1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_graph.h>
16 #include <linux/of_irq.h>
17 #include <linux/property.h>
18 #include <linux/etherdevice.h>
19 #include <linux/phy.h>
20
dev_fwnode(struct device * dev)21 struct fwnode_handle *dev_fwnode(struct device *dev)
22 {
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 of_fwnode_handle(dev->of_node) : dev->fwnode;
25 }
26 EXPORT_SYMBOL_GPL(dev_fwnode);
27
28 /**
29 * device_property_present - check if a property of a device is present
30 * @dev: Device whose property is being checked
31 * @propname: Name of the property
32 *
33 * Check if property @propname is present in the device firmware description.
34 */
device_property_present(struct device * dev,const char * propname)35 bool device_property_present(struct device *dev, const char *propname)
36 {
37 return fwnode_property_present(dev_fwnode(dev), propname);
38 }
39 EXPORT_SYMBOL_GPL(device_property_present);
40
41 /**
42 * fwnode_property_present - check if a property of a firmware node is present
43 * @fwnode: Firmware node whose property to check
44 * @propname: Name of the property
45 */
fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)46 bool fwnode_property_present(const struct fwnode_handle *fwnode,
47 const char *propname)
48 {
49 bool ret;
50
51 ret = fwnode_call_bool_op(fwnode, property_present, propname);
52 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
53 !IS_ERR_OR_NULL(fwnode->secondary))
54 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
55 propname);
56 return ret;
57 }
58 EXPORT_SYMBOL_GPL(fwnode_property_present);
59
60 /**
61 * device_property_read_u8_array - return a u8 array property of a device
62 * @dev: Device to get the property of
63 * @propname: Name of the property
64 * @val: The values are stored here or %NULL to return the number of values
65 * @nval: Size of the @val array
66 *
67 * Function reads an array of u8 properties with @propname from the device
68 * firmware description and stores them to @val if found.
69 *
70 * Return: number of values if @val was %NULL,
71 * %0 if the property was found (success),
72 * %-EINVAL if given arguments are not valid,
73 * %-ENODATA if the property does not have a value,
74 * %-EPROTO if the property is not an array of numbers,
75 * %-EOVERFLOW if the size of the property is not as expected.
76 * %-ENXIO if no suitable firmware interface is present.
77 */
device_property_read_u8_array(struct device * dev,const char * propname,u8 * val,size_t nval)78 int device_property_read_u8_array(struct device *dev, const char *propname,
79 u8 *val, size_t nval)
80 {
81 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
82 }
83 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
84
85 /**
86 * device_property_read_u16_array - return a u16 array property of a device
87 * @dev: Device to get the property of
88 * @propname: Name of the property
89 * @val: The values are stored here or %NULL to return the number of values
90 * @nval: Size of the @val array
91 *
92 * Function reads an array of u16 properties with @propname from the device
93 * firmware description and stores them to @val if found.
94 *
95 * Return: number of values if @val was %NULL,
96 * %0 if the property was found (success),
97 * %-EINVAL if given arguments are not valid,
98 * %-ENODATA if the property does not have a value,
99 * %-EPROTO if the property is not an array of numbers,
100 * %-EOVERFLOW if the size of the property is not as expected.
101 * %-ENXIO if no suitable firmware interface is present.
102 */
device_property_read_u16_array(struct device * dev,const char * propname,u16 * val,size_t nval)103 int device_property_read_u16_array(struct device *dev, const char *propname,
104 u16 *val, size_t nval)
105 {
106 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
107 }
108 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
109
110 /**
111 * device_property_read_u32_array - return a u32 array property of a device
112 * @dev: Device to get the property of
113 * @propname: Name of the property
114 * @val: The values are stored here or %NULL to return the number of values
115 * @nval: Size of the @val array
116 *
117 * Function reads an array of u32 properties with @propname from the device
118 * firmware description and stores them to @val if found.
119 *
120 * Return: number of values if @val was %NULL,
121 * %0 if the property was found (success),
122 * %-EINVAL if given arguments are not valid,
123 * %-ENODATA if the property does not have a value,
124 * %-EPROTO if the property is not an array of numbers,
125 * %-EOVERFLOW if the size of the property is not as expected.
126 * %-ENXIO if no suitable firmware interface is present.
127 */
device_property_read_u32_array(struct device * dev,const char * propname,u32 * val,size_t nval)128 int device_property_read_u32_array(struct device *dev, const char *propname,
129 u32 *val, size_t nval)
130 {
131 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
132 }
133 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
134
135 /**
136 * device_property_read_u64_array - return a u64 array property of a device
137 * @dev: Device to get the property of
138 * @propname: Name of the property
139 * @val: The values are stored here or %NULL to return the number of values
140 * @nval: Size of the @val array
141 *
142 * Function reads an array of u64 properties with @propname from the device
143 * firmware description and stores them to @val if found.
144 *
145 * Return: number of values if @val was %NULL,
146 * %0 if the property was found (success),
147 * %-EINVAL if given arguments are not valid,
148 * %-ENODATA if the property does not have a value,
149 * %-EPROTO if the property is not an array of numbers,
150 * %-EOVERFLOW if the size of the property is not as expected.
151 * %-ENXIO if no suitable firmware interface is present.
152 */
device_property_read_u64_array(struct device * dev,const char * propname,u64 * val,size_t nval)153 int device_property_read_u64_array(struct device *dev, const char *propname,
154 u64 *val, size_t nval)
155 {
156 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
157 }
158 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
159
160 /**
161 * device_property_read_string_array - return a string array property of device
162 * @dev: Device to get the property of
163 * @propname: Name of the property
164 * @val: The values are stored here or %NULL to return the number of values
165 * @nval: Size of the @val array
166 *
167 * Function reads an array of string properties with @propname from the device
168 * firmware description and stores them to @val if found.
169 *
170 * Return: number of values read on success if @val is non-NULL,
171 * number of values available on success if @val is NULL,
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
device_property_read_string_array(struct device * dev,const char * propname,const char ** val,size_t nval)178 int device_property_read_string_array(struct device *dev, const char *propname,
179 const char **val, size_t nval)
180 {
181 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
182 }
183 EXPORT_SYMBOL_GPL(device_property_read_string_array);
184
185 /**
186 * device_property_read_string - return a string property of a device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The value is stored here
190 *
191 * Function reads property @propname from the device firmware description and
192 * stores the value into @val if found. The value is checked to be a string.
193 *
194 * Return: %0 if the property was found (success),
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property type is not a string.
198 * %-ENXIO if no suitable firmware interface is present.
199 */
device_property_read_string(struct device * dev,const char * propname,const char ** val)200 int device_property_read_string(struct device *dev, const char *propname,
201 const char **val)
202 {
203 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
204 }
205 EXPORT_SYMBOL_GPL(device_property_read_string);
206
207 /**
208 * device_property_match_string - find a string in an array and return index
209 * @dev: Device to get the property of
210 * @propname: Name of the property holding the array
211 * @string: String to look for
212 *
213 * Find a given string in a string array and if it is found return the
214 * index back.
215 *
216 * Return: %0 if the property was found (success),
217 * %-EINVAL if given arguments are not valid,
218 * %-ENODATA if the property does not have a value,
219 * %-EPROTO if the property is not an array of strings,
220 * %-ENXIO if no suitable firmware interface is present.
221 */
device_property_match_string(struct device * dev,const char * propname,const char * string)222 int device_property_match_string(struct device *dev, const char *propname,
223 const char *string)
224 {
225 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
226 }
227 EXPORT_SYMBOL_GPL(device_property_match_string);
228
fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)229 static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
230 const char *propname,
231 unsigned int elem_size, void *val,
232 size_t nval)
233 {
234 int ret;
235
236 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
237 elem_size, val, nval);
238 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
239 !IS_ERR_OR_NULL(fwnode->secondary))
240 ret = fwnode_call_int_op(
241 fwnode->secondary, property_read_int_array, propname,
242 elem_size, val, nval);
243
244 return ret;
245 }
246
247 /**
248 * fwnode_property_read_u8_array - return a u8 array property of firmware node
249 * @fwnode: Firmware node to get the property of
250 * @propname: Name of the property
251 * @val: The values are stored here or %NULL to return the number of values
252 * @nval: Size of the @val array
253 *
254 * Read an array of u8 properties with @propname from @fwnode and stores them to
255 * @val if found.
256 *
257 * Return: number of values if @val was %NULL,
258 * %0 if the property was found (success),
259 * %-EINVAL if given arguments are not valid,
260 * %-ENODATA if the property does not have a value,
261 * %-EPROTO if the property is not an array of numbers,
262 * %-EOVERFLOW if the size of the property is not as expected,
263 * %-ENXIO if no suitable firmware interface is present.
264 */
fwnode_property_read_u8_array(const struct fwnode_handle * fwnode,const char * propname,u8 * val,size_t nval)265 int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
266 const char *propname, u8 *val, size_t nval)
267 {
268 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
269 val, nval);
270 }
271 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
272
273 /**
274 * fwnode_property_read_u16_array - return a u16 array property of firmware node
275 * @fwnode: Firmware node to get the property of
276 * @propname: Name of the property
277 * @val: The values are stored here or %NULL to return the number of values
278 * @nval: Size of the @val array
279 *
280 * Read an array of u16 properties with @propname from @fwnode and store them to
281 * @val if found.
282 *
283 * Return: number of values if @val was %NULL,
284 * %0 if the property was found (success),
285 * %-EINVAL if given arguments are not valid,
286 * %-ENODATA if the property does not have a value,
287 * %-EPROTO if the property is not an array of numbers,
288 * %-EOVERFLOW if the size of the property is not as expected,
289 * %-ENXIO if no suitable firmware interface is present.
290 */
fwnode_property_read_u16_array(const struct fwnode_handle * fwnode,const char * propname,u16 * val,size_t nval)291 int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
292 const char *propname, u16 *val, size_t nval)
293 {
294 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
295 val, nval);
296 }
297 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
298
299 /**
300 * fwnode_property_read_u32_array - return a u32 array property of firmware node
301 * @fwnode: Firmware node to get the property of
302 * @propname: Name of the property
303 * @val: The values are stored here or %NULL to return the number of values
304 * @nval: Size of the @val array
305 *
306 * Read an array of u32 properties with @propname from @fwnode store them to
307 * @val if found.
308 *
309 * Return: number of values if @val was %NULL,
310 * %0 if the property was found (success),
311 * %-EINVAL if given arguments are not valid,
312 * %-ENODATA if the property does not have a value,
313 * %-EPROTO if the property is not an array of numbers,
314 * %-EOVERFLOW if the size of the property is not as expected,
315 * %-ENXIO if no suitable firmware interface is present.
316 */
fwnode_property_read_u32_array(const struct fwnode_handle * fwnode,const char * propname,u32 * val,size_t nval)317 int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
318 const char *propname, u32 *val, size_t nval)
319 {
320 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
321 val, nval);
322 }
323 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
324
325 /**
326 * fwnode_property_read_u64_array - return a u64 array property firmware node
327 * @fwnode: Firmware node to get the property of
328 * @propname: Name of the property
329 * @val: The values are stored here or %NULL to return the number of values
330 * @nval: Size of the @val array
331 *
332 * Read an array of u64 properties with @propname from @fwnode and store them to
333 * @val if found.
334 *
335 * Return: number of values if @val was %NULL,
336 * %0 if the property was found (success),
337 * %-EINVAL if given arguments are not valid,
338 * %-ENODATA if the property does not have a value,
339 * %-EPROTO if the property is not an array of numbers,
340 * %-EOVERFLOW if the size of the property is not as expected,
341 * %-ENXIO if no suitable firmware interface is present.
342 */
fwnode_property_read_u64_array(const struct fwnode_handle * fwnode,const char * propname,u64 * val,size_t nval)343 int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
344 const char *propname, u64 *val, size_t nval)
345 {
346 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
347 val, nval);
348 }
349 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
350
351 /**
352 * fwnode_property_read_string_array - return string array property of a node
353 * @fwnode: Firmware node to get the property of
354 * @propname: Name of the property
355 * @val: The values are stored here or %NULL to return the number of values
356 * @nval: Size of the @val array
357 *
358 * Read an string list property @propname from the given firmware node and store
359 * them to @val if found.
360 *
361 * Return: number of values read on success if @val is non-NULL,
362 * number of values available on success if @val is NULL,
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
366 * %-EOVERFLOW if the size of the property is not as expected,
367 * %-ENXIO if no suitable firmware interface is present.
368 */
fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)369 int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
370 const char *propname, const char **val,
371 size_t nval)
372 {
373 int ret;
374
375 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
376 val, nval);
377 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
378 !IS_ERR_OR_NULL(fwnode->secondary))
379 ret = fwnode_call_int_op(fwnode->secondary,
380 property_read_string_array, propname,
381 val, nval);
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
385
386 /**
387 * fwnode_property_read_string - return a string property of a firmware node
388 * @fwnode: Firmware node to get the property of
389 * @propname: Name of the property
390 * @val: The value is stored here
391 *
392 * Read property @propname from the given firmware node and store the value into
393 * @val if found. The value is checked to be a string.
394 *
395 * Return: %0 if the property was found (success),
396 * %-EINVAL if given arguments are not valid,
397 * %-ENODATA if the property does not have a value,
398 * %-EPROTO or %-EILSEQ if the property is not a string,
399 * %-ENXIO if no suitable firmware interface is present.
400 */
fwnode_property_read_string(const struct fwnode_handle * fwnode,const char * propname,const char ** val)401 int fwnode_property_read_string(const struct fwnode_handle *fwnode,
402 const char *propname, const char **val)
403 {
404 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
405
406 return ret < 0 ? ret : 0;
407 }
408 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
409
410 /**
411 * fwnode_property_match_string - find a string in an array and return index
412 * @fwnode: Firmware node to get the property of
413 * @propname: Name of the property holding the array
414 * @string: String to look for
415 *
416 * Find a given string in a string array and if it is found return the
417 * index back.
418 *
419 * Return: %0 if the property was found (success),
420 * %-EINVAL if given arguments are not valid,
421 * %-ENODATA if the property does not have a value,
422 * %-EPROTO if the property is not an array of strings,
423 * %-ENXIO if no suitable firmware interface is present.
424 */
fwnode_property_match_string(const struct fwnode_handle * fwnode,const char * propname,const char * string)425 int fwnode_property_match_string(const struct fwnode_handle *fwnode,
426 const char *propname, const char *string)
427 {
428 const char **values;
429 int nval, ret;
430
431 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
432 if (nval < 0)
433 return nval;
434
435 if (nval == 0)
436 return -ENODATA;
437
438 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
439 if (!values)
440 return -ENOMEM;
441
442 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
443 if (ret < 0)
444 goto out;
445
446 ret = match_string(values, nval, string);
447 if (ret < 0)
448 ret = -ENODATA;
449 out:
450 kfree(values);
451 return ret;
452 }
453 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
454
455 /**
456 * fwnode_property_get_reference_args() - Find a reference with arguments
457 * @fwnode: Firmware node where to look for the reference
458 * @prop: The name of the property
459 * @nargs_prop: The name of the property telling the number of
460 * arguments in the referred node. NULL if @nargs is known,
461 * otherwise @nargs is ignored. Only relevant on OF.
462 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
463 * @index: Index of the reference, from zero onwards.
464 * @args: Result structure with reference and integer arguments.
465 *
466 * Obtain a reference based on a named property in an fwnode, with
467 * integer arguments.
468 *
469 * Caller is responsible to call fwnode_handle_put() on the returned
470 * args->fwnode pointer.
471 *
472 * Returns: %0 on success
473 * %-ENOENT when the index is out of bounds, the index has an empty
474 * reference or the property was not found
475 * %-EINVAL on parse error
476 */
fwnode_property_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)477 int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
478 const char *prop, const char *nargs_prop,
479 unsigned int nargs, unsigned int index,
480 struct fwnode_reference_args *args)
481 {
482 return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
483 nargs, index, args);
484 }
485 EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
486
487 /**
488 * fwnode_find_reference - Find named reference to a fwnode_handle
489 * @fwnode: Firmware node where to look for the reference
490 * @name: The name of the reference
491 * @index: Index of the reference
492 *
493 * @index can be used when the named reference holds a table of references.
494 *
495 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
496 * call fwnode_handle_put() on the returned fwnode pointer.
497 */
fwnode_find_reference(const struct fwnode_handle * fwnode,const char * name,unsigned int index)498 struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
499 const char *name,
500 unsigned int index)
501 {
502 struct fwnode_reference_args args;
503 int ret;
504
505 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
506 &args);
507 return ret ? ERR_PTR(ret) : args.fwnode;
508 }
509 EXPORT_SYMBOL_GPL(fwnode_find_reference);
510
511 /**
512 * device_remove_properties - Remove properties from a device object.
513 * @dev: Device whose properties to remove.
514 *
515 * The function removes properties previously associated to the device
516 * firmware node with device_add_properties(). Memory allocated to the
517 * properties will also be released.
518 */
device_remove_properties(struct device * dev)519 void device_remove_properties(struct device *dev)
520 {
521 struct fwnode_handle *fwnode = dev_fwnode(dev);
522
523 if (!fwnode)
524 return;
525
526 if (is_software_node(fwnode->secondary)) {
527 fwnode_remove_software_node(fwnode->secondary);
528 set_secondary_fwnode(dev, NULL);
529 }
530 }
531 EXPORT_SYMBOL_GPL(device_remove_properties);
532
533 /**
534 * device_add_properties - Add a collection of properties to a device object.
535 * @dev: Device to add properties to.
536 * @properties: Collection of properties to add.
537 *
538 * Associate a collection of device properties represented by @properties with
539 * @dev. The function takes a copy of @properties.
540 *
541 * WARNING: The callers should not use this function if it is known that there
542 * is no real firmware node associated with @dev! In that case the callers
543 * should create a software node and assign it to @dev directly.
544 */
device_add_properties(struct device * dev,const struct property_entry * properties)545 int device_add_properties(struct device *dev,
546 const struct property_entry *properties)
547 {
548 struct fwnode_handle *fwnode;
549
550 fwnode = fwnode_create_software_node(properties, NULL);
551 if (IS_ERR(fwnode))
552 return PTR_ERR(fwnode);
553
554 set_secondary_fwnode(dev, fwnode);
555 return 0;
556 }
557 EXPORT_SYMBOL_GPL(device_add_properties);
558
559 /**
560 * fwnode_get_name - Return the name of a node
561 * @fwnode: The firmware node
562 *
563 * Returns a pointer to the node name.
564 */
fwnode_get_name(const struct fwnode_handle * fwnode)565 const char *fwnode_get_name(const struct fwnode_handle *fwnode)
566 {
567 return fwnode_call_ptr_op(fwnode, get_name);
568 }
569 EXPORT_SYMBOL_GPL(fwnode_get_name);
570
571 /**
572 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
573 * @fwnode: The firmware node
574 *
575 * Returns the prefix of a node, intended to be printed right before the node.
576 * The prefix works also as a separator between the nodes.
577 */
fwnode_get_name_prefix(const struct fwnode_handle * fwnode)578 const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
579 {
580 return fwnode_call_ptr_op(fwnode, get_name_prefix);
581 }
582
583 /**
584 * fwnode_get_parent - Return parent firwmare node
585 * @fwnode: Firmware whose parent is retrieved
586 *
587 * Return parent firmware node of the given node if possible or %NULL if no
588 * parent was available.
589 */
fwnode_get_parent(const struct fwnode_handle * fwnode)590 struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
591 {
592 return fwnode_call_ptr_op(fwnode, get_parent);
593 }
594 EXPORT_SYMBOL_GPL(fwnode_get_parent);
595
596 /**
597 * fwnode_get_next_parent - Iterate to the node's parent
598 * @fwnode: Firmware whose parent is retrieved
599 *
600 * This is like fwnode_get_parent() except that it drops the refcount
601 * on the passed node, making it suitable for iterating through a
602 * node's parents.
603 *
604 * Returns a node pointer with refcount incremented, use
605 * fwnode_handle_node() on it when done.
606 */
fwnode_get_next_parent(struct fwnode_handle * fwnode)607 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
608 {
609 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
610
611 fwnode_handle_put(fwnode);
612
613 return parent;
614 }
615 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
616
617 /**
618 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
619 * @fwnode: firmware node
620 *
621 * Given a firmware node (@fwnode), this function finds its closest ancestor
622 * firmware node that has a corresponding struct device and returns that struct
623 * device.
624 *
625 * The caller of this function is expected to call put_device() on the returned
626 * device when they are done.
627 */
fwnode_get_next_parent_dev(struct fwnode_handle * fwnode)628 struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
629 {
630 struct device *dev;
631
632 fwnode_handle_get(fwnode);
633 do {
634 fwnode = fwnode_get_next_parent(fwnode);
635 if (!fwnode)
636 return NULL;
637 dev = get_dev_from_fwnode(fwnode);
638 } while (!dev);
639 fwnode_handle_put(fwnode);
640 return dev;
641 }
642
643 /**
644 * fwnode_count_parents - Return the number of parents a node has
645 * @fwnode: The node the parents of which are to be counted
646 *
647 * Returns the number of parents a node has.
648 */
fwnode_count_parents(const struct fwnode_handle * fwnode)649 unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
650 {
651 struct fwnode_handle *__fwnode;
652 unsigned int count;
653
654 __fwnode = fwnode_get_parent(fwnode);
655
656 for (count = 0; __fwnode; count++)
657 __fwnode = fwnode_get_next_parent(__fwnode);
658
659 return count;
660 }
661 EXPORT_SYMBOL_GPL(fwnode_count_parents);
662
663 /**
664 * fwnode_get_nth_parent - Return an nth parent of a node
665 * @fwnode: The node the parent of which is requested
666 * @depth: Distance of the parent from the node
667 *
668 * Returns the nth parent of a node. If there is no parent at the requested
669 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
670 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
671 *
672 * The caller is responsible for calling fwnode_handle_put() for the returned
673 * node.
674 */
fwnode_get_nth_parent(struct fwnode_handle * fwnode,unsigned int depth)675 struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
676 unsigned int depth)
677 {
678 unsigned int i;
679
680 fwnode_handle_get(fwnode);
681
682 for (i = 0; i < depth && fwnode; i++)
683 fwnode = fwnode_get_next_parent(fwnode);
684
685 return fwnode;
686 }
687 EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
688
689 /**
690 * fwnode_is_ancestor_of - Test if @test_ancestor is ancestor of @test_child
691 * @test_ancestor: Firmware which is tested for being an ancestor
692 * @test_child: Firmware which is tested for being the child
693 *
694 * A node is considered an ancestor of itself too.
695 *
696 * Returns true if @test_ancestor is an ancestor of @test_child.
697 * Otherwise, returns false.
698 */
fwnode_is_ancestor_of(struct fwnode_handle * test_ancestor,struct fwnode_handle * test_child)699 bool fwnode_is_ancestor_of(struct fwnode_handle *test_ancestor,
700 struct fwnode_handle *test_child)
701 {
702 if (!test_ancestor)
703 return false;
704
705 fwnode_handle_get(test_child);
706 while (test_child) {
707 if (test_child == test_ancestor) {
708 fwnode_handle_put(test_child);
709 return true;
710 }
711 test_child = fwnode_get_next_parent(test_child);
712 }
713 return false;
714 }
715
716 /**
717 * fwnode_get_next_child_node - Return the next child node handle for a node
718 * @fwnode: Firmware node to find the next child node for.
719 * @child: Handle to one of the node's child nodes or a %NULL handle.
720 */
721 struct fwnode_handle *
fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)722 fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
723 struct fwnode_handle *child)
724 {
725 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
726 }
727 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
728
729 /**
730 * fwnode_get_next_available_child_node - Return the next
731 * available child node handle for a node
732 * @fwnode: Firmware node to find the next child node for.
733 * @child: Handle to one of the node's child nodes or a %NULL handle.
734 */
735 struct fwnode_handle *
fwnode_get_next_available_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)736 fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
737 struct fwnode_handle *child)
738 {
739 struct fwnode_handle *next_child = child;
740
741 if (!fwnode)
742 return NULL;
743
744 do {
745 next_child = fwnode_get_next_child_node(fwnode, next_child);
746 if (!next_child)
747 return NULL;
748 } while (!fwnode_device_is_available(next_child));
749
750 return next_child;
751 }
752 EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
753
754 /**
755 * device_get_next_child_node - Return the next child node handle for a device
756 * @dev: Device to find the next child node for.
757 * @child: Handle to one of the device's child nodes or a null handle.
758 */
device_get_next_child_node(struct device * dev,struct fwnode_handle * child)759 struct fwnode_handle *device_get_next_child_node(struct device *dev,
760 struct fwnode_handle *child)
761 {
762 const struct fwnode_handle *fwnode = dev_fwnode(dev);
763 struct fwnode_handle *next;
764
765 /* Try to find a child in primary fwnode */
766 next = fwnode_get_next_child_node(fwnode, child);
767 if (next)
768 return next;
769
770 /* When no more children in primary, continue with secondary */
771 if (fwnode && !IS_ERR_OR_NULL(fwnode->secondary))
772 next = fwnode_get_next_child_node(fwnode->secondary, child);
773
774 return next;
775 }
776 EXPORT_SYMBOL_GPL(device_get_next_child_node);
777
778 /**
779 * fwnode_get_named_child_node - Return first matching named child node handle
780 * @fwnode: Firmware node to find the named child node for.
781 * @childname: String to match child node name against.
782 */
783 struct fwnode_handle *
fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)784 fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
785 const char *childname)
786 {
787 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
788 }
789 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
790
791 /**
792 * device_get_named_child_node - Return first matching named child node handle
793 * @dev: Device to find the named child node for.
794 * @childname: String to match child node name against.
795 */
device_get_named_child_node(struct device * dev,const char * childname)796 struct fwnode_handle *device_get_named_child_node(struct device *dev,
797 const char *childname)
798 {
799 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
800 }
801 EXPORT_SYMBOL_GPL(device_get_named_child_node);
802
803 /**
804 * fwnode_handle_get - Obtain a reference to a device node
805 * @fwnode: Pointer to the device node to obtain the reference to.
806 *
807 * Returns the fwnode handle.
808 */
fwnode_handle_get(struct fwnode_handle * fwnode)809 struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
810 {
811 if (!fwnode_has_op(fwnode, get))
812 return fwnode;
813
814 return fwnode_call_ptr_op(fwnode, get);
815 }
816 EXPORT_SYMBOL_GPL(fwnode_handle_get);
817
818 /**
819 * fwnode_handle_put - Drop reference to a device node
820 * @fwnode: Pointer to the device node to drop the reference to.
821 *
822 * This has to be used when terminating device_for_each_child_node() iteration
823 * with break or return to prevent stale device node references from being left
824 * behind.
825 */
fwnode_handle_put(struct fwnode_handle * fwnode)826 void fwnode_handle_put(struct fwnode_handle *fwnode)
827 {
828 fwnode_call_void_op(fwnode, put);
829 }
830 EXPORT_SYMBOL_GPL(fwnode_handle_put);
831
832 /**
833 * fwnode_device_is_available - check if a device is available for use
834 * @fwnode: Pointer to the fwnode of the device.
835 *
836 * For fwnode node types that don't implement the .device_is_available()
837 * operation, this function returns true.
838 */
fwnode_device_is_available(const struct fwnode_handle * fwnode)839 bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
840 {
841 if (!fwnode_has_op(fwnode, device_is_available))
842 return true;
843
844 return fwnode_call_bool_op(fwnode, device_is_available);
845 }
846 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
847
848 /**
849 * device_get_child_node_count - return the number of child nodes for device
850 * @dev: Device to cound the child nodes for
851 */
device_get_child_node_count(struct device * dev)852 unsigned int device_get_child_node_count(struct device *dev)
853 {
854 struct fwnode_handle *child;
855 unsigned int count = 0;
856
857 device_for_each_child_node(dev, child)
858 count++;
859
860 return count;
861 }
862 EXPORT_SYMBOL_GPL(device_get_child_node_count);
863
device_dma_supported(struct device * dev)864 bool device_dma_supported(struct device *dev)
865 {
866 const struct fwnode_handle *fwnode = dev_fwnode(dev);
867
868 /* For DT, this is always supported.
869 * For ACPI, this depends on CCA, which
870 * is determined by the acpi_dma_supported().
871 */
872 if (is_of_node(fwnode))
873 return true;
874
875 return acpi_dma_supported(to_acpi_device_node(fwnode));
876 }
877 EXPORT_SYMBOL_GPL(device_dma_supported);
878
device_get_dma_attr(struct device * dev)879 enum dev_dma_attr device_get_dma_attr(struct device *dev)
880 {
881 const struct fwnode_handle *fwnode = dev_fwnode(dev);
882 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
883
884 if (is_of_node(fwnode)) {
885 if (of_dma_is_coherent(to_of_node(fwnode)))
886 attr = DEV_DMA_COHERENT;
887 else
888 attr = DEV_DMA_NON_COHERENT;
889 } else
890 attr = acpi_get_dma_attr(to_acpi_device_node(fwnode));
891
892 return attr;
893 }
894 EXPORT_SYMBOL_GPL(device_get_dma_attr);
895
896 /**
897 * fwnode_get_phy_mode - Get phy mode for given firmware node
898 * @fwnode: Pointer to the given node
899 *
900 * The function gets phy interface string from property 'phy-mode' or
901 * 'phy-connection-type', and return its index in phy_modes table, or errno in
902 * error case.
903 */
fwnode_get_phy_mode(struct fwnode_handle * fwnode)904 int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
905 {
906 const char *pm;
907 int err, i;
908
909 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
910 if (err < 0)
911 err = fwnode_property_read_string(fwnode,
912 "phy-connection-type", &pm);
913 if (err < 0)
914 return err;
915
916 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
917 if (!strcasecmp(pm, phy_modes(i)))
918 return i;
919
920 return -ENODEV;
921 }
922 EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
923
924 /**
925 * device_get_phy_mode - Get phy mode for given device
926 * @dev: Pointer to the given device
927 *
928 * The function gets phy interface string from property 'phy-mode' or
929 * 'phy-connection-type', and return its index in phy_modes table, or errno in
930 * error case.
931 */
device_get_phy_mode(struct device * dev)932 int device_get_phy_mode(struct device *dev)
933 {
934 return fwnode_get_phy_mode(dev_fwnode(dev));
935 }
936 EXPORT_SYMBOL_GPL(device_get_phy_mode);
937
fwnode_get_mac_addr(struct fwnode_handle * fwnode,const char * name,char * addr,int alen)938 static void *fwnode_get_mac_addr(struct fwnode_handle *fwnode,
939 const char *name, char *addr,
940 int alen)
941 {
942 int ret = fwnode_property_read_u8_array(fwnode, name, addr, alen);
943
944 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
945 return addr;
946 return NULL;
947 }
948
949 /**
950 * fwnode_get_mac_address - Get the MAC from the firmware node
951 * @fwnode: Pointer to the firmware node
952 * @addr: Address of buffer to store the MAC in
953 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
954 *
955 * Search the firmware node for the best MAC address to use. 'mac-address' is
956 * checked first, because that is supposed to contain to "most recent" MAC
957 * address. If that isn't set, then 'local-mac-address' is checked next,
958 * because that is the default address. If that isn't set, then the obsolete
959 * 'address' is checked, just in case we're using an old device tree.
960 *
961 * Note that the 'address' property is supposed to contain a virtual address of
962 * the register set, but some DTS files have redefined that property to be the
963 * MAC address.
964 *
965 * All-zero MAC addresses are rejected, because those could be properties that
966 * exist in the firmware tables, but were not updated by the firmware. For
967 * example, the DTS could define 'mac-address' and 'local-mac-address', with
968 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
969 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
970 * exists but is all zeros.
971 */
fwnode_get_mac_address(struct fwnode_handle * fwnode,char * addr,int alen)972 void *fwnode_get_mac_address(struct fwnode_handle *fwnode, char *addr, int alen)
973 {
974 char *res;
975
976 res = fwnode_get_mac_addr(fwnode, "mac-address", addr, alen);
977 if (res)
978 return res;
979
980 res = fwnode_get_mac_addr(fwnode, "local-mac-address", addr, alen);
981 if (res)
982 return res;
983
984 return fwnode_get_mac_addr(fwnode, "address", addr, alen);
985 }
986 EXPORT_SYMBOL(fwnode_get_mac_address);
987
988 /**
989 * device_get_mac_address - Get the MAC for a given device
990 * @dev: Pointer to the device
991 * @addr: Address of buffer to store the MAC in
992 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
993 */
device_get_mac_address(struct device * dev,char * addr,int alen)994 void *device_get_mac_address(struct device *dev, char *addr, int alen)
995 {
996 return fwnode_get_mac_address(dev_fwnode(dev), addr, alen);
997 }
998 EXPORT_SYMBOL(device_get_mac_address);
999
1000 /**
1001 * fwnode_irq_get - Get IRQ directly from a fwnode
1002 * @fwnode: Pointer to the firmware node
1003 * @index: Zero-based index of the IRQ
1004 *
1005 * Returns Linux IRQ number on success. Other values are determined
1006 * accordingly to acpi_/of_ irq_get() operation.
1007 */
fwnode_irq_get(const struct fwnode_handle * fwnode,unsigned int index)1008 int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1009 {
1010 struct resource res;
1011 int ret;
1012
1013 if (is_of_node(fwnode))
1014 return of_irq_get(to_of_node(fwnode), index);
1015
1016 ret = acpi_irq_get(ACPI_HANDLE_FWNODE(fwnode), index, &res);
1017 if (ret)
1018 return ret;
1019
1020 return res.start;
1021 }
1022 EXPORT_SYMBOL(fwnode_irq_get);
1023
1024 /**
1025 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1026 * @fwnode: Pointer to the parent firmware node
1027 * @prev: Previous endpoint node or %NULL to get the first
1028 *
1029 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1030 * are available.
1031 */
1032 struct fwnode_handle *
fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)1033 fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1034 struct fwnode_handle *prev)
1035 {
1036 const struct fwnode_handle *parent;
1037 struct fwnode_handle *ep;
1038
1039 /*
1040 * If this function is in a loop and the previous iteration returned
1041 * an endpoint from fwnode->secondary, then we need to use the secondary
1042 * as parent rather than @fwnode.
1043 */
1044 if (prev)
1045 parent = fwnode_graph_get_port_parent(prev);
1046 else
1047 parent = fwnode;
1048
1049 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1050
1051 if (IS_ERR_OR_NULL(ep) &&
1052 !IS_ERR_OR_NULL(parent) && !IS_ERR_OR_NULL(parent->secondary))
1053 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1054
1055 return ep;
1056 }
1057 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1058
1059 /**
1060 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1061 * @endpoint: Endpoint firmware node of the port
1062 *
1063 * Return: the firmware node of the device the @endpoint belongs to.
1064 */
1065 struct fwnode_handle *
fwnode_graph_get_port_parent(const struct fwnode_handle * endpoint)1066 fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1067 {
1068 struct fwnode_handle *port, *parent;
1069
1070 port = fwnode_get_parent(endpoint);
1071 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1072
1073 fwnode_handle_put(port);
1074
1075 return parent;
1076 }
1077 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1078
1079 /**
1080 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1081 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1082 *
1083 * Extracts firmware node of a remote device the @fwnode points to.
1084 */
1085 struct fwnode_handle *
fwnode_graph_get_remote_port_parent(const struct fwnode_handle * fwnode)1086 fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1087 {
1088 struct fwnode_handle *endpoint, *parent;
1089
1090 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1091 parent = fwnode_graph_get_port_parent(endpoint);
1092
1093 fwnode_handle_put(endpoint);
1094
1095 return parent;
1096 }
1097 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1098
1099 /**
1100 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1101 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1102 *
1103 * Extracts firmware node of a remote port the @fwnode points to.
1104 */
1105 struct fwnode_handle *
fwnode_graph_get_remote_port(const struct fwnode_handle * fwnode)1106 fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1107 {
1108 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1109 }
1110 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1111
1112 /**
1113 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1114 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1115 *
1116 * Extracts firmware node of a remote endpoint the @fwnode points to.
1117 */
1118 struct fwnode_handle *
fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1119 fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1120 {
1121 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1122 }
1123 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1124
1125 /**
1126 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1127 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1128 * @port_id: identifier of the parent port node
1129 * @endpoint_id: identifier of the endpoint node
1130 *
1131 * Return: Remote fwnode handle associated with remote endpoint node linked
1132 * to @node. Use fwnode_node_put() on it when done.
1133 */
1134 struct fwnode_handle *
fwnode_graph_get_remote_node(const struct fwnode_handle * fwnode,u32 port_id,u32 endpoint_id)1135 fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
1136 u32 endpoint_id)
1137 {
1138 struct fwnode_handle *endpoint = NULL;
1139
1140 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1141 struct fwnode_endpoint fwnode_ep;
1142 struct fwnode_handle *remote;
1143 int ret;
1144
1145 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1146 if (ret < 0)
1147 continue;
1148
1149 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1150 continue;
1151
1152 remote = fwnode_graph_get_remote_port_parent(endpoint);
1153 if (!remote)
1154 return NULL;
1155
1156 return fwnode_device_is_available(remote) ? remote : NULL;
1157 }
1158
1159 return NULL;
1160 }
1161 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1162
1163 /**
1164 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165 * @fwnode: parent fwnode_handle containing the graph
1166 * @port: identifier of the port node
1167 * @endpoint: identifier of the endpoint node under the port node
1168 * @flags: fwnode lookup flags
1169 *
1170 * Return the fwnode handle of the local endpoint corresponding the port and
1171 * endpoint IDs or NULL if not found.
1172 *
1173 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1174 * has not been found, look for the closest endpoint ID greater than the
1175 * specified one and return the endpoint that corresponds to it, if present.
1176 *
1177 * Do not return endpoints that belong to disabled devices, unless
1178 * FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1179 *
1180 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1181 * it when it is not needed any more.
1182 */
1183 struct fwnode_handle *
fwnode_graph_get_endpoint_by_id(const struct fwnode_handle * fwnode,u32 port,u32 endpoint,unsigned long flags)1184 fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185 u32 port, u32 endpoint, unsigned long flags)
1186 {
1187 struct fwnode_handle *ep = NULL, *best_ep = NULL;
1188 unsigned int best_ep_id = 0;
1189 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191
1192 while ((ep = fwnode_graph_get_next_endpoint(fwnode, ep))) {
1193 struct fwnode_endpoint fwnode_ep = { 0 };
1194 int ret;
1195
1196 if (enabled_only) {
1197 struct fwnode_handle *dev_node;
1198 bool available;
1199
1200 dev_node = fwnode_graph_get_remote_port_parent(ep);
1201 available = fwnode_device_is_available(dev_node);
1202 fwnode_handle_put(dev_node);
1203 if (!available)
1204 continue;
1205 }
1206
1207 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1208 if (ret < 0)
1209 continue;
1210
1211 if (fwnode_ep.port != port)
1212 continue;
1213
1214 if (fwnode_ep.id == endpoint)
1215 return ep;
1216
1217 if (!endpoint_next)
1218 continue;
1219
1220 /*
1221 * If the endpoint that has just been found is not the first
1222 * matching one and the ID of the one found previously is closer
1223 * to the requested endpoint ID, skip it.
1224 */
1225 if (fwnode_ep.id < endpoint ||
1226 (best_ep && best_ep_id < fwnode_ep.id))
1227 continue;
1228
1229 fwnode_handle_put(best_ep);
1230 best_ep = fwnode_handle_get(ep);
1231 best_ep_id = fwnode_ep.id;
1232 }
1233
1234 return best_ep;
1235 }
1236 EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1237
1238 /**
1239 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1240 * @fwnode: pointer to endpoint fwnode_handle
1241 * @endpoint: pointer to the fwnode endpoint data structure
1242 *
1243 * Parse @fwnode representing a graph endpoint node and store the
1244 * information in @endpoint. The caller must hold a reference to
1245 * @fwnode.
1246 */
fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1247 int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1248 struct fwnode_endpoint *endpoint)
1249 {
1250 memset(endpoint, 0, sizeof(*endpoint));
1251
1252 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1253 }
1254 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1255
device_get_match_data(struct device * dev)1256 const void *device_get_match_data(struct device *dev)
1257 {
1258 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1259 }
1260 EXPORT_SYMBOL_GPL(device_get_match_data);
1261
1262 static void *
fwnode_graph_devcon_match(struct fwnode_handle * fwnode,const char * con_id,void * data,devcon_match_fn_t match)1263 fwnode_graph_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1264 void *data, devcon_match_fn_t match)
1265 {
1266 struct fwnode_handle *node;
1267 struct fwnode_handle *ep;
1268 void *ret;
1269
1270 fwnode_graph_for_each_endpoint(fwnode, ep) {
1271 node = fwnode_graph_get_remote_port_parent(ep);
1272 if (!fwnode_device_is_available(node))
1273 continue;
1274
1275 ret = match(node, con_id, data);
1276 fwnode_handle_put(node);
1277 if (ret) {
1278 fwnode_handle_put(ep);
1279 return ret;
1280 }
1281 }
1282 return NULL;
1283 }
1284
1285 static void *
fwnode_devcon_match(struct fwnode_handle * fwnode,const char * con_id,void * data,devcon_match_fn_t match)1286 fwnode_devcon_match(struct fwnode_handle *fwnode, const char *con_id,
1287 void *data, devcon_match_fn_t match)
1288 {
1289 struct fwnode_handle *node;
1290 void *ret;
1291 int i;
1292
1293 for (i = 0; ; i++) {
1294 node = fwnode_find_reference(fwnode, con_id, i);
1295 if (IS_ERR(node))
1296 break;
1297
1298 ret = match(node, NULL, data);
1299 fwnode_handle_put(node);
1300 if (ret)
1301 return ret;
1302 }
1303
1304 return NULL;
1305 }
1306
1307 /**
1308 * fwnode_connection_find_match - Find connection from a device node
1309 * @fwnode: Device node with the connection
1310 * @con_id: Identifier for the connection
1311 * @data: Data for the match function
1312 * @match: Function to check and convert the connection description
1313 *
1314 * Find a connection with unique identifier @con_id between @fwnode and another
1315 * device node. @match will be used to convert the connection description to
1316 * data the caller is expecting to be returned.
1317 */
fwnode_connection_find_match(struct fwnode_handle * fwnode,const char * con_id,void * data,devcon_match_fn_t match)1318 void *fwnode_connection_find_match(struct fwnode_handle *fwnode,
1319 const char *con_id, void *data,
1320 devcon_match_fn_t match)
1321 {
1322 void *ret;
1323
1324 if (!fwnode || !match)
1325 return NULL;
1326
1327 ret = fwnode_graph_devcon_match(fwnode, con_id, data, match);
1328 if (ret)
1329 return ret;
1330
1331 return fwnode_devcon_match(fwnode, con_id, data, match);
1332 }
1333 EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1334