1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * Copyright 2016-2022 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/drm/habanalabs_accel.h>
15
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/eventfd.h>
25 #include <linux/bitfield.h>
26 #include <linux/genalloc.h>
27 #include <linux/sched/signal.h>
28 #include <linux/io-64-nonatomic-lo-hi.h>
29 #include <linux/coresight.h>
30 #include <linux/dma-buf.h>
31
32 #include "security.h"
33
34 #define HL_NAME "habanalabs"
35
36 struct hl_device;
37 struct hl_fpriv;
38
39 #define PCI_VENDOR_ID_HABANALABS 0x1da3
40
41 /* Use upper bits of mmap offset to store habana driver specific information.
42 * bits[63:59] - Encode mmap type
43 * bits[45:0] - mmap offset value
44 *
45 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
46 * defines are w.r.t to PAGE_SIZE
47 */
48 #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
49 #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
50 #define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
51 #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
52 #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
53
54 #define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
55 #define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
56
57 #define HL_PENDING_RESET_PER_SEC 10
58 #define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
59 #define HL_PENDING_RESET_LONG_SEC 60
60 /*
61 * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
62 * This is needed to prevent situation of clearing resources while user processes are still alive.
63 */
64 #define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI 600
65
66 #define HL_HARD_RESET_MAX_TIMEOUT 120
67 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT (HL_HARD_RESET_MAX_TIMEOUT * 3)
68
69 #define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
70
71 #define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
72
73 #define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
74
75 #define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
76 #define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
77 #define HL_CPUCP_MON_DUMP_TIMEOUT_USEC 10000000 /* 10s */
78 #define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
79
80 #define HL_FW_STATUS_POLL_INTERVAL_USEC 10000 /* 10ms */
81 #define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC 1000000 /* 1s */
82
83 #define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
84
85 #define HL_SIM_MAX_TIMEOUT_US 100000000 /* 100s */
86
87 #define HL_INVALID_QUEUE UINT_MAX
88
89 #define HL_COMMON_USER_CQ_INTERRUPT_ID 0xFFF
90 #define HL_COMMON_DEC_INTERRUPT_ID 0xFFE
91
92 #define HL_STATE_DUMP_HIST_LEN 5
93
94 /* Default value for device reset trigger , an invalid value */
95 #define HL_RESET_TRIGGER_DEFAULT 0xFF
96
97 #define OBJ_NAMES_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
98 #define SYNC_TO_ENGINE_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
99
100 /* Memory */
101 #define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
102
103 /* MMU */
104 #define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
105
106 /**
107 * enum hl_mmu_page_table_location - mmu page table location
108 * @MMU_DR_PGT: page-table is located on device DRAM.
109 * @MMU_HR_PGT: page-table is located on host memory.
110 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
111 */
112 enum hl_mmu_page_table_location {
113 MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
114 MMU_HR_PGT, /* host resident MMU PGT */
115 MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
116 };
117
118 /*
119 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
120 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
121 */
122 #define HL_RSVD_SOBS 2
123 #define HL_RSVD_MONS 1
124
125 /*
126 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
127 */
128 #define HL_COLLECTIVE_RSVD_MSTR_MONS 2
129
130 #define HL_MAX_SOB_VAL (1 << 15)
131
132 #define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
133 #define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
134
135 #define HL_PCI_NUM_BARS 6
136
137 /* Completion queue entry relates to completed job */
138 #define HL_COMPLETION_MODE_JOB 0
139 /* Completion queue entry relates to completed command submission */
140 #define HL_COMPLETION_MODE_CS 1
141
142 #define HL_MAX_DCORES 8
143
144 /* DMA alloc/free wrappers */
145 #define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
146 hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
147
148 #define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
149 hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
150
151 #define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
152 hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
153
154 #define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
155 hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
156
157 /*
158 * Reset Flags
159 *
160 * - HL_DRV_RESET_HARD
161 * If set do hard reset to all engines. If not set reset just
162 * compute/DMA engines.
163 *
164 * - HL_DRV_RESET_FROM_RESET_THR
165 * Set if the caller is the hard-reset thread
166 *
167 * - HL_DRV_RESET_HEARTBEAT
168 * Set if reset is due to heartbeat
169 *
170 * - HL_DRV_RESET_TDR
171 * Set if reset is due to TDR
172 *
173 * - HL_DRV_RESET_DEV_RELEASE
174 * Set if reset is due to device release
175 *
176 * - HL_DRV_RESET_BYPASS_REQ_TO_FW
177 * F/W will perform the reset. No need to ask it to reset the device. This is relevant
178 * only when running with secured f/w
179 *
180 * - HL_DRV_RESET_FW_FATAL_ERR
181 * Set if reset is due to a fatal error from FW
182 *
183 * - HL_DRV_RESET_DELAY
184 * Set if a delay should be added before the reset
185 *
186 * - HL_DRV_RESET_FROM_WD_THR
187 * Set if the caller is the device release watchdog thread
188 */
189
190 #define HL_DRV_RESET_HARD (1 << 0)
191 #define HL_DRV_RESET_FROM_RESET_THR (1 << 1)
192 #define HL_DRV_RESET_HEARTBEAT (1 << 2)
193 #define HL_DRV_RESET_TDR (1 << 3)
194 #define HL_DRV_RESET_DEV_RELEASE (1 << 4)
195 #define HL_DRV_RESET_BYPASS_REQ_TO_FW (1 << 5)
196 #define HL_DRV_RESET_FW_FATAL_ERR (1 << 6)
197 #define HL_DRV_RESET_DELAY (1 << 7)
198 #define HL_DRV_RESET_FROM_WD_THR (1 << 8)
199
200 /*
201 * Security
202 */
203
204 #define HL_PB_SHARED 1
205 #define HL_PB_NA 0
206 #define HL_PB_SINGLE_INSTANCE 1
207 #define HL_BLOCK_SIZE 0x1000
208 #define HL_BLOCK_GLBL_ERR_MASK 0xF40
209 #define HL_BLOCK_GLBL_ERR_ADDR 0xF44
210 #define HL_BLOCK_GLBL_ERR_CAUSE 0xF48
211 #define HL_BLOCK_GLBL_SEC_OFFS 0xF80
212 #define HL_BLOCK_GLBL_SEC_SIZE (HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
213 #define HL_BLOCK_GLBL_SEC_LEN (HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
214 #define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
215
216 enum hl_protection_levels {
217 SECURED_LVL,
218 PRIVILEGED_LVL,
219 NON_SECURED_LVL
220 };
221
222 /**
223 * struct iterate_module_ctx - HW module iterator
224 * @fn: function to apply to each HW module instance
225 * @data: optional internal data to the function iterator
226 * @rc: return code for optional use of iterator/iterator-caller
227 */
228 struct iterate_module_ctx {
229 /*
230 * callback for the HW module iterator
231 * @hdev: pointer to the habanalabs device structure
232 * @block: block (ASIC specific definition can be dcore/hdcore)
233 * @inst: HW module instance within the block
234 * @offset: current HW module instance offset from the 1-st HW module instance
235 * in the 1-st block
236 * @ctx: the iterator context.
237 */
238 void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
239 struct iterate_module_ctx *ctx);
240 void *data;
241 int rc;
242 };
243
244 struct hl_block_glbl_sec {
245 u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
246 };
247
248 #define HL_MAX_SOBS_PER_MONITOR 8
249
250 /**
251 * struct hl_gen_wait_properties - properties for generating a wait CB
252 * @data: command buffer
253 * @q_idx: queue id is used to extract fence register address
254 * @size: offset in command buffer
255 * @sob_base: SOB base to use in this wait CB
256 * @sob_val: SOB value to wait for
257 * @mon_id: monitor to use in this wait CB
258 * @sob_mask: each bit represents a SOB offset from sob_base to be used
259 */
260 struct hl_gen_wait_properties {
261 void *data;
262 u32 q_idx;
263 u32 size;
264 u16 sob_base;
265 u16 sob_val;
266 u16 mon_id;
267 u8 sob_mask;
268 };
269
270 /**
271 * struct pgt_info - MMU hop page info.
272 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
273 * actual pgts for host resident MMU).
274 * @phys_addr: physical address of the pgt.
275 * @virt_addr: host virtual address of the pgt (see above device/host resident).
276 * @shadow_addr: shadow hop in the host for device resident MMU.
277 * @ctx: pointer to the owner ctx.
278 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
279 * allocated HOPs (all HOPs but HOP0)
280 *
281 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
282 * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
283 *
284 * When a new level (hop) is needed during mapping this structure will be used to describe
285 * the newly allocated hop as well as to track number of PTEs in it.
286 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
287 * freed with its pgt_info structure.
288 */
289 struct pgt_info {
290 struct hlist_node node;
291 u64 phys_addr;
292 u64 virt_addr;
293 u64 shadow_addr;
294 struct hl_ctx *ctx;
295 int num_of_ptes;
296 };
297
298 /**
299 * enum hl_pci_match_mode - pci match mode per region
300 * @PCI_ADDRESS_MATCH_MODE: address match mode
301 * @PCI_BAR_MATCH_MODE: bar match mode
302 */
303 enum hl_pci_match_mode {
304 PCI_ADDRESS_MATCH_MODE,
305 PCI_BAR_MATCH_MODE
306 };
307
308 /**
309 * enum hl_fw_component - F/W components to read version through registers.
310 * @FW_COMP_BOOT_FIT: boot fit.
311 * @FW_COMP_PREBOOT: preboot.
312 * @FW_COMP_LINUX: linux.
313 */
314 enum hl_fw_component {
315 FW_COMP_BOOT_FIT,
316 FW_COMP_PREBOOT,
317 FW_COMP_LINUX,
318 };
319
320 /**
321 * enum hl_fw_types - F/W types present in the system
322 * @FW_TYPE_NONE: no FW component indication
323 * @FW_TYPE_LINUX: Linux image for device CPU
324 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
325 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
326 * (preboot, ppboot etc...)
327 * @FW_TYPE_ALL_TYPES: Mask for all types
328 */
329 enum hl_fw_types {
330 FW_TYPE_NONE = 0x0,
331 FW_TYPE_LINUX = 0x1,
332 FW_TYPE_BOOT_CPU = 0x2,
333 FW_TYPE_PREBOOT_CPU = 0x4,
334 FW_TYPE_ALL_TYPES =
335 (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
336 };
337
338 /**
339 * enum hl_queue_type - Supported QUEUE types.
340 * @QUEUE_TYPE_NA: queue is not available.
341 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
342 * host.
343 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
344 * memories and/or operates the compute engines.
345 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
346 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
347 * notifications are sent by H/W.
348 */
349 enum hl_queue_type {
350 QUEUE_TYPE_NA,
351 QUEUE_TYPE_EXT,
352 QUEUE_TYPE_INT,
353 QUEUE_TYPE_CPU,
354 QUEUE_TYPE_HW
355 };
356
357 enum hl_cs_type {
358 CS_TYPE_DEFAULT,
359 CS_TYPE_SIGNAL,
360 CS_TYPE_WAIT,
361 CS_TYPE_COLLECTIVE_WAIT,
362 CS_RESERVE_SIGNALS,
363 CS_UNRESERVE_SIGNALS,
364 CS_TYPE_ENGINE_CORE,
365 CS_TYPE_ENGINES,
366 CS_TYPE_FLUSH_PCI_HBW_WRITES,
367 };
368
369 /*
370 * struct hl_inbound_pci_region - inbound region descriptor
371 * @mode: pci match mode for this region
372 * @addr: region target address
373 * @size: region size in bytes
374 * @offset_in_bar: offset within bar (address match mode)
375 * @bar: bar id
376 */
377 struct hl_inbound_pci_region {
378 enum hl_pci_match_mode mode;
379 u64 addr;
380 u64 size;
381 u64 offset_in_bar;
382 u8 bar;
383 };
384
385 /*
386 * struct hl_outbound_pci_region - outbound region descriptor
387 * @addr: region target address
388 * @size: region size in bytes
389 */
390 struct hl_outbound_pci_region {
391 u64 addr;
392 u64 size;
393 };
394
395 /*
396 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
397 * allocated by Kernel or by User
398 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
399 * @CB_ALLOC_USER: support only CBs that allocated by User
400 */
401 enum queue_cb_alloc_flags {
402 CB_ALLOC_KERNEL = 0x1,
403 CB_ALLOC_USER = 0x2
404 };
405
406 /*
407 * struct hl_hw_sob - H/W SOB info.
408 * @hdev: habanalabs device structure.
409 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
410 * @sob_id: id of this SOB.
411 * @sob_addr: the sob offset from the base address.
412 * @q_idx: the H/W queue that uses this SOB.
413 * @need_reset: reset indication set when switching to the other sob.
414 */
415 struct hl_hw_sob {
416 struct hl_device *hdev;
417 struct kref kref;
418 u32 sob_id;
419 u32 sob_addr;
420 u32 q_idx;
421 bool need_reset;
422 };
423
424 enum hl_collective_mode {
425 HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
426 HL_COLLECTIVE_MASTER = 0x1,
427 HL_COLLECTIVE_SLAVE = 0x2
428 };
429
430 /**
431 * struct hw_queue_properties - queue information.
432 * @type: queue type.
433 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
434 * that allocated by the Kernel driver and therefore,
435 * a CB handle can be provided for jobs on this queue.
436 * Otherwise, a CB address must be provided.
437 * @collective_mode: collective mode of current queue
438 * @driver_only: true if only the driver is allowed to send a job to this queue,
439 * false otherwise.
440 * @binned: True if the queue is binned out and should not be used
441 * @supports_sync_stream: True if queue supports sync stream
442 */
443 struct hw_queue_properties {
444 enum hl_queue_type type;
445 enum queue_cb_alloc_flags cb_alloc_flags;
446 enum hl_collective_mode collective_mode;
447 u8 driver_only;
448 u8 binned;
449 u8 supports_sync_stream;
450 };
451
452 /**
453 * enum vm_type - virtual memory mapping request information.
454 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
455 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
456 */
457 enum vm_type {
458 VM_TYPE_USERPTR = 0x1,
459 VM_TYPE_PHYS_PACK = 0x2
460 };
461
462 /**
463 * enum mmu_op_flags - mmu operation relevant information.
464 * @MMU_OP_USERPTR: operation on user memory (host resident).
465 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
466 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
467 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
468 */
469 enum mmu_op_flags {
470 MMU_OP_USERPTR = 0x1,
471 MMU_OP_PHYS_PACK = 0x2,
472 MMU_OP_CLEAR_MEMCACHE = 0x4,
473 MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
474 };
475
476
477 /**
478 * enum hl_device_hw_state - H/W device state. use this to understand whether
479 * to do reset before hw_init or not
480 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
481 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
482 * hw_init
483 */
484 enum hl_device_hw_state {
485 HL_DEVICE_HW_STATE_CLEAN = 0,
486 HL_DEVICE_HW_STATE_DIRTY
487 };
488
489 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
490
491 /**
492 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
493 * @start_addr: virtual start address of the memory region.
494 * @end_addr: virtual end address of the memory region.
495 * @hop_shifts: array holds HOPs shifts.
496 * @hop_masks: array holds HOPs masks.
497 * @last_mask: mask to get the bit indicating this is the last hop.
498 * @pgt_size: size for page tables.
499 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
500 * supporting multiple page size).
501 * @page_size: default page size used to allocate memory.
502 * @num_hops: The amount of hops supported by the translation table.
503 * @hop_table_size: HOP table size.
504 * @hop0_tables_total_size: total size for all HOP0 tables.
505 * @host_resident: Should the MMU page table reside in host memory or in the
506 * device DRAM.
507 */
508 struct hl_mmu_properties {
509 u64 start_addr;
510 u64 end_addr;
511 u64 hop_shifts[MMU_HOP_MAX];
512 u64 hop_masks[MMU_HOP_MAX];
513 u64 last_mask;
514 u64 pgt_size;
515 u64 supported_pages_mask;
516 u32 page_size;
517 u32 num_hops;
518 u32 hop_table_size;
519 u32 hop0_tables_total_size;
520 u8 host_resident;
521 };
522
523 /**
524 * struct hl_hints_range - hint addresses reserved va range.
525 * @start_addr: start address of the va range.
526 * @end_addr: end address of the va range.
527 */
528 struct hl_hints_range {
529 u64 start_addr;
530 u64 end_addr;
531 };
532
533 /**
534 * struct asic_fixed_properties - ASIC specific immutable properties.
535 * @hw_queues_props: H/W queues properties.
536 * @special_blocks: points to an array containing special blocks info.
537 * @skip_special_blocks_cfg: special blocks skip configs.
538 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
539 * available sensors.
540 * @uboot_ver: F/W U-boot version.
541 * @preboot_ver: F/W Preboot version.
542 * @dmmu: DRAM MMU address translation properties.
543 * @pmmu: PCI (host) MMU address translation properties.
544 * @pmmu_huge: PCI (host) MMU address translation properties for memory
545 * allocated with huge pages.
546 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
547 * @hints_host_reserved_va_range: host hint addresses reserved range.
548 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
549 * range.
550 * @sram_base_address: SRAM physical start address.
551 * @sram_end_address: SRAM physical end address.
552 * @sram_user_base_address - SRAM physical start address for user access.
553 * @dram_base_address: DRAM physical start address.
554 * @dram_end_address: DRAM physical end address.
555 * @dram_user_base_address: DRAM physical start address for user access.
556 * @dram_size: DRAM total size.
557 * @dram_pci_bar_size: size of PCI bar towards DRAM.
558 * @max_power_default: max power of the device after reset.
559 * @dc_power_default: power consumed by the device in mode idle.
560 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
561 * fault.
562 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
563 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
564 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
565 * @mmu_dram_default_page_addr: DRAM default page physical address.
566 * @tpc_enabled_mask: which TPCs are enabled.
567 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
568 * @dram_enabled_mask: which DRAMs are enabled.
569 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
570 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
571 * for hints validity check.
572 * @cfg_base_address: config space base address.
573 * @mmu_cache_mng_addr: address of the MMU cache.
574 * @mmu_cache_mng_size: size of the MMU cache.
575 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
576 * to enable the device to access them.
577 * @host_base_address: host physical start address for host DMA from device
578 * @host_end_address: host physical end address for host DMA from device
579 * @max_freq_value: current max clk frequency.
580 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
581 * in order to raise events toward FW.
582 * @clk_pll_index: clock PLL index that specify which PLL determines the clock
583 * we display to the user
584 * @mmu_pgt_size: MMU page tables total size.
585 * @mmu_pte_size: PTE size in MMU page tables.
586 * @mmu_hop_table_size: MMU hop table size.
587 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
588 * @dram_page_size: page size for MMU DRAM allocation.
589 * @cfg_size: configuration space size on SRAM.
590 * @sram_size: total size of SRAM.
591 * @max_asid: maximum number of open contexts (ASIDs).
592 * @num_of_events: number of possible internal H/W IRQs.
593 * @psoc_pci_pll_nr: PCI PLL NR value.
594 * @psoc_pci_pll_nf: PCI PLL NF value.
595 * @psoc_pci_pll_od: PCI PLL OD value.
596 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
597 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
598 * @high_pll: high PLL frequency used by the device.
599 * @cb_pool_cb_cnt: number of CBs in the CB pool.
600 * @cb_pool_cb_size: size of each CB in the CB pool.
601 * @decoder_enabled_mask: which decoders are enabled.
602 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
603 * @rotator_enabled_mask: which rotators are enabled.
604 * @edma_enabled_mask: which EDMAs are enabled.
605 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
606 * binned (at most one binned DMA).
607 * @max_pending_cs: maximum of concurrent pending command submissions
608 * @max_queues: maximum amount of queues in the system
609 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
610 * capabilities reported by FW, bit description
611 * can be found in CPU_BOOT_DEV_STS0
612 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
613 * capabilities reported by FW, bit description
614 * can be found in CPU_BOOT_DEV_STS1
615 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
616 * status reported by FW, bit description can be
617 * found in CPU_BOOT_DEV_STS0
618 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
619 * status reported by FW, bit description can be
620 * found in CPU_BOOT_DEV_STS1
621 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
622 * status reported by FW, bit description can be
623 * found in CPU_BOOT_DEV_STS0
624 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
625 * status reported by FW, bit description can be
626 * found in CPU_BOOT_DEV_STS1
627 * @max_dec: maximum number of decoders
628 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
629 * 1- enabled, 0- isolated.
630 * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
631 * 1- faulty cluster, 0- good cluster.
632 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
633 * 1- enabled, 0- isolated.
634 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
635 * which the property supports_user_set_page_size is true
636 * (i.e. the DRAM supports multiple page sizes), otherwise
637 * it will shall be equal to dram_page_size.
638 * @num_engine_cores: number of engine cpu cores.
639 * @max_num_of_engines: maximum number of all engines in the ASIC.
640 * @num_of_special_blocks: special_blocks array size.
641 * @glbl_err_cause_num: global err cause number.
642 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
643 * not supported.
644 * @collective_first_sob: first sync object available for collective use
645 * @collective_first_mon: first monitor available for collective use
646 * @sync_stream_first_sob: first sync object available for sync stream use
647 * @sync_stream_first_mon: first monitor available for sync stream use
648 * @first_available_user_sob: first sob available for the user
649 * @first_available_user_mon: first monitor available for the user
650 * @first_available_user_interrupt: first available interrupt reserved for the user
651 * @first_available_cq: first available CQ for the user.
652 * @user_interrupt_count: number of user interrupts.
653 * @user_dec_intr_count: number of decoder interrupts exposed to user.
654 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
655 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
656 * @cache_line_size: device cache line size.
657 * @server_type: Server type that the ASIC is currently installed in.
658 * The value is according to enum hl_server_type in uapi file.
659 * @completion_queues_count: number of completion queues.
660 * @completion_mode: 0 - job based completion, 1 - cs based completion
661 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
662 * in Master/Slave mode
663 * @fw_security_enabled: true if security measures are enabled in firmware,
664 * false otherwise
665 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
666 * BOOT_DEV_STS0
667 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
668 * BOOT_DEV_STS1
669 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
670 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
671 * @num_functional_hbms: number of functional HBMs in each DCORE.
672 * @hints_range_reservation: device support hint addresses range reservation.
673 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
674 * @dynamic_fw_load: is dynamic FW load is supported.
675 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
676 * false otherwise.
677 * @use_get_power_for_reset_history: To support backward compatibility for Goya
678 * and Gaudi
679 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
680 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
681 * initiated by user or TDR. This is only true
682 * in inference ASICs, as there is no real-world
683 * use-case of doing soft-reset in training (due
684 * to the fact that training runs on multiple
685 * devices)
686 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
687 * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
688 * @supports_user_set_page_size: true if user can set the allocation page size.
689 * @dma_mask: the dma mask to be set for this device
690 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
691 * @supports_engine_modes: true if changing engines/engine_cores modes is supported.
692 */
693 struct asic_fixed_properties {
694 struct hw_queue_properties *hw_queues_props;
695 struct hl_special_block_info *special_blocks;
696 struct hl_skip_blocks_cfg skip_special_blocks_cfg;
697 struct cpucp_info cpucp_info;
698 char uboot_ver[VERSION_MAX_LEN];
699 char preboot_ver[VERSION_MAX_LEN];
700 struct hl_mmu_properties dmmu;
701 struct hl_mmu_properties pmmu;
702 struct hl_mmu_properties pmmu_huge;
703 struct hl_hints_range hints_dram_reserved_va_range;
704 struct hl_hints_range hints_host_reserved_va_range;
705 struct hl_hints_range hints_host_hpage_reserved_va_range;
706 u64 sram_base_address;
707 u64 sram_end_address;
708 u64 sram_user_base_address;
709 u64 dram_base_address;
710 u64 dram_end_address;
711 u64 dram_user_base_address;
712 u64 dram_size;
713 u64 dram_pci_bar_size;
714 u64 max_power_default;
715 u64 dc_power_default;
716 u64 dram_size_for_default_page_mapping;
717 u64 pcie_dbi_base_address;
718 u64 pcie_aux_dbi_reg_addr;
719 u64 mmu_pgt_addr;
720 u64 mmu_dram_default_page_addr;
721 u64 tpc_enabled_mask;
722 u64 tpc_binning_mask;
723 u64 dram_enabled_mask;
724 u64 dram_binning_mask;
725 u64 dram_hints_align_mask;
726 u64 cfg_base_address;
727 u64 mmu_cache_mng_addr;
728 u64 mmu_cache_mng_size;
729 u64 device_dma_offset_for_host_access;
730 u64 host_base_address;
731 u64 host_end_address;
732 u64 max_freq_value;
733 u64 engine_core_interrupt_reg_addr;
734 u32 clk_pll_index;
735 u32 mmu_pgt_size;
736 u32 mmu_pte_size;
737 u32 mmu_hop_table_size;
738 u32 mmu_hop0_tables_total_size;
739 u32 dram_page_size;
740 u32 cfg_size;
741 u32 sram_size;
742 u32 max_asid;
743 u32 num_of_events;
744 u32 psoc_pci_pll_nr;
745 u32 psoc_pci_pll_nf;
746 u32 psoc_pci_pll_od;
747 u32 psoc_pci_pll_div_factor;
748 u32 psoc_timestamp_frequency;
749 u32 high_pll;
750 u32 cb_pool_cb_cnt;
751 u32 cb_pool_cb_size;
752 u32 decoder_enabled_mask;
753 u32 decoder_binning_mask;
754 u32 rotator_enabled_mask;
755 u32 edma_enabled_mask;
756 u32 edma_binning_mask;
757 u32 max_pending_cs;
758 u32 max_queues;
759 u32 fw_preboot_cpu_boot_dev_sts0;
760 u32 fw_preboot_cpu_boot_dev_sts1;
761 u32 fw_bootfit_cpu_boot_dev_sts0;
762 u32 fw_bootfit_cpu_boot_dev_sts1;
763 u32 fw_app_cpu_boot_dev_sts0;
764 u32 fw_app_cpu_boot_dev_sts1;
765 u32 max_dec;
766 u32 hmmu_hif_enabled_mask;
767 u32 faulty_dram_cluster_map;
768 u32 xbar_edge_enabled_mask;
769 u32 device_mem_alloc_default_page_size;
770 u32 num_engine_cores;
771 u32 max_num_of_engines;
772 u32 num_of_special_blocks;
773 u32 glbl_err_cause_num;
774 u32 hbw_flush_reg;
775 u16 collective_first_sob;
776 u16 collective_first_mon;
777 u16 sync_stream_first_sob;
778 u16 sync_stream_first_mon;
779 u16 first_available_user_sob[HL_MAX_DCORES];
780 u16 first_available_user_mon[HL_MAX_DCORES];
781 u16 first_available_user_interrupt;
782 u16 first_available_cq[HL_MAX_DCORES];
783 u16 user_interrupt_count;
784 u16 user_dec_intr_count;
785 u16 tpc_interrupt_id;
786 u16 eq_interrupt_id;
787 u16 cache_line_size;
788 u16 server_type;
789 u8 completion_queues_count;
790 u8 completion_mode;
791 u8 mme_master_slave_mode;
792 u8 fw_security_enabled;
793 u8 fw_cpu_boot_dev_sts0_valid;
794 u8 fw_cpu_boot_dev_sts1_valid;
795 u8 dram_supports_virtual_memory;
796 u8 hard_reset_done_by_fw;
797 u8 num_functional_hbms;
798 u8 hints_range_reservation;
799 u8 iatu_done_by_fw;
800 u8 dynamic_fw_load;
801 u8 gic_interrupts_enable;
802 u8 use_get_power_for_reset_history;
803 u8 supports_compute_reset;
804 u8 allow_inference_soft_reset;
805 u8 configurable_stop_on_err;
806 u8 set_max_power_on_device_init;
807 u8 supports_user_set_page_size;
808 u8 dma_mask;
809 u8 supports_advanced_cpucp_rc;
810 u8 supports_engine_modes;
811 };
812
813 /**
814 * struct hl_fence - software synchronization primitive
815 * @completion: fence is implemented using completion
816 * @refcount: refcount for this fence
817 * @cs_sequence: sequence of the corresponding command submission
818 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
819 * masters QIDs that multi cs is waiting on
820 * @error: mark this fence with error
821 * @timestamp: timestamp upon completion
822 * @mcs_handling_done: indicates that corresponding command submission has
823 * finished msc handling, this does not mean it was part
824 * of the mcs
825 */
826 struct hl_fence {
827 struct completion completion;
828 struct kref refcount;
829 u64 cs_sequence;
830 u32 stream_master_qid_map;
831 int error;
832 ktime_t timestamp;
833 u8 mcs_handling_done;
834 };
835
836 /**
837 * struct hl_cs_compl - command submission completion object.
838 * @base_fence: hl fence object.
839 * @lock: spinlock to protect fence.
840 * @hdev: habanalabs device structure.
841 * @hw_sob: the H/W SOB used in this signal/wait CS.
842 * @encaps_sig_hdl: encaps signals handler.
843 * @cs_seq: command submission sequence number.
844 * @type: type of the CS - signal/wait.
845 * @sob_val: the SOB value that is used in this signal/wait CS.
846 * @sob_group: the SOB group that is used in this collective wait CS.
847 * @encaps_signals: indication whether it's a completion object of cs with
848 * encaps signals or not.
849 */
850 struct hl_cs_compl {
851 struct hl_fence base_fence;
852 spinlock_t lock;
853 struct hl_device *hdev;
854 struct hl_hw_sob *hw_sob;
855 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
856 u64 cs_seq;
857 enum hl_cs_type type;
858 u16 sob_val;
859 u16 sob_group;
860 bool encaps_signals;
861 };
862
863 /*
864 * Command Buffers
865 */
866
867 /**
868 * struct hl_ts_buff - describes a timestamp buffer.
869 * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
870 * @user_buff_address: Holds the user buffer's kernel virtual address.
871 * @kernel_buff_size: Holds the internal kernel buffer size.
872 */
873 struct hl_ts_buff {
874 void *kernel_buff_address;
875 void *user_buff_address;
876 u32 kernel_buff_size;
877 };
878
879 struct hl_mmap_mem_buf;
880
881 /**
882 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
883 * @dev: back pointer to the owning device
884 * @lock: protects handles
885 * @handles: an idr holding all active handles to the memory buffers in the system.
886 */
887 struct hl_mem_mgr {
888 struct device *dev;
889 spinlock_t lock;
890 struct idr handles;
891 };
892
893 /**
894 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
895 * @topic: string identifier used for logging
896 * @mem_id: memory type identifier, embedded in the handle and used to identify
897 * the memory type by handle.
898 * @alloc: callback executed on buffer allocation, shall allocate the memory,
899 * set it under buffer private, and set mappable size.
900 * @mmap: callback executed on mmap, must map the buffer to vma
901 * @release: callback executed on release, must free the resources used by the buffer
902 */
903 struct hl_mmap_mem_buf_behavior {
904 const char *topic;
905 u64 mem_id;
906
907 int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
908 int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
909 void (*release)(struct hl_mmap_mem_buf *buf);
910 };
911
912 /**
913 * struct hl_mmap_mem_buf - describes a single unified memory buffer
914 * @behavior: buffer behavior
915 * @mmg: back pointer to the unified memory manager
916 * @refcount: reference counter for buffer users
917 * @private: pointer to buffer behavior private data
918 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
919 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
920 * may change at runtime.
921 * @mappable_size: the original mappable size of the buffer, does not change after
922 * the allocation.
923 * @handle: the buffer id in mmg handles store
924 */
925 struct hl_mmap_mem_buf {
926 struct hl_mmap_mem_buf_behavior *behavior;
927 struct hl_mem_mgr *mmg;
928 struct kref refcount;
929 void *private;
930 atomic_t mmap;
931 u64 real_mapped_size;
932 u64 mappable_size;
933 u64 handle;
934 };
935
936 /**
937 * struct hl_cb - describes a Command Buffer.
938 * @hdev: pointer to device this CB belongs to.
939 * @ctx: pointer to the CB owner's context.
940 * @buf: back pointer to the parent mappable memory buffer
941 * @debugfs_list: node in debugfs list of command buffers.
942 * @pool_list: node in pool list of command buffers.
943 * @kernel_address: Holds the CB's kernel virtual address.
944 * @virtual_addr: Holds the CB's virtual address.
945 * @bus_address: Holds the CB's DMA address.
946 * @size: holds the CB's size.
947 * @roundup_size: holds the cb size after roundup to page size.
948 * @cs_cnt: holds number of CS that this CB participates in.
949 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
950 * @is_pool: true if CB was acquired from the pool, false otherwise.
951 * @is_internal: internally allocated
952 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
953 */
954 struct hl_cb {
955 struct hl_device *hdev;
956 struct hl_ctx *ctx;
957 struct hl_mmap_mem_buf *buf;
958 struct list_head debugfs_list;
959 struct list_head pool_list;
960 void *kernel_address;
961 u64 virtual_addr;
962 dma_addr_t bus_address;
963 u32 size;
964 u32 roundup_size;
965 atomic_t cs_cnt;
966 atomic_t is_handle_destroyed;
967 u8 is_pool;
968 u8 is_internal;
969 u8 is_mmu_mapped;
970 };
971
972
973 /*
974 * QUEUES
975 */
976
977 struct hl_cs_job;
978
979 /* Queue length of external and HW queues */
980 #define HL_QUEUE_LENGTH 4096
981 #define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
982
983 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
984 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
985 #endif
986
987 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
988 #define HL_CQ_LENGTH HL_QUEUE_LENGTH
989 #define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
990
991 /* Must be power of 2 */
992 #define HL_EQ_LENGTH 64
993 #define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
994
995 /* Host <-> CPU-CP shared memory size */
996 #define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
997
998 /**
999 * struct hl_sync_stream_properties -
1000 * describes a H/W queue sync stream properties
1001 * @hw_sob: array of the used H/W SOBs by this H/W queue.
1002 * @next_sob_val: the next value to use for the currently used SOB.
1003 * @base_sob_id: the base SOB id of the SOBs used by this queue.
1004 * @base_mon_id: the base MON id of the MONs used by this queue.
1005 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1006 * in order to sync with all slave queues.
1007 * @collective_slave_mon_id: the MON id used by this slave queue in order to
1008 * sync with its master queue.
1009 * @collective_sob_id: current SOB id used by this collective slave queue
1010 * to signal its collective master queue upon completion.
1011 * @curr_sob_offset: the id offset to the currently used SOB from the
1012 * HL_RSVD_SOBS that are being used by this queue.
1013 */
1014 struct hl_sync_stream_properties {
1015 struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1016 u16 next_sob_val;
1017 u16 base_sob_id;
1018 u16 base_mon_id;
1019 u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1020 u16 collective_slave_mon_id;
1021 u16 collective_sob_id;
1022 u8 curr_sob_offset;
1023 };
1024
1025 /**
1026 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1027 * handlers manager
1028 * @lock: protects handles.
1029 * @handles: an idr to hold all encapsulated signals handles.
1030 */
1031 struct hl_encaps_signals_mgr {
1032 spinlock_t lock;
1033 struct idr handles;
1034 };
1035
1036 /**
1037 * struct hl_hw_queue - describes a H/W transport queue.
1038 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1039 * @sync_stream_prop: sync stream queue properties
1040 * @queue_type: type of queue.
1041 * @collective_mode: collective mode of current queue
1042 * @kernel_address: holds the queue's kernel virtual address.
1043 * @bus_address: holds the queue's DMA address.
1044 * @pi: holds the queue's pi value.
1045 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1046 * @hw_queue_id: the id of the H/W queue.
1047 * @cq_id: the id for the corresponding CQ for this H/W queue.
1048 * @msi_vec: the IRQ number of the H/W queue.
1049 * @int_queue_len: length of internal queue (number of entries).
1050 * @valid: is the queue valid (we have array of 32 queues, not all of them
1051 * exist).
1052 * @supports_sync_stream: True if queue supports sync stream
1053 */
1054 struct hl_hw_queue {
1055 struct hl_cs_job **shadow_queue;
1056 struct hl_sync_stream_properties sync_stream_prop;
1057 enum hl_queue_type queue_type;
1058 enum hl_collective_mode collective_mode;
1059 void *kernel_address;
1060 dma_addr_t bus_address;
1061 u32 pi;
1062 atomic_t ci;
1063 u32 hw_queue_id;
1064 u32 cq_id;
1065 u32 msi_vec;
1066 u16 int_queue_len;
1067 u8 valid;
1068 u8 supports_sync_stream;
1069 };
1070
1071 /**
1072 * struct hl_cq - describes a completion queue
1073 * @hdev: pointer to the device structure
1074 * @kernel_address: holds the queue's kernel virtual address
1075 * @bus_address: holds the queue's DMA address
1076 * @cq_idx: completion queue index in array
1077 * @hw_queue_id: the id of the matching H/W queue
1078 * @ci: ci inside the queue
1079 * @pi: pi inside the queue
1080 * @free_slots_cnt: counter of free slots in queue
1081 */
1082 struct hl_cq {
1083 struct hl_device *hdev;
1084 void *kernel_address;
1085 dma_addr_t bus_address;
1086 u32 cq_idx;
1087 u32 hw_queue_id;
1088 u32 ci;
1089 u32 pi;
1090 atomic_t free_slots_cnt;
1091 };
1092
1093 enum hl_user_interrupt_type {
1094 HL_USR_INTERRUPT_CQ = 0,
1095 HL_USR_INTERRUPT_DECODER,
1096 HL_USR_INTERRUPT_TPC,
1097 HL_USR_INTERRUPT_UNEXPECTED
1098 };
1099
1100 /**
1101 * struct hl_user_interrupt - holds user interrupt information
1102 * @hdev: pointer to the device structure
1103 * @type: user interrupt type
1104 * @wait_list_head: head to the list of user threads pending on this interrupt
1105 * @wait_list_lock: protects wait_list_head
1106 * @timestamp: last timestamp taken upon interrupt
1107 * @interrupt_id: msix interrupt id
1108 */
1109 struct hl_user_interrupt {
1110 struct hl_device *hdev;
1111 enum hl_user_interrupt_type type;
1112 struct list_head wait_list_head;
1113 spinlock_t wait_list_lock;
1114 ktime_t timestamp;
1115 u32 interrupt_id;
1116 };
1117
1118 /**
1119 * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1120 * @free_objects_node: node in the list free_obj_jobs
1121 * @cq_cb: pointer to cq command buffer to be freed
1122 * @buf: pointer to timestamp buffer to be freed
1123 */
1124 struct timestamp_reg_free_node {
1125 struct list_head free_objects_node;
1126 struct hl_cb *cq_cb;
1127 struct hl_mmap_mem_buf *buf;
1128 };
1129
1130 /* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1131 * the job will be to pass over the free_obj_jobs list and put refcount to objects
1132 * in each node of the list
1133 * @free_obj: workqueue object to free timestamp registration node objects
1134 * @hdev: pointer to the device structure
1135 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1136 */
1137 struct timestamp_reg_work_obj {
1138 struct work_struct free_obj;
1139 struct hl_device *hdev;
1140 struct list_head *free_obj_head;
1141 };
1142
1143 /* struct timestamp_reg_info - holds the timestamp registration related data.
1144 * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1145 * relevant only when doing timestamps records registration.
1146 * @cq_cb: pointer to CQ counter CB.
1147 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1148 * relevant only when doing timestamps records
1149 * registration.
1150 * @in_use: indicates if the node already in use. relevant only when doing
1151 * timestamps records registration, since in this case the driver
1152 * will have it's own buffer which serve as a records pool instead of
1153 * allocating records dynamically.
1154 */
1155 struct timestamp_reg_info {
1156 struct hl_mmap_mem_buf *buf;
1157 struct hl_cb *cq_cb;
1158 u64 *timestamp_kernel_addr;
1159 u8 in_use;
1160 };
1161
1162 /**
1163 * struct hl_user_pending_interrupt - holds a context to a user thread
1164 * pending on an interrupt
1165 * @ts_reg_info: holds the timestamps registration nodes info
1166 * @wait_list_node: node in the list of user threads pending on an interrupt
1167 * @fence: hl fence object for interrupt completion
1168 * @cq_target_value: CQ target value
1169 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1170 * handler for target value comparison
1171 */
1172 struct hl_user_pending_interrupt {
1173 struct timestamp_reg_info ts_reg_info;
1174 struct list_head wait_list_node;
1175 struct hl_fence fence;
1176 u64 cq_target_value;
1177 u64 *cq_kernel_addr;
1178 };
1179
1180 /**
1181 * struct hl_eq - describes the event queue (single one per device)
1182 * @hdev: pointer to the device structure
1183 * @kernel_address: holds the queue's kernel virtual address
1184 * @bus_address: holds the queue's DMA address
1185 * @ci: ci inside the queue
1186 * @prev_eqe_index: the index of the previous event queue entry. The index of
1187 * the current entry's index must be +1 of the previous one.
1188 * @check_eqe_index: do we need to check the index of the current entry vs. the
1189 * previous one. This is for backward compatibility with older
1190 * firmwares
1191 */
1192 struct hl_eq {
1193 struct hl_device *hdev;
1194 void *kernel_address;
1195 dma_addr_t bus_address;
1196 u32 ci;
1197 u32 prev_eqe_index;
1198 bool check_eqe_index;
1199 };
1200
1201 /**
1202 * struct hl_dec - describes a decoder sw instance.
1203 * @hdev: pointer to the device structure.
1204 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
1205 * @core_id: ID of the decoder.
1206 * @base_addr: base address of the decoder.
1207 */
1208 struct hl_dec {
1209 struct hl_device *hdev;
1210 struct work_struct abnrm_intr_work;
1211 u32 core_id;
1212 u32 base_addr;
1213 };
1214
1215 /**
1216 * enum hl_asic_type - supported ASIC types.
1217 * @ASIC_INVALID: Invalid ASIC type.
1218 * @ASIC_GOYA: Goya device (HL-1000).
1219 * @ASIC_GAUDI: Gaudi device (HL-2000).
1220 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1221 * @ASIC_GAUDI2: Gaudi2 device.
1222 * @ASIC_GAUDI2B: Gaudi2B device.
1223 */
1224 enum hl_asic_type {
1225 ASIC_INVALID,
1226 ASIC_GOYA,
1227 ASIC_GAUDI,
1228 ASIC_GAUDI_SEC,
1229 ASIC_GAUDI2,
1230 ASIC_GAUDI2B,
1231 };
1232
1233 struct hl_cs_parser;
1234
1235 /**
1236 * enum hl_pm_mng_profile - power management profile.
1237 * @PM_AUTO: internal clock is set by the Linux driver.
1238 * @PM_MANUAL: internal clock is set by the user.
1239 * @PM_LAST: last power management type.
1240 */
1241 enum hl_pm_mng_profile {
1242 PM_AUTO = 1,
1243 PM_MANUAL,
1244 PM_LAST
1245 };
1246
1247 /**
1248 * enum hl_pll_frequency - PLL frequency.
1249 * @PLL_HIGH: high frequency.
1250 * @PLL_LOW: low frequency.
1251 * @PLL_LAST: last frequency values that were configured by the user.
1252 */
1253 enum hl_pll_frequency {
1254 PLL_HIGH = 1,
1255 PLL_LOW,
1256 PLL_LAST
1257 };
1258
1259 #define PLL_REF_CLK 50
1260
1261 enum div_select_defs {
1262 DIV_SEL_REF_CLK = 0,
1263 DIV_SEL_PLL_CLK = 1,
1264 DIV_SEL_DIVIDED_REF = 2,
1265 DIV_SEL_DIVIDED_PLL = 3,
1266 };
1267
1268 enum debugfs_access_type {
1269 DEBUGFS_READ8,
1270 DEBUGFS_WRITE8,
1271 DEBUGFS_READ32,
1272 DEBUGFS_WRITE32,
1273 DEBUGFS_READ64,
1274 DEBUGFS_WRITE64,
1275 };
1276
1277 enum pci_region {
1278 PCI_REGION_CFG,
1279 PCI_REGION_SRAM,
1280 PCI_REGION_DRAM,
1281 PCI_REGION_SP_SRAM,
1282 PCI_REGION_NUMBER,
1283 };
1284
1285 /**
1286 * struct pci_mem_region - describe memory region in a PCI bar
1287 * @region_base: region base address
1288 * @region_size: region size
1289 * @bar_size: size of the BAR
1290 * @offset_in_bar: region offset into the bar
1291 * @bar_id: bar ID of the region
1292 * @used: if used 1, otherwise 0
1293 */
1294 struct pci_mem_region {
1295 u64 region_base;
1296 u64 region_size;
1297 u64 bar_size;
1298 u64 offset_in_bar;
1299 u8 bar_id;
1300 u8 used;
1301 };
1302
1303 /**
1304 * struct static_fw_load_mgr - static FW load manager
1305 * @preboot_version_max_off: max offset to preboot version
1306 * @boot_fit_version_max_off: max offset to boot fit version
1307 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1308 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1309 * @cpu_boot_status_reg: boot status register
1310 * @cpu_boot_dev_status0_reg: boot device status register 0
1311 * @cpu_boot_dev_status1_reg: boot device status register 1
1312 * @boot_err0_reg: boot error register 0
1313 * @boot_err1_reg: boot error register 1
1314 * @preboot_version_offset_reg: SRAM offset to preboot version register
1315 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1316 * @sram_offset_mask: mask for getting offset into the SRAM
1317 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1318 */
1319 struct static_fw_load_mgr {
1320 u64 preboot_version_max_off;
1321 u64 boot_fit_version_max_off;
1322 u32 kmd_msg_to_cpu_reg;
1323 u32 cpu_cmd_status_to_host_reg;
1324 u32 cpu_boot_status_reg;
1325 u32 cpu_boot_dev_status0_reg;
1326 u32 cpu_boot_dev_status1_reg;
1327 u32 boot_err0_reg;
1328 u32 boot_err1_reg;
1329 u32 preboot_version_offset_reg;
1330 u32 boot_fit_version_offset_reg;
1331 u32 sram_offset_mask;
1332 u32 cpu_reset_wait_msec;
1333 };
1334
1335 /**
1336 * struct fw_response - FW response to LKD command
1337 * @ram_offset: descriptor offset into the RAM
1338 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1339 * @status: command status
1340 */
1341 struct fw_response {
1342 u32 ram_offset;
1343 u8 ram_type;
1344 u8 status;
1345 };
1346
1347 /**
1348 * struct dynamic_fw_load_mgr - dynamic FW load manager
1349 * @response: FW to LKD response
1350 * @comm_desc: the communication descriptor with FW
1351 * @image_region: region to copy the FW image to
1352 * @fw_image_size: size of FW image to load
1353 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1354 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1355 */
1356 struct dynamic_fw_load_mgr {
1357 struct fw_response response;
1358 struct lkd_fw_comms_desc comm_desc;
1359 struct pci_mem_region *image_region;
1360 size_t fw_image_size;
1361 u32 wait_for_bl_timeout;
1362 bool fw_desc_valid;
1363 };
1364
1365 /**
1366 * struct pre_fw_load_props - needed properties for pre-FW load
1367 * @cpu_boot_status_reg: cpu_boot_status register address
1368 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1369 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1370 * @boot_err0_reg: boot_err0 register address
1371 * @boot_err1_reg: boot_err1 register address
1372 * @wait_for_preboot_timeout: timeout to poll for preboot ready
1373 */
1374 struct pre_fw_load_props {
1375 u32 cpu_boot_status_reg;
1376 u32 sts_boot_dev_sts0_reg;
1377 u32 sts_boot_dev_sts1_reg;
1378 u32 boot_err0_reg;
1379 u32 boot_err1_reg;
1380 u32 wait_for_preboot_timeout;
1381 };
1382
1383 /**
1384 * struct fw_image_props - properties of FW image
1385 * @image_name: name of the image
1386 * @src_off: offset in src FW to copy from
1387 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1388 */
1389 struct fw_image_props {
1390 char *image_name;
1391 u32 src_off;
1392 u32 copy_size;
1393 };
1394
1395 /**
1396 * struct fw_load_mgr - manager FW loading process
1397 * @dynamic_loader: specific structure for dynamic load
1398 * @static_loader: specific structure for static load
1399 * @pre_fw_load_props: parameter for pre FW load
1400 * @boot_fit_img: boot fit image properties
1401 * @linux_img: linux image properties
1402 * @cpu_timeout: CPU response timeout in usec
1403 * @boot_fit_timeout: Boot fit load timeout in usec
1404 * @skip_bmc: should BMC be skipped
1405 * @sram_bar_id: SRAM bar ID
1406 * @dram_bar_id: DRAM bar ID
1407 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1408 * component. values are set according to enum hl_fw_types.
1409 */
1410 struct fw_load_mgr {
1411 union {
1412 struct dynamic_fw_load_mgr dynamic_loader;
1413 struct static_fw_load_mgr static_loader;
1414 };
1415 struct pre_fw_load_props pre_fw_load;
1416 struct fw_image_props boot_fit_img;
1417 struct fw_image_props linux_img;
1418 u32 cpu_timeout;
1419 u32 boot_fit_timeout;
1420 u8 skip_bmc;
1421 u8 sram_bar_id;
1422 u8 dram_bar_id;
1423 u8 fw_comp_loaded;
1424 };
1425
1426 struct hl_cs;
1427
1428 /**
1429 * struct engines_data - asic engines data
1430 * @buf: buffer for engines data in ascii
1431 * @actual_size: actual size of data that was written by the driver to the allocated buffer
1432 * @allocated_buf_size: total size of allocated buffer
1433 */
1434 struct engines_data {
1435 char *buf;
1436 int actual_size;
1437 u32 allocated_buf_size;
1438 };
1439
1440 /**
1441 * struct hl_asic_funcs - ASIC specific functions that are can be called from
1442 * common code.
1443 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1444 * @early_fini: tears down what was done in early_init.
1445 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1446 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1447 * @sw_init: sets up driver state, does not configure H/W.
1448 * @sw_fini: tears down driver state, does not configure H/W.
1449 * @hw_init: sets up the H/W state.
1450 * @hw_fini: tears down the H/W state.
1451 * @halt_engines: halt engines, needed for reset sequence. This also disables
1452 * interrupts from the device. Should be called before
1453 * hw_fini and before CS rollback.
1454 * @suspend: handles IP specific H/W or SW changes for suspend.
1455 * @resume: handles IP specific H/W or SW changes for resume.
1456 * @mmap: maps a memory.
1457 * @ring_doorbell: increment PI on a given QMAN.
1458 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1459 * function because the PQs are located in different memory areas
1460 * per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1461 * writing the PQE must match the destination memory area
1462 * properties.
1463 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1464 * dma_alloc_coherent(). This is ASIC function because
1465 * its implementation is not trivial when the driver
1466 * is loaded in simulation mode (not upstreamed).
1467 * @asic_dma_free_coherent: Free coherent DMA memory by calling
1468 * dma_free_coherent(). This is ASIC function because
1469 * its implementation is not trivial when the driver
1470 * is loaded in simulation mode (not upstreamed).
1471 * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1472 * @scrub_device_dram: Scrub the dram memory of the device.
1473 * @get_int_queue_base: get the internal queue base address.
1474 * @test_queues: run simple test on all queues for sanity check.
1475 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1476 * size of allocation is HL_DMA_POOL_BLK_SIZE.
1477 * @asic_dma_pool_free: free small DMA allocation from pool.
1478 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1479 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1480 * @asic_dma_unmap_single: unmap a single DMA buffer
1481 * @asic_dma_map_single: map a single buffer to a DMA
1482 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1483 * @cs_parser: parse Command Submission.
1484 * @asic_dma_map_sgtable: DMA map scatter-gather table.
1485 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1486 * @update_eq_ci: update event queue CI.
1487 * @context_switch: called upon ASID context switch.
1488 * @restore_phase_topology: clear all SOBs amd MONs.
1489 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1490 * internal memory via DMA engine.
1491 * @add_device_attr: add ASIC specific device attributes.
1492 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1493 * @get_events_stat: retrieve event queue entries histogram.
1494 * @read_pte: read MMU page table entry from DRAM.
1495 * @write_pte: write MMU page table entry to DRAM.
1496 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1497 * (L1 only) or hard (L0 & L1) flush.
1498 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1499 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1500 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1501 * @debug_coresight: perform certain actions on Coresight for debugging.
1502 * @is_device_idle: return true if device is idle, false otherwise.
1503 * @compute_reset_late_init: perform certain actions needed after a compute reset
1504 * @hw_queues_lock: acquire H/W queues lock.
1505 * @hw_queues_unlock: release H/W queues lock.
1506 * @get_pci_id: retrieve PCI ID.
1507 * @get_eeprom_data: retrieve EEPROM data from F/W.
1508 * @get_monitor_dump: retrieve monitor registers dump from F/W.
1509 * @send_cpu_message: send message to F/W. If the message is timedout, the
1510 * driver will eventually reset the device. The timeout can
1511 * be determined by the calling function or it can be 0 and
1512 * then the timeout is the default timeout for the specific
1513 * ASIC
1514 * @get_hw_state: retrieve the H/W state
1515 * @pci_bars_map: Map PCI BARs.
1516 * @init_iatu: Initialize the iATU unit inside the PCI controller.
1517 * @rreg: Read a register. Needed for simulator support.
1518 * @wreg: Write a register. Needed for simulator support.
1519 * @halt_coresight: stop the ETF and ETR traces.
1520 * @ctx_init: context dependent initialization.
1521 * @ctx_fini: context dependent cleanup.
1522 * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1523 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1524 * @load_firmware_to_device: load the firmware to the device's memory
1525 * @load_boot_fit_to_device: load boot fit to device's memory
1526 * @get_signal_cb_size: Get signal CB size.
1527 * @get_wait_cb_size: Get wait CB size.
1528 * @gen_signal_cb: Generate a signal CB.
1529 * @gen_wait_cb: Generate a wait CB.
1530 * @reset_sob: Reset a SOB.
1531 * @reset_sob_group: Reset SOB group
1532 * @get_device_time: Get the device time.
1533 * @pb_print_security_errors: print security errors according block and cause
1534 * @collective_wait_init_cs: Generate collective master/slave packets
1535 * and place them in the relevant cs jobs
1536 * @collective_wait_create_jobs: allocate collective wait cs jobs
1537 * @get_dec_base_addr: get the base address of a given decoder.
1538 * @scramble_addr: Routine to scramble the address prior of mapping it
1539 * in the MMU.
1540 * @descramble_addr: Routine to de-scramble the address prior of
1541 * showing it to users.
1542 * @ack_protection_bits_errors: ack and dump all security violations
1543 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1544 * also returns the size of the block if caller supplies
1545 * a valid pointer for it
1546 * @hw_block_mmap: mmap a HW block with a given id.
1547 * @enable_events_from_fw: send interrupt to firmware to notify them the
1548 * driver is ready to receive asynchronous events. This
1549 * function should be called during the first init and
1550 * after every hard-reset of the device
1551 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1552 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1553 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1554 * generic f/w compatible PLL Indexes
1555 * @init_firmware_preload_params: initialize pre FW-load parameters.
1556 * @init_firmware_loader: initialize data for FW loader.
1557 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1558 * @state_dump_init: initialize constants required for state dump
1559 * @get_sob_addr: get SOB base address offset.
1560 * @set_pci_memory_regions: setting properties of PCI memory regions
1561 * @get_stream_master_qid_arr: get pointer to stream masters QID array
1562 * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1563 * @access_dev_mem: access device memory
1564 * @set_dram_bar_base: set the base of the DRAM BAR
1565 * @set_engine_cores: set a config command to engine cores
1566 * @set_engines: set a config command to user engines
1567 * @send_device_activity: indication to FW about device availability
1568 * @set_dram_properties: set DRAM related properties.
1569 * @set_binning_masks: set binning/enable masks for all relevant components.
1570 */
1571 struct hl_asic_funcs {
1572 int (*early_init)(struct hl_device *hdev);
1573 int (*early_fini)(struct hl_device *hdev);
1574 int (*late_init)(struct hl_device *hdev);
1575 void (*late_fini)(struct hl_device *hdev);
1576 int (*sw_init)(struct hl_device *hdev);
1577 int (*sw_fini)(struct hl_device *hdev);
1578 int (*hw_init)(struct hl_device *hdev);
1579 int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1580 void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1581 int (*suspend)(struct hl_device *hdev);
1582 int (*resume)(struct hl_device *hdev);
1583 int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1584 void *cpu_addr, dma_addr_t dma_addr, size_t size);
1585 void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1586 void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1587 struct hl_bd *bd);
1588 void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1589 dma_addr_t *dma_handle, gfp_t flag);
1590 void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1591 void *cpu_addr, dma_addr_t dma_handle);
1592 int (*scrub_device_mem)(struct hl_device *hdev);
1593 int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1594 void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1595 dma_addr_t *dma_handle, u16 *queue_len);
1596 int (*test_queues)(struct hl_device *hdev);
1597 void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1598 gfp_t mem_flags, dma_addr_t *dma_handle);
1599 void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1600 dma_addr_t dma_addr);
1601 void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1602 size_t size, dma_addr_t *dma_handle);
1603 void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1604 size_t size, void *vaddr);
1605 void (*asic_dma_unmap_single)(struct hl_device *hdev,
1606 dma_addr_t dma_addr, int len,
1607 enum dma_data_direction dir);
1608 dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
1609 void *addr, int len,
1610 enum dma_data_direction dir);
1611 void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1612 struct sg_table *sgt,
1613 enum dma_data_direction dir);
1614 int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1615 int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1616 enum dma_data_direction dir);
1617 void (*add_end_of_cb_packets)(struct hl_device *hdev,
1618 void *kernel_address, u32 len,
1619 u32 original_len,
1620 u64 cq_addr, u32 cq_val, u32 msix_num,
1621 bool eb);
1622 void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1623 int (*context_switch)(struct hl_device *hdev, u32 asid);
1624 void (*restore_phase_topology)(struct hl_device *hdev);
1625 int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1626 void *blob_addr);
1627 void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1628 struct attribute_group *dev_vrm_attr_grp);
1629 void (*handle_eqe)(struct hl_device *hdev,
1630 struct hl_eq_entry *eq_entry);
1631 void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1632 u32 *size);
1633 u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1634 void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1635 int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1636 u32 flags);
1637 int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1638 u32 flags, u32 asid, u64 va, u64 size);
1639 int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1640 int (*send_heartbeat)(struct hl_device *hdev);
1641 int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1642 bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1643 struct engines_data *e);
1644 int (*compute_reset_late_init)(struct hl_device *hdev);
1645 void (*hw_queues_lock)(struct hl_device *hdev);
1646 void (*hw_queues_unlock)(struct hl_device *hdev);
1647 u32 (*get_pci_id)(struct hl_device *hdev);
1648 int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1649 int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1650 int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1651 u16 len, u32 timeout, u64 *result);
1652 int (*pci_bars_map)(struct hl_device *hdev);
1653 int (*init_iatu)(struct hl_device *hdev);
1654 u32 (*rreg)(struct hl_device *hdev, u32 reg);
1655 void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1656 void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1657 int (*ctx_init)(struct hl_ctx *ctx);
1658 void (*ctx_fini)(struct hl_ctx *ctx);
1659 int (*pre_schedule_cs)(struct hl_cs *cs);
1660 u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1661 int (*load_firmware_to_device)(struct hl_device *hdev);
1662 int (*load_boot_fit_to_device)(struct hl_device *hdev);
1663 u32 (*get_signal_cb_size)(struct hl_device *hdev);
1664 u32 (*get_wait_cb_size)(struct hl_device *hdev);
1665 u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1666 u32 size, bool eb);
1667 u32 (*gen_wait_cb)(struct hl_device *hdev,
1668 struct hl_gen_wait_properties *prop);
1669 void (*reset_sob)(struct hl_device *hdev, void *data);
1670 void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1671 u64 (*get_device_time)(struct hl_device *hdev);
1672 void (*pb_print_security_errors)(struct hl_device *hdev,
1673 u32 block_addr, u32 cause, u32 offended_addr);
1674 int (*collective_wait_init_cs)(struct hl_cs *cs);
1675 int (*collective_wait_create_jobs)(struct hl_device *hdev,
1676 struct hl_ctx *ctx, struct hl_cs *cs,
1677 u32 wait_queue_id, u32 collective_engine_id,
1678 u32 encaps_signal_offset);
1679 u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1680 u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1681 u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1682 void (*ack_protection_bits_errors)(struct hl_device *hdev);
1683 int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1684 u32 *block_size, u32 *block_id);
1685 int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1686 u32 block_id, u32 block_size);
1687 void (*enable_events_from_fw)(struct hl_device *hdev);
1688 int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1689 void (*get_msi_info)(__le32 *table);
1690 int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1691 void (*init_firmware_preload_params)(struct hl_device *hdev);
1692 void (*init_firmware_loader)(struct hl_device *hdev);
1693 void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1694 void (*state_dump_init)(struct hl_device *hdev);
1695 u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1696 void (*set_pci_memory_regions)(struct hl_device *hdev);
1697 u32* (*get_stream_master_qid_arr)(void);
1698 void (*check_if_razwi_happened)(struct hl_device *hdev);
1699 int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1700 u32 page_size, u32 *real_page_size, bool is_dram_addr);
1701 int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1702 u64 addr, u64 *val, enum debugfs_access_type acc_type);
1703 u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1704 int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1705 u32 num_cores, u32 core_command);
1706 int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
1707 u32 num_engines, u32 engine_command);
1708 int (*send_device_activity)(struct hl_device *hdev, bool open);
1709 int (*set_dram_properties)(struct hl_device *hdev);
1710 int (*set_binning_masks)(struct hl_device *hdev);
1711 };
1712
1713
1714 /*
1715 * CONTEXTS
1716 */
1717
1718 #define HL_KERNEL_ASID_ID 0
1719
1720 /**
1721 * enum hl_va_range_type - virtual address range type.
1722 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1723 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1724 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1725 */
1726 enum hl_va_range_type {
1727 HL_VA_RANGE_TYPE_HOST,
1728 HL_VA_RANGE_TYPE_HOST_HUGE,
1729 HL_VA_RANGE_TYPE_DRAM,
1730 HL_VA_RANGE_TYPE_MAX
1731 };
1732
1733 /**
1734 * struct hl_va_range - virtual addresses range.
1735 * @lock: protects the virtual addresses list.
1736 * @list: list of virtual addresses blocks available for mappings.
1737 * @start_addr: range start address.
1738 * @end_addr: range end address.
1739 * @page_size: page size of this va range.
1740 */
1741 struct hl_va_range {
1742 struct mutex lock;
1743 struct list_head list;
1744 u64 start_addr;
1745 u64 end_addr;
1746 u32 page_size;
1747 };
1748
1749 /**
1750 * struct hl_cs_counters_atomic - command submission counters
1751 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1752 * @parsing_drop_cnt: dropped due to error in packet parsing
1753 * @queue_full_drop_cnt: dropped due to queue full
1754 * @device_in_reset_drop_cnt: dropped due to device in reset
1755 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1756 * @validation_drop_cnt: dropped due to error in validation
1757 */
1758 struct hl_cs_counters_atomic {
1759 atomic64_t out_of_mem_drop_cnt;
1760 atomic64_t parsing_drop_cnt;
1761 atomic64_t queue_full_drop_cnt;
1762 atomic64_t device_in_reset_drop_cnt;
1763 atomic64_t max_cs_in_flight_drop_cnt;
1764 atomic64_t validation_drop_cnt;
1765 };
1766
1767 /**
1768 * struct hl_dmabuf_priv - a dma-buf private object.
1769 * @dmabuf: pointer to dma-buf object.
1770 * @ctx: pointer to the dma-buf owner's context.
1771 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1772 * where virtual memory is supported.
1773 * @memhash_hnode: pointer to the memhash node. this object holds the export count.
1774 * @device_address: physical address of the device's memory. Relevant only
1775 * if phys_pg_pack is NULL (dma-buf was exported from address).
1776 * The total size can be taken from the dmabuf object.
1777 */
1778 struct hl_dmabuf_priv {
1779 struct dma_buf *dmabuf;
1780 struct hl_ctx *ctx;
1781 struct hl_vm_phys_pg_pack *phys_pg_pack;
1782 struct hl_vm_hash_node *memhash_hnode;
1783 uint64_t device_address;
1784 };
1785
1786 #define HL_CS_OUTCOME_HISTORY_LEN 256
1787
1788 /**
1789 * struct hl_cs_outcome - represents a single completed CS outcome
1790 * @list_link: link to either container's used list or free list
1791 * @map_link: list to the container hash map
1792 * @ts: completion ts
1793 * @seq: the original cs sequence
1794 * @error: error code cs completed with, if any
1795 */
1796 struct hl_cs_outcome {
1797 struct list_head list_link;
1798 struct hlist_node map_link;
1799 ktime_t ts;
1800 u64 seq;
1801 int error;
1802 };
1803
1804 /**
1805 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1806 * @outcome_map: index of completed CS searchable by sequence number
1807 * @used_list: list of outcome objects currently in use
1808 * @free_list: list of outcome objects currently not in use
1809 * @nodes_pool: a static pool of pre-allocated outcome objects
1810 * @db_lock: any operation on the store must take this lock
1811 */
1812 struct hl_cs_outcome_store {
1813 DECLARE_HASHTABLE(outcome_map, 8);
1814 struct list_head used_list;
1815 struct list_head free_list;
1816 struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1817 spinlock_t db_lock;
1818 };
1819
1820 /**
1821 * struct hl_ctx - user/kernel context.
1822 * @mem_hash: holds mapping from virtual address to virtual memory area
1823 * descriptor (hl_vm_phys_pg_list or hl_userptr).
1824 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1825 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1826 * MMU-hop-page physical address to its host-resident
1827 * pgt_info structure.
1828 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1829 * @hdev: pointer to the device structure.
1830 * @refcount: reference counter for the context. Context is released only when
1831 * this hits 0. It is incremented on CS and CS_WAIT.
1832 * @cs_pending: array of hl fence objects representing pending CS.
1833 * @outcome_store: storage data structure used to remember outcomes of completed
1834 * command submissions for a long time after CS id wraparound.
1835 * @va_range: holds available virtual addresses for host and dram mappings.
1836 * @mem_hash_lock: protects the mem_hash.
1837 * @hw_block_list_lock: protects the HW block memory list.
1838 * @debugfs_list: node in debugfs list of contexts.
1839 * @hw_block_mem_list: list of HW block virtual mapped addresses.
1840 * @cs_counters: context command submission counters.
1841 * @cb_va_pool: device VA pool for command buffers which are mapped to the
1842 * device's MMU.
1843 * @sig_mgr: encaps signals handle manager.
1844 * @cb_va_pool_base: the base address for the device VA pool
1845 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1846 * to user so user could inquire about CS. It is used as
1847 * index to cs_pending array.
1848 * @dram_default_hops: array that holds all hops addresses needed for default
1849 * DRAM mapping.
1850 * @cs_lock: spinlock to protect cs_sequence.
1851 * @dram_phys_mem: amount of used physical DRAM memory by this context.
1852 * @thread_ctx_switch_token: token to prevent multiple threads of the same
1853 * context from running the context switch phase.
1854 * Only a single thread should run it.
1855 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1856 * the context switch phase from moving to their
1857 * execution phase before the context switch phase
1858 * has finished.
1859 * @asid: context's unique address space ID in the device's MMU.
1860 * @handle: context's opaque handle for user
1861 */
1862 struct hl_ctx {
1863 DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1864 DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1865 DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1866 struct hl_fpriv *hpriv;
1867 struct hl_device *hdev;
1868 struct kref refcount;
1869 struct hl_fence **cs_pending;
1870 struct hl_cs_outcome_store outcome_store;
1871 struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
1872 struct mutex mem_hash_lock;
1873 struct mutex hw_block_list_lock;
1874 struct list_head debugfs_list;
1875 struct list_head hw_block_mem_list;
1876 struct hl_cs_counters_atomic cs_counters;
1877 struct gen_pool *cb_va_pool;
1878 struct hl_encaps_signals_mgr sig_mgr;
1879 u64 cb_va_pool_base;
1880 u64 cs_sequence;
1881 u64 *dram_default_hops;
1882 spinlock_t cs_lock;
1883 atomic64_t dram_phys_mem;
1884 atomic_t thread_ctx_switch_token;
1885 u32 thread_ctx_switch_wait_token;
1886 u32 asid;
1887 u32 handle;
1888 };
1889
1890 /**
1891 * struct hl_ctx_mgr - for handling multiple contexts.
1892 * @lock: protects ctx_handles.
1893 * @handles: idr to hold all ctx handles.
1894 */
1895 struct hl_ctx_mgr {
1896 struct mutex lock;
1897 struct idr handles;
1898 };
1899
1900
1901 /*
1902 * COMMAND SUBMISSIONS
1903 */
1904
1905 /**
1906 * struct hl_userptr - memory mapping chunk information
1907 * @vm_type: type of the VM.
1908 * @job_node: linked-list node for hanging the object on the Job's list.
1909 * @pages: pointer to struct page array
1910 * @npages: size of @pages array
1911 * @sgt: pointer to the scatter-gather table that holds the pages.
1912 * @dir: for DMA unmapping, the direction must be supplied, so save it.
1913 * @debugfs_list: node in debugfs list of command submissions.
1914 * @pid: the pid of the user process owning the memory
1915 * @addr: user-space virtual address of the start of the memory area.
1916 * @size: size of the memory area to pin & map.
1917 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1918 */
1919 struct hl_userptr {
1920 enum vm_type vm_type; /* must be first */
1921 struct list_head job_node;
1922 struct page **pages;
1923 unsigned int npages;
1924 struct sg_table *sgt;
1925 enum dma_data_direction dir;
1926 struct list_head debugfs_list;
1927 pid_t pid;
1928 u64 addr;
1929 u64 size;
1930 u8 dma_mapped;
1931 };
1932
1933 /**
1934 * struct hl_cs - command submission.
1935 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1936 * @ctx: the context this CS belongs to.
1937 * @job_list: list of the CS's jobs in the various queues.
1938 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1939 * @refcount: reference counter for usage of the CS.
1940 * @fence: pointer to the fence object of this CS.
1941 * @signal_fence: pointer to the fence object of the signal CS (used by wait
1942 * CS only).
1943 * @finish_work: workqueue object to run when CS is completed by H/W.
1944 * @work_tdr: delayed work node for TDR.
1945 * @mirror_node : node in device mirror list of command submissions.
1946 * @staged_cs_node: node in the staged cs list.
1947 * @debugfs_list: node in debugfs list of command submissions.
1948 * @encaps_sig_hdl: holds the encaps signals handle.
1949 * @sequence: the sequence number of this CS.
1950 * @staged_sequence: the sequence of the staged submission this CS is part of,
1951 * relevant only if staged_cs is set.
1952 * @timeout_jiffies: cs timeout in jiffies.
1953 * @submission_time_jiffies: submission time of the cs
1954 * @type: CS_TYPE_*.
1955 * @jobs_cnt: counter of submitted jobs on all queues.
1956 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1957 * @completion_timestamp: timestamp of the last completed cs job.
1958 * @sob_addr_offset: sob offset from the configuration base address.
1959 * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1960 * cs with encaps signals.
1961 * @submitted: true if CS was submitted to H/W.
1962 * @completed: true if CS was completed by device.
1963 * @timedout : true if CS was timedout.
1964 * @tdr_active: true if TDR was activated for this CS (to prevent
1965 * double TDR activation).
1966 * @aborted: true if CS was aborted due to some device error.
1967 * @timestamp: true if a timestamp must be captured upon completion.
1968 * @staged_last: true if this is the last staged CS and needs completion.
1969 * @staged_first: true if this is the first staged CS and we need to receive
1970 * timeout for this CS.
1971 * @staged_cs: true if this CS is part of a staged submission.
1972 * @skip_reset_on_timeout: true if we shall not reset the device in case
1973 * timeout occurs (debug scenario).
1974 * @encaps_signals: true if this CS has encaps reserved signals.
1975 */
1976 struct hl_cs {
1977 u16 *jobs_in_queue_cnt;
1978 struct hl_ctx *ctx;
1979 struct list_head job_list;
1980 spinlock_t job_lock;
1981 struct kref refcount;
1982 struct hl_fence *fence;
1983 struct hl_fence *signal_fence;
1984 struct work_struct finish_work;
1985 struct delayed_work work_tdr;
1986 struct list_head mirror_node;
1987 struct list_head staged_cs_node;
1988 struct list_head debugfs_list;
1989 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1990 ktime_t completion_timestamp;
1991 u64 sequence;
1992 u64 staged_sequence;
1993 u64 timeout_jiffies;
1994 u64 submission_time_jiffies;
1995 enum hl_cs_type type;
1996 u32 jobs_cnt;
1997 u32 encaps_sig_hdl_id;
1998 u32 sob_addr_offset;
1999 u16 initial_sob_count;
2000 u8 submitted;
2001 u8 completed;
2002 u8 timedout;
2003 u8 tdr_active;
2004 u8 aborted;
2005 u8 timestamp;
2006 u8 staged_last;
2007 u8 staged_first;
2008 u8 staged_cs;
2009 u8 skip_reset_on_timeout;
2010 u8 encaps_signals;
2011 };
2012
2013 /**
2014 * struct hl_cs_job - command submission job.
2015 * @cs_node: the node to hang on the CS jobs list.
2016 * @cs: the CS this job belongs to.
2017 * @user_cb: the CB we got from the user.
2018 * @patched_cb: in case of patching, this is internal CB which is submitted on
2019 * the queue instead of the CB we got from the IOCTL.
2020 * @finish_work: workqueue object to run when job is completed.
2021 * @userptr_list: linked-list of userptr mappings that belong to this job and
2022 * wait for completion.
2023 * @debugfs_list: node in debugfs list of command submission jobs.
2024 * @refcount: reference counter for usage of the CS job.
2025 * @queue_type: the type of the H/W queue this job is submitted to.
2026 * @timestamp: timestamp upon job completion
2027 * @id: the id of this job inside a CS.
2028 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2029 * @user_cb_size: the actual size of the CB we got from the user.
2030 * @job_cb_size: the actual size of the CB that we put on the queue.
2031 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2032 * to wait on part of the reserved signals.
2033 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2034 * handle to a kernel-allocated CB object, false
2035 * otherwise (SRAM/DRAM/host address).
2036 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2037 * info is needed later, when adding the 2xMSG_PROT at the
2038 * end of the JOB, to know which barriers to put in the
2039 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2040 * have streams so the engine can't be busy by another
2041 * stream.
2042 */
2043 struct hl_cs_job {
2044 struct list_head cs_node;
2045 struct hl_cs *cs;
2046 struct hl_cb *user_cb;
2047 struct hl_cb *patched_cb;
2048 struct work_struct finish_work;
2049 struct list_head userptr_list;
2050 struct list_head debugfs_list;
2051 struct kref refcount;
2052 enum hl_queue_type queue_type;
2053 ktime_t timestamp;
2054 u32 id;
2055 u32 hw_queue_id;
2056 u32 user_cb_size;
2057 u32 job_cb_size;
2058 u32 encaps_sig_wait_offset;
2059 u8 is_kernel_allocated_cb;
2060 u8 contains_dma_pkt;
2061 };
2062
2063 /**
2064 * struct hl_cs_parser - command submission parser properties.
2065 * @user_cb: the CB we got from the user.
2066 * @patched_cb: in case of patching, this is internal CB which is submitted on
2067 * the queue instead of the CB we got from the IOCTL.
2068 * @job_userptr_list: linked-list of userptr mappings that belong to the related
2069 * job and wait for completion.
2070 * @cs_sequence: the sequence number of the related CS.
2071 * @queue_type: the type of the H/W queue this job is submitted to.
2072 * @ctx_id: the ID of the context the related CS belongs to.
2073 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2074 * @user_cb_size: the actual size of the CB we got from the user.
2075 * @patched_cb_size: the size of the CB after parsing.
2076 * @job_id: the id of the related job inside the related CS.
2077 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2078 * handle to a kernel-allocated CB object, false
2079 * otherwise (SRAM/DRAM/host address).
2080 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2081 * info is needed later, when adding the 2xMSG_PROT at the
2082 * end of the JOB, to know which barriers to put in the
2083 * MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2084 * have streams so the engine can't be busy by another
2085 * stream.
2086 * @completion: true if we need completion for this CS.
2087 */
2088 struct hl_cs_parser {
2089 struct hl_cb *user_cb;
2090 struct hl_cb *patched_cb;
2091 struct list_head *job_userptr_list;
2092 u64 cs_sequence;
2093 enum hl_queue_type queue_type;
2094 u32 ctx_id;
2095 u32 hw_queue_id;
2096 u32 user_cb_size;
2097 u32 patched_cb_size;
2098 u8 job_id;
2099 u8 is_kernel_allocated_cb;
2100 u8 contains_dma_pkt;
2101 u8 completion;
2102 };
2103
2104 /*
2105 * MEMORY STRUCTURE
2106 */
2107
2108 /**
2109 * struct hl_vm_hash_node - hash element from virtual address to virtual
2110 * memory area descriptor (hl_vm_phys_pg_list or
2111 * hl_userptr).
2112 * @node: node to hang on the hash table in context object.
2113 * @vaddr: key virtual address.
2114 * @handle: memory handle for device memory allocation.
2115 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2116 * @export_cnt: number of exports from within the VA block.
2117 */
2118 struct hl_vm_hash_node {
2119 struct hlist_node node;
2120 u64 vaddr;
2121 u64 handle;
2122 void *ptr;
2123 int export_cnt;
2124 };
2125
2126 /**
2127 * struct hl_vm_hw_block_list_node - list element from user virtual address to
2128 * HW block id.
2129 * @node: node to hang on the list in context object.
2130 * @ctx: the context this node belongs to.
2131 * @vaddr: virtual address of the HW block.
2132 * @block_size: size of the block.
2133 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2134 * @id: HW block id (handle).
2135 */
2136 struct hl_vm_hw_block_list_node {
2137 struct list_head node;
2138 struct hl_ctx *ctx;
2139 unsigned long vaddr;
2140 u32 block_size;
2141 u32 mapped_size;
2142 u32 id;
2143 };
2144
2145 /**
2146 * struct hl_vm_phys_pg_pack - physical page pack.
2147 * @vm_type: describes the type of the virtual area descriptor.
2148 * @pages: the physical page array.
2149 * @npages: num physical pages in the pack.
2150 * @total_size: total size of all the pages in this list.
2151 * @exported_size: buffer exported size.
2152 * @node: used to attach to deletion list that is used when all the allocations are cleared
2153 * at the teardown of the context.
2154 * @mapping_cnt: number of shared mappings.
2155 * @asid: the context related to this list.
2156 * @page_size: size of each page in the pack.
2157 * @flags: HL_MEM_* flags related to this list.
2158 * @handle: the provided handle related to this list.
2159 * @offset: offset from the first page.
2160 * @contiguous: is contiguous physical memory.
2161 * @created_from_userptr: is product of host virtual address.
2162 */
2163 struct hl_vm_phys_pg_pack {
2164 enum vm_type vm_type; /* must be first */
2165 u64 *pages;
2166 u64 npages;
2167 u64 total_size;
2168 u64 exported_size;
2169 struct list_head node;
2170 atomic_t mapping_cnt;
2171 u32 asid;
2172 u32 page_size;
2173 u32 flags;
2174 u32 handle;
2175 u32 offset;
2176 u8 contiguous;
2177 u8 created_from_userptr;
2178 };
2179
2180 /**
2181 * struct hl_vm_va_block - virtual range block information.
2182 * @node: node to hang on the virtual range list in context object.
2183 * @start: virtual range start address.
2184 * @end: virtual range end address.
2185 * @size: virtual range size.
2186 */
2187 struct hl_vm_va_block {
2188 struct list_head node;
2189 u64 start;
2190 u64 end;
2191 u64 size;
2192 };
2193
2194 /**
2195 * struct hl_vm - virtual memory manager for MMU.
2196 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2197 * @dram_pg_pool_refcount: reference counter for the pool usage.
2198 * @idr_lock: protects the phys_pg_list_handles.
2199 * @phys_pg_pack_handles: idr to hold all device allocations handles.
2200 * @init_done: whether initialization was done. We need this because VM
2201 * initialization might be skipped during device initialization.
2202 */
2203 struct hl_vm {
2204 struct gen_pool *dram_pg_pool;
2205 struct kref dram_pg_pool_refcount;
2206 spinlock_t idr_lock;
2207 struct idr phys_pg_pack_handles;
2208 u8 init_done;
2209 };
2210
2211
2212 /*
2213 * DEBUG, PROFILING STRUCTURE
2214 */
2215
2216 /**
2217 * struct hl_debug_params - Coresight debug parameters.
2218 * @input: pointer to component specific input parameters.
2219 * @output: pointer to component specific output parameters.
2220 * @output_size: size of output buffer.
2221 * @reg_idx: relevant register ID.
2222 * @op: component operation to execute.
2223 * @enable: true if to enable component debugging, false otherwise.
2224 */
2225 struct hl_debug_params {
2226 void *input;
2227 void *output;
2228 u32 output_size;
2229 u32 reg_idx;
2230 u32 op;
2231 bool enable;
2232 };
2233
2234 /**
2235 * struct hl_notifier_event - holds the notifier data structure
2236 * @eventfd: the event file descriptor to raise the notifications
2237 * @lock: mutex lock to protect the notifier data flows
2238 * @events_mask: indicates the bitmap events
2239 */
2240 struct hl_notifier_event {
2241 struct eventfd_ctx *eventfd;
2242 struct mutex lock;
2243 u64 events_mask;
2244 };
2245
2246 /*
2247 * FILE PRIVATE STRUCTURE
2248 */
2249
2250 /**
2251 * struct hl_fpriv - process information stored in FD private data.
2252 * @hdev: habanalabs device structure.
2253 * @filp: pointer to the given file structure.
2254 * @taskpid: current process ID.
2255 * @ctx: current executing context. TODO: remove for multiple ctx per process
2256 * @ctx_mgr: context manager to handle multiple context for this FD.
2257 * @mem_mgr: manager descriptor for memory exportable via mmap
2258 * @notifier_event: notifier eventfd towards user process
2259 * @debugfs_list: list of relevant ASIC debugfs.
2260 * @dev_node: node in the device list of file private data
2261 * @refcount: number of related contexts.
2262 * @restore_phase_mutex: lock for context switch and restore phase.
2263 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2264 * ctx per process.
2265 */
2266 struct hl_fpriv {
2267 struct hl_device *hdev;
2268 struct file *filp;
2269 struct pid *taskpid;
2270 struct hl_ctx *ctx;
2271 struct hl_ctx_mgr ctx_mgr;
2272 struct hl_mem_mgr mem_mgr;
2273 struct hl_notifier_event notifier_event;
2274 struct list_head debugfs_list;
2275 struct list_head dev_node;
2276 struct kref refcount;
2277 struct mutex restore_phase_mutex;
2278 struct mutex ctx_lock;
2279 };
2280
2281
2282 /*
2283 * DebugFS
2284 */
2285
2286 /**
2287 * struct hl_info_list - debugfs file ops.
2288 * @name: file name.
2289 * @show: function to output information.
2290 * @write: function to write to the file.
2291 */
2292 struct hl_info_list {
2293 const char *name;
2294 int (*show)(struct seq_file *s, void *data);
2295 ssize_t (*write)(struct file *file, const char __user *buf,
2296 size_t count, loff_t *f_pos);
2297 };
2298
2299 /**
2300 * struct hl_debugfs_entry - debugfs dentry wrapper.
2301 * @info_ent: dentry related ops.
2302 * @dev_entry: ASIC specific debugfs manager.
2303 */
2304 struct hl_debugfs_entry {
2305 const struct hl_info_list *info_ent;
2306 struct hl_dbg_device_entry *dev_entry;
2307 };
2308
2309 /**
2310 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2311 * @root: root dentry.
2312 * @hdev: habanalabs device structure.
2313 * @entry_arr: array of available hl_debugfs_entry.
2314 * @file_list: list of available debugfs files.
2315 * @file_mutex: protects file_list.
2316 * @cb_list: list of available CBs.
2317 * @cb_spinlock: protects cb_list.
2318 * @cs_list: list of available CSs.
2319 * @cs_spinlock: protects cs_list.
2320 * @cs_job_list: list of available CB jobs.
2321 * @cs_job_spinlock: protects cs_job_list.
2322 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2323 * @userptr_spinlock: protects userptr_list.
2324 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2325 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
2326 * @data_dma_blob_desc: data DMA descriptor of blob.
2327 * @mon_dump_blob_desc: monitor dump descriptor of blob.
2328 * @state_dump: data of the system states in case of a bad cs.
2329 * @state_dump_sem: protects state_dump.
2330 * @addr: next address to read/write from/to in read/write32.
2331 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2332 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2333 * @userptr_lookup: the target user ptr to look up for on demand.
2334 * @mmu_asid: ASID to use while translating in mmu_show.
2335 * @state_dump_head: index of the latest state dump
2336 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2337 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2338 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2339 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2340 */
2341 struct hl_dbg_device_entry {
2342 struct dentry *root;
2343 struct hl_device *hdev;
2344 struct hl_debugfs_entry *entry_arr;
2345 struct list_head file_list;
2346 struct mutex file_mutex;
2347 struct list_head cb_list;
2348 spinlock_t cb_spinlock;
2349 struct list_head cs_list;
2350 spinlock_t cs_spinlock;
2351 struct list_head cs_job_list;
2352 spinlock_t cs_job_spinlock;
2353 struct list_head userptr_list;
2354 spinlock_t userptr_spinlock;
2355 struct list_head ctx_mem_hash_list;
2356 struct mutex ctx_mem_hash_mutex;
2357 struct debugfs_blob_wrapper data_dma_blob_desc;
2358 struct debugfs_blob_wrapper mon_dump_blob_desc;
2359 char *state_dump[HL_STATE_DUMP_HIST_LEN];
2360 struct rw_semaphore state_dump_sem;
2361 u64 addr;
2362 u64 mmu_addr;
2363 u64 mmu_cap_mask;
2364 u64 userptr_lookup;
2365 u32 mmu_asid;
2366 u32 state_dump_head;
2367 u8 i2c_bus;
2368 u8 i2c_addr;
2369 u8 i2c_reg;
2370 u8 i2c_len;
2371 };
2372
2373 /**
2374 * struct hl_hw_obj_name_entry - single hw object name, member of
2375 * hl_state_dump_specs
2376 * @node: link to the containing hash table
2377 * @name: hw object name
2378 * @id: object identifier
2379 */
2380 struct hl_hw_obj_name_entry {
2381 struct hlist_node node;
2382 const char *name;
2383 u32 id;
2384 };
2385
2386 enum hl_state_dump_specs_props {
2387 SP_SYNC_OBJ_BASE_ADDR,
2388 SP_NEXT_SYNC_OBJ_ADDR,
2389 SP_SYNC_OBJ_AMOUNT,
2390 SP_MON_OBJ_WR_ADDR_LOW,
2391 SP_MON_OBJ_WR_ADDR_HIGH,
2392 SP_MON_OBJ_WR_DATA,
2393 SP_MON_OBJ_ARM_DATA,
2394 SP_MON_OBJ_STATUS,
2395 SP_MONITORS_AMOUNT,
2396 SP_TPC0_CMDQ,
2397 SP_TPC0_CFG_SO,
2398 SP_NEXT_TPC,
2399 SP_MME_CMDQ,
2400 SP_MME_CFG_SO,
2401 SP_NEXT_MME,
2402 SP_DMA_CMDQ,
2403 SP_DMA_CFG_SO,
2404 SP_DMA_QUEUES_OFFSET,
2405 SP_NUM_OF_MME_ENGINES,
2406 SP_SUB_MME_ENG_NUM,
2407 SP_NUM_OF_DMA_ENGINES,
2408 SP_NUM_OF_TPC_ENGINES,
2409 SP_ENGINE_NUM_OF_QUEUES,
2410 SP_ENGINE_NUM_OF_STREAMS,
2411 SP_ENGINE_NUM_OF_FENCES,
2412 SP_FENCE0_CNT_OFFSET,
2413 SP_FENCE0_RDATA_OFFSET,
2414 SP_CP_STS_OFFSET,
2415 SP_NUM_CORES,
2416
2417 SP_MAX
2418 };
2419
2420 enum hl_sync_engine_type {
2421 ENGINE_TPC,
2422 ENGINE_DMA,
2423 ENGINE_MME,
2424 };
2425
2426 /**
2427 * struct hl_mon_state_dump - represents a state dump of a single monitor
2428 * @id: monitor id
2429 * @wr_addr_low: address monitor will write to, low bits
2430 * @wr_addr_high: address monitor will write to, high bits
2431 * @wr_data: data monitor will write
2432 * @arm_data: register value containing monitor configuration
2433 * @status: monitor status
2434 */
2435 struct hl_mon_state_dump {
2436 u32 id;
2437 u32 wr_addr_low;
2438 u32 wr_addr_high;
2439 u32 wr_data;
2440 u32 arm_data;
2441 u32 status;
2442 };
2443
2444 /**
2445 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2446 * @engine_type: type of the engine
2447 * @engine_id: id of the engine
2448 * @sync_id: id of the sync object
2449 */
2450 struct hl_sync_to_engine_map_entry {
2451 struct hlist_node node;
2452 enum hl_sync_engine_type engine_type;
2453 u32 engine_id;
2454 u32 sync_id;
2455 };
2456
2457 /**
2458 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2459 * @tb: hash table containing the mapping, each element is of type
2460 * struct hl_sync_to_engine_map_entry
2461 */
2462 struct hl_sync_to_engine_map {
2463 DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2464 };
2465
2466 /**
2467 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2468 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2469 * @print_single_monitor: format monitor data as string
2470 * @monitor_valid: return true if given monitor dump is valid
2471 * @print_fences_single_engine: format fences data as string
2472 */
2473 struct hl_state_dump_specs_funcs {
2474 int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2475 struct hl_sync_to_engine_map *map);
2476 int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2477 struct hl_device *hdev,
2478 struct hl_mon_state_dump *mon);
2479 int (*monitor_valid)(struct hl_mon_state_dump *mon);
2480 int (*print_fences_single_engine)(struct hl_device *hdev,
2481 u64 base_offset,
2482 u64 status_base_offset,
2483 enum hl_sync_engine_type engine_type,
2484 u32 engine_id, char **buf,
2485 size_t *size, size_t *offset);
2486 };
2487
2488 /**
2489 * struct hl_state_dump_specs - defines ASIC known hw objects names
2490 * @so_id_to_str_tb: sync objects names index table
2491 * @monitor_id_to_str_tb: monitors names index table
2492 * @funcs: virtual functions used for state dump
2493 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2494 * @props: pointer to a per asic const props array required for state dump
2495 */
2496 struct hl_state_dump_specs {
2497 DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2498 DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2499 struct hl_state_dump_specs_funcs funcs;
2500 const char * const *sync_namager_names;
2501 s64 *props;
2502 };
2503
2504
2505 /*
2506 * DEVICES
2507 */
2508
2509 #define HL_STR_MAX 32
2510
2511 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2512
2513 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2514 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2515 */
2516 #define HL_MAX_MINORS 256
2517
2518 /*
2519 * Registers read & write functions.
2520 */
2521
2522 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2523 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2524
2525 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2526 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2527 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
2528 hdev->asic_funcs->rreg(hdev, (reg)))
2529
2530 #define WREG32_P(reg, val, mask) \
2531 do { \
2532 u32 tmp_ = RREG32(reg); \
2533 tmp_ &= (mask); \
2534 tmp_ |= ((val) & ~(mask)); \
2535 WREG32(reg, tmp_); \
2536 } while (0)
2537 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2538 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2539
2540 #define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2541
2542 #define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2543
2544 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2545
2546 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2547 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2548 #define WREG32_FIELD(reg, offset, field, val) \
2549 WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2550 ~REG_FIELD_MASK(reg, field)) | \
2551 (val) << REG_FIELD_SHIFT(reg, field))
2552
2553 /* Timeout should be longer when working with simulator but cap the
2554 * increased timeout to some maximum
2555 */
2556 #define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2557 ({ \
2558 ktime_t __timeout; \
2559 u32 __elbi_read; \
2560 int __rc = 0; \
2561 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2562 might_sleep_if(sleep_us); \
2563 for (;;) { \
2564 if (elbi) { \
2565 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2566 if (__rc) \
2567 break; \
2568 (val) = __elbi_read; \
2569 } else {\
2570 (val) = RREG32(lower_32_bits(addr)); \
2571 } \
2572 if (cond) \
2573 break; \
2574 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2575 if (elbi) { \
2576 __rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2577 if (__rc) \
2578 break; \
2579 (val) = __elbi_read; \
2580 } else {\
2581 (val) = RREG32(lower_32_bits(addr)); \
2582 } \
2583 break; \
2584 } \
2585 if (sleep_us) \
2586 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2587 } \
2588 __rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2589 })
2590
2591 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2592 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2593
2594 #define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2595 hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2596
2597 /*
2598 * poll array of register addresses.
2599 * condition is satisfied if all registers values match the expected value.
2600 * once some register in the array satisfies the condition it will not be polled again,
2601 * this is done both for efficiency and due to some registers are "clear on read".
2602 * TODO: use read from PCI bar in other places in the code (SW-91406)
2603 */
2604 #define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2605 timeout_us, elbi) \
2606 ({ \
2607 ktime_t __timeout; \
2608 u64 __elem_bitmask; \
2609 u32 __read_val; \
2610 u8 __arr_idx; \
2611 int __rc = 0; \
2612 \
2613 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2614 might_sleep_if(sleep_us); \
2615 if (arr_size >= 64) \
2616 __rc = -EINVAL; \
2617 else \
2618 __elem_bitmask = BIT_ULL(arr_size) - 1; \
2619 for (;;) { \
2620 if (__rc) \
2621 break; \
2622 for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) { \
2623 if (!(__elem_bitmask & BIT_ULL(__arr_idx))) \
2624 continue; \
2625 if (elbi) { \
2626 __rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2627 if (__rc) \
2628 break; \
2629 } else { \
2630 __read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2631 } \
2632 if (__read_val == (expected_val)) \
2633 __elem_bitmask &= ~BIT_ULL(__arr_idx); \
2634 } \
2635 if (__rc || (__elem_bitmask == 0)) \
2636 break; \
2637 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2638 break; \
2639 if (sleep_us) \
2640 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2641 } \
2642 __rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2643 })
2644
2645 #define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2646 timeout_us) \
2647 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2648 timeout_us, false)
2649
2650 #define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2651 timeout_us) \
2652 hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2653 timeout_us, true)
2654
2655 /*
2656 * address in this macro points always to a memory location in the
2657 * host's (server's) memory. That location is updated asynchronously
2658 * either by the direct access of the device or by another core.
2659 *
2660 * To work both in LE and BE architectures, we need to distinguish between the
2661 * two states (device or another core updates the memory location). Therefore,
2662 * if mem_written_by_device is true, the host memory being polled will be
2663 * updated directly by the device. If false, the host memory being polled will
2664 * be updated by host CPU. Required so host knows whether or not the memory
2665 * might need to be byte-swapped before returning value to caller.
2666 */
2667 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2668 mem_written_by_device) \
2669 ({ \
2670 ktime_t __timeout; \
2671 \
2672 __timeout = ktime_add_us(ktime_get(), timeout_us); \
2673 might_sleep_if(sleep_us); \
2674 for (;;) { \
2675 /* Verify we read updates done by other cores or by device */ \
2676 mb(); \
2677 (val) = *((u32 *)(addr)); \
2678 if (mem_written_by_device) \
2679 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2680 if (cond) \
2681 break; \
2682 if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2683 (val) = *((u32 *)(addr)); \
2684 if (mem_written_by_device) \
2685 (val) = le32_to_cpu(*(__le32 *) &(val)); \
2686 break; \
2687 } \
2688 if (sleep_us) \
2689 usleep_range((sleep_us >> 2) + 1, sleep_us); \
2690 } \
2691 (cond) ? 0 : -ETIMEDOUT; \
2692 })
2693
2694 #define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2695 ({ \
2696 struct user_mapped_block *p = blk; \
2697 \
2698 p->address = base; \
2699 p->size = sz; \
2700 })
2701
2702 #define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2703 ({ \
2704 usr_intr.hdev = hdev; \
2705 usr_intr.interrupt_id = intr_id; \
2706 usr_intr.type = intr_type; \
2707 INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2708 spin_lock_init(&usr_intr.wait_list_lock); \
2709 })
2710
2711 struct hwmon_chip_info;
2712
2713 /**
2714 * struct hl_device_reset_work - reset work wrapper.
2715 * @reset_work: reset work to be done.
2716 * @hdev: habanalabs device structure.
2717 * @flags: reset flags.
2718 */
2719 struct hl_device_reset_work {
2720 struct delayed_work reset_work;
2721 struct hl_device *hdev;
2722 u32 flags;
2723 };
2724
2725 /**
2726 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2727 * page-table internal information.
2728 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2729 * allocating hops.
2730 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2731 */
2732 struct hl_mmu_hr_priv {
2733 struct gen_pool *mmu_pgt_pool;
2734 struct pgt_info *mmu_asid_hop0;
2735 };
2736
2737 /**
2738 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2739 * page-table internal information.
2740 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2741 * @mmu_shadow_hop0: shadow array of hop0 tables.
2742 */
2743 struct hl_mmu_dr_priv {
2744 struct gen_pool *mmu_pgt_pool;
2745 void *mmu_shadow_hop0;
2746 };
2747
2748 /**
2749 * struct hl_mmu_priv - used for holding per-device mmu internal information.
2750 * @dr: information on the device-resident MMU, when exists.
2751 * @hr: information on the host-resident MMU, when exists.
2752 */
2753 struct hl_mmu_priv {
2754 struct hl_mmu_dr_priv dr;
2755 struct hl_mmu_hr_priv hr;
2756 };
2757
2758 /**
2759 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2760 * that was created in order to translate a virtual address to a
2761 * physical one.
2762 * @hop_addr: The address of the hop.
2763 * @hop_pte_addr: The address of the hop entry.
2764 * @hop_pte_val: The value in the hop entry.
2765 */
2766 struct hl_mmu_per_hop_info {
2767 u64 hop_addr;
2768 u64 hop_pte_addr;
2769 u64 hop_pte_val;
2770 };
2771
2772 /**
2773 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2774 * hop-entries that were created in order to translate a virtual address to a
2775 * physical one.
2776 * @scrambled_vaddr: The value of the virtual address after scrambling. This
2777 * address replaces the original virtual-address when mapped
2778 * in the MMU tables.
2779 * @unscrambled_paddr: The un-scrambled physical address.
2780 * @hop_info: Array holding the per-hop information used for the translation.
2781 * @used_hops: The number of hops used for the translation.
2782 * @range_type: virtual address range type.
2783 */
2784 struct hl_mmu_hop_info {
2785 u64 scrambled_vaddr;
2786 u64 unscrambled_paddr;
2787 struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2788 u32 used_hops;
2789 enum hl_va_range_type range_type;
2790 };
2791
2792 /**
2793 * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2794 * @get_hop0_pgt_info: get page table info structure for HOP0.
2795 * @get_pgt_info: get page table info structure for HOP other than HOP0.
2796 * @add_pgt_info: add page table info structure to hash.
2797 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2798 */
2799 struct hl_hr_mmu_funcs {
2800 struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2801 struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2802 void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2803 int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2804 struct hl_mmu_hop_info *hops,
2805 u64 virt_addr, bool *is_huge);
2806 };
2807
2808 /**
2809 * struct hl_mmu_funcs - Device related MMU functions.
2810 * @init: initialize the MMU module.
2811 * @fini: release the MMU module.
2812 * @ctx_init: Initialize a context for using the MMU module.
2813 * @ctx_fini: disable a ctx from using the mmu module.
2814 * @map: maps a virtual address to physical address for a context.
2815 * @unmap: unmap a virtual address of a context.
2816 * @flush: flush all writes from all cores to reach device MMU.
2817 * @swap_out: marks all mapping of the given context as swapped out.
2818 * @swap_in: marks all mapping of the given context as swapped in.
2819 * @get_tlb_info: returns the list of hops and hop-entries used that were
2820 * created in order to translate the giver virtual address to a
2821 * physical one.
2822 * @hr_funcs: functions specific to host resident MMU.
2823 */
2824 struct hl_mmu_funcs {
2825 int (*init)(struct hl_device *hdev);
2826 void (*fini)(struct hl_device *hdev);
2827 int (*ctx_init)(struct hl_ctx *ctx);
2828 void (*ctx_fini)(struct hl_ctx *ctx);
2829 int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2830 bool is_dram_addr);
2831 int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2832 void (*flush)(struct hl_ctx *ctx);
2833 void (*swap_out)(struct hl_ctx *ctx);
2834 void (*swap_in)(struct hl_ctx *ctx);
2835 int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2836 struct hl_hr_mmu_funcs hr_funcs;
2837 };
2838
2839 /**
2840 * struct hl_prefetch_work - prefetch work structure handler
2841 * @prefetch_work: actual work struct.
2842 * @ctx: compute context.
2843 * @va: virtual address to pre-fetch.
2844 * @size: pre-fetch size.
2845 * @flags: operation flags.
2846 * @asid: ASID for maintenance operation.
2847 */
2848 struct hl_prefetch_work {
2849 struct work_struct prefetch_work;
2850 struct hl_ctx *ctx;
2851 u64 va;
2852 u64 size;
2853 u32 flags;
2854 u32 asid;
2855 };
2856
2857 /*
2858 * number of user contexts allowed to call wait_for_multi_cs ioctl in
2859 * parallel
2860 */
2861 #define MULTI_CS_MAX_USER_CTX 2
2862
2863 /**
2864 * struct multi_cs_completion - multi CS wait completion.
2865 * @completion: completion of any of the CS in the list
2866 * @lock: spinlock for the completion structure
2867 * @timestamp: timestamp for the multi-CS completion
2868 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2869 * is waiting
2870 * @used: 1 if in use, otherwise 0
2871 */
2872 struct multi_cs_completion {
2873 struct completion completion;
2874 spinlock_t lock;
2875 s64 timestamp;
2876 u32 stream_master_qid_map;
2877 u8 used;
2878 };
2879
2880 /**
2881 * struct multi_cs_data - internal data for multi CS call
2882 * @ctx: pointer to the context structure
2883 * @fence_arr: array of fences of all CSs
2884 * @seq_arr: array of CS sequence numbers
2885 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2886 * @timestamp: timestamp of first completed CS
2887 * @wait_status: wait for CS status
2888 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2889 * @arr_len: fence_arr and seq_arr array length
2890 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2891 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2892 */
2893 struct multi_cs_data {
2894 struct hl_ctx *ctx;
2895 struct hl_fence **fence_arr;
2896 u64 *seq_arr;
2897 s64 timeout_jiffies;
2898 s64 timestamp;
2899 long wait_status;
2900 u32 completion_bitmap;
2901 u8 arr_len;
2902 u8 gone_cs;
2903 u8 update_ts;
2904 };
2905
2906 /**
2907 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2908 * @start: timestamp taken when 'start' event is received in driver
2909 * @end: timestamp taken when 'end' event is received in driver
2910 */
2911 struct hl_clk_throttle_timestamp {
2912 ktime_t start;
2913 ktime_t end;
2914 };
2915
2916 /**
2917 * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2918 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2919 * index 1 refers to THERMAL
2920 * @lock: protects this structure as it can be accessed from both event queue
2921 * context and info_ioctl context
2922 * @current_reason: bitmask represents the current clk throttling reasons
2923 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2924 */
2925 struct hl_clk_throttle {
2926 struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2927 struct mutex lock;
2928 u32 current_reason;
2929 u32 aggregated_reason;
2930 };
2931
2932 /**
2933 * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2934 * @address: physical HW block address
2935 * @size: allowed size for mmap
2936 */
2937 struct user_mapped_block {
2938 u32 address;
2939 u32 size;
2940 };
2941
2942 /**
2943 * struct cs_timeout_info - info of last CS timeout occurred.
2944 * @timestamp: CS timeout timestamp.
2945 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2946 * so the first (root cause) CS timeout will not be overwritten.
2947 * @seq: CS timeout sequence number.
2948 */
2949 struct cs_timeout_info {
2950 ktime_t timestamp;
2951 atomic_t write_enable;
2952 u64 seq;
2953 };
2954
2955 #define MAX_QMAN_STREAMS_INFO 4
2956 #define OPCODE_INFO_MAX_ADDR_SIZE 8
2957 /**
2958 * struct undefined_opcode_info - info about last undefined opcode error
2959 * @timestamp: timestamp of the undefined opcode error
2960 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
2961 * entries. In case all streams array entries are
2962 * filled with values, it means the execution was in Lower-CP.
2963 * @cq_addr: the address of the current handled command buffer
2964 * @cq_size: the size of the current handled command buffer
2965 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
2966 * should be equal to 1 in case of undefined opcode
2967 * in Upper-CP (specific stream) and equal to 4 in case
2968 * of undefined opcode in Lower-CP.
2969 * @engine_id: engine-id that the error occurred on
2970 * @stream_id: the stream id the error occurred on. In case the stream equals to
2971 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
2972 * @write_enable: if set, writing to undefined opcode parameters in the structure
2973 * is enable so the first (root cause) undefined opcode will not be
2974 * overwritten.
2975 */
2976 struct undefined_opcode_info {
2977 ktime_t timestamp;
2978 u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
2979 u64 cq_addr;
2980 u32 cq_size;
2981 u32 cb_addr_streams_len;
2982 u32 engine_id;
2983 u32 stream_id;
2984 bool write_enable;
2985 };
2986
2987 /**
2988 * struct page_fault_info - page fault information.
2989 * @page_fault: holds information collected during a page fault.
2990 * @user_mappings: buffer containing user mappings.
2991 * @num_of_user_mappings: number of user mappings.
2992 * @page_fault_detected: if set as 1, then a page-fault was discovered for the
2993 * first time after the driver has finished booting-up.
2994 * Since we're looking for the page-fault's root cause,
2995 * we don't care of the others that might follow it-
2996 * so once changed to 1, it will remain that way.
2997 * @page_fault_info_available: indicates that a page fault info is now available.
2998 */
2999 struct page_fault_info {
3000 struct hl_page_fault_info page_fault;
3001 struct hl_user_mapping *user_mappings;
3002 u64 num_of_user_mappings;
3003 atomic_t page_fault_detected;
3004 bool page_fault_info_available;
3005 };
3006
3007 /**
3008 * struct razwi_info - RAZWI information.
3009 * @razwi: holds information collected during a RAZWI
3010 * @razwi_detected: if set as 1, then a RAZWI was discovered for the
3011 * first time after the driver has finished booting-up.
3012 * Since we're looking for the RAZWI's root cause,
3013 * we don't care of the others that might follow it-
3014 * so once changed to 1, it will remain that way.
3015 * @razwi_info_available: indicates that a RAZWI info is now available.
3016 */
3017 struct razwi_info {
3018 struct hl_info_razwi_event razwi;
3019 atomic_t razwi_detected;
3020 bool razwi_info_available;
3021 };
3022
3023 /**
3024 * struct hw_err_info - HW error information.
3025 * @event: holds information on the event.
3026 * @event_detected: if set as 1, then a HW event was discovered for the
3027 * first time after the driver has finished booting-up.
3028 * currently we assume that only fatal events (that require hard-reset) are
3029 * reported so we don't care of the others that might follow it.
3030 * so once changed to 1, it will remain that way.
3031 * TODO: support multiple events.
3032 * @event_info_available: indicates that a HW event info is now available.
3033 */
3034 struct hw_err_info {
3035 struct hl_info_hw_err_event event;
3036 atomic_t event_detected;
3037 bool event_info_available;
3038 };
3039
3040 /**
3041 * struct fw_err_info - FW error information.
3042 * @event: holds information on the event.
3043 * @event_detected: if set as 1, then a FW event was discovered for the
3044 * first time after the driver has finished booting-up.
3045 * currently we assume that only fatal events (that require hard-reset) are
3046 * reported so we don't care of the others that might follow it.
3047 * so once changed to 1, it will remain that way.
3048 * TODO: support multiple events.
3049 * @event_info_available: indicates that a HW event info is now available.
3050 */
3051 struct fw_err_info {
3052 struct hl_info_fw_err_event event;
3053 atomic_t event_detected;
3054 bool event_info_available;
3055 };
3056
3057 /**
3058 * struct hl_error_info - holds information collected during an error.
3059 * @cs_timeout: CS timeout error information.
3060 * @razwi_info: RAZWI information.
3061 * @undef_opcode: undefined opcode information.
3062 * @page_fault_info: page fault information.
3063 * @hw_err: (fatal) hardware error information.
3064 * @fw_err: firmware error information.
3065 */
3066 struct hl_error_info {
3067 struct cs_timeout_info cs_timeout;
3068 struct razwi_info razwi_info;
3069 struct undefined_opcode_info undef_opcode;
3070 struct page_fault_info page_fault_info;
3071 struct hw_err_info hw_err;
3072 struct fw_err_info fw_err;
3073 };
3074
3075 /**
3076 * struct hl_reset_info - holds current device reset information.
3077 * @lock: lock to protect critical reset flows.
3078 * @compute_reset_cnt: number of compute resets since the driver was loaded.
3079 * @hard_reset_cnt: number of hard resets since the driver was loaded.
3080 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3081 * here we hold the hard reset flags.
3082 * @in_reset: is device in reset flow.
3083 * @in_compute_reset: Device is currently in reset but not in hard-reset.
3084 * @needs_reset: true if reset_on_lockup is false and device should be reset
3085 * due to lockup.
3086 * @hard_reset_pending: is there a hard reset work pending.
3087 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3088 * triggered, and cleared after it is shared with preboot.
3089 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3090 * with a new value on next reset
3091 * @reset_trigger_repeated: set if device reset is triggered more than once with
3092 * same cause.
3093 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3094 * complete instead.
3095 * @watchdog_active: true if a device release watchdog work is scheduled.
3096 */
3097 struct hl_reset_info {
3098 spinlock_t lock;
3099 u32 compute_reset_cnt;
3100 u32 hard_reset_cnt;
3101 u32 hard_reset_schedule_flags;
3102 u8 in_reset;
3103 u8 in_compute_reset;
3104 u8 needs_reset;
3105 u8 hard_reset_pending;
3106 u8 curr_reset_cause;
3107 u8 prev_reset_trigger;
3108 u8 reset_trigger_repeated;
3109 u8 skip_reset_on_timeout;
3110 u8 watchdog_active;
3111 };
3112
3113 /**
3114 * struct hl_device - habanalabs device structure.
3115 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3116 * @pcie_bar_phys: array of available PCIe bars physical addresses.
3117 * (required only for PCI address match mode)
3118 * @pcie_bar: array of available PCIe bars virtual addresses.
3119 * @rmmio: configuration area address on SRAM.
3120 * @hclass: pointer to the habanalabs class.
3121 * @cdev: related char device.
3122 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3123 * @dev: related kernel basic device structure.
3124 * @dev_ctrl: related kernel device structure for the control device
3125 * @work_heartbeat: delayed work for CPU-CP is-alive check.
3126 * @device_reset_work: delayed work which performs hard reset
3127 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3128 * device upon certain error cases.
3129 * @asic_name: ASIC specific name.
3130 * @asic_type: ASIC specific type.
3131 * @completion_queue: array of hl_cq.
3132 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3133 * interrupt, driver will monitor the list of fences
3134 * registered to this interrupt.
3135 * @tpc_interrupt: single TPC interrupt for all TPCs.
3136 * @unexpected_error_interrupt: single interrupt for unexpected user error indication.
3137 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3138 * upon any user CQ interrupt, driver will monitor the
3139 * list of fences registered to this common structure.
3140 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3141 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3142 * outstanding command submissions.
3143 * @cq_wq: work queues of completion queues for executing work in process
3144 * context.
3145 * @eq_wq: work queue of event queue for executing work in process context.
3146 * @cs_cmplt_wq: work queue of CS completions for executing work in process
3147 * context.
3148 * @ts_free_obj_wq: work queue for timestamp registration objects release.
3149 * @prefetch_wq: work queue for MMU pre-fetch operations.
3150 * @reset_wq: work queue for device reset procedure.
3151 * @kernel_ctx: Kernel driver context structure.
3152 * @kernel_queues: array of hl_hw_queue.
3153 * @cs_mirror_list: CS mirror list for TDR.
3154 * @cs_mirror_lock: protects cs_mirror_list.
3155 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3156 * @event_queue: event queue for IRQ from CPU-CP.
3157 * @dma_pool: DMA pool for small allocations.
3158 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3159 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3160 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3161 * @asid_bitmap: holds used/available ASIDs.
3162 * @asid_mutex: protects asid_bitmap.
3163 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3164 * @debug_lock: protects critical section of setting debug mode for device
3165 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3166 * page tables are per context, the invalidation h/w is per MMU.
3167 * Therefore, we can't allow multiple contexts (we only have two,
3168 * user and kernel) to access the invalidation h/w at the same time.
3169 * In addition, any change to the PGT, modifying the MMU hash or
3170 * walking the PGT requires talking this lock.
3171 * @asic_prop: ASIC specific immutable properties.
3172 * @asic_funcs: ASIC specific functions.
3173 * @asic_specific: ASIC specific information to use only from ASIC files.
3174 * @vm: virtual memory manager for MMU.
3175 * @hwmon_dev: H/W monitor device.
3176 * @hl_chip_info: ASIC's sensors information.
3177 * @device_status_description: device status description.
3178 * @hl_debugfs: device's debugfs manager.
3179 * @cb_pool: list of pre allocated CBs.
3180 * @cb_pool_lock: protects the CB pool.
3181 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3182 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3183 * @internal_cb_pool: internal command buffer memory pool.
3184 * @internal_cb_va_base: internal cb pool mmu virtual address base
3185 * @fpriv_list: list of file private data structures. Each structure is created
3186 * when a user opens the device
3187 * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3188 * when a user opens the control device
3189 * @fpriv_list_lock: protects the fpriv_list
3190 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3191 * @aggregated_cs_counters: aggregated cs counters among all contexts
3192 * @mmu_priv: device-specific MMU data.
3193 * @mmu_func: device-related MMU functions.
3194 * @dec: list of decoder sw instance
3195 * @fw_loader: FW loader manager.
3196 * @pci_mem_region: array of memory regions in the PCI
3197 * @state_dump_specs: constants and dictionaries needed to dump system state.
3198 * @multi_cs_completion: array of multi-CS completion.
3199 * @clk_throttling: holds information about current/previous clock throttling events
3200 * @captured_err_info: holds information about errors.
3201 * @reset_info: holds current device reset information.
3202 * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3203 * @fw_inner_major_ver: the major of current loaded preboot inner version.
3204 * @fw_inner_minor_ver: the minor of current loaded preboot inner version.
3205 * @fw_sw_major_ver: the major of current loaded preboot SW version.
3206 * @fw_sw_minor_ver: the minor of current loaded preboot SW version.
3207 * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
3208 * @dram_used_mem: current DRAM memory consumption.
3209 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3210 * @timeout_jiffies: device CS timeout value.
3211 * @max_power: the max power of the device, as configured by the sysadmin. This
3212 * value is saved so in case of hard-reset, the driver will restore
3213 * this value and update the F/W after the re-initialization
3214 * @boot_error_status_mask: contains a mask of the device boot error status.
3215 * Each bit represents a different error, according to
3216 * the defines in hl_boot_if.h. If the bit is cleared,
3217 * the error will be ignored by the driver during
3218 * device initialization. Mainly used to debug and
3219 * workaround firmware bugs
3220 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3221 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3222 * @last_successful_open_jif: timestamp (jiffies) of the last successful
3223 * device open.
3224 * @last_open_session_duration_jif: duration (jiffies) of the last device open
3225 * session.
3226 * @open_counter: number of successful device open operations.
3227 * @fw_poll_interval_usec: FW status poll interval in usec.
3228 * used for CPU boot status
3229 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3230 * used for COMMs protocols cmds(COMMS_STS_*)
3231 * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3232 * drams are binned-out
3233 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3234 * tpc engines are binned-out
3235 * @dmabuf_export_cnt: number of dma-buf exporting.
3236 * @card_type: Various ASICs have several card types. This indicates the card
3237 * type of the current device.
3238 * @major: habanalabs kernel driver major.
3239 * @high_pll: high PLL profile frequency.
3240 * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3241 * indicates which decoder engines are binned-out
3242 * @edma_binning: contains mask of edma engines that is received from the f/w which
3243 * indicates which edma engines are binned-out
3244 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3245 * @rotator_binning: contains mask of rotators engines that is received from the f/w
3246 * which indicates which rotator engines are binned-out(Gaudi3 and above).
3247 * @id: device minor.
3248 * @id_control: minor of the control device.
3249 * @cdev_idx: char device index. Used for setting its name.
3250 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3251 * addresses.
3252 * @is_in_dram_scrub: true if dram scrub operation is on going.
3253 * @disabled: is device disabled.
3254 * @late_init_done: is late init stage was done during initialization.
3255 * @hwmon_initialized: is H/W monitor sensors was initialized.
3256 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3257 * otherwise.
3258 * @dram_default_page_mapping: is DRAM default page mapping enabled.
3259 * @memory_scrub: true to perform device memory scrub in various locations,
3260 * such as context-switch, context close, page free, etc.
3261 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3262 * huge pages.
3263 * @init_done: is the initialization of the device done.
3264 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3265 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3266 * can be used. This indication is needed because in some ASICs we need to do
3267 * specific operations to enable that infrastructure.
3268 * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
3269 * @stop_on_err: true if engines should stop on error.
3270 * @supports_sync_stream: is sync stream supported.
3271 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3272 * @collective_mon_idx: helper index for collective initialization
3273 * @supports_coresight: is CoreSight supported.
3274 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3275 * @process_kill_trial_cnt: number of trials reset thread tried killing
3276 * user processes
3277 * @device_fini_pending: true if device_fini was called and might be
3278 * waiting for the reset thread to finish
3279 * @supports_staged_submission: true if staged submissions are supported
3280 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3281 * halted. We can't halt it again because the COMMS
3282 * protocol will throw an error. Relevant only for
3283 * cases where Linux was not loaded to device CPU
3284 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3285 * @is_compute_ctx_active: Whether there is an active compute context executing.
3286 * @compute_ctx_in_release: true if the current compute context is being released.
3287 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3288 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3289 * device.
3290 * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3291 * @support_preboot_binning: true if we support read binning info from preboot.
3292 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3293 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3294 * stages and sometimes we want to stop at a certain stage. Used only for testing.
3295 * @mmu_disable: Disable the device MMU(s). Used only for testing.
3296 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3297 * @pldm: Whether we are running in Palladium environment. Used only for testing.
3298 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3299 * the f/w. Used only for testing.
3300 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3301 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3302 * Used only for testing.
3303 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3304 * that the f/w is always alive. Used only for testing.
3305 */
3306 struct hl_device {
3307 struct pci_dev *pdev;
3308 u64 pcie_bar_phys[HL_PCI_NUM_BARS];
3309 void __iomem *pcie_bar[HL_PCI_NUM_BARS];
3310 void __iomem *rmmio;
3311 struct class *hclass;
3312 struct cdev cdev;
3313 struct cdev cdev_ctrl;
3314 struct device *dev;
3315 struct device *dev_ctrl;
3316 struct delayed_work work_heartbeat;
3317 struct hl_device_reset_work device_reset_work;
3318 struct hl_device_reset_work device_release_watchdog_work;
3319 char asic_name[HL_STR_MAX];
3320 char status[HL_DEV_STS_MAX][HL_STR_MAX];
3321 enum hl_asic_type asic_type;
3322 struct hl_cq *completion_queue;
3323 struct hl_user_interrupt *user_interrupt;
3324 struct hl_user_interrupt tpc_interrupt;
3325 struct hl_user_interrupt unexpected_error_interrupt;
3326 struct hl_user_interrupt common_user_cq_interrupt;
3327 struct hl_user_interrupt common_decoder_interrupt;
3328 struct hl_cs **shadow_cs_queue;
3329 struct workqueue_struct **cq_wq;
3330 struct workqueue_struct *eq_wq;
3331 struct workqueue_struct *cs_cmplt_wq;
3332 struct workqueue_struct *ts_free_obj_wq;
3333 struct workqueue_struct *prefetch_wq;
3334 struct workqueue_struct *reset_wq;
3335 struct hl_ctx *kernel_ctx;
3336 struct hl_hw_queue *kernel_queues;
3337 struct list_head cs_mirror_list;
3338 spinlock_t cs_mirror_lock;
3339 struct hl_mem_mgr kernel_mem_mgr;
3340 struct hl_eq event_queue;
3341 struct dma_pool *dma_pool;
3342 void *cpu_accessible_dma_mem;
3343 dma_addr_t cpu_accessible_dma_address;
3344 struct gen_pool *cpu_accessible_dma_pool;
3345 unsigned long *asid_bitmap;
3346 struct mutex asid_mutex;
3347 struct mutex send_cpu_message_lock;
3348 struct mutex debug_lock;
3349 struct mutex mmu_lock;
3350 struct asic_fixed_properties asic_prop;
3351 const struct hl_asic_funcs *asic_funcs;
3352 void *asic_specific;
3353 struct hl_vm vm;
3354 struct device *hwmon_dev;
3355 struct hwmon_chip_info *hl_chip_info;
3356
3357 struct hl_dbg_device_entry hl_debugfs;
3358
3359 struct list_head cb_pool;
3360 spinlock_t cb_pool_lock;
3361
3362 void *internal_cb_pool_virt_addr;
3363 dma_addr_t internal_cb_pool_dma_addr;
3364 struct gen_pool *internal_cb_pool;
3365 u64 internal_cb_va_base;
3366
3367 struct list_head fpriv_list;
3368 struct list_head fpriv_ctrl_list;
3369 struct mutex fpriv_list_lock;
3370 struct mutex fpriv_ctrl_list_lock;
3371
3372 struct hl_cs_counters_atomic aggregated_cs_counters;
3373
3374 struct hl_mmu_priv mmu_priv;
3375 struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
3376
3377 struct hl_dec *dec;
3378
3379 struct fw_load_mgr fw_loader;
3380
3381 struct pci_mem_region pci_mem_region[PCI_REGION_NUMBER];
3382
3383 struct hl_state_dump_specs state_dump_specs;
3384
3385 struct multi_cs_completion multi_cs_completion[
3386 MULTI_CS_MAX_USER_CTX];
3387 struct hl_clk_throttle clk_throttling;
3388 struct hl_error_info captured_err_info;
3389
3390 struct hl_reset_info reset_info;
3391
3392 u32 *stream_master_qid_arr;
3393 u32 fw_inner_major_ver;
3394 u32 fw_inner_minor_ver;
3395 u32 fw_sw_major_ver;
3396 u32 fw_sw_minor_ver;
3397 u32 fw_sw_sub_minor_ver;
3398 atomic64_t dram_used_mem;
3399 u64 memory_scrub_val;
3400 u64 timeout_jiffies;
3401 u64 max_power;
3402 u64 boot_error_status_mask;
3403 u64 dram_pci_bar_start;
3404 u64 last_successful_open_jif;
3405 u64 last_open_session_duration_jif;
3406 u64 open_counter;
3407 u64 fw_poll_interval_usec;
3408 ktime_t last_successful_open_ktime;
3409 u64 fw_comms_poll_interval_usec;
3410 u64 dram_binning;
3411 u64 tpc_binning;
3412 atomic_t dmabuf_export_cnt;
3413 enum cpucp_card_types card_type;
3414 u32 major;
3415 u32 high_pll;
3416 u32 decoder_binning;
3417 u32 edma_binning;
3418 u32 device_release_watchdog_timeout_sec;
3419 u32 rotator_binning;
3420 u16 id;
3421 u16 id_control;
3422 u16 cdev_idx;
3423 u16 cpu_pci_msb_addr;
3424 u8 is_in_dram_scrub;
3425 u8 disabled;
3426 u8 late_init_done;
3427 u8 hwmon_initialized;
3428 u8 reset_on_lockup;
3429 u8 dram_default_page_mapping;
3430 u8 memory_scrub;
3431 u8 pmmu_huge_range;
3432 u8 init_done;
3433 u8 device_cpu_disabled;
3434 u8 in_debug;
3435 u8 cdev_sysfs_debugfs_created;
3436 u8 stop_on_err;
3437 u8 supports_sync_stream;
3438 u8 sync_stream_queue_idx;
3439 u8 collective_mon_idx;
3440 u8 supports_coresight;
3441 u8 supports_cb_mapping;
3442 u8 process_kill_trial_cnt;
3443 u8 device_fini_pending;
3444 u8 supports_staged_submission;
3445 u8 device_cpu_is_halted;
3446 u8 supports_wait_for_multi_cs;
3447 u8 stream_master_qid_arr_size;
3448 u8 is_compute_ctx_active;
3449 u8 compute_ctx_in_release;
3450 u8 supports_mmu_prefetch;
3451 u8 reset_upon_device_release;
3452 u8 supports_ctx_switch;
3453 u8 support_preboot_binning;
3454
3455 /* Parameters for bring-up to be upstreamed */
3456 u64 nic_ports_mask;
3457 u64 fw_components;
3458 u8 mmu_disable;
3459 u8 cpu_queues_enable;
3460 u8 pldm;
3461 u8 hard_reset_on_fw_events;
3462 u8 bmc_enable;
3463 u8 reset_on_preboot_fail;
3464 u8 heartbeat;
3465 };
3466
3467
3468 /**
3469 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3470 * @refcount: refcount used to protect removing this id when several
3471 * wait cs are used to wait of the reserved encaps signals.
3472 * @hdev: pointer to habanalabs device structure.
3473 * @hw_sob: pointer to H/W SOB used in the reservation.
3474 * @ctx: pointer to the user's context data structure
3475 * @cs_seq: staged cs sequence which contains encapsulated signals
3476 * @id: idr handler id to be used to fetch the handler info
3477 * @q_idx: stream queue index
3478 * @pre_sob_val: current SOB value before reservation
3479 * @count: signals number
3480 */
3481 struct hl_cs_encaps_sig_handle {
3482 struct kref refcount;
3483 struct hl_device *hdev;
3484 struct hl_hw_sob *hw_sob;
3485 struct hl_ctx *ctx;
3486 u64 cs_seq;
3487 u32 id;
3488 u32 q_idx;
3489 u32 pre_sob_val;
3490 u32 count;
3491 };
3492
3493 /**
3494 * struct hl_info_fw_err_info - firmware error information structure
3495 * @err_type: The type of error detected (or reported).
3496 * @event_mask: Pointer to the event mask to be modified with the detected error flag
3497 * (can be NULL)
3498 * @event_id: The id of the event that reported the error
3499 * (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3500 */
3501 struct hl_info_fw_err_info {
3502 enum hl_info_fw_err_type err_type;
3503 u64 *event_mask;
3504 u16 event_id;
3505 };
3506
3507 /*
3508 * IOCTLs
3509 */
3510
3511 /**
3512 * typedef hl_ioctl_t - typedef for ioctl function in the driver
3513 * @hpriv: pointer to the FD's private data, which contains state of
3514 * user process
3515 * @data: pointer to the input/output arguments structure of the IOCTL
3516 *
3517 * Return: 0 for success, negative value for error
3518 */
3519 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3520
3521 /**
3522 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3523 * @cmd: the IOCTL code as created by the kernel macros.
3524 * @func: pointer to the driver's function that should be called for this IOCTL.
3525 */
3526 struct hl_ioctl_desc {
3527 unsigned int cmd;
3528 hl_ioctl_t *func;
3529 };
3530
hl_is_fw_sw_ver_below(struct hl_device * hdev,u32 fw_sw_major,u32 fw_sw_minor)3531 static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor)
3532 {
3533 if (hdev->fw_sw_major_ver < fw_sw_major)
3534 return true;
3535 if (hdev->fw_sw_major_ver > fw_sw_major)
3536 return false;
3537 if (hdev->fw_sw_minor_ver < fw_sw_minor)
3538 return true;
3539 return false;
3540 }
3541
3542 /*
3543 * Kernel module functions that can be accessed by entire module
3544 */
3545
3546 /**
3547 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3548 * @sg: the SG list.
3549 * @dma_addr: pointer to DMA address to return.
3550 *
3551 * Calculate the number of consecutive pages described by the SG list. Take the
3552 * offset of the address in the first page, add to it the length and round it up
3553 * to the number of needed pages.
3554 */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)3555 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3556 {
3557 *dma_addr = sg_dma_address(sg);
3558
3559 return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3560 (PAGE_SIZE - 1)) >> PAGE_SHIFT;
3561 }
3562
3563 /**
3564 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3565 * @address: The start address of the area we want to validate.
3566 * @size: The size in bytes of the area we want to validate.
3567 * @range_start_address: The start address of the valid range.
3568 * @range_end_address: The end address of the valid range.
3569 *
3570 * Return: true if the area is inside the valid range, false otherwise.
3571 */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)3572 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3573 u64 range_start_address, u64 range_end_address)
3574 {
3575 u64 end_address = address + size;
3576
3577 if ((address >= range_start_address) &&
3578 (end_address <= range_end_address) &&
3579 (end_address > address))
3580 return true;
3581
3582 return false;
3583 }
3584
3585 /**
3586 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3587 * @address: The start address of the area we want to validate.
3588 * @size: The size in bytes of the area we want to validate.
3589 * @range_start_address: The start address of the valid range.
3590 * @range_end_address: The end address of the valid range.
3591 *
3592 * Return: true if the area overlaps part or all of the valid range,
3593 * false otherwise.
3594 */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)3595 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3596 u64 range_start_address, u64 range_end_address)
3597 {
3598 u64 end_address = address + size - 1;
3599
3600 return ((address <= range_end_address) && (range_start_address <= end_address));
3601 }
3602
3603 uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3604 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3605 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3606 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3607 gfp_t flag, const char *caller);
3608 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3609 dma_addr_t dma_handle, const char *caller);
3610 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3611 dma_addr_t *dma_handle, const char *caller);
3612 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3613 const char *caller);
3614 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3615 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3616 enum dma_data_direction dir);
3617 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3618 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3619 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3620 enum debugfs_access_type acc_type);
3621 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3622 u64 addr, u64 *val, enum debugfs_access_type acc_type);
3623 int hl_device_open(struct inode *inode, struct file *filp);
3624 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3625 bool hl_device_operational(struct hl_device *hdev,
3626 enum hl_device_status *status);
3627 bool hl_ctrl_device_operational(struct hl_device *hdev,
3628 enum hl_device_status *status);
3629 enum hl_device_status hl_device_status(struct hl_device *hdev);
3630 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3631 int hl_hw_queues_create(struct hl_device *hdev);
3632 void hl_hw_queues_destroy(struct hl_device *hdev);
3633 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3634 u32 cb_size, u64 cb_ptr);
3635 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3636 u32 ctl, u32 len, u64 ptr);
3637 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3638 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3639 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3640 void hl_hw_queue_update_ci(struct hl_cs *cs);
3641 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3642
3643 #define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
3644 #define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
3645
3646 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3647 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3648 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3649 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3650 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3651 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3652 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3653 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3654 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3655 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
3656 irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3657 u32 hl_cq_inc_ptr(u32 ptr);
3658
3659 int hl_asid_init(struct hl_device *hdev);
3660 void hl_asid_fini(struct hl_device *hdev);
3661 unsigned long hl_asid_alloc(struct hl_device *hdev);
3662 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3663
3664 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3665 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3666 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3667 void hl_ctx_do_release(struct kref *ref);
3668 void hl_ctx_get(struct hl_ctx *ctx);
3669 int hl_ctx_put(struct hl_ctx *ctx);
3670 struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3671 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3672 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3673 struct hl_fence **fence, u32 arr_len);
3674 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3675 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3676
3677 int hl_device_init(struct hl_device *hdev);
3678 void hl_device_fini(struct hl_device *hdev);
3679 int hl_device_suspend(struct hl_device *hdev);
3680 int hl_device_resume(struct hl_device *hdev);
3681 int hl_device_reset(struct hl_device *hdev, u32 flags);
3682 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3683 void hl_hpriv_get(struct hl_fpriv *hpriv);
3684 int hl_hpriv_put(struct hl_fpriv *hpriv);
3685 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3686
3687 int hl_build_hwmon_channel_info(struct hl_device *hdev,
3688 struct cpucp_sensor *sensors_arr);
3689
3690 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3691
3692 int hl_sysfs_init(struct hl_device *hdev);
3693 void hl_sysfs_fini(struct hl_device *hdev);
3694
3695 int hl_hwmon_init(struct hl_device *hdev);
3696 void hl_hwmon_fini(struct hl_device *hdev);
3697 void hl_hwmon_release_resources(struct hl_device *hdev);
3698
3699 int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3700 struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3701 bool map_cb, u64 *handle);
3702 int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3703 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3704 struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3705 void hl_cb_put(struct hl_cb *cb);
3706 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3707 bool internal_cb);
3708 int hl_cb_pool_init(struct hl_device *hdev);
3709 int hl_cb_pool_fini(struct hl_device *hdev);
3710 int hl_cb_va_pool_init(struct hl_ctx *ctx);
3711 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3712
3713 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3714 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3715 enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3716 void hl_sob_reset_error(struct kref *ref);
3717 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3718 void hl_fence_put(struct hl_fence *fence);
3719 void hl_fences_put(struct hl_fence **fence, int len);
3720 void hl_fence_get(struct hl_fence *fence);
3721 void cs_get(struct hl_cs *cs);
3722 bool cs_needs_completion(struct hl_cs *cs);
3723 bool cs_needs_timeout(struct hl_cs *cs);
3724 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3725 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3726 void hl_multi_cs_completion_init(struct hl_device *hdev);
3727 u32 hl_get_active_cs_num(struct hl_device *hdev);
3728
3729 void goya_set_asic_funcs(struct hl_device *hdev);
3730 void gaudi_set_asic_funcs(struct hl_device *hdev);
3731 void gaudi2_set_asic_funcs(struct hl_device *hdev);
3732
3733 int hl_vm_ctx_init(struct hl_ctx *ctx);
3734 void hl_vm_ctx_fini(struct hl_ctx *ctx);
3735
3736 int hl_vm_init(struct hl_device *hdev);
3737 void hl_vm_fini(struct hl_device *hdev);
3738
3739 void hl_hw_block_mem_init(struct hl_ctx *ctx);
3740 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3741
3742 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3743 enum hl_va_range_type type, u64 size, u32 alignment);
3744 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3745 u64 start_addr, u64 size);
3746 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3747 struct hl_userptr *userptr);
3748 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3749 void hl_userptr_delete_list(struct hl_device *hdev,
3750 struct list_head *userptr_list);
3751 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3752 struct list_head *userptr_list,
3753 struct hl_userptr **userptr);
3754
3755 int hl_mmu_init(struct hl_device *hdev);
3756 void hl_mmu_fini(struct hl_device *hdev);
3757 int hl_mmu_ctx_init(struct hl_ctx *ctx);
3758 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3759 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3760 u32 page_size, bool flush_pte);
3761 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3762 u32 page_size, u32 *real_page_size, bool is_dram_addr);
3763 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3764 bool flush_pte);
3765 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3766 u64 phys_addr, u32 size);
3767 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3768 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3769 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3770 u32 flags, u32 asid, u64 va, u64 size);
3771 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3772 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3773 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3774 u8 hop_idx, u64 hop_addr, u64 virt_addr);
3775 void hl_mmu_hr_flush(struct hl_ctx *ctx);
3776 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3777 u64 pgt_size);
3778 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3779 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3780 u32 hop_table_size);
3781 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3782 u32 hop_table_size);
3783 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3784 u64 val, u32 hop_table_size);
3785 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3786 u32 hop_table_size);
3787 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3788 u32 hop_table_size);
3789 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3790 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3791 struct hl_hr_mmu_funcs *hr_func,
3792 u64 curr_pte);
3793 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3794 struct hl_hr_mmu_funcs *hr_func,
3795 struct hl_mmu_properties *mmu_prop);
3796 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3797 struct hl_mmu_hr_priv *hr_priv,
3798 struct hl_hr_mmu_funcs *hr_func,
3799 struct hl_mmu_properties *mmu_prop,
3800 u64 curr_pte, bool *is_new_hop);
3801 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3802 struct hl_hr_mmu_funcs *hr_func);
3803 int hl_mmu_if_set_funcs(struct hl_device *hdev);
3804 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3805 void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3806 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3807 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3808 struct hl_mmu_hop_info *hops);
3809 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3810 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3811 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3812
3813 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3814 void __iomem *dst, u32 src_offset, u32 size);
3815 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3816 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3817 u16 len, u32 timeout, u64 *result);
3818 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3819 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3820 size_t irq_arr_size);
3821 int hl_fw_test_cpu_queue(struct hl_device *hdev);
3822 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3823 dma_addr_t *dma_handle);
3824 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3825 void *vaddr);
3826 int hl_fw_send_heartbeat(struct hl_device *hdev);
3827 int hl_fw_cpucp_info_get(struct hl_device *hdev,
3828 u32 sts_boot_dev_sts0_reg,
3829 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3830 u32 boot_err1_reg);
3831 int hl_fw_cpucp_handshake(struct hl_device *hdev,
3832 u32 sts_boot_dev_sts0_reg,
3833 u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3834 u32 boot_err1_reg);
3835 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3836 int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3837 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3838 struct hl_info_pci_counters *counters);
3839 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3840 u64 *total_energy);
3841 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3842 enum pll_index *pll_index);
3843 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3844 u16 *pll_freq_arr);
3845 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3846 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3847 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3848 int hl_fw_init_cpu(struct hl_device *hdev);
3849 int hl_fw_wait_preboot_ready(struct hl_device *hdev);
3850 int hl_fw_read_preboot_status(struct hl_device *hdev);
3851 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3852 struct fw_load_mgr *fw_loader,
3853 enum comms_cmd cmd, unsigned int size,
3854 bool wait_ok, u32 timeout);
3855 int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3856 struct cpucp_hbm_row_info *info);
3857 int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3858 int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3859 int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3860 int hl_fw_send_soft_reset(struct hl_device *hdev);
3861 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3862 bool is_wc[3]);
3863 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3864 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3865 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3866 struct hl_inbound_pci_region *pci_region);
3867 int hl_pci_set_outbound_region(struct hl_device *hdev,
3868 struct hl_outbound_pci_region *pci_region);
3869 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3870 int hl_pci_init(struct hl_device *hdev);
3871 void hl_pci_fini(struct hl_device *hdev);
3872
3873 long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3874 void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3875 int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3876 int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3877 int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3878 int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3879 int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3880 int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3881 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3882 long hl_fw_get_max_power(struct hl_device *hdev);
3883 void hl_fw_set_max_power(struct hl_device *hdev);
3884 int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3885 u32 nonce);
3886 int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3887 int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3888 int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3889 int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3890 int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3891 void hl_fw_set_pll_profile(struct hl_device *hdev);
3892 void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3893 void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3894 int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
3895 dma_addr_t buff, u32 *size);
3896
3897 void hw_sob_get(struct hl_hw_sob *hw_sob);
3898 void hw_sob_put(struct hl_hw_sob *hw_sob);
3899 void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
3900 void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
3901 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3902 struct hl_cs *cs, struct hl_cs_job *job,
3903 struct hl_cs_compl *cs_cmpl);
3904
3905 int hl_dec_init(struct hl_device *hdev);
3906 void hl_dec_fini(struct hl_device *hdev);
3907 void hl_dec_ctx_fini(struct hl_ctx *ctx);
3908
3909 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3910 void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
3911 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3912 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3913
3914 int hl_state_dump(struct hl_device *hdev);
3915 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3916 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3917 struct hl_mon_state_dump *mon);
3918 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3919 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3920 const char *format, ...);
3921 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3922 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3923
3924 void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3925 void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3926 void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
3927 int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3928 void *args);
3929 struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3930 u64 handle);
3931 int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3932 int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3933 struct hl_mmap_mem_buf *
3934 hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3935 struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3936 void *args);
3937 __printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
3938 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3939 u8 flags);
3940 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3941 u8 flags, u64 *event_mask);
3942 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
3943 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
3944 u64 *event_mask);
3945 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
3946 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
3947 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
3948
3949 #ifdef CONFIG_DEBUG_FS
3950
3951 void hl_debugfs_init(void);
3952 void hl_debugfs_fini(void);
3953 int hl_debugfs_device_init(struct hl_device *hdev);
3954 void hl_debugfs_device_fini(struct hl_device *hdev);
3955 void hl_debugfs_add_device(struct hl_device *hdev);
3956 void hl_debugfs_remove_device(struct hl_device *hdev);
3957 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3958 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3959 void hl_debugfs_add_cb(struct hl_cb *cb);
3960 void hl_debugfs_remove_cb(struct hl_cb *cb);
3961 void hl_debugfs_add_cs(struct hl_cs *cs);
3962 void hl_debugfs_remove_cs(struct hl_cs *cs);
3963 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3964 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3965 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3966 void hl_debugfs_remove_userptr(struct hl_device *hdev,
3967 struct hl_userptr *userptr);
3968 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3969 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3970 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3971 unsigned long length);
3972
3973 #else
3974
hl_debugfs_init(void)3975 static inline void __init hl_debugfs_init(void)
3976 {
3977 }
3978
hl_debugfs_fini(void)3979 static inline void hl_debugfs_fini(void)
3980 {
3981 }
3982
hl_debugfs_device_init(struct hl_device * hdev)3983 static inline int hl_debugfs_device_init(struct hl_device *hdev)
3984 {
3985 return 0;
3986 }
3987
hl_debugfs_device_fini(struct hl_device * hdev)3988 static inline void hl_debugfs_device_fini(struct hl_device *hdev)
3989 {
3990 }
3991
hl_debugfs_add_device(struct hl_device * hdev)3992 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3993 {
3994 }
3995
hl_debugfs_remove_device(struct hl_device * hdev)3996 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3997 {
3998 }
3999
hl_debugfs_add_file(struct hl_fpriv * hpriv)4000 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
4001 {
4002 }
4003
hl_debugfs_remove_file(struct hl_fpriv * hpriv)4004 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
4005 {
4006 }
4007
hl_debugfs_add_cb(struct hl_cb * cb)4008 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
4009 {
4010 }
4011
hl_debugfs_remove_cb(struct hl_cb * cb)4012 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
4013 {
4014 }
4015
hl_debugfs_add_cs(struct hl_cs * cs)4016 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4017 {
4018 }
4019
hl_debugfs_remove_cs(struct hl_cs * cs)4020 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4021 {
4022 }
4023
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)4024 static inline void hl_debugfs_add_job(struct hl_device *hdev,
4025 struct hl_cs_job *job)
4026 {
4027 }
4028
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)4029 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4030 struct hl_cs_job *job)
4031 {
4032 }
4033
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)4034 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4035 struct hl_userptr *userptr)
4036 {
4037 }
4038
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)4039 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4040 struct hl_userptr *userptr)
4041 {
4042 }
4043
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)4044 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4045 struct hl_ctx *ctx)
4046 {
4047 }
4048
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)4049 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4050 struct hl_ctx *ctx)
4051 {
4052 }
4053
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)4054 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4055 char *data, unsigned long length)
4056 {
4057 }
4058
4059 #endif
4060
4061 /* Security */
4062 int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4063 const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4064 int array_size);
4065 int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4066 int mm_array_size, int offset, const u32 pb_blocks[],
4067 struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4068 void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4069 struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4070 int array_size);
4071 void hl_secure_block(struct hl_device *hdev,
4072 struct hl_block_glbl_sec sgs_array[], int array_size);
4073 int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4074 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4075 const u32 pb_blocks[], u32 blocks_array_size,
4076 const u32 *regs_array, u32 regs_array_size, u64 mask);
4077 int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4078 u32 num_instances, u32 instance_offset,
4079 const u32 pb_blocks[], u32 blocks_array_size,
4080 const u32 *regs_array, u32 regs_array_size);
4081 int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4082 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4083 const u32 pb_blocks[], u32 blocks_array_size,
4084 const struct range *regs_range_array, u32 regs_range_array_size,
4085 u64 mask);
4086 int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4087 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4088 const u32 pb_blocks[], u32 blocks_array_size,
4089 const struct range *regs_range_array,
4090 u32 regs_range_array_size);
4091 int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4092 u32 num_instances, u32 instance_offset,
4093 const u32 pb_blocks[], u32 blocks_array_size,
4094 const u32 *regs_array, u32 regs_array_size);
4095 int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4096 u32 num_instances, u32 instance_offset,
4097 const u32 pb_blocks[], u32 blocks_array_size,
4098 const struct range *regs_range_array,
4099 u32 regs_range_array_size);
4100 void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4101 u32 num_instances, u32 instance_offset,
4102 const u32 pb_blocks[], u32 blocks_array_size);
4103 void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4104 u32 dcore_offset, u32 num_instances, u32 instance_offset,
4105 const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4106 void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4107 u32 num_instances, u32 instance_offset,
4108 const u32 pb_blocks[], u32 blocks_array_size);
4109
4110 /* IOCTLs */
4111 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
4112 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4113 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
4114 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
4115 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
4116 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
4117
4118 #endif /* HABANALABSP_H_ */
4119