1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 #include <linux/of_fdt.h>
31
32 #include <asm/addrspace.h>
33 #include <asm/bootinfo.h>
34 #include <asm/bugs.h>
35 #include <asm/cache.h>
36 #include <asm/cdmm.h>
37 #include <asm/cpu.h>
38 #include <asm/debug.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <asm/smp-ops.h>
43 #include <asm/prom.h>
44
45 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
46 const char __section(.appended_dtb) __appended_dtb[0x100000];
47 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
48
49 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
50
51 EXPORT_SYMBOL(cpu_data);
52
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56
57 /*
58 * Setup information
59 *
60 * These are initialized so they are in the .data section
61 */
62 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
63
64 EXPORT_SYMBOL(mips_machtype);
65
66 struct boot_mem_map boot_mem_map;
67
68 static char __initdata command_line[COMMAND_LINE_SIZE];
69 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
70
71 #ifdef CONFIG_CMDLINE_BOOL
72 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
73 #endif
74
75 /*
76 * mips_io_port_base is the begin of the address space to which x86 style
77 * I/O ports are mapped.
78 */
79 const unsigned long mips_io_port_base = -1;
80 EXPORT_SYMBOL(mips_io_port_base);
81
82 static struct resource code_resource = { .name = "Kernel code", };
83 static struct resource data_resource = { .name = "Kernel data", };
84 static struct resource bss_resource = { .name = "Kernel bss", };
85
86 static void *detect_magic __initdata = detect_memory_region;
87
88 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
89 unsigned long ARCH_PFN_OFFSET;
90 EXPORT_SYMBOL(ARCH_PFN_OFFSET);
91 #endif
92
add_memory_region(phys_addr_t start,phys_addr_t size,long type)93 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
94 {
95 int x = boot_mem_map.nr_map;
96 int i;
97
98 /*
99 * If the region reaches the top of the physical address space, adjust
100 * the size slightly so that (start + size) doesn't overflow
101 */
102 if (start + size - 1 == PHYS_ADDR_MAX)
103 --size;
104
105 /* Sanity check */
106 if (start + size < start) {
107 pr_warn("Trying to add an invalid memory region, skipped\n");
108 return;
109 }
110
111 /*
112 * Try to merge with existing entry, if any.
113 */
114 for (i = 0; i < boot_mem_map.nr_map; i++) {
115 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
116 unsigned long top;
117
118 if (entry->type != type)
119 continue;
120
121 if (start + size < entry->addr)
122 continue; /* no overlap */
123
124 if (entry->addr + entry->size < start)
125 continue; /* no overlap */
126
127 top = max(entry->addr + entry->size, start + size);
128 entry->addr = min(entry->addr, start);
129 entry->size = top - entry->addr;
130
131 return;
132 }
133
134 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
135 pr_err("Ooops! Too many entries in the memory map!\n");
136 return;
137 }
138
139 boot_mem_map.map[x].addr = start;
140 boot_mem_map.map[x].size = size;
141 boot_mem_map.map[x].type = type;
142 boot_mem_map.nr_map++;
143 }
144
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)145 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
146 {
147 void *dm = &detect_magic;
148 phys_addr_t size;
149
150 for (size = sz_min; size < sz_max; size <<= 1) {
151 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
152 break;
153 }
154
155 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
156 ((unsigned long long) size) / SZ_1M,
157 (unsigned long long) start,
158 ((unsigned long long) sz_min) / SZ_1M,
159 ((unsigned long long) sz_max) / SZ_1M);
160
161 add_memory_region(start, size, BOOT_MEM_RAM);
162 }
163
memory_region_available(phys_addr_t start,phys_addr_t size)164 static bool __init __maybe_unused memory_region_available(phys_addr_t start,
165 phys_addr_t size)
166 {
167 int i;
168 bool in_ram = false, free = true;
169
170 for (i = 0; i < boot_mem_map.nr_map; i++) {
171 phys_addr_t start_, end_;
172
173 start_ = boot_mem_map.map[i].addr;
174 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
175
176 switch (boot_mem_map.map[i].type) {
177 case BOOT_MEM_RAM:
178 if (start >= start_ && start + size <= end_)
179 in_ram = true;
180 break;
181 case BOOT_MEM_RESERVED:
182 if ((start >= start_ && start < end_) ||
183 (start < start_ && start + size >= start_))
184 free = false;
185 break;
186 default:
187 continue;
188 }
189 }
190
191 return in_ram && free;
192 }
193
print_memory_map(void)194 static void __init print_memory_map(void)
195 {
196 int i;
197 const int field = 2 * sizeof(unsigned long);
198
199 for (i = 0; i < boot_mem_map.nr_map; i++) {
200 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
201 field, (unsigned long long) boot_mem_map.map[i].size,
202 field, (unsigned long long) boot_mem_map.map[i].addr);
203
204 switch (boot_mem_map.map[i].type) {
205 case BOOT_MEM_RAM:
206 printk(KERN_CONT "(usable)\n");
207 break;
208 case BOOT_MEM_INIT_RAM:
209 printk(KERN_CONT "(usable after init)\n");
210 break;
211 case BOOT_MEM_ROM_DATA:
212 printk(KERN_CONT "(ROM data)\n");
213 break;
214 case BOOT_MEM_RESERVED:
215 printk(KERN_CONT "(reserved)\n");
216 break;
217 default:
218 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
219 break;
220 }
221 }
222 }
223
224 /*
225 * Manage initrd
226 */
227 #ifdef CONFIG_BLK_DEV_INITRD
228
rd_start_early(char * p)229 static int __init rd_start_early(char *p)
230 {
231 unsigned long start = memparse(p, &p);
232
233 #ifdef CONFIG_64BIT
234 /* Guess if the sign extension was forgotten by bootloader */
235 if (start < XKPHYS)
236 start = (int)start;
237 #endif
238 initrd_start = start;
239 initrd_end += start;
240 return 0;
241 }
242 early_param("rd_start", rd_start_early);
243
rd_size_early(char * p)244 static int __init rd_size_early(char *p)
245 {
246 initrd_end += memparse(p, &p);
247 return 0;
248 }
249 early_param("rd_size", rd_size_early);
250
251 /* it returns the next free pfn after initrd */
init_initrd(void)252 static unsigned long __init init_initrd(void)
253 {
254 unsigned long end;
255
256 /*
257 * Board specific code or command line parser should have
258 * already set up initrd_start and initrd_end. In these cases
259 * perfom sanity checks and use them if all looks good.
260 */
261 if (!initrd_start || initrd_end <= initrd_start)
262 goto disable;
263
264 if (initrd_start & ~PAGE_MASK) {
265 pr_err("initrd start must be page aligned\n");
266 goto disable;
267 }
268 if (initrd_start < PAGE_OFFSET) {
269 pr_err("initrd start < PAGE_OFFSET\n");
270 goto disable;
271 }
272
273 /*
274 * Sanitize initrd addresses. For example firmware
275 * can't guess if they need to pass them through
276 * 64-bits values if the kernel has been built in pure
277 * 32-bit. We need also to switch from KSEG0 to XKPHYS
278 * addresses now, so the code can now safely use __pa().
279 */
280 end = __pa(initrd_end);
281 initrd_end = (unsigned long)__va(end);
282 initrd_start = (unsigned long)__va(__pa(initrd_start));
283
284 ROOT_DEV = Root_RAM0;
285 return PFN_UP(end);
286 disable:
287 initrd_start = 0;
288 initrd_end = 0;
289 return 0;
290 }
291
292 /* In some conditions (e.g. big endian bootloader with a little endian
293 kernel), the initrd might appear byte swapped. Try to detect this and
294 byte swap it if needed. */
maybe_bswap_initrd(void)295 static void __init maybe_bswap_initrd(void)
296 {
297 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
298 u64 buf;
299
300 /* Check for CPIO signature */
301 if (!memcmp((void *)initrd_start, "070701", 6))
302 return;
303
304 /* Check for compressed initrd */
305 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
306 return;
307
308 /* Try again with a byte swapped header */
309 buf = swab64p((u64 *)initrd_start);
310 if (!memcmp(&buf, "070701", 6) ||
311 decompress_method((unsigned char *)(&buf), 8, NULL)) {
312 unsigned long i;
313
314 pr_info("Byteswapped initrd detected\n");
315 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
316 swab64s((u64 *)i);
317 }
318 #endif
319 }
320
finalize_initrd(void)321 static void __init finalize_initrd(void)
322 {
323 unsigned long size = initrd_end - initrd_start;
324
325 if (size == 0) {
326 printk(KERN_INFO "Initrd not found or empty");
327 goto disable;
328 }
329 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
330 printk(KERN_ERR "Initrd extends beyond end of memory");
331 goto disable;
332 }
333
334 maybe_bswap_initrd();
335
336 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
337 initrd_below_start_ok = 1;
338
339 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
340 initrd_start, size);
341 return;
342 disable:
343 printk(KERN_CONT " - disabling initrd\n");
344 initrd_start = 0;
345 initrd_end = 0;
346 }
347
348 #else /* !CONFIG_BLK_DEV_INITRD */
349
init_initrd(void)350 static unsigned long __init init_initrd(void)
351 {
352 return 0;
353 }
354
355 #define finalize_initrd() do {} while (0)
356
357 #endif
358
359 /*
360 * Initialize the bootmem allocator. It also setup initrd related data
361 * if needed.
362 */
363 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
364
bootmem_init(void)365 static void __init bootmem_init(void)
366 {
367 init_initrd();
368 finalize_initrd();
369 }
370
371 #else /* !CONFIG_SGI_IP27 */
372
bootmap_bytes(unsigned long pages)373 static unsigned long __init bootmap_bytes(unsigned long pages)
374 {
375 unsigned long bytes = DIV_ROUND_UP(pages, 8);
376
377 return ALIGN(bytes, sizeof(long));
378 }
379
bootmem_init(void)380 static void __init bootmem_init(void)
381 {
382 unsigned long reserved_end;
383 unsigned long mapstart = ~0UL;
384 unsigned long bootmap_size;
385 phys_addr_t ramstart = PHYS_ADDR_MAX;
386 bool bootmap_valid = false;
387 int i;
388
389 /*
390 * Sanity check any INITRD first. We don't take it into account
391 * for bootmem setup initially, rely on the end-of-kernel-code
392 * as our memory range starting point. Once bootmem is inited we
393 * will reserve the area used for the initrd.
394 */
395 init_initrd();
396 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
397
398 /*
399 * max_low_pfn is not a number of pages. The number of pages
400 * of the system is given by 'max_low_pfn - min_low_pfn'.
401 */
402 min_low_pfn = ~0UL;
403 max_low_pfn = 0;
404
405 /*
406 * Find the highest page frame number we have available
407 * and the lowest used RAM address
408 */
409 for (i = 0; i < boot_mem_map.nr_map; i++) {
410 unsigned long start, end;
411
412 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
413 continue;
414
415 start = PFN_UP(boot_mem_map.map[i].addr);
416 end = PFN_DOWN(boot_mem_map.map[i].addr
417 + boot_mem_map.map[i].size);
418
419 ramstart = min(ramstart, boot_mem_map.map[i].addr);
420
421 #ifndef CONFIG_HIGHMEM
422 /*
423 * Skip highmem here so we get an accurate max_low_pfn if low
424 * memory stops short of high memory.
425 * If the region overlaps HIGHMEM_START, end is clipped so
426 * max_pfn excludes the highmem portion.
427 */
428 if (start >= PFN_DOWN(HIGHMEM_START))
429 continue;
430 if (end > PFN_DOWN(HIGHMEM_START))
431 end = PFN_DOWN(HIGHMEM_START);
432 #endif
433
434 if (end > max_low_pfn)
435 max_low_pfn = end;
436 if (start < min_low_pfn)
437 min_low_pfn = start;
438 if (end <= reserved_end)
439 continue;
440 #ifdef CONFIG_BLK_DEV_INITRD
441 /* Skip zones before initrd and initrd itself */
442 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
443 continue;
444 #endif
445 if (start >= mapstart)
446 continue;
447 mapstart = max(reserved_end, start);
448 }
449
450 if (min_low_pfn >= max_low_pfn)
451 panic("Incorrect memory mapping !!!");
452
453 #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET
454 ARCH_PFN_OFFSET = PFN_UP(ramstart);
455 #else
456 /*
457 * Reserve any memory between the start of RAM and PHYS_OFFSET
458 */
459 if (ramstart > PHYS_OFFSET)
460 add_memory_region(PHYS_OFFSET, ramstart - PHYS_OFFSET,
461 BOOT_MEM_RESERVED);
462
463 if (min_low_pfn > ARCH_PFN_OFFSET) {
464 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
465 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
466 min_low_pfn - ARCH_PFN_OFFSET);
467 } else if (ARCH_PFN_OFFSET - min_low_pfn > 0UL) {
468 pr_info("%lu free pages won't be used\n",
469 ARCH_PFN_OFFSET - min_low_pfn);
470 }
471 min_low_pfn = ARCH_PFN_OFFSET;
472 #endif
473
474 /*
475 * Determine low and high memory ranges
476 */
477 max_pfn = max_low_pfn;
478 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
479 #ifdef CONFIG_HIGHMEM
480 highstart_pfn = PFN_DOWN(HIGHMEM_START);
481 highend_pfn = max_low_pfn;
482 #endif
483 max_low_pfn = PFN_DOWN(HIGHMEM_START);
484 }
485
486 #ifdef CONFIG_BLK_DEV_INITRD
487 /*
488 * mapstart should be after initrd_end
489 */
490 if (initrd_end)
491 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
492 #endif
493
494 /*
495 * check that mapstart doesn't overlap with any of
496 * memory regions that have been reserved through eg. DTB
497 */
498 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
499
500 bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
501 bootmap_size);
502 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
503 unsigned long mapstart_addr;
504
505 switch (boot_mem_map.map[i].type) {
506 case BOOT_MEM_RESERVED:
507 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
508 boot_mem_map.map[i].size);
509 if (PHYS_PFN(mapstart_addr) < mapstart)
510 break;
511
512 bootmap_valid = memory_region_available(mapstart_addr,
513 bootmap_size);
514 if (bootmap_valid)
515 mapstart = PHYS_PFN(mapstart_addr);
516 break;
517 default:
518 break;
519 }
520 }
521
522 if (!bootmap_valid)
523 panic("No memory area to place a bootmap bitmap");
524
525 /*
526 * Initialize the boot-time allocator with low memory only.
527 */
528 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
529 min_low_pfn, max_low_pfn))
530 panic("Unexpected memory size required for bootmap");
531
532 for (i = 0; i < boot_mem_map.nr_map; i++) {
533 unsigned long start, end;
534
535 start = PFN_UP(boot_mem_map.map[i].addr);
536 end = PFN_DOWN(boot_mem_map.map[i].addr
537 + boot_mem_map.map[i].size);
538
539 if (start <= min_low_pfn)
540 start = min_low_pfn;
541 if (start >= end)
542 continue;
543
544 #ifndef CONFIG_HIGHMEM
545 if (end > max_low_pfn)
546 end = max_low_pfn;
547
548 /*
549 * ... finally, is the area going away?
550 */
551 if (end <= start)
552 continue;
553 #endif
554
555 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
556 }
557
558 /*
559 * Register fully available low RAM pages with the bootmem allocator.
560 */
561 for (i = 0; i < boot_mem_map.nr_map; i++) {
562 unsigned long start, end, size;
563
564 start = PFN_UP(boot_mem_map.map[i].addr);
565 end = PFN_DOWN(boot_mem_map.map[i].addr
566 + boot_mem_map.map[i].size);
567
568 /*
569 * Reserve usable memory.
570 */
571 switch (boot_mem_map.map[i].type) {
572 case BOOT_MEM_RAM:
573 break;
574 case BOOT_MEM_INIT_RAM:
575 memory_present(0, start, end);
576 continue;
577 default:
578 /* Not usable memory */
579 if (start > min_low_pfn && end < max_low_pfn)
580 reserve_bootmem(boot_mem_map.map[i].addr,
581 boot_mem_map.map[i].size,
582 BOOTMEM_DEFAULT);
583 continue;
584 }
585
586 /*
587 * We are rounding up the start address of usable memory
588 * and at the end of the usable range downwards.
589 */
590 if (start >= max_low_pfn)
591 continue;
592 if (start < reserved_end)
593 start = reserved_end;
594 if (end > max_low_pfn)
595 end = max_low_pfn;
596
597 /*
598 * ... finally, is the area going away?
599 */
600 if (end <= start)
601 continue;
602 size = end - start;
603
604 /* Register lowmem ranges */
605 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
606 memory_present(0, start, end);
607 }
608
609 /*
610 * Reserve the bootmap memory.
611 */
612 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
613
614 #ifdef CONFIG_RELOCATABLE
615 /*
616 * The kernel reserves all memory below its _end symbol as bootmem,
617 * but the kernel may now be at a much higher address. The memory
618 * between the original and new locations may be returned to the system.
619 */
620 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
621 unsigned long offset;
622 extern void show_kernel_relocation(const char *level);
623
624 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
625 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
626
627 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
628 /*
629 * This information is necessary when debugging the kernel
630 * But is a security vulnerability otherwise!
631 */
632 show_kernel_relocation(KERN_INFO);
633 #endif
634 }
635 #endif
636
637 /*
638 * Reserve initrd memory if needed.
639 */
640 finalize_initrd();
641 }
642
643 #endif /* CONFIG_SGI_IP27 */
644
645 /*
646 * arch_mem_init - initialize memory management subsystem
647 *
648 * o plat_mem_setup() detects the memory configuration and will record detected
649 * memory areas using add_memory_region.
650 *
651 * At this stage the memory configuration of the system is known to the
652 * kernel but generic memory management system is still entirely uninitialized.
653 *
654 * o bootmem_init()
655 * o sparse_init()
656 * o paging_init()
657 * o dma_contiguous_reserve()
658 *
659 * At this stage the bootmem allocator is ready to use.
660 *
661 * NOTE: historically plat_mem_setup did the entire platform initialization.
662 * This was rather impractical because it meant plat_mem_setup had to
663 * get away without any kind of memory allocator. To keep old code from
664 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
665 * initialization hook for anything else was introduced.
666 */
667
668 static int usermem __initdata;
669
early_parse_mem(char * p)670 static int __init early_parse_mem(char *p)
671 {
672 phys_addr_t start, size;
673
674 /*
675 * If a user specifies memory size, we
676 * blow away any automatically generated
677 * size.
678 */
679 if (usermem == 0) {
680 boot_mem_map.nr_map = 0;
681 usermem = 1;
682 }
683 start = 0;
684 size = memparse(p, &p);
685 if (*p == '@')
686 start = memparse(p + 1, &p);
687
688 add_memory_region(start, size, BOOT_MEM_RAM);
689
690 return 0;
691 }
692 early_param("mem", early_parse_mem);
693
early_parse_memmap(char * p)694 static int __init early_parse_memmap(char *p)
695 {
696 char *oldp;
697 u64 start_at, mem_size;
698
699 if (!p)
700 return -EINVAL;
701
702 if (!strncmp(p, "exactmap", 8)) {
703 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
704 return 0;
705 }
706
707 oldp = p;
708 mem_size = memparse(p, &p);
709 if (p == oldp)
710 return -EINVAL;
711
712 if (*p == '@') {
713 start_at = memparse(p+1, &p);
714 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
715 } else if (*p == '#') {
716 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
717 return -EINVAL;
718 } else if (*p == '$') {
719 start_at = memparse(p+1, &p);
720 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
721 } else {
722 pr_err("\"memmap\" invalid format!\n");
723 return -EINVAL;
724 }
725
726 if (*p == '\0') {
727 usermem = 1;
728 return 0;
729 } else
730 return -EINVAL;
731 }
732 early_param("memmap", early_parse_memmap);
733
734 #ifdef CONFIG_PROC_VMCORE
735 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)736 static int __init early_parse_elfcorehdr(char *p)
737 {
738 int i;
739
740 setup_elfcorehdr = memparse(p, &p);
741
742 for (i = 0; i < boot_mem_map.nr_map; i++) {
743 unsigned long start = boot_mem_map.map[i].addr;
744 unsigned long end = (boot_mem_map.map[i].addr +
745 boot_mem_map.map[i].size);
746 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
747 /*
748 * Reserve from the elf core header to the end of
749 * the memory segment, that should all be kdump
750 * reserved memory.
751 */
752 setup_elfcorehdr_size = end - setup_elfcorehdr;
753 break;
754 }
755 }
756 /*
757 * If we don't find it in the memory map, then we shouldn't
758 * have to worry about it, as the new kernel won't use it.
759 */
760 return 0;
761 }
762 early_param("elfcorehdr", early_parse_elfcorehdr);
763 #endif
764
arch_mem_addpart(phys_addr_t mem,phys_addr_t end,int type)765 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
766 {
767 phys_addr_t size;
768 int i;
769
770 size = end - mem;
771 if (!size)
772 return;
773
774 /* Make sure it is in the boot_mem_map */
775 for (i = 0; i < boot_mem_map.nr_map; i++) {
776 if (mem >= boot_mem_map.map[i].addr &&
777 mem < (boot_mem_map.map[i].addr +
778 boot_mem_map.map[i].size))
779 return;
780 }
781 add_memory_region(mem, size, type);
782 }
783
784 #ifdef CONFIG_KEXEC
get_total_mem(void)785 static inline unsigned long long get_total_mem(void)
786 {
787 unsigned long long total;
788
789 total = max_pfn - min_low_pfn;
790 return total << PAGE_SHIFT;
791 }
792
mips_parse_crashkernel(void)793 static void __init mips_parse_crashkernel(void)
794 {
795 unsigned long long total_mem;
796 unsigned long long crash_size, crash_base;
797 int ret;
798
799 total_mem = get_total_mem();
800 ret = parse_crashkernel(boot_command_line, total_mem,
801 &crash_size, &crash_base);
802 if (ret != 0 || crash_size <= 0)
803 return;
804
805 if (!memory_region_available(crash_base, crash_size)) {
806 pr_warn("Invalid memory region reserved for crash kernel\n");
807 return;
808 }
809
810 crashk_res.start = crash_base;
811 crashk_res.end = crash_base + crash_size - 1;
812 }
813
request_crashkernel(struct resource * res)814 static void __init request_crashkernel(struct resource *res)
815 {
816 int ret;
817
818 if (crashk_res.start == crashk_res.end)
819 return;
820
821 ret = request_resource(res, &crashk_res);
822 if (!ret)
823 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
824 (unsigned long)((crashk_res.end -
825 crashk_res.start + 1) >> 20),
826 (unsigned long)(crashk_res.start >> 20));
827 }
828 #else /* !defined(CONFIG_KEXEC) */
mips_parse_crashkernel(void)829 static void __init mips_parse_crashkernel(void)
830 {
831 }
832
request_crashkernel(struct resource * res)833 static void __init request_crashkernel(struct resource *res)
834 {
835 }
836 #endif /* !defined(CONFIG_KEXEC) */
837
838 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
839 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
840 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
841 #define BUILTIN_EXTEND_WITH_PROM \
842 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
843
arch_mem_init(char ** cmdline_p)844 static void __init arch_mem_init(char **cmdline_p)
845 {
846 struct memblock_region *reg;
847 extern void plat_mem_setup(void);
848
849 /*
850 * Initialize boot_command_line to an innocuous but non-empty string in
851 * order to prevent early_init_dt_scan_chosen() from copying
852 * CONFIG_CMDLINE into it without our knowledge. We handle
853 * CONFIG_CMDLINE ourselves below & don't want to duplicate its
854 * content because repeating arguments can be problematic.
855 */
856 strlcpy(boot_command_line, " ", COMMAND_LINE_SIZE);
857
858 /* call board setup routine */
859 plat_mem_setup();
860
861 /*
862 * Make sure all kernel memory is in the maps. The "UP" and
863 * "DOWN" are opposite for initdata since if it crosses over
864 * into another memory section you don't want that to be
865 * freed when the initdata is freed.
866 */
867 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
868 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
869 BOOT_MEM_RAM);
870 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
871 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
872 BOOT_MEM_INIT_RAM);
873
874 pr_info("Determined physical RAM map:\n");
875 print_memory_map();
876
877 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
878 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
879 #else
880 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
881 (USE_DTB_CMDLINE && !boot_command_line[0]))
882 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
883
884 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
885 if (boot_command_line[0])
886 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
887 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
888 }
889
890 #if defined(CONFIG_CMDLINE_BOOL)
891 if (builtin_cmdline[0]) {
892 if (boot_command_line[0])
893 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
894 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
895 }
896
897 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
898 if (boot_command_line[0])
899 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
900 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
901 }
902 #endif
903 #endif
904 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
905
906 *cmdline_p = command_line;
907
908 parse_early_param();
909
910 if (usermem) {
911 pr_info("User-defined physical RAM map:\n");
912 print_memory_map();
913 }
914
915 early_init_fdt_reserve_self();
916 early_init_fdt_scan_reserved_mem();
917
918 bootmem_init();
919 #ifdef CONFIG_PROC_VMCORE
920 if (setup_elfcorehdr && setup_elfcorehdr_size) {
921 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
922 setup_elfcorehdr, setup_elfcorehdr_size);
923 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
924 BOOTMEM_DEFAULT);
925 }
926 #endif
927
928 mips_parse_crashkernel();
929 #ifdef CONFIG_KEXEC
930 if (crashk_res.start != crashk_res.end)
931 reserve_bootmem(crashk_res.start,
932 crashk_res.end - crashk_res.start + 1,
933 BOOTMEM_DEFAULT);
934 #endif
935 device_tree_init();
936 sparse_init();
937 plat_swiotlb_setup();
938
939 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
940 /* Tell bootmem about cma reserved memblock section */
941 for_each_memblock(reserved, reg)
942 if (reg->size != 0)
943 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
944
945 reserve_bootmem_region(__pa_symbol(&__nosave_begin),
946 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
947 }
948
resource_init(void)949 static void __init resource_init(void)
950 {
951 int i;
952
953 if (UNCAC_BASE != IO_BASE)
954 return;
955
956 code_resource.start = __pa_symbol(&_text);
957 code_resource.end = __pa_symbol(&_etext) - 1;
958 data_resource.start = __pa_symbol(&_etext);
959 data_resource.end = __pa_symbol(&_edata) - 1;
960 bss_resource.start = __pa_symbol(&__bss_start);
961 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
962
963 for (i = 0; i < boot_mem_map.nr_map; i++) {
964 struct resource *res;
965 unsigned long start, end;
966
967 start = boot_mem_map.map[i].addr;
968 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
969 if (start >= HIGHMEM_START)
970 continue;
971 if (end >= HIGHMEM_START)
972 end = HIGHMEM_START - 1;
973
974 res = alloc_bootmem(sizeof(struct resource));
975
976 res->start = start;
977 res->end = end;
978 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
979
980 switch (boot_mem_map.map[i].type) {
981 case BOOT_MEM_RAM:
982 case BOOT_MEM_INIT_RAM:
983 case BOOT_MEM_ROM_DATA:
984 res->name = "System RAM";
985 res->flags |= IORESOURCE_SYSRAM;
986 break;
987 case BOOT_MEM_RESERVED:
988 default:
989 res->name = "reserved";
990 }
991
992 request_resource(&iomem_resource, res);
993
994 /*
995 * We don't know which RAM region contains kernel data,
996 * so we try it repeatedly and let the resource manager
997 * test it.
998 */
999 request_resource(res, &code_resource);
1000 request_resource(res, &data_resource);
1001 request_resource(res, &bss_resource);
1002 request_crashkernel(res);
1003 }
1004 }
1005
1006 #ifdef CONFIG_SMP
prefill_possible_map(void)1007 static void __init prefill_possible_map(void)
1008 {
1009 int i, possible = num_possible_cpus();
1010
1011 if (possible > nr_cpu_ids)
1012 possible = nr_cpu_ids;
1013
1014 for (i = 0; i < possible; i++)
1015 set_cpu_possible(i, true);
1016 for (; i < NR_CPUS; i++)
1017 set_cpu_possible(i, false);
1018
1019 nr_cpu_ids = possible;
1020 }
1021 #else
prefill_possible_map(void)1022 static inline void prefill_possible_map(void) {}
1023 #endif
1024
setup_arch(char ** cmdline_p)1025 void __init setup_arch(char **cmdline_p)
1026 {
1027 cpu_probe();
1028 mips_cm_probe();
1029 prom_init();
1030
1031 setup_early_fdc_console();
1032 #ifdef CONFIG_EARLY_PRINTK
1033 setup_early_printk();
1034 #endif
1035 cpu_report();
1036 check_bugs_early();
1037
1038 #if defined(CONFIG_VT)
1039 #if defined(CONFIG_VGA_CONSOLE)
1040 conswitchp = &vga_con;
1041 #elif defined(CONFIG_DUMMY_CONSOLE)
1042 conswitchp = &dummy_con;
1043 #endif
1044 #endif
1045
1046 arch_mem_init(cmdline_p);
1047
1048 resource_init();
1049 plat_smp_setup();
1050 prefill_possible_map();
1051
1052 cpu_cache_init();
1053 paging_init();
1054 }
1055
1056 unsigned long kernelsp[NR_CPUS];
1057 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
1058
1059 #ifdef CONFIG_USE_OF
1060 unsigned long fw_passed_dtb;
1061 #endif
1062
1063 #ifdef CONFIG_DEBUG_FS
1064 struct dentry *mips_debugfs_dir;
debugfs_mips(void)1065 static int __init debugfs_mips(void)
1066 {
1067 struct dentry *d;
1068
1069 d = debugfs_create_dir("mips", NULL);
1070 if (!d)
1071 return -ENOMEM;
1072 mips_debugfs_dir = d;
1073 return 0;
1074 }
1075 arch_initcall(debugfs_mips);
1076 #endif
1077
1078 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
1079 /* User defined DMA coherency from command line. */
1080 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
1081 EXPORT_SYMBOL_GPL(coherentio);
1082 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
1083
setcoherentio(char * str)1084 static int __init setcoherentio(char *str)
1085 {
1086 coherentio = IO_COHERENCE_ENABLED;
1087 pr_info("Hardware DMA cache coherency (command line)\n");
1088 return 0;
1089 }
1090 early_param("coherentio", setcoherentio);
1091
setnocoherentio(char * str)1092 static int __init setnocoherentio(char *str)
1093 {
1094 coherentio = IO_COHERENCE_DISABLED;
1095 pr_info("Software DMA cache coherency (command line)\n");
1096 return 0;
1097 }
1098 early_param("nocoherentio", setnocoherentio);
1099 #endif
1100