1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28
29 #include <asm/byteorder.h>
30
31 #include "core.h"
32
33 #define HEADER_PRI(pri) ((pri) << 0)
34 #define HEADER_TCODE(tcode) ((tcode) << 4)
35 #define HEADER_RETRY(retry) ((retry) << 8)
36 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
37 #define HEADER_DESTINATION(destination) ((destination) << 16)
38 #define HEADER_SOURCE(source) ((source) << 16)
39 #define HEADER_RCODE(rcode) ((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length) ((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
43
44 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
52
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56 #define PHY_PACKET_CONFIG 0x0
57 #define PHY_PACKET_LINK_ON 0x1
58 #define PHY_PACKET_SELF_ID 0x2
59
60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id) ((id) << 30)
63
64 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67 if (t->is_split_transaction)
68 return del_timer(&t->split_timeout_timer);
69 else
70 return 1;
71 }
72
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode)73 static int close_transaction(struct fw_transaction *transaction,
74 struct fw_card *card, int rcode)
75 {
76 struct fw_transaction *t;
77 unsigned long flags;
78
79 spin_lock_irqsave(&card->lock, flags);
80 list_for_each_entry(t, &card->transaction_list, link) {
81 if (t == transaction) {
82 if (!try_cancel_split_timeout(t)) {
83 spin_unlock_irqrestore(&card->lock, flags);
84 goto timed_out;
85 }
86 list_del_init(&t->link);
87 card->tlabel_mask &= ~(1ULL << t->tlabel);
88 break;
89 }
90 }
91 spin_unlock_irqrestore(&card->lock, flags);
92
93 if (&t->link != &card->transaction_list) {
94 t->callback(card, rcode, NULL, 0, t->callback_data);
95 return 0;
96 }
97
98 timed_out:
99 return -ENOENT;
100 }
101
102 /*
103 * Only valid for transactions that are potentially pending (ie have
104 * been sent).
105 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)106 int fw_cancel_transaction(struct fw_card *card,
107 struct fw_transaction *transaction)
108 {
109 /*
110 * Cancel the packet transmission if it's still queued. That
111 * will call the packet transmission callback which cancels
112 * the transaction.
113 */
114
115 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
116 return 0;
117
118 /*
119 * If the request packet has already been sent, we need to see
120 * if the transaction is still pending and remove it in that case.
121 */
122
123 return close_transaction(transaction, card, RCODE_CANCELLED);
124 }
125 EXPORT_SYMBOL(fw_cancel_transaction);
126
split_transaction_timeout_callback(struct timer_list * timer)127 static void split_transaction_timeout_callback(struct timer_list *timer)
128 {
129 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
130 struct fw_card *card = t->card;
131 unsigned long flags;
132
133 spin_lock_irqsave(&card->lock, flags);
134 if (list_empty(&t->link)) {
135 spin_unlock_irqrestore(&card->lock, flags);
136 return;
137 }
138 list_del(&t->link);
139 card->tlabel_mask &= ~(1ULL << t->tlabel);
140 spin_unlock_irqrestore(&card->lock, flags);
141
142 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
143 }
144
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)145 static void start_split_transaction_timeout(struct fw_transaction *t,
146 struct fw_card *card)
147 {
148 unsigned long flags;
149
150 spin_lock_irqsave(&card->lock, flags);
151
152 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
153 spin_unlock_irqrestore(&card->lock, flags);
154 return;
155 }
156
157 t->is_split_transaction = true;
158 mod_timer(&t->split_timeout_timer,
159 jiffies + card->split_timeout_jiffies);
160
161 spin_unlock_irqrestore(&card->lock, flags);
162 }
163
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)164 static void transmit_complete_callback(struct fw_packet *packet,
165 struct fw_card *card, int status)
166 {
167 struct fw_transaction *t =
168 container_of(packet, struct fw_transaction, packet);
169
170 switch (status) {
171 case ACK_COMPLETE:
172 close_transaction(t, card, RCODE_COMPLETE);
173 break;
174 case ACK_PENDING:
175 start_split_transaction_timeout(t, card);
176 break;
177 case ACK_BUSY_X:
178 case ACK_BUSY_A:
179 case ACK_BUSY_B:
180 close_transaction(t, card, RCODE_BUSY);
181 break;
182 case ACK_DATA_ERROR:
183 close_transaction(t, card, RCODE_DATA_ERROR);
184 break;
185 case ACK_TYPE_ERROR:
186 close_transaction(t, card, RCODE_TYPE_ERROR);
187 break;
188 default:
189 /*
190 * In this case the ack is really a juju specific
191 * rcode, so just forward that to the callback.
192 */
193 close_transaction(t, card, status);
194 break;
195 }
196 }
197
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)198 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
199 int destination_id, int source_id, int generation, int speed,
200 unsigned long long offset, void *payload, size_t length)
201 {
202 int ext_tcode;
203
204 if (tcode == TCODE_STREAM_DATA) {
205 packet->header[0] =
206 HEADER_DATA_LENGTH(length) |
207 destination_id |
208 HEADER_TCODE(TCODE_STREAM_DATA);
209 packet->header_length = 4;
210 packet->payload = payload;
211 packet->payload_length = length;
212
213 goto common;
214 }
215
216 if (tcode > 0x10) {
217 ext_tcode = tcode & ~0x10;
218 tcode = TCODE_LOCK_REQUEST;
219 } else
220 ext_tcode = 0;
221
222 packet->header[0] =
223 HEADER_RETRY(RETRY_X) |
224 HEADER_TLABEL(tlabel) |
225 HEADER_TCODE(tcode) |
226 HEADER_DESTINATION(destination_id);
227 packet->header[1] =
228 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
229 packet->header[2] =
230 offset;
231
232 switch (tcode) {
233 case TCODE_WRITE_QUADLET_REQUEST:
234 packet->header[3] = *(u32 *)payload;
235 packet->header_length = 16;
236 packet->payload_length = 0;
237 break;
238
239 case TCODE_LOCK_REQUEST:
240 case TCODE_WRITE_BLOCK_REQUEST:
241 packet->header[3] =
242 HEADER_DATA_LENGTH(length) |
243 HEADER_EXTENDED_TCODE(ext_tcode);
244 packet->header_length = 16;
245 packet->payload = payload;
246 packet->payload_length = length;
247 break;
248
249 case TCODE_READ_QUADLET_REQUEST:
250 packet->header_length = 12;
251 packet->payload_length = 0;
252 break;
253
254 case TCODE_READ_BLOCK_REQUEST:
255 packet->header[3] =
256 HEADER_DATA_LENGTH(length) |
257 HEADER_EXTENDED_TCODE(ext_tcode);
258 packet->header_length = 16;
259 packet->payload_length = 0;
260 break;
261
262 default:
263 WARN(1, "wrong tcode %d\n", tcode);
264 }
265 common:
266 packet->speed = speed;
267 packet->generation = generation;
268 packet->ack = 0;
269 packet->payload_mapped = false;
270 }
271
allocate_tlabel(struct fw_card * card)272 static int allocate_tlabel(struct fw_card *card)
273 {
274 int tlabel;
275
276 tlabel = card->current_tlabel;
277 while (card->tlabel_mask & (1ULL << tlabel)) {
278 tlabel = (tlabel + 1) & 0x3f;
279 if (tlabel == card->current_tlabel)
280 return -EBUSY;
281 }
282
283 card->current_tlabel = (tlabel + 1) & 0x3f;
284 card->tlabel_mask |= 1ULL << tlabel;
285
286 return tlabel;
287 }
288
289 /**
290 * fw_send_request() - submit a request packet for transmission
291 * @card: interface to send the request at
292 * @t: transaction instance to which the request belongs
293 * @tcode: transaction code
294 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
295 * @generation: bus generation in which request and response are valid
296 * @speed: transmission speed
297 * @offset: 48bit wide offset into destination's address space
298 * @payload: data payload for the request subaction
299 * @length: length of the payload, in bytes
300 * @callback: function to be called when the transaction is completed
301 * @callback_data: data to be passed to the transaction completion callback
302 *
303 * Submit a request packet into the asynchronous request transmission queue.
304 * Can be called from atomic context. If you prefer a blocking API, use
305 * fw_run_transaction() in a context that can sleep.
306 *
307 * In case of lock requests, specify one of the firewire-core specific %TCODE_
308 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
309 *
310 * Make sure that the value in @destination_id is not older than the one in
311 * @generation. Otherwise the request is in danger to be sent to a wrong node.
312 *
313 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
314 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
315 * It will contain tag, channel, and sy data instead of a node ID then.
316 *
317 * The payload buffer at @data is going to be DMA-mapped except in case of
318 * @length <= 8 or of local (loopback) requests. Hence make sure that the
319 * buffer complies with the restrictions of the streaming DMA mapping API.
320 * @payload must not be freed before the @callback is called.
321 *
322 * In case of request types without payload, @data is NULL and @length is 0.
323 *
324 * After the transaction is completed successfully or unsuccessfully, the
325 * @callback will be called. Among its parameters is the response code which
326 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
327 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
328 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
329 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
330 * generation, or missing ACK respectively.
331 *
332 * Note some timing corner cases: fw_send_request() may complete much earlier
333 * than when the request packet actually hits the wire. On the other hand,
334 * transaction completion and hence execution of @callback may happen even
335 * before fw_send_request() returns.
336 */
fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,fw_transaction_callback_t callback,void * callback_data)337 void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
338 int destination_id, int generation, int speed,
339 unsigned long long offset, void *payload, size_t length,
340 fw_transaction_callback_t callback, void *callback_data)
341 {
342 unsigned long flags;
343 int tlabel;
344
345 /*
346 * Allocate tlabel from the bitmap and put the transaction on
347 * the list while holding the card spinlock.
348 */
349
350 spin_lock_irqsave(&card->lock, flags);
351
352 tlabel = allocate_tlabel(card);
353 if (tlabel < 0) {
354 spin_unlock_irqrestore(&card->lock, flags);
355 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
356 return;
357 }
358
359 t->node_id = destination_id;
360 t->tlabel = tlabel;
361 t->card = card;
362 t->is_split_transaction = false;
363 timer_setup(&t->split_timeout_timer,
364 split_transaction_timeout_callback, 0);
365 t->callback = callback;
366 t->callback_data = callback_data;
367
368 fw_fill_request(&t->packet, tcode, t->tlabel,
369 destination_id, card->node_id, generation,
370 speed, offset, payload, length);
371 t->packet.callback = transmit_complete_callback;
372
373 list_add_tail(&t->link, &card->transaction_list);
374
375 spin_unlock_irqrestore(&card->lock, flags);
376
377 card->driver->send_request(card, &t->packet);
378 }
379 EXPORT_SYMBOL(fw_send_request);
380
381 struct transaction_callback_data {
382 struct completion done;
383 void *payload;
384 int rcode;
385 };
386
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)387 static void transaction_callback(struct fw_card *card, int rcode,
388 void *payload, size_t length, void *data)
389 {
390 struct transaction_callback_data *d = data;
391
392 if (rcode == RCODE_COMPLETE)
393 memcpy(d->payload, payload, length);
394 d->rcode = rcode;
395 complete(&d->done);
396 }
397
398 /**
399 * fw_run_transaction() - send request and sleep until transaction is completed
400 * @card: card interface for this request
401 * @tcode: transaction code
402 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
403 * @generation: bus generation in which request and response are valid
404 * @speed: transmission speed
405 * @offset: 48bit wide offset into destination's address space
406 * @payload: data payload for the request subaction
407 * @length: length of the payload, in bytes
408 *
409 * Returns the RCODE. See fw_send_request() for parameter documentation.
410 * Unlike fw_send_request(), @data points to the payload of the request or/and
411 * to the payload of the response. DMA mapping restrictions apply to outbound
412 * request payloads of >= 8 bytes but not to inbound response payloads.
413 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)414 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
415 int generation, int speed, unsigned long long offset,
416 void *payload, size_t length)
417 {
418 struct transaction_callback_data d;
419 struct fw_transaction t;
420
421 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
422 init_completion(&d.done);
423 d.payload = payload;
424 fw_send_request(card, &t, tcode, destination_id, generation, speed,
425 offset, payload, length, transaction_callback, &d);
426 wait_for_completion(&d.done);
427 destroy_timer_on_stack(&t.split_timeout_timer);
428
429 return d.rcode;
430 }
431 EXPORT_SYMBOL(fw_run_transaction);
432
433 static DEFINE_MUTEX(phy_config_mutex);
434 static DECLARE_COMPLETION(phy_config_done);
435
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)436 static void transmit_phy_packet_callback(struct fw_packet *packet,
437 struct fw_card *card, int status)
438 {
439 complete(&phy_config_done);
440 }
441
442 static struct fw_packet phy_config_packet = {
443 .header_length = 12,
444 .header[0] = TCODE_LINK_INTERNAL << 4,
445 .payload_length = 0,
446 .speed = SCODE_100,
447 .callback = transmit_phy_packet_callback,
448 };
449
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)450 void fw_send_phy_config(struct fw_card *card,
451 int node_id, int generation, int gap_count)
452 {
453 long timeout = DIV_ROUND_UP(HZ, 10);
454 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
455
456 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
457 data |= PHY_CONFIG_ROOT_ID(node_id);
458
459 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
460 gap_count = card->driver->read_phy_reg(card, 1);
461 if (gap_count < 0)
462 return;
463
464 gap_count &= 63;
465 if (gap_count == 63)
466 return;
467 }
468 data |= PHY_CONFIG_GAP_COUNT(gap_count);
469
470 mutex_lock(&phy_config_mutex);
471
472 phy_config_packet.header[1] = data;
473 phy_config_packet.header[2] = ~data;
474 phy_config_packet.generation = generation;
475 reinit_completion(&phy_config_done);
476
477 card->driver->send_request(card, &phy_config_packet);
478 wait_for_completion_timeout(&phy_config_done, timeout);
479
480 mutex_unlock(&phy_config_mutex);
481 }
482
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)483 static struct fw_address_handler *lookup_overlapping_address_handler(
484 struct list_head *list, unsigned long long offset, size_t length)
485 {
486 struct fw_address_handler *handler;
487
488 list_for_each_entry_rcu(handler, list, link) {
489 if (handler->offset < offset + length &&
490 offset < handler->offset + handler->length)
491 return handler;
492 }
493
494 return NULL;
495 }
496
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)497 static bool is_enclosing_handler(struct fw_address_handler *handler,
498 unsigned long long offset, size_t length)
499 {
500 return handler->offset <= offset &&
501 offset + length <= handler->offset + handler->length;
502 }
503
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)504 static struct fw_address_handler *lookup_enclosing_address_handler(
505 struct list_head *list, unsigned long long offset, size_t length)
506 {
507 struct fw_address_handler *handler;
508
509 list_for_each_entry_rcu(handler, list, link) {
510 if (is_enclosing_handler(handler, offset, length))
511 return handler;
512 }
513
514 return NULL;
515 }
516
517 static DEFINE_SPINLOCK(address_handler_list_lock);
518 static LIST_HEAD(address_handler_list);
519
520 const struct fw_address_region fw_high_memory_region =
521 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
522 EXPORT_SYMBOL(fw_high_memory_region);
523
524 static const struct fw_address_region low_memory_region =
525 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
526
527 #if 0
528 const struct fw_address_region fw_private_region =
529 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
530 const struct fw_address_region fw_csr_region =
531 { .start = CSR_REGISTER_BASE,
532 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
533 const struct fw_address_region fw_unit_space_region =
534 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
535 #endif /* 0 */
536
is_in_fcp_region(u64 offset,size_t length)537 static bool is_in_fcp_region(u64 offset, size_t length)
538 {
539 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
540 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
541 }
542
543 /**
544 * fw_core_add_address_handler() - register for incoming requests
545 * @handler: callback
546 * @region: region in the IEEE 1212 node space address range
547 *
548 * region->start, ->end, and handler->length have to be quadlet-aligned.
549 *
550 * When a request is received that falls within the specified address range,
551 * the specified callback is invoked. The parameters passed to the callback
552 * give the details of the particular request.
553 *
554 * To be called in process context.
555 * Return value: 0 on success, non-zero otherwise.
556 *
557 * The start offset of the handler's address region is determined by
558 * fw_core_add_address_handler() and is returned in handler->offset.
559 *
560 * Address allocations are exclusive, except for the FCP registers.
561 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)562 int fw_core_add_address_handler(struct fw_address_handler *handler,
563 const struct fw_address_region *region)
564 {
565 struct fw_address_handler *other;
566 int ret = -EBUSY;
567
568 if (region->start & 0xffff000000000003ULL ||
569 region->start >= region->end ||
570 region->end > 0x0001000000000000ULL ||
571 handler->length & 3 ||
572 handler->length == 0)
573 return -EINVAL;
574
575 spin_lock(&address_handler_list_lock);
576
577 handler->offset = region->start;
578 while (handler->offset + handler->length <= region->end) {
579 if (is_in_fcp_region(handler->offset, handler->length))
580 other = NULL;
581 else
582 other = lookup_overlapping_address_handler
583 (&address_handler_list,
584 handler->offset, handler->length);
585 if (other != NULL) {
586 handler->offset += other->length;
587 } else {
588 list_add_tail_rcu(&handler->link, &address_handler_list);
589 ret = 0;
590 break;
591 }
592 }
593
594 spin_unlock(&address_handler_list_lock);
595
596 return ret;
597 }
598 EXPORT_SYMBOL(fw_core_add_address_handler);
599
600 /**
601 * fw_core_remove_address_handler() - unregister an address handler
602 * @handler: callback
603 *
604 * To be called in process context.
605 *
606 * When fw_core_remove_address_handler() returns, @handler->callback() is
607 * guaranteed to not run on any CPU anymore.
608 */
fw_core_remove_address_handler(struct fw_address_handler * handler)609 void fw_core_remove_address_handler(struct fw_address_handler *handler)
610 {
611 spin_lock(&address_handler_list_lock);
612 list_del_rcu(&handler->link);
613 spin_unlock(&address_handler_list_lock);
614 synchronize_rcu();
615 }
616 EXPORT_SYMBOL(fw_core_remove_address_handler);
617
618 struct fw_request {
619 struct fw_packet response;
620 u32 request_header[4];
621 int ack;
622 u32 length;
623 u32 data[0];
624 };
625
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)626 static void free_response_callback(struct fw_packet *packet,
627 struct fw_card *card, int status)
628 {
629 struct fw_request *request;
630
631 request = container_of(packet, struct fw_request, response);
632 kfree(request);
633 }
634
fw_get_response_length(struct fw_request * r)635 int fw_get_response_length(struct fw_request *r)
636 {
637 int tcode, ext_tcode, data_length;
638
639 tcode = HEADER_GET_TCODE(r->request_header[0]);
640
641 switch (tcode) {
642 case TCODE_WRITE_QUADLET_REQUEST:
643 case TCODE_WRITE_BLOCK_REQUEST:
644 return 0;
645
646 case TCODE_READ_QUADLET_REQUEST:
647 return 4;
648
649 case TCODE_READ_BLOCK_REQUEST:
650 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
651 return data_length;
652
653 case TCODE_LOCK_REQUEST:
654 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
655 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
656 switch (ext_tcode) {
657 case EXTCODE_FETCH_ADD:
658 case EXTCODE_LITTLE_ADD:
659 return data_length;
660 default:
661 return data_length / 2;
662 }
663
664 default:
665 WARN(1, "wrong tcode %d\n", tcode);
666 return 0;
667 }
668 }
669
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)670 void fw_fill_response(struct fw_packet *response, u32 *request_header,
671 int rcode, void *payload, size_t length)
672 {
673 int tcode, tlabel, extended_tcode, source, destination;
674
675 tcode = HEADER_GET_TCODE(request_header[0]);
676 tlabel = HEADER_GET_TLABEL(request_header[0]);
677 source = HEADER_GET_DESTINATION(request_header[0]);
678 destination = HEADER_GET_SOURCE(request_header[1]);
679 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
680
681 response->header[0] =
682 HEADER_RETRY(RETRY_1) |
683 HEADER_TLABEL(tlabel) |
684 HEADER_DESTINATION(destination);
685 response->header[1] =
686 HEADER_SOURCE(source) |
687 HEADER_RCODE(rcode);
688 response->header[2] = 0;
689
690 switch (tcode) {
691 case TCODE_WRITE_QUADLET_REQUEST:
692 case TCODE_WRITE_BLOCK_REQUEST:
693 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
694 response->header_length = 12;
695 response->payload_length = 0;
696 break;
697
698 case TCODE_READ_QUADLET_REQUEST:
699 response->header[0] |=
700 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
701 if (payload != NULL)
702 response->header[3] = *(u32 *)payload;
703 else
704 response->header[3] = 0;
705 response->header_length = 16;
706 response->payload_length = 0;
707 break;
708
709 case TCODE_READ_BLOCK_REQUEST:
710 case TCODE_LOCK_REQUEST:
711 response->header[0] |= HEADER_TCODE(tcode + 2);
712 response->header[3] =
713 HEADER_DATA_LENGTH(length) |
714 HEADER_EXTENDED_TCODE(extended_tcode);
715 response->header_length = 16;
716 response->payload = payload;
717 response->payload_length = length;
718 break;
719
720 default:
721 WARN(1, "wrong tcode %d\n", tcode);
722 }
723
724 response->payload_mapped = false;
725 }
726 EXPORT_SYMBOL(fw_fill_response);
727
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)728 static u32 compute_split_timeout_timestamp(struct fw_card *card,
729 u32 request_timestamp)
730 {
731 unsigned int cycles;
732 u32 timestamp;
733
734 cycles = card->split_timeout_cycles;
735 cycles += request_timestamp & 0x1fff;
736
737 timestamp = request_timestamp & ~0x1fff;
738 timestamp += (cycles / 8000) << 13;
739 timestamp |= cycles % 8000;
740
741 return timestamp;
742 }
743
allocate_request(struct fw_card * card,struct fw_packet * p)744 static struct fw_request *allocate_request(struct fw_card *card,
745 struct fw_packet *p)
746 {
747 struct fw_request *request;
748 u32 *data, length;
749 int request_tcode;
750
751 request_tcode = HEADER_GET_TCODE(p->header[0]);
752 switch (request_tcode) {
753 case TCODE_WRITE_QUADLET_REQUEST:
754 data = &p->header[3];
755 length = 4;
756 break;
757
758 case TCODE_WRITE_BLOCK_REQUEST:
759 case TCODE_LOCK_REQUEST:
760 data = p->payload;
761 length = HEADER_GET_DATA_LENGTH(p->header[3]);
762 break;
763
764 case TCODE_READ_QUADLET_REQUEST:
765 data = NULL;
766 length = 4;
767 break;
768
769 case TCODE_READ_BLOCK_REQUEST:
770 data = NULL;
771 length = HEADER_GET_DATA_LENGTH(p->header[3]);
772 break;
773
774 default:
775 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
776 p->header[0], p->header[1], p->header[2]);
777 return NULL;
778 }
779
780 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
781 if (request == NULL)
782 return NULL;
783
784 request->response.speed = p->speed;
785 request->response.timestamp =
786 compute_split_timeout_timestamp(card, p->timestamp);
787 request->response.generation = p->generation;
788 request->response.ack = 0;
789 request->response.callback = free_response_callback;
790 request->ack = p->ack;
791 request->length = length;
792 if (data)
793 memcpy(request->data, data, length);
794
795 memcpy(request->request_header, p->header, sizeof(p->header));
796
797 return request;
798 }
799
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)800 void fw_send_response(struct fw_card *card,
801 struct fw_request *request, int rcode)
802 {
803 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
804 return;
805
806 /* unified transaction or broadcast transaction: don't respond */
807 if (request->ack != ACK_PENDING ||
808 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
809 kfree(request);
810 return;
811 }
812
813 if (rcode == RCODE_COMPLETE)
814 fw_fill_response(&request->response, request->request_header,
815 rcode, request->data,
816 fw_get_response_length(request));
817 else
818 fw_fill_response(&request->response, request->request_header,
819 rcode, NULL, 0);
820
821 card->driver->send_response(card, &request->response);
822 }
823 EXPORT_SYMBOL(fw_send_response);
824
825 /**
826 * fw_get_request_speed() - returns speed at which the @request was received
827 * @request: firewire request data
828 */
fw_get_request_speed(struct fw_request * request)829 int fw_get_request_speed(struct fw_request *request)
830 {
831 return request->response.speed;
832 }
833 EXPORT_SYMBOL(fw_get_request_speed);
834
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)835 static void handle_exclusive_region_request(struct fw_card *card,
836 struct fw_packet *p,
837 struct fw_request *request,
838 unsigned long long offset)
839 {
840 struct fw_address_handler *handler;
841 int tcode, destination, source;
842
843 destination = HEADER_GET_DESTINATION(p->header[0]);
844 source = HEADER_GET_SOURCE(p->header[1]);
845 tcode = HEADER_GET_TCODE(p->header[0]);
846 if (tcode == TCODE_LOCK_REQUEST)
847 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
848
849 rcu_read_lock();
850 handler = lookup_enclosing_address_handler(&address_handler_list,
851 offset, request->length);
852 if (handler)
853 handler->address_callback(card, request,
854 tcode, destination, source,
855 p->generation, offset,
856 request->data, request->length,
857 handler->callback_data);
858 rcu_read_unlock();
859
860 if (!handler)
861 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
862 }
863
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)864 static void handle_fcp_region_request(struct fw_card *card,
865 struct fw_packet *p,
866 struct fw_request *request,
867 unsigned long long offset)
868 {
869 struct fw_address_handler *handler;
870 int tcode, destination, source;
871
872 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
873 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
874 request->length > 0x200) {
875 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
876
877 return;
878 }
879
880 tcode = HEADER_GET_TCODE(p->header[0]);
881 destination = HEADER_GET_DESTINATION(p->header[0]);
882 source = HEADER_GET_SOURCE(p->header[1]);
883
884 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
885 tcode != TCODE_WRITE_BLOCK_REQUEST) {
886 fw_send_response(card, request, RCODE_TYPE_ERROR);
887
888 return;
889 }
890
891 rcu_read_lock();
892 list_for_each_entry_rcu(handler, &address_handler_list, link) {
893 if (is_enclosing_handler(handler, offset, request->length))
894 handler->address_callback(card, NULL, tcode,
895 destination, source,
896 p->generation, offset,
897 request->data,
898 request->length,
899 handler->callback_data);
900 }
901 rcu_read_unlock();
902
903 fw_send_response(card, request, RCODE_COMPLETE);
904 }
905
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)906 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
907 {
908 struct fw_request *request;
909 unsigned long long offset;
910
911 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
912 return;
913
914 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
915 fw_cdev_handle_phy_packet(card, p);
916 return;
917 }
918
919 request = allocate_request(card, p);
920 if (request == NULL) {
921 /* FIXME: send statically allocated busy packet. */
922 return;
923 }
924
925 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
926 p->header[2];
927
928 if (!is_in_fcp_region(offset, request->length))
929 handle_exclusive_region_request(card, p, request, offset);
930 else
931 handle_fcp_region_request(card, p, request, offset);
932
933 }
934 EXPORT_SYMBOL(fw_core_handle_request);
935
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)936 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
937 {
938 struct fw_transaction *t;
939 unsigned long flags;
940 u32 *data;
941 size_t data_length;
942 int tcode, tlabel, source, rcode;
943
944 tcode = HEADER_GET_TCODE(p->header[0]);
945 tlabel = HEADER_GET_TLABEL(p->header[0]);
946 source = HEADER_GET_SOURCE(p->header[1]);
947 rcode = HEADER_GET_RCODE(p->header[1]);
948
949 spin_lock_irqsave(&card->lock, flags);
950 list_for_each_entry(t, &card->transaction_list, link) {
951 if (t->node_id == source && t->tlabel == tlabel) {
952 if (!try_cancel_split_timeout(t)) {
953 spin_unlock_irqrestore(&card->lock, flags);
954 goto timed_out;
955 }
956 list_del_init(&t->link);
957 card->tlabel_mask &= ~(1ULL << t->tlabel);
958 break;
959 }
960 }
961 spin_unlock_irqrestore(&card->lock, flags);
962
963 if (&t->link == &card->transaction_list) {
964 timed_out:
965 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
966 source, tlabel);
967 return;
968 }
969
970 /*
971 * FIXME: sanity check packet, is length correct, does tcodes
972 * and addresses match.
973 */
974
975 switch (tcode) {
976 case TCODE_READ_QUADLET_RESPONSE:
977 data = (u32 *) &p->header[3];
978 data_length = 4;
979 break;
980
981 case TCODE_WRITE_RESPONSE:
982 data = NULL;
983 data_length = 0;
984 break;
985
986 case TCODE_READ_BLOCK_RESPONSE:
987 case TCODE_LOCK_RESPONSE:
988 data = p->payload;
989 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
990 break;
991
992 default:
993 /* Should never happen, this is just to shut up gcc. */
994 data = NULL;
995 data_length = 0;
996 break;
997 }
998
999 /*
1000 * The response handler may be executed while the request handler
1001 * is still pending. Cancel the request handler.
1002 */
1003 card->driver->cancel_packet(card, &t->packet);
1004
1005 t->callback(card, rcode, data, data_length, t->callback_data);
1006 }
1007 EXPORT_SYMBOL(fw_core_handle_response);
1008
1009 /**
1010 * fw_rcode_string - convert a firewire result code to an error description
1011 * @rcode: the result code
1012 */
fw_rcode_string(int rcode)1013 const char *fw_rcode_string(int rcode)
1014 {
1015 static const char *const names[] = {
1016 [RCODE_COMPLETE] = "no error",
1017 [RCODE_CONFLICT_ERROR] = "conflict error",
1018 [RCODE_DATA_ERROR] = "data error",
1019 [RCODE_TYPE_ERROR] = "type error",
1020 [RCODE_ADDRESS_ERROR] = "address error",
1021 [RCODE_SEND_ERROR] = "send error",
1022 [RCODE_CANCELLED] = "timeout",
1023 [RCODE_BUSY] = "busy",
1024 [RCODE_GENERATION] = "bus reset",
1025 [RCODE_NO_ACK] = "no ack",
1026 };
1027
1028 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1029 return names[rcode];
1030 else
1031 return "unknown";
1032 }
1033 EXPORT_SYMBOL(fw_rcode_string);
1034
1035 static const struct fw_address_region topology_map_region =
1036 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1037 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1038
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1039 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1040 int tcode, int destination, int source, int generation,
1041 unsigned long long offset, void *payload, size_t length,
1042 void *callback_data)
1043 {
1044 int start;
1045
1046 if (!TCODE_IS_READ_REQUEST(tcode)) {
1047 fw_send_response(card, request, RCODE_TYPE_ERROR);
1048 return;
1049 }
1050
1051 if ((offset & 3) > 0 || (length & 3) > 0) {
1052 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1053 return;
1054 }
1055
1056 start = (offset - topology_map_region.start) / 4;
1057 memcpy(payload, &card->topology_map[start], length);
1058
1059 fw_send_response(card, request, RCODE_COMPLETE);
1060 }
1061
1062 static struct fw_address_handler topology_map = {
1063 .length = 0x400,
1064 .address_callback = handle_topology_map,
1065 };
1066
1067 static const struct fw_address_region registers_region =
1068 { .start = CSR_REGISTER_BASE,
1069 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1070
update_split_timeout(struct fw_card * card)1071 static void update_split_timeout(struct fw_card *card)
1072 {
1073 unsigned int cycles;
1074
1075 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1076
1077 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1078 cycles = clamp(cycles, 800u, 3u * 8000u);
1079
1080 card->split_timeout_cycles = cycles;
1081 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1082 }
1083
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1084 static void handle_registers(struct fw_card *card, struct fw_request *request,
1085 int tcode, int destination, int source, int generation,
1086 unsigned long long offset, void *payload, size_t length,
1087 void *callback_data)
1088 {
1089 int reg = offset & ~CSR_REGISTER_BASE;
1090 __be32 *data = payload;
1091 int rcode = RCODE_COMPLETE;
1092 unsigned long flags;
1093
1094 switch (reg) {
1095 case CSR_PRIORITY_BUDGET:
1096 if (!card->priority_budget_implemented) {
1097 rcode = RCODE_ADDRESS_ERROR;
1098 break;
1099 }
1100 /* else fall through */
1101
1102 case CSR_NODE_IDS:
1103 /*
1104 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1105 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1106 */
1107 /* fall through */
1108
1109 case CSR_STATE_CLEAR:
1110 case CSR_STATE_SET:
1111 case CSR_CYCLE_TIME:
1112 case CSR_BUS_TIME:
1113 case CSR_BUSY_TIMEOUT:
1114 if (tcode == TCODE_READ_QUADLET_REQUEST)
1115 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1116 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1117 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1118 else
1119 rcode = RCODE_TYPE_ERROR;
1120 break;
1121
1122 case CSR_RESET_START:
1123 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1124 card->driver->write_csr(card, CSR_STATE_CLEAR,
1125 CSR_STATE_BIT_ABDICATE);
1126 else
1127 rcode = RCODE_TYPE_ERROR;
1128 break;
1129
1130 case CSR_SPLIT_TIMEOUT_HI:
1131 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1132 *data = cpu_to_be32(card->split_timeout_hi);
1133 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1134 spin_lock_irqsave(&card->lock, flags);
1135 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1136 update_split_timeout(card);
1137 spin_unlock_irqrestore(&card->lock, flags);
1138 } else {
1139 rcode = RCODE_TYPE_ERROR;
1140 }
1141 break;
1142
1143 case CSR_SPLIT_TIMEOUT_LO:
1144 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1145 *data = cpu_to_be32(card->split_timeout_lo);
1146 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1147 spin_lock_irqsave(&card->lock, flags);
1148 card->split_timeout_lo =
1149 be32_to_cpu(*data) & 0xfff80000;
1150 update_split_timeout(card);
1151 spin_unlock_irqrestore(&card->lock, flags);
1152 } else {
1153 rcode = RCODE_TYPE_ERROR;
1154 }
1155 break;
1156
1157 case CSR_MAINT_UTILITY:
1158 if (tcode == TCODE_READ_QUADLET_REQUEST)
1159 *data = card->maint_utility_register;
1160 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1161 card->maint_utility_register = *data;
1162 else
1163 rcode = RCODE_TYPE_ERROR;
1164 break;
1165
1166 case CSR_BROADCAST_CHANNEL:
1167 if (tcode == TCODE_READ_QUADLET_REQUEST)
1168 *data = cpu_to_be32(card->broadcast_channel);
1169 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1170 card->broadcast_channel =
1171 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1172 BROADCAST_CHANNEL_INITIAL;
1173 else
1174 rcode = RCODE_TYPE_ERROR;
1175 break;
1176
1177 case CSR_BUS_MANAGER_ID:
1178 case CSR_BANDWIDTH_AVAILABLE:
1179 case CSR_CHANNELS_AVAILABLE_HI:
1180 case CSR_CHANNELS_AVAILABLE_LO:
1181 /*
1182 * FIXME: these are handled by the OHCI hardware and
1183 * the stack never sees these request. If we add
1184 * support for a new type of controller that doesn't
1185 * handle this in hardware we need to deal with these
1186 * transactions.
1187 */
1188 BUG();
1189 break;
1190
1191 default:
1192 rcode = RCODE_ADDRESS_ERROR;
1193 break;
1194 }
1195
1196 fw_send_response(card, request, rcode);
1197 }
1198
1199 static struct fw_address_handler registers = {
1200 .length = 0x400,
1201 .address_callback = handle_registers,
1202 };
1203
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1204 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1205 int tcode, int destination, int source, int generation,
1206 unsigned long long offset, void *payload, size_t length,
1207 void *callback_data)
1208 {
1209 /*
1210 * This catches requests not handled by the physical DMA unit,
1211 * i.e., wrong transaction types or unauthorized source nodes.
1212 */
1213 fw_send_response(card, request, RCODE_TYPE_ERROR);
1214 }
1215
1216 static struct fw_address_handler low_memory = {
1217 .length = FW_MAX_PHYSICAL_RANGE,
1218 .address_callback = handle_low_memory,
1219 };
1220
1221 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1222 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1223 MODULE_LICENSE("GPL");
1224
1225 static const u32 vendor_textual_descriptor[] = {
1226 /* textual descriptor leaf () */
1227 0x00060000,
1228 0x00000000,
1229 0x00000000,
1230 0x4c696e75, /* L i n u */
1231 0x78204669, /* x F i */
1232 0x72657769, /* r e w i */
1233 0x72650000, /* r e */
1234 };
1235
1236 static const u32 model_textual_descriptor[] = {
1237 /* model descriptor leaf () */
1238 0x00030000,
1239 0x00000000,
1240 0x00000000,
1241 0x4a756a75, /* J u j u */
1242 };
1243
1244 static struct fw_descriptor vendor_id_descriptor = {
1245 .length = ARRAY_SIZE(vendor_textual_descriptor),
1246 .immediate = 0x03001f11,
1247 .key = 0x81000000,
1248 .data = vendor_textual_descriptor,
1249 };
1250
1251 static struct fw_descriptor model_id_descriptor = {
1252 .length = ARRAY_SIZE(model_textual_descriptor),
1253 .immediate = 0x17023901,
1254 .key = 0x81000000,
1255 .data = model_textual_descriptor,
1256 };
1257
fw_core_init(void)1258 static int __init fw_core_init(void)
1259 {
1260 int ret;
1261
1262 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1263 if (!fw_workqueue)
1264 return -ENOMEM;
1265
1266 ret = bus_register(&fw_bus_type);
1267 if (ret < 0) {
1268 destroy_workqueue(fw_workqueue);
1269 return ret;
1270 }
1271
1272 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1273 if (fw_cdev_major < 0) {
1274 bus_unregister(&fw_bus_type);
1275 destroy_workqueue(fw_workqueue);
1276 return fw_cdev_major;
1277 }
1278
1279 fw_core_add_address_handler(&topology_map, &topology_map_region);
1280 fw_core_add_address_handler(®isters, ®isters_region);
1281 fw_core_add_address_handler(&low_memory, &low_memory_region);
1282 fw_core_add_descriptor(&vendor_id_descriptor);
1283 fw_core_add_descriptor(&model_id_descriptor);
1284
1285 return 0;
1286 }
1287
fw_core_cleanup(void)1288 static void __exit fw_core_cleanup(void)
1289 {
1290 unregister_chrdev(fw_cdev_major, "firewire");
1291 bus_unregister(&fw_bus_type);
1292 destroy_workqueue(fw_workqueue);
1293 idr_destroy(&fw_device_idr);
1294 }
1295
1296 module_init(fw_core_init);
1297 module_exit(fw_core_cleanup);
1298