1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Greybus operations
4 *
5 * Copyright 2014-2015 Google Inc.
6 * Copyright 2014-2015 Linaro Ltd.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/wait.h>
14 #include <linux/workqueue.h>
15
16 #include "greybus.h"
17 #include "greybus_trace.h"
18
19 static struct kmem_cache *gb_operation_cache;
20 static struct kmem_cache *gb_message_cache;
21
22 /* Workqueue to handle Greybus operation completions. */
23 static struct workqueue_struct *gb_operation_completion_wq;
24
25 /* Wait queue for synchronous cancellations. */
26 static DECLARE_WAIT_QUEUE_HEAD(gb_operation_cancellation_queue);
27
28 /*
29 * Protects updates to operation->errno.
30 */
31 static DEFINE_SPINLOCK(gb_operations_lock);
32
33 static int gb_operation_response_send(struct gb_operation *operation,
34 int errno);
35
36 /*
37 * Increment operation active count and add to connection list unless the
38 * connection is going away.
39 *
40 * Caller holds operation reference.
41 */
gb_operation_get_active(struct gb_operation * operation)42 static int gb_operation_get_active(struct gb_operation *operation)
43 {
44 struct gb_connection *connection = operation->connection;
45 unsigned long flags;
46
47 spin_lock_irqsave(&connection->lock, flags);
48 switch (connection->state) {
49 case GB_CONNECTION_STATE_ENABLED:
50 break;
51 case GB_CONNECTION_STATE_ENABLED_TX:
52 if (gb_operation_is_incoming(operation))
53 goto err_unlock;
54 break;
55 case GB_CONNECTION_STATE_DISCONNECTING:
56 if (!gb_operation_is_core(operation))
57 goto err_unlock;
58 break;
59 default:
60 goto err_unlock;
61 }
62
63 if (operation->active++ == 0)
64 list_add_tail(&operation->links, &connection->operations);
65
66 trace_gb_operation_get_active(operation);
67
68 spin_unlock_irqrestore(&connection->lock, flags);
69
70 return 0;
71
72 err_unlock:
73 spin_unlock_irqrestore(&connection->lock, flags);
74
75 return -ENOTCONN;
76 }
77
78 /* Caller holds operation reference. */
gb_operation_put_active(struct gb_operation * operation)79 static void gb_operation_put_active(struct gb_operation *operation)
80 {
81 struct gb_connection *connection = operation->connection;
82 unsigned long flags;
83
84 spin_lock_irqsave(&connection->lock, flags);
85
86 trace_gb_operation_put_active(operation);
87
88 if (--operation->active == 0) {
89 list_del(&operation->links);
90 if (atomic_read(&operation->waiters))
91 wake_up(&gb_operation_cancellation_queue);
92 }
93 spin_unlock_irqrestore(&connection->lock, flags);
94 }
95
gb_operation_is_active(struct gb_operation * operation)96 static bool gb_operation_is_active(struct gb_operation *operation)
97 {
98 struct gb_connection *connection = operation->connection;
99 unsigned long flags;
100 bool ret;
101
102 spin_lock_irqsave(&connection->lock, flags);
103 ret = operation->active;
104 spin_unlock_irqrestore(&connection->lock, flags);
105
106 return ret;
107 }
108
109 /*
110 * Set an operation's result.
111 *
112 * Initially an outgoing operation's errno value is -EBADR.
113 * If no error occurs before sending the request message the only
114 * valid value operation->errno can be set to is -EINPROGRESS,
115 * indicating the request has been (or rather is about to be) sent.
116 * At that point nobody should be looking at the result until the
117 * response arrives.
118 *
119 * The first time the result gets set after the request has been
120 * sent, that result "sticks." That is, if two concurrent threads
121 * race to set the result, the first one wins. The return value
122 * tells the caller whether its result was recorded; if not the
123 * caller has nothing more to do.
124 *
125 * The result value -EILSEQ is reserved to signal an implementation
126 * error; if it's ever observed, the code performing the request has
127 * done something fundamentally wrong. It is an error to try to set
128 * the result to -EBADR, and attempts to do so result in a warning,
129 * and -EILSEQ is used instead. Similarly, the only valid result
130 * value to set for an operation in initial state is -EINPROGRESS.
131 * Attempts to do otherwise will also record a (successful) -EILSEQ
132 * operation result.
133 */
gb_operation_result_set(struct gb_operation * operation,int result)134 static bool gb_operation_result_set(struct gb_operation *operation, int result)
135 {
136 unsigned long flags;
137 int prev;
138
139 if (result == -EINPROGRESS) {
140 /*
141 * -EINPROGRESS is used to indicate the request is
142 * in flight. It should be the first result value
143 * set after the initial -EBADR. Issue a warning
144 * and record an implementation error if it's
145 * set at any other time.
146 */
147 spin_lock_irqsave(&gb_operations_lock, flags);
148 prev = operation->errno;
149 if (prev == -EBADR)
150 operation->errno = result;
151 else
152 operation->errno = -EILSEQ;
153 spin_unlock_irqrestore(&gb_operations_lock, flags);
154 WARN_ON(prev != -EBADR);
155
156 return true;
157 }
158
159 /*
160 * The first result value set after a request has been sent
161 * will be the final result of the operation. Subsequent
162 * attempts to set the result are ignored.
163 *
164 * Note that -EBADR is a reserved "initial state" result
165 * value. Attempts to set this value result in a warning,
166 * and the result code is set to -EILSEQ instead.
167 */
168 if (WARN_ON(result == -EBADR))
169 result = -EILSEQ; /* Nobody should be setting -EBADR */
170
171 spin_lock_irqsave(&gb_operations_lock, flags);
172 prev = operation->errno;
173 if (prev == -EINPROGRESS)
174 operation->errno = result; /* First and final result */
175 spin_unlock_irqrestore(&gb_operations_lock, flags);
176
177 return prev == -EINPROGRESS;
178 }
179
gb_operation_result(struct gb_operation * operation)180 int gb_operation_result(struct gb_operation *operation)
181 {
182 int result = operation->errno;
183
184 WARN_ON(result == -EBADR);
185 WARN_ON(result == -EINPROGRESS);
186
187 return result;
188 }
189 EXPORT_SYMBOL_GPL(gb_operation_result);
190
191 /*
192 * Looks up an outgoing operation on a connection and returns a refcounted
193 * pointer if found, or NULL otherwise.
194 */
195 static struct gb_operation *
gb_operation_find_outgoing(struct gb_connection * connection,u16 operation_id)196 gb_operation_find_outgoing(struct gb_connection *connection, u16 operation_id)
197 {
198 struct gb_operation *operation;
199 unsigned long flags;
200 bool found = false;
201
202 spin_lock_irqsave(&connection->lock, flags);
203 list_for_each_entry(operation, &connection->operations, links)
204 if (operation->id == operation_id &&
205 !gb_operation_is_incoming(operation)) {
206 gb_operation_get(operation);
207 found = true;
208 break;
209 }
210 spin_unlock_irqrestore(&connection->lock, flags);
211
212 return found ? operation : NULL;
213 }
214
gb_message_send(struct gb_message * message,gfp_t gfp)215 static int gb_message_send(struct gb_message *message, gfp_t gfp)
216 {
217 struct gb_connection *connection = message->operation->connection;
218
219 trace_gb_message_send(message);
220 return connection->hd->driver->message_send(connection->hd,
221 connection->hd_cport_id,
222 message,
223 gfp);
224 }
225
226 /*
227 * Cancel a message we have passed to the host device layer to be sent.
228 */
gb_message_cancel(struct gb_message * message)229 static void gb_message_cancel(struct gb_message *message)
230 {
231 struct gb_host_device *hd = message->operation->connection->hd;
232
233 hd->driver->message_cancel(message);
234 }
235
gb_operation_request_handle(struct gb_operation * operation)236 static void gb_operation_request_handle(struct gb_operation *operation)
237 {
238 struct gb_connection *connection = operation->connection;
239 int status;
240 int ret;
241
242 if (connection->handler) {
243 status = connection->handler(operation);
244 } else {
245 dev_err(&connection->hd->dev,
246 "%s: unexpected incoming request of type 0x%02x\n",
247 connection->name, operation->type);
248
249 status = -EPROTONOSUPPORT;
250 }
251
252 ret = gb_operation_response_send(operation, status);
253 if (ret) {
254 dev_err(&connection->hd->dev,
255 "%s: failed to send response %d for type 0x%02x: %d\n",
256 connection->name, status, operation->type, ret);
257 return;
258 }
259 }
260
261 /*
262 * Process operation work.
263 *
264 * For incoming requests, call the protocol request handler. The operation
265 * result should be -EINPROGRESS at this point.
266 *
267 * For outgoing requests, the operation result value should have
268 * been set before queueing this. The operation callback function
269 * allows the original requester to know the request has completed
270 * and its result is available.
271 */
gb_operation_work(struct work_struct * work)272 static void gb_operation_work(struct work_struct *work)
273 {
274 struct gb_operation *operation;
275 int ret;
276
277 operation = container_of(work, struct gb_operation, work);
278
279 if (gb_operation_is_incoming(operation)) {
280 gb_operation_request_handle(operation);
281 } else {
282 ret = del_timer_sync(&operation->timer);
283 if (!ret) {
284 /* Cancel request message if scheduled by timeout. */
285 if (gb_operation_result(operation) == -ETIMEDOUT)
286 gb_message_cancel(operation->request);
287 }
288
289 operation->callback(operation);
290 }
291
292 gb_operation_put_active(operation);
293 gb_operation_put(operation);
294 }
295
gb_operation_timeout(struct timer_list * t)296 static void gb_operation_timeout(struct timer_list *t)
297 {
298 struct gb_operation *operation = from_timer(operation, t, timer);
299
300 if (gb_operation_result_set(operation, -ETIMEDOUT)) {
301 /*
302 * A stuck request message will be cancelled from the
303 * workqueue.
304 */
305 queue_work(gb_operation_completion_wq, &operation->work);
306 }
307 }
308
gb_operation_message_init(struct gb_host_device * hd,struct gb_message * message,u16 operation_id,size_t payload_size,u8 type)309 static void gb_operation_message_init(struct gb_host_device *hd,
310 struct gb_message *message, u16 operation_id,
311 size_t payload_size, u8 type)
312 {
313 struct gb_operation_msg_hdr *header;
314
315 header = message->buffer;
316
317 message->header = header;
318 message->payload = payload_size ? header + 1 : NULL;
319 message->payload_size = payload_size;
320
321 /*
322 * The type supplied for incoming message buffers will be
323 * GB_REQUEST_TYPE_INVALID. Such buffers will be overwritten by
324 * arriving data so there's no need to initialize the message header.
325 */
326 if (type != GB_REQUEST_TYPE_INVALID) {
327 u16 message_size = (u16)(sizeof(*header) + payload_size);
328
329 /*
330 * For a request, the operation id gets filled in
331 * when the message is sent. For a response, it
332 * will be copied from the request by the caller.
333 *
334 * The result field in a request message must be
335 * zero. It will be set just prior to sending for
336 * a response.
337 */
338 header->size = cpu_to_le16(message_size);
339 header->operation_id = 0;
340 header->type = type;
341 header->result = 0;
342 }
343 }
344
345 /*
346 * Allocate a message to be used for an operation request or response.
347 * Both types of message contain a common header. The request message
348 * for an outgoing operation is outbound, as is the response message
349 * for an incoming operation. The message header for an outbound
350 * message is partially initialized here.
351 *
352 * The headers for inbound messages don't need to be initialized;
353 * they'll be filled in by arriving data.
354 *
355 * Our message buffers have the following layout:
356 * message header \_ these combined are
357 * message payload / the message size
358 */
359 static struct gb_message *
gb_operation_message_alloc(struct gb_host_device * hd,u8 type,size_t payload_size,gfp_t gfp_flags)360 gb_operation_message_alloc(struct gb_host_device *hd, u8 type,
361 size_t payload_size, gfp_t gfp_flags)
362 {
363 struct gb_message *message;
364 struct gb_operation_msg_hdr *header;
365 size_t message_size = payload_size + sizeof(*header);
366
367 if (message_size > hd->buffer_size_max) {
368 dev_warn(&hd->dev, "requested message size too big (%zu > %zu)\n",
369 message_size, hd->buffer_size_max);
370 return NULL;
371 }
372
373 /* Allocate the message structure and buffer. */
374 message = kmem_cache_zalloc(gb_message_cache, gfp_flags);
375 if (!message)
376 return NULL;
377
378 message->buffer = kzalloc(message_size, gfp_flags);
379 if (!message->buffer)
380 goto err_free_message;
381
382 /* Initialize the message. Operation id is filled in later. */
383 gb_operation_message_init(hd, message, 0, payload_size, type);
384
385 return message;
386
387 err_free_message:
388 kmem_cache_free(gb_message_cache, message);
389
390 return NULL;
391 }
392
gb_operation_message_free(struct gb_message * message)393 static void gb_operation_message_free(struct gb_message *message)
394 {
395 kfree(message->buffer);
396 kmem_cache_free(gb_message_cache, message);
397 }
398
399 /*
400 * Map an enum gb_operation_status value (which is represented in a
401 * message as a single byte) to an appropriate Linux negative errno.
402 */
gb_operation_status_map(u8 status)403 static int gb_operation_status_map(u8 status)
404 {
405 switch (status) {
406 case GB_OP_SUCCESS:
407 return 0;
408 case GB_OP_INTERRUPTED:
409 return -EINTR;
410 case GB_OP_TIMEOUT:
411 return -ETIMEDOUT;
412 case GB_OP_NO_MEMORY:
413 return -ENOMEM;
414 case GB_OP_PROTOCOL_BAD:
415 return -EPROTONOSUPPORT;
416 case GB_OP_OVERFLOW:
417 return -EMSGSIZE;
418 case GB_OP_INVALID:
419 return -EINVAL;
420 case GB_OP_RETRY:
421 return -EAGAIN;
422 case GB_OP_NONEXISTENT:
423 return -ENODEV;
424 case GB_OP_MALFUNCTION:
425 return -EILSEQ;
426 case GB_OP_UNKNOWN_ERROR:
427 default:
428 return -EIO;
429 }
430 }
431
432 /*
433 * Map a Linux errno value (from operation->errno) into the value
434 * that should represent it in a response message status sent
435 * over the wire. Returns an enum gb_operation_status value (which
436 * is represented in a message as a single byte).
437 */
gb_operation_errno_map(int errno)438 static u8 gb_operation_errno_map(int errno)
439 {
440 switch (errno) {
441 case 0:
442 return GB_OP_SUCCESS;
443 case -EINTR:
444 return GB_OP_INTERRUPTED;
445 case -ETIMEDOUT:
446 return GB_OP_TIMEOUT;
447 case -ENOMEM:
448 return GB_OP_NO_MEMORY;
449 case -EPROTONOSUPPORT:
450 return GB_OP_PROTOCOL_BAD;
451 case -EMSGSIZE:
452 return GB_OP_OVERFLOW; /* Could be underflow too */
453 case -EINVAL:
454 return GB_OP_INVALID;
455 case -EAGAIN:
456 return GB_OP_RETRY;
457 case -EILSEQ:
458 return GB_OP_MALFUNCTION;
459 case -ENODEV:
460 return GB_OP_NONEXISTENT;
461 case -EIO:
462 default:
463 return GB_OP_UNKNOWN_ERROR;
464 }
465 }
466
gb_operation_response_alloc(struct gb_operation * operation,size_t response_size,gfp_t gfp)467 bool gb_operation_response_alloc(struct gb_operation *operation,
468 size_t response_size, gfp_t gfp)
469 {
470 struct gb_host_device *hd = operation->connection->hd;
471 struct gb_operation_msg_hdr *request_header;
472 struct gb_message *response;
473 u8 type;
474
475 type = operation->type | GB_MESSAGE_TYPE_RESPONSE;
476 response = gb_operation_message_alloc(hd, type, response_size, gfp);
477 if (!response)
478 return false;
479 response->operation = operation;
480
481 /*
482 * Size and type get initialized when the message is
483 * allocated. The errno will be set before sending. All
484 * that's left is the operation id, which we copy from the
485 * request message header (as-is, in little-endian order).
486 */
487 request_header = operation->request->header;
488 response->header->operation_id = request_header->operation_id;
489 operation->response = response;
490
491 return true;
492 }
493 EXPORT_SYMBOL_GPL(gb_operation_response_alloc);
494
495 /*
496 * Create a Greybus operation to be sent over the given connection.
497 * The request buffer will be big enough for a payload of the given
498 * size.
499 *
500 * For outgoing requests, the request message's header will be
501 * initialized with the type of the request and the message size.
502 * Outgoing operations must also specify the response buffer size,
503 * which must be sufficient to hold all expected response data. The
504 * response message header will eventually be overwritten, so there's
505 * no need to initialize it here.
506 *
507 * Request messages for incoming operations can arrive in interrupt
508 * context, so they must be allocated with GFP_ATOMIC. In this case
509 * the request buffer will be immediately overwritten, so there is
510 * no need to initialize the message header. Responsibility for
511 * allocating a response buffer lies with the incoming request
512 * handler for a protocol. So we don't allocate that here.
513 *
514 * Returns a pointer to the new operation or a null pointer if an
515 * error occurs.
516 */
517 static struct gb_operation *
gb_operation_create_common(struct gb_connection * connection,u8 type,size_t request_size,size_t response_size,unsigned long op_flags,gfp_t gfp_flags)518 gb_operation_create_common(struct gb_connection *connection, u8 type,
519 size_t request_size, size_t response_size,
520 unsigned long op_flags, gfp_t gfp_flags)
521 {
522 struct gb_host_device *hd = connection->hd;
523 struct gb_operation *operation;
524
525 operation = kmem_cache_zalloc(gb_operation_cache, gfp_flags);
526 if (!operation)
527 return NULL;
528 operation->connection = connection;
529
530 operation->request = gb_operation_message_alloc(hd, type, request_size,
531 gfp_flags);
532 if (!operation->request)
533 goto err_cache;
534 operation->request->operation = operation;
535
536 /* Allocate the response buffer for outgoing operations */
537 if (!(op_flags & GB_OPERATION_FLAG_INCOMING)) {
538 if (!gb_operation_response_alloc(operation, response_size,
539 gfp_flags)) {
540 goto err_request;
541 }
542
543 timer_setup(&operation->timer, gb_operation_timeout, 0);
544 }
545
546 operation->flags = op_flags;
547 operation->type = type;
548 operation->errno = -EBADR; /* Initial value--means "never set" */
549
550 INIT_WORK(&operation->work, gb_operation_work);
551 init_completion(&operation->completion);
552 kref_init(&operation->kref);
553 atomic_set(&operation->waiters, 0);
554
555 return operation;
556
557 err_request:
558 gb_operation_message_free(operation->request);
559 err_cache:
560 kmem_cache_free(gb_operation_cache, operation);
561
562 return NULL;
563 }
564
565 /*
566 * Create a new operation associated with the given connection. The
567 * request and response sizes provided are the number of bytes
568 * required to hold the request/response payload only. Both of
569 * these are allowed to be 0. Note that 0x00 is reserved as an
570 * invalid operation type for all protocols, and this is enforced
571 * here.
572 */
573 struct gb_operation *
gb_operation_create_flags(struct gb_connection * connection,u8 type,size_t request_size,size_t response_size,unsigned long flags,gfp_t gfp)574 gb_operation_create_flags(struct gb_connection *connection,
575 u8 type, size_t request_size,
576 size_t response_size, unsigned long flags,
577 gfp_t gfp)
578 {
579 struct gb_operation *operation;
580
581 if (WARN_ON_ONCE(type == GB_REQUEST_TYPE_INVALID))
582 return NULL;
583 if (WARN_ON_ONCE(type & GB_MESSAGE_TYPE_RESPONSE))
584 type &= ~GB_MESSAGE_TYPE_RESPONSE;
585
586 if (WARN_ON_ONCE(flags & ~GB_OPERATION_FLAG_USER_MASK))
587 flags &= GB_OPERATION_FLAG_USER_MASK;
588
589 operation = gb_operation_create_common(connection, type,
590 request_size, response_size,
591 flags, gfp);
592 if (operation)
593 trace_gb_operation_create(operation);
594
595 return operation;
596 }
597 EXPORT_SYMBOL_GPL(gb_operation_create_flags);
598
599 struct gb_operation *
gb_operation_create_core(struct gb_connection * connection,u8 type,size_t request_size,size_t response_size,unsigned long flags,gfp_t gfp)600 gb_operation_create_core(struct gb_connection *connection,
601 u8 type, size_t request_size,
602 size_t response_size, unsigned long flags,
603 gfp_t gfp)
604 {
605 struct gb_operation *operation;
606
607 flags |= GB_OPERATION_FLAG_CORE;
608
609 operation = gb_operation_create_common(connection, type,
610 request_size, response_size,
611 flags, gfp);
612 if (operation)
613 trace_gb_operation_create_core(operation);
614
615 return operation;
616 }
617 /* Do not export this function. */
618
gb_operation_get_payload_size_max(struct gb_connection * connection)619 size_t gb_operation_get_payload_size_max(struct gb_connection *connection)
620 {
621 struct gb_host_device *hd = connection->hd;
622
623 return hd->buffer_size_max - sizeof(struct gb_operation_msg_hdr);
624 }
625 EXPORT_SYMBOL_GPL(gb_operation_get_payload_size_max);
626
627 static struct gb_operation *
gb_operation_create_incoming(struct gb_connection * connection,u16 id,u8 type,void * data,size_t size)628 gb_operation_create_incoming(struct gb_connection *connection, u16 id,
629 u8 type, void *data, size_t size)
630 {
631 struct gb_operation *operation;
632 size_t request_size;
633 unsigned long flags = GB_OPERATION_FLAG_INCOMING;
634
635 /* Caller has made sure we at least have a message header. */
636 request_size = size - sizeof(struct gb_operation_msg_hdr);
637
638 if (!id)
639 flags |= GB_OPERATION_FLAG_UNIDIRECTIONAL;
640
641 operation = gb_operation_create_common(connection, type,
642 request_size,
643 GB_REQUEST_TYPE_INVALID,
644 flags, GFP_ATOMIC);
645 if (!operation)
646 return NULL;
647
648 operation->id = id;
649 memcpy(operation->request->header, data, size);
650 trace_gb_operation_create_incoming(operation);
651
652 return operation;
653 }
654
655 /*
656 * Get an additional reference on an operation.
657 */
gb_operation_get(struct gb_operation * operation)658 void gb_operation_get(struct gb_operation *operation)
659 {
660 kref_get(&operation->kref);
661 }
662 EXPORT_SYMBOL_GPL(gb_operation_get);
663
664 /*
665 * Destroy a previously created operation.
666 */
_gb_operation_destroy(struct kref * kref)667 static void _gb_operation_destroy(struct kref *kref)
668 {
669 struct gb_operation *operation;
670
671 operation = container_of(kref, struct gb_operation, kref);
672
673 trace_gb_operation_destroy(operation);
674
675 if (operation->response)
676 gb_operation_message_free(operation->response);
677 gb_operation_message_free(operation->request);
678
679 kmem_cache_free(gb_operation_cache, operation);
680 }
681
682 /*
683 * Drop a reference on an operation, and destroy it when the last
684 * one is gone.
685 */
gb_operation_put(struct gb_operation * operation)686 void gb_operation_put(struct gb_operation *operation)
687 {
688 if (WARN_ON(!operation))
689 return;
690
691 kref_put(&operation->kref, _gb_operation_destroy);
692 }
693 EXPORT_SYMBOL_GPL(gb_operation_put);
694
695 /* Tell the requester we're done */
gb_operation_sync_callback(struct gb_operation * operation)696 static void gb_operation_sync_callback(struct gb_operation *operation)
697 {
698 complete(&operation->completion);
699 }
700
701 /**
702 * gb_operation_request_send() - send an operation request message
703 * @operation: the operation to initiate
704 * @callback: the operation completion callback
705 * @timeout: operation timeout in milliseconds, or zero for no timeout
706 * @gfp: the memory flags to use for any allocations
707 *
708 * The caller has filled in any payload so the request message is ready to go.
709 * The callback function supplied will be called when the response message has
710 * arrived, a unidirectional request has been sent, or the operation is
711 * cancelled, indicating that the operation is complete. The callback function
712 * can fetch the result of the operation using gb_operation_result() if
713 * desired.
714 *
715 * Return: 0 if the request was successfully queued in the host-driver queues,
716 * or a negative errno.
717 */
gb_operation_request_send(struct gb_operation * operation,gb_operation_callback callback,unsigned int timeout,gfp_t gfp)718 int gb_operation_request_send(struct gb_operation *operation,
719 gb_operation_callback callback,
720 unsigned int timeout,
721 gfp_t gfp)
722 {
723 struct gb_connection *connection = operation->connection;
724 struct gb_operation_msg_hdr *header;
725 unsigned int cycle;
726 int ret;
727
728 if (gb_connection_is_offloaded(connection))
729 return -EBUSY;
730
731 if (!callback)
732 return -EINVAL;
733
734 /*
735 * Record the callback function, which is executed in
736 * non-atomic (workqueue) context when the final result
737 * of an operation has been set.
738 */
739 operation->callback = callback;
740
741 /*
742 * Assign the operation's id, and store it in the request header.
743 * Zero is a reserved operation id for unidirectional operations.
744 */
745 if (gb_operation_is_unidirectional(operation)) {
746 operation->id = 0;
747 } else {
748 cycle = (unsigned int)atomic_inc_return(&connection->op_cycle);
749 operation->id = (u16)(cycle % U16_MAX + 1);
750 }
751
752 header = operation->request->header;
753 header->operation_id = cpu_to_le16(operation->id);
754
755 gb_operation_result_set(operation, -EINPROGRESS);
756
757 /*
758 * Get an extra reference on the operation. It'll be dropped when the
759 * operation completes.
760 */
761 gb_operation_get(operation);
762 ret = gb_operation_get_active(operation);
763 if (ret)
764 goto err_put;
765
766 ret = gb_message_send(operation->request, gfp);
767 if (ret)
768 goto err_put_active;
769
770 if (timeout) {
771 operation->timer.expires = jiffies + msecs_to_jiffies(timeout);
772 add_timer(&operation->timer);
773 }
774
775 return 0;
776
777 err_put_active:
778 gb_operation_put_active(operation);
779 err_put:
780 gb_operation_put(operation);
781
782 return ret;
783 }
784 EXPORT_SYMBOL_GPL(gb_operation_request_send);
785
786 /*
787 * Send a synchronous operation. This function is expected to
788 * block, returning only when the response has arrived, (or when an
789 * error is detected. The return value is the result of the
790 * operation.
791 */
gb_operation_request_send_sync_timeout(struct gb_operation * operation,unsigned int timeout)792 int gb_operation_request_send_sync_timeout(struct gb_operation *operation,
793 unsigned int timeout)
794 {
795 int ret;
796
797 ret = gb_operation_request_send(operation, gb_operation_sync_callback,
798 timeout, GFP_KERNEL);
799 if (ret)
800 return ret;
801
802 ret = wait_for_completion_interruptible(&operation->completion);
803 if (ret < 0) {
804 /* Cancel the operation if interrupted */
805 gb_operation_cancel(operation, -ECANCELED);
806 }
807
808 return gb_operation_result(operation);
809 }
810 EXPORT_SYMBOL_GPL(gb_operation_request_send_sync_timeout);
811
812 /*
813 * Send a response for an incoming operation request. A non-zero
814 * errno indicates a failed operation.
815 *
816 * If there is any response payload, the incoming request handler is
817 * responsible for allocating the response message. Otherwise the
818 * it can simply supply the result errno; this function will
819 * allocate the response message if necessary.
820 */
gb_operation_response_send(struct gb_operation * operation,int errno)821 static int gb_operation_response_send(struct gb_operation *operation,
822 int errno)
823 {
824 struct gb_connection *connection = operation->connection;
825 int ret;
826
827 if (!operation->response &&
828 !gb_operation_is_unidirectional(operation)) {
829 if (!gb_operation_response_alloc(operation, 0, GFP_KERNEL))
830 return -ENOMEM;
831 }
832
833 /* Record the result */
834 if (!gb_operation_result_set(operation, errno)) {
835 dev_err(&connection->hd->dev, "request result already set\n");
836 return -EIO; /* Shouldn't happen */
837 }
838
839 /* Sender of request does not care about response. */
840 if (gb_operation_is_unidirectional(operation))
841 return 0;
842
843 /* Reference will be dropped when message has been sent. */
844 gb_operation_get(operation);
845 ret = gb_operation_get_active(operation);
846 if (ret)
847 goto err_put;
848
849 /* Fill in the response header and send it */
850 operation->response->header->result = gb_operation_errno_map(errno);
851
852 ret = gb_message_send(operation->response, GFP_KERNEL);
853 if (ret)
854 goto err_put_active;
855
856 return 0;
857
858 err_put_active:
859 gb_operation_put_active(operation);
860 err_put:
861 gb_operation_put(operation);
862
863 return ret;
864 }
865
866 /*
867 * This function is called when a message send request has completed.
868 */
greybus_message_sent(struct gb_host_device * hd,struct gb_message * message,int status)869 void greybus_message_sent(struct gb_host_device *hd,
870 struct gb_message *message, int status)
871 {
872 struct gb_operation *operation = message->operation;
873 struct gb_connection *connection = operation->connection;
874
875 /*
876 * If the message was a response, we just need to drop our
877 * reference to the operation. If an error occurred, report
878 * it.
879 *
880 * For requests, if there's no error and the operation in not
881 * unidirectional, there's nothing more to do until the response
882 * arrives. If an error occurred attempting to send it, or if the
883 * operation is unidrectional, record the result of the operation and
884 * schedule its completion.
885 */
886 if (message == operation->response) {
887 if (status) {
888 dev_err(&connection->hd->dev,
889 "%s: error sending response 0x%02x: %d\n",
890 connection->name, operation->type, status);
891 }
892
893 gb_operation_put_active(operation);
894 gb_operation_put(operation);
895 } else if (status || gb_operation_is_unidirectional(operation)) {
896 if (gb_operation_result_set(operation, status)) {
897 queue_work(gb_operation_completion_wq,
898 &operation->work);
899 }
900 }
901 }
902 EXPORT_SYMBOL_GPL(greybus_message_sent);
903
904 /*
905 * We've received data on a connection, and it doesn't look like a
906 * response, so we assume it's a request.
907 *
908 * This is called in interrupt context, so just copy the incoming
909 * data into the request buffer and handle the rest via workqueue.
910 */
gb_connection_recv_request(struct gb_connection * connection,const struct gb_operation_msg_hdr * header,void * data,size_t size)911 static void gb_connection_recv_request(struct gb_connection *connection,
912 const struct gb_operation_msg_hdr *header,
913 void *data, size_t size)
914 {
915 struct gb_operation *operation;
916 u16 operation_id;
917 u8 type;
918 int ret;
919
920 operation_id = le16_to_cpu(header->operation_id);
921 type = header->type;
922
923 operation = gb_operation_create_incoming(connection, operation_id,
924 type, data, size);
925 if (!operation) {
926 dev_err(&connection->hd->dev,
927 "%s: can't create incoming operation\n",
928 connection->name);
929 return;
930 }
931
932 ret = gb_operation_get_active(operation);
933 if (ret) {
934 gb_operation_put(operation);
935 return;
936 }
937 trace_gb_message_recv_request(operation->request);
938
939 /*
940 * The initial reference to the operation will be dropped when the
941 * request handler returns.
942 */
943 if (gb_operation_result_set(operation, -EINPROGRESS))
944 queue_work(connection->wq, &operation->work);
945 }
946
947 /*
948 * We've received data that appears to be an operation response
949 * message. Look up the operation, and record that we've received
950 * its response.
951 *
952 * This is called in interrupt context, so just copy the incoming
953 * data into the response buffer and handle the rest via workqueue.
954 */
gb_connection_recv_response(struct gb_connection * connection,const struct gb_operation_msg_hdr * header,void * data,size_t size)955 static void gb_connection_recv_response(struct gb_connection *connection,
956 const struct gb_operation_msg_hdr *header,
957 void *data, size_t size)
958 {
959 struct gb_operation *operation;
960 struct gb_message *message;
961 size_t message_size;
962 u16 operation_id;
963 int errno;
964
965 operation_id = le16_to_cpu(header->operation_id);
966
967 if (!operation_id) {
968 dev_err_ratelimited(&connection->hd->dev,
969 "%s: invalid response id 0 received\n",
970 connection->name);
971 return;
972 }
973
974 operation = gb_operation_find_outgoing(connection, operation_id);
975 if (!operation) {
976 dev_err_ratelimited(&connection->hd->dev,
977 "%s: unexpected response id 0x%04x received\n",
978 connection->name, operation_id);
979 return;
980 }
981
982 errno = gb_operation_status_map(header->result);
983 message = operation->response;
984 message_size = sizeof(*header) + message->payload_size;
985 if (!errno && size > message_size) {
986 dev_err_ratelimited(&connection->hd->dev,
987 "%s: malformed response 0x%02x received (%zu > %zu)\n",
988 connection->name, header->type,
989 size, message_size);
990 errno = -EMSGSIZE;
991 } else if (!errno && size < message_size) {
992 if (gb_operation_short_response_allowed(operation)) {
993 message->payload_size = size - sizeof(*header);
994 } else {
995 dev_err_ratelimited(&connection->hd->dev,
996 "%s: short response 0x%02x received (%zu < %zu)\n",
997 connection->name, header->type,
998 size, message_size);
999 errno = -EMSGSIZE;
1000 }
1001 }
1002
1003 /* We must ignore the payload if a bad status is returned */
1004 if (errno)
1005 size = sizeof(*header);
1006
1007 /* The rest will be handled in work queue context */
1008 if (gb_operation_result_set(operation, errno)) {
1009 memcpy(message->buffer, data, size);
1010
1011 trace_gb_message_recv_response(message);
1012
1013 queue_work(gb_operation_completion_wq, &operation->work);
1014 }
1015
1016 gb_operation_put(operation);
1017 }
1018
1019 /*
1020 * Handle data arriving on a connection. As soon as we return the
1021 * supplied data buffer will be reused (so unless we do something
1022 * with, it's effectively dropped).
1023 */
gb_connection_recv(struct gb_connection * connection,void * data,size_t size)1024 void gb_connection_recv(struct gb_connection *connection,
1025 void *data, size_t size)
1026 {
1027 struct gb_operation_msg_hdr header;
1028 struct device *dev = &connection->hd->dev;
1029 size_t msg_size;
1030
1031 if (connection->state == GB_CONNECTION_STATE_DISABLED ||
1032 gb_connection_is_offloaded(connection)) {
1033 dev_warn_ratelimited(dev, "%s: dropping %zu received bytes\n",
1034 connection->name, size);
1035 return;
1036 }
1037
1038 if (size < sizeof(header)) {
1039 dev_err_ratelimited(dev, "%s: short message received\n",
1040 connection->name);
1041 return;
1042 }
1043
1044 /* Use memcpy as data may be unaligned */
1045 memcpy(&header, data, sizeof(header));
1046 msg_size = le16_to_cpu(header.size);
1047 if (size < msg_size) {
1048 dev_err_ratelimited(dev,
1049 "%s: incomplete message 0x%04x of type 0x%02x received (%zu < %zu)\n",
1050 connection->name,
1051 le16_to_cpu(header.operation_id),
1052 header.type, size, msg_size);
1053 return; /* XXX Should still complete operation */
1054 }
1055
1056 if (header.type & GB_MESSAGE_TYPE_RESPONSE) {
1057 gb_connection_recv_response(connection, &header, data,
1058 msg_size);
1059 } else {
1060 gb_connection_recv_request(connection, &header, data,
1061 msg_size);
1062 }
1063 }
1064
1065 /*
1066 * Cancel an outgoing operation synchronously, and record the given error to
1067 * indicate why.
1068 */
gb_operation_cancel(struct gb_operation * operation,int errno)1069 void gb_operation_cancel(struct gb_operation *operation, int errno)
1070 {
1071 if (WARN_ON(gb_operation_is_incoming(operation)))
1072 return;
1073
1074 if (gb_operation_result_set(operation, errno)) {
1075 gb_message_cancel(operation->request);
1076 queue_work(gb_operation_completion_wq, &operation->work);
1077 }
1078 trace_gb_message_cancel_outgoing(operation->request);
1079
1080 atomic_inc(&operation->waiters);
1081 wait_event(gb_operation_cancellation_queue,
1082 !gb_operation_is_active(operation));
1083 atomic_dec(&operation->waiters);
1084 }
1085 EXPORT_SYMBOL_GPL(gb_operation_cancel);
1086
1087 /*
1088 * Cancel an incoming operation synchronously. Called during connection tear
1089 * down.
1090 */
gb_operation_cancel_incoming(struct gb_operation * operation,int errno)1091 void gb_operation_cancel_incoming(struct gb_operation *operation, int errno)
1092 {
1093 if (WARN_ON(!gb_operation_is_incoming(operation)))
1094 return;
1095
1096 if (!gb_operation_is_unidirectional(operation)) {
1097 /*
1098 * Make sure the request handler has submitted the response
1099 * before cancelling it.
1100 */
1101 flush_work(&operation->work);
1102 if (!gb_operation_result_set(operation, errno))
1103 gb_message_cancel(operation->response);
1104 }
1105 trace_gb_message_cancel_incoming(operation->response);
1106
1107 atomic_inc(&operation->waiters);
1108 wait_event(gb_operation_cancellation_queue,
1109 !gb_operation_is_active(operation));
1110 atomic_dec(&operation->waiters);
1111 }
1112
1113 /**
1114 * gb_operation_sync_timeout() - implement a "simple" synchronous operation
1115 * @connection: the Greybus connection to send this to
1116 * @type: the type of operation to send
1117 * @request: pointer to a memory buffer to copy the request from
1118 * @request_size: size of @request
1119 * @response: pointer to a memory buffer to copy the response to
1120 * @response_size: the size of @response.
1121 * @timeout: operation timeout in milliseconds
1122 *
1123 * This function implements a simple synchronous Greybus operation. It sends
1124 * the provided operation request and waits (sleeps) until the corresponding
1125 * operation response message has been successfully received, or an error
1126 * occurs. @request and @response are buffers to hold the request and response
1127 * data respectively, and if they are not NULL, their size must be specified in
1128 * @request_size and @response_size.
1129 *
1130 * If a response payload is to come back, and @response is not NULL,
1131 * @response_size number of bytes will be copied into @response if the operation
1132 * is successful.
1133 *
1134 * If there is an error, the response buffer is left alone.
1135 */
gb_operation_sync_timeout(struct gb_connection * connection,int type,void * request,int request_size,void * response,int response_size,unsigned int timeout)1136 int gb_operation_sync_timeout(struct gb_connection *connection, int type,
1137 void *request, int request_size,
1138 void *response, int response_size,
1139 unsigned int timeout)
1140 {
1141 struct gb_operation *operation;
1142 int ret;
1143
1144 if ((response_size && !response) ||
1145 (request_size && !request))
1146 return -EINVAL;
1147
1148 operation = gb_operation_create(connection, type,
1149 request_size, response_size,
1150 GFP_KERNEL);
1151 if (!operation)
1152 return -ENOMEM;
1153
1154 if (request_size)
1155 memcpy(operation->request->payload, request, request_size);
1156
1157 ret = gb_operation_request_send_sync_timeout(operation, timeout);
1158 if (ret) {
1159 dev_err(&connection->hd->dev,
1160 "%s: synchronous operation id 0x%04x of type 0x%02x failed: %d\n",
1161 connection->name, operation->id, type, ret);
1162 } else {
1163 if (response_size) {
1164 memcpy(response, operation->response->payload,
1165 response_size);
1166 }
1167 }
1168
1169 gb_operation_put(operation);
1170
1171 return ret;
1172 }
1173 EXPORT_SYMBOL_GPL(gb_operation_sync_timeout);
1174
1175 /**
1176 * gb_operation_unidirectional_timeout() - initiate a unidirectional operation
1177 * @connection: connection to use
1178 * @type: type of operation to send
1179 * @request: memory buffer to copy the request from
1180 * @request_size: size of @request
1181 * @timeout: send timeout in milliseconds
1182 *
1183 * Initiate a unidirectional operation by sending a request message and
1184 * waiting for it to be acknowledged as sent by the host device.
1185 *
1186 * Note that successful send of a unidirectional operation does not imply that
1187 * the request as actually reached the remote end of the connection.
1188 */
gb_operation_unidirectional_timeout(struct gb_connection * connection,int type,void * request,int request_size,unsigned int timeout)1189 int gb_operation_unidirectional_timeout(struct gb_connection *connection,
1190 int type, void *request, int request_size,
1191 unsigned int timeout)
1192 {
1193 struct gb_operation *operation;
1194 int ret;
1195
1196 if (request_size && !request)
1197 return -EINVAL;
1198
1199 operation = gb_operation_create_flags(connection, type,
1200 request_size, 0,
1201 GB_OPERATION_FLAG_UNIDIRECTIONAL,
1202 GFP_KERNEL);
1203 if (!operation)
1204 return -ENOMEM;
1205
1206 if (request_size)
1207 memcpy(operation->request->payload, request, request_size);
1208
1209 ret = gb_operation_request_send_sync_timeout(operation, timeout);
1210 if (ret) {
1211 dev_err(&connection->hd->dev,
1212 "%s: unidirectional operation of type 0x%02x failed: %d\n",
1213 connection->name, type, ret);
1214 }
1215
1216 gb_operation_put(operation);
1217
1218 return ret;
1219 }
1220 EXPORT_SYMBOL_GPL(gb_operation_unidirectional_timeout);
1221
gb_operation_init(void)1222 int __init gb_operation_init(void)
1223 {
1224 gb_message_cache = kmem_cache_create("gb_message_cache",
1225 sizeof(struct gb_message), 0, 0, NULL);
1226 if (!gb_message_cache)
1227 return -ENOMEM;
1228
1229 gb_operation_cache = kmem_cache_create("gb_operation_cache",
1230 sizeof(struct gb_operation), 0, 0, NULL);
1231 if (!gb_operation_cache)
1232 goto err_destroy_message_cache;
1233
1234 gb_operation_completion_wq = alloc_workqueue("greybus_completion",
1235 0, 0);
1236 if (!gb_operation_completion_wq)
1237 goto err_destroy_operation_cache;
1238
1239 return 0;
1240
1241 err_destroy_operation_cache:
1242 kmem_cache_destroy(gb_operation_cache);
1243 gb_operation_cache = NULL;
1244 err_destroy_message_cache:
1245 kmem_cache_destroy(gb_message_cache);
1246 gb_message_cache = NULL;
1247
1248 return -ENOMEM;
1249 }
1250
gb_operation_exit(void)1251 void gb_operation_exit(void)
1252 {
1253 destroy_workqueue(gb_operation_completion_wq);
1254 gb_operation_completion_wq = NULL;
1255 kmem_cache_destroy(gb_operation_cache);
1256 gb_operation_cache = NULL;
1257 kmem_cache_destroy(gb_message_cache);
1258 gb_message_cache = NULL;
1259 }
1260