB_SPI_SPI_NOR)
465 		strscpy(spi_board.modalias, "spi-nor",
466 			sizeof(spi_board.modalias));
467 	else if (dev_type == GB_SPI_SPI_MODALIAS)
468 		memcpy(spi_board.modalias, response.name,
469 		       sizeof(spi_board.modalias));
470 	else
471 		return -EINVAL;
472 
473 	spi_board.mode		= le16_to_cpu(response.mode);
474 	spi_board.bus_num	= master->bus_num;
475 	spi_board.chip_select	= cs;
476 	spi_board.max_speed_hz	= le32_to_cpu(response.max_speed_hz);
477 
478 	spidev = spi_new_device(master, &spi_board);
479 	if (!spidev)
480 		return -EINVAL;
481 
482 	return 0;
483 }
484 
gb_spilib_master_init(struct gb_connection * connection,struct device * dev,struct spilib_ops * ops)485 int gb_spilib_master_init(struct gb_connection *connection, struct device *dev,
486 			  struct spilib_ops *ops)
487 {
488 	struct gb_spilib *spi;
489 	struct spi_master *master;
490 	int ret;
491 	u8 i;
492 
493 	/* Allocate master with space for data */
494 	master = spi_alloc_master(dev, sizeof(*spi));
495 	if (!master) {
496 		dev_err(dev, "cannot alloc SPI master\n");
497 		return -ENOMEM;
498 	}
499 
500 	spi = spi_master_get_devdata(master);
501 	spi->connection = connection;
502 	gb_connection_set_data(connection, master);
503 	spi->parent = dev;
504 	spi->ops = ops;
505 
506 	/* get master configuration */
507 	ret = gb_spi_get_master_config(spi);
508 	if (ret)
509 		goto exit_spi_put;
510 
511 	master->bus_num = -1; /* Allow spi-core to allocate it dynamically */
512 	master->num_chipselect = spi->num_chipselect;
513 	master->mode_bits = spi->mode;
514 	master->flags = spi->flags;
515 	master->bits_per_word_mask = spi->bits_per_word_mask;
516 
517 	/* Attach methods */
518 	master->cleanup = gb_spi_cleanup;
519 	master->setup = gb_spi_setup;
520 	master->transfer_one_message = gb_spi_transfer_one_message;
521 
522 	if (ops && ops->prepare_transfer_hardware) {
523 		master->prepare_transfer_hardware =
524 			gb_spi_prepare_transfer_hardware;
525 	}
526 
527 	if (ops && ops->unprepare_transfer_hardware) {
528 		master->unprepare_transfer_hardware =
529 			gb_spi_unprepare_transfer_hardware;
530 	}
531 
532 	master->auto_runtime_pm = true;
533 
534 	ret = spi_register_master(master);
535 	if (ret < 0)
536 		goto exit_spi_put;
537 
538 	/* now, fetch the devices configuration */
539 	for (i = 0; i < spi->num_chipselect; i++) {
540 		ret = gb_spi_setup_device(spi, i);
541 		if (ret < 0) {
542 			dev_err(dev, "failed to allocate spi device %d: %d\n",
543 				i, ret);
544 			goto exit_spi_unregister;
545 		}
546 	}
547 
548 	return 0;
549 
550 exit_spi_put:
551 	spi_master_put(master);
552 
553 	return ret;
554 
555 exit_spi_unregister:
556 	spi_unregister_master(master);
557 
558 	return ret;
559 }
560 EXPORT_SYMBOL_GPL(gb_spilib_master_init);
561 
gb_spilib_master_exit(struct gb_connection * connection)562 void gb_spilib_master_exit(struct gb_connection *connection)
563 {
564 	struct spi_master *master = gb_connection_get_data(connection);
565 
566 	spi_unregister_master(master);
567 }
568 EXPORT_SYMBOL_GPL(gb_spilib_master_exit);
569 
570 MODULE_LICENSE("GPL v2");
571