1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/hugetlb.h>
39 #include <linux/freezer.h>
40 #include <linux/memblock.h>
41 #include <linux/fault-inject.h>
42 #include <linux/time_namespace.h>
43 
44 #include <asm/futex.h>
45 
46 #include "locking/rtmutex_common.h"
47 
48 /*
49  * READ this before attempting to hack on futexes!
50  *
51  * Basic futex operation and ordering guarantees
52  * =============================================
53  *
54  * The waiter reads the futex value in user space and calls
55  * futex_wait(). This function computes the hash bucket and acquires
56  * the hash bucket lock. After that it reads the futex user space value
57  * again and verifies that the data has not changed. If it has not changed
58  * it enqueues itself into the hash bucket, releases the hash bucket lock
59  * and schedules.
60  *
61  * The waker side modifies the user space value of the futex and calls
62  * futex_wake(). This function computes the hash bucket and acquires the
63  * hash bucket lock. Then it looks for waiters on that futex in the hash
64  * bucket and wakes them.
65  *
66  * In futex wake up scenarios where no tasks are blocked on a futex, taking
67  * the hb spinlock can be avoided and simply return. In order for this
68  * optimization to work, ordering guarantees must exist so that the waiter
69  * being added to the list is acknowledged when the list is concurrently being
70  * checked by the waker, avoiding scenarios like the following:
71  *
72  * CPU 0                               CPU 1
73  * val = *futex;
74  * sys_futex(WAIT, futex, val);
75  *   futex_wait(futex, val);
76  *   uval = *futex;
77  *                                     *futex = newval;
78  *                                     sys_futex(WAKE, futex);
79  *                                       futex_wake(futex);
80  *                                       if (queue_empty())
81  *                                         return;
82  *   if (uval == val)
83  *      lock(hash_bucket(futex));
84  *      queue();
85  *     unlock(hash_bucket(futex));
86  *     schedule();
87  *
88  * This would cause the waiter on CPU 0 to wait forever because it
89  * missed the transition of the user space value from val to newval
90  * and the waker did not find the waiter in the hash bucket queue.
91  *
92  * The correct serialization ensures that a waiter either observes
93  * the changed user space value before blocking or is woken by a
94  * concurrent waker:
95  *
96  * CPU 0                                 CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *
101  *   waiters++; (a)
102  *   smp_mb(); (A) <-- paired with -.
103  *                                  |
104  *   lock(hash_bucket(futex));      |
105  *                                  |
106  *   uval = *futex;                 |
107  *                                  |        *futex = newval;
108  *                                  |        sys_futex(WAKE, futex);
109  *                                  |          futex_wake(futex);
110  *                                  |
111  *                                  `--------> smp_mb(); (B)
112  *   if (uval == val)
113  *     queue();
114  *     unlock(hash_bucket(futex));
115  *     schedule();                         if (waiters)
116  *                                           lock(hash_bucket(futex));
117  *   else                                    wake_waiters(futex);
118  *     waiters--; (b)                        unlock(hash_bucket(futex));
119  *
120  * Where (A) orders the waiters increment and the futex value read through
121  * atomic operations (see hb_waiters_inc) and where (B) orders the write
122  * to futex and the waiters read (see hb_waiters_pending()).
123  *
124  * This yields the following case (where X:=waiters, Y:=futex):
125  *
126  *	X = Y = 0
127  *
128  *	w[X]=1		w[Y]=1
129  *	MB		MB
130  *	r[Y]=y		r[X]=x
131  *
132  * Which guarantees that x==0 && y==0 is impossible; which translates back into
133  * the guarantee that we cannot both miss the futex variable change and the
134  * enqueue.
135  *
136  * Note that a new waiter is accounted for in (a) even when it is possible that
137  * the wait call can return error, in which case we backtrack from it in (b).
138  * Refer to the comment in queue_lock().
139  *
140  * Similarly, in order to account for waiters being requeued on another
141  * address we always increment the waiters for the destination bucket before
142  * acquiring the lock. It then decrements them again  after releasing it -
143  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144  * will do the additional required waiter count housekeeping. This is done for
145  * double_lock_hb() and double_unlock_hb(), respectively.
146  */
147 
148 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149 #define futex_cmpxchg_enabled 1
150 #else
151 static int  __read_mostly futex_cmpxchg_enabled;
152 #endif
153 
154 /*
155  * Futex flags used to encode options to functions and preserve them across
156  * restarts.
157  */
158 #ifdef CONFIG_MMU
159 # define FLAGS_SHARED		0x01
160 #else
161 /*
162  * NOMMU does not have per process address space. Let the compiler optimize
163  * code away.
164  */
165 # define FLAGS_SHARED		0x00
166 #endif
167 #define FLAGS_CLOCKRT		0x02
168 #define FLAGS_HAS_TIMEOUT	0x04
169 
170 /*
171  * Priority Inheritance state:
172  */
173 struct futex_pi_state {
174 	/*
175 	 * list of 'owned' pi_state instances - these have to be
176 	 * cleaned up in do_exit() if the task exits prematurely:
177 	 */
178 	struct list_head list;
179 
180 	/*
181 	 * The PI object:
182 	 */
183 	struct rt_mutex pi_mutex;
184 
185 	struct task_struct *owner;
186 	refcount_t refcount;
187 
188 	union futex_key key;
189 } __randomize_layout;
190 
191 /**
192  * struct futex_q - The hashed futex queue entry, one per waiting task
193  * @list:		priority-sorted list of tasks waiting on this futex
194  * @task:		the task waiting on the futex
195  * @lock_ptr:		the hash bucket lock
196  * @key:		the key the futex is hashed on
197  * @pi_state:		optional priority inheritance state
198  * @rt_waiter:		rt_waiter storage for use with requeue_pi
199  * @requeue_pi_key:	the requeue_pi target futex key
200  * @bitset:		bitset for the optional bitmasked wakeup
201  *
202  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
203  * we can wake only the relevant ones (hashed queues may be shared).
204  *
205  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
206  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207  * The order of wakeup is always to make the first condition true, then
208  * the second.
209  *
210  * PI futexes are typically woken before they are removed from the hash list via
211  * the rt_mutex code. See unqueue_me_pi().
212  */
213 struct futex_q {
214 	struct plist_node list;
215 
216 	struct task_struct *task;
217 	spinlock_t *lock_ptr;
218 	union futex_key key;
219 	struct futex_pi_state *pi_state;
220 	struct rt_mutex_waiter *rt_waiter;
221 	union futex_key *requeue_pi_key;
222 	u32 bitset;
223 } __randomize_layout;
224 
225 static const struct futex_q futex_q_init = {
226 	/* list gets initialized in queue_me()*/
227 	.key = FUTEX_KEY_INIT,
228 	.bitset = FUTEX_BITSET_MATCH_ANY
229 };
230 
231 /*
232  * Hash buckets are shared by all the futex_keys that hash to the same
233  * location.  Each key may have multiple futex_q structures, one for each task
234  * waiting on a futex.
235  */
236 struct futex_hash_bucket {
237 	atomic_t waiters;
238 	spinlock_t lock;
239 	struct plist_head chain;
240 } ____cacheline_aligned_in_smp;
241 
242 /*
243  * The base of the bucket array and its size are always used together
244  * (after initialization only in hash_futex()), so ensure that they
245  * reside in the same cacheline.
246  */
247 static struct {
248 	struct futex_hash_bucket *queues;
249 	unsigned long            hashsize;
250 } __futex_data __read_mostly __aligned(2*sizeof(long));
251 #define futex_queues   (__futex_data.queues)
252 #define futex_hashsize (__futex_data.hashsize)
253 
254 
255 /*
256  * Fault injections for futexes.
257  */
258 #ifdef CONFIG_FAIL_FUTEX
259 
260 static struct {
261 	struct fault_attr attr;
262 
263 	bool ignore_private;
264 } fail_futex = {
265 	.attr = FAULT_ATTR_INITIALIZER,
266 	.ignore_private = false,
267 };
268 
setup_fail_futex(char * str)269 static int __init setup_fail_futex(char *str)
270 {
271 	return setup_fault_attr(&fail_futex.attr, str);
272 }
273 __setup("fail_futex=", setup_fail_futex);
274 
should_fail_futex(bool fshared)275 static bool should_fail_futex(bool fshared)
276 {
277 	if (fail_futex.ignore_private && !fshared)
278 		return false;
279 
280 	return should_fail(&fail_futex.attr, 1);
281 }
282 
283 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284 
fail_futex_debugfs(void)285 static int __init fail_futex_debugfs(void)
286 {
287 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288 	struct dentry *dir;
289 
290 	dir = fault_create_debugfs_attr("fail_futex", NULL,
291 					&fail_futex.attr);
292 	if (IS_ERR(dir))
293 		return PTR_ERR(dir);
294 
295 	debugfs_create_bool("ignore-private", mode, dir,
296 			    &fail_futex.ignore_private);
297 	return 0;
298 }
299 
300 late_initcall(fail_futex_debugfs);
301 
302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303 
304 #else
should_fail_futex(bool fshared)305 static inline bool should_fail_futex(bool fshared)
306 {
307 	return false;
308 }
309 #endif /* CONFIG_FAIL_FUTEX */
310 
311 #ifdef CONFIG_COMPAT
312 static void compat_exit_robust_list(struct task_struct *curr);
313 #else
compat_exit_robust_list(struct task_struct * curr)314 static inline void compat_exit_robust_list(struct task_struct *curr) { }
315 #endif
316 
317 /*
318  * Reflects a new waiter being added to the waitqueue.
319  */
hb_waiters_inc(struct futex_hash_bucket * hb)320 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
321 {
322 #ifdef CONFIG_SMP
323 	atomic_inc(&hb->waiters);
324 	/*
325 	 * Full barrier (A), see the ordering comment above.
326 	 */
327 	smp_mb__after_atomic();
328 #endif
329 }
330 
331 /*
332  * Reflects a waiter being removed from the waitqueue by wakeup
333  * paths.
334  */
hb_waiters_dec(struct futex_hash_bucket * hb)335 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
336 {
337 #ifdef CONFIG_SMP
338 	atomic_dec(&hb->waiters);
339 #endif
340 }
341 
hb_waiters_pending(struct futex_hash_bucket * hb)342 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
343 {
344 #ifdef CONFIG_SMP
345 	/*
346 	 * Full barrier (B), see the ordering comment above.
347 	 */
348 	smp_mb();
349 	return atomic_read(&hb->waiters);
350 #else
351 	return 1;
352 #endif
353 }
354 
355 /**
356  * hash_futex - Return the hash bucket in the global hash
357  * @key:	Pointer to the futex key for which the hash is calculated
358  *
359  * We hash on the keys returned from get_futex_key (see below) and return the
360  * corresponding hash bucket in the global hash.
361  */
hash_futex(union futex_key * key)362 static struct futex_hash_bucket *hash_futex(union futex_key *key)
363 {
364 	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
365 			  key->both.offset);
366 
367 	return &futex_queues[hash & (futex_hashsize - 1)];
368 }
369 
370 
371 /**
372  * match_futex - Check whether two futex keys are equal
373  * @key1:	Pointer to key1
374  * @key2:	Pointer to key2
375  *
376  * Return 1 if two futex_keys are equal, 0 otherwise.
377  */
match_futex(union futex_key * key1,union futex_key * key2)378 static inline int match_futex(union futex_key *key1, union futex_key *key2)
379 {
380 	return (key1 && key2
381 		&& key1->both.word == key2->both.word
382 		&& key1->both.ptr == key2->both.ptr
383 		&& key1->both.offset == key2->both.offset);
384 }
385 
386 enum futex_access {
387 	FUTEX_READ,
388 	FUTEX_WRITE
389 };
390 
391 /**
392  * futex_setup_timer - set up the sleeping hrtimer.
393  * @time:	ptr to the given timeout value
394  * @timeout:	the hrtimer_sleeper structure to be set up
395  * @flags:	futex flags
396  * @range_ns:	optional range in ns
397  *
398  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
399  *	   value given
400  */
401 static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t * time,struct hrtimer_sleeper * timeout,int flags,u64 range_ns)402 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
403 		  int flags, u64 range_ns)
404 {
405 	if (!time)
406 		return NULL;
407 
408 	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
409 				      CLOCK_REALTIME : CLOCK_MONOTONIC,
410 				      HRTIMER_MODE_ABS);
411 	/*
412 	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
413 	 * effectively the same as calling hrtimer_set_expires().
414 	 */
415 	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
416 
417 	return timeout;
418 }
419 
420 /*
421  * Generate a machine wide unique identifier for this inode.
422  *
423  * This relies on u64 not wrapping in the life-time of the machine; which with
424  * 1ns resolution means almost 585 years.
425  *
426  * This further relies on the fact that a well formed program will not unmap
427  * the file while it has a (shared) futex waiting on it. This mapping will have
428  * a file reference which pins the mount and inode.
429  *
430  * If for some reason an inode gets evicted and read back in again, it will get
431  * a new sequence number and will _NOT_ match, even though it is the exact same
432  * file.
433  *
434  * It is important that match_futex() will never have a false-positive, esp.
435  * for PI futexes that can mess up the state. The above argues that false-negatives
436  * are only possible for malformed programs.
437  */
get_inode_sequence_number(struct inode * inode)438 static u64 get_inode_sequence_number(struct inode *inode)
439 {
440 	static atomic64_t i_seq;
441 	u64 old;
442 
443 	/* Does the inode already have a sequence number? */
444 	old = atomic64_read(&inode->i_sequence);
445 	if (likely(old))
446 		return old;
447 
448 	for (;;) {
449 		u64 new = atomic64_add_return(1, &i_seq);
450 		if (WARN_ON_ONCE(!new))
451 			continue;
452 
453 		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
454 		if (old)
455 			return old;
456 		return new;
457 	}
458 }
459 
460 /**
461  * get_futex_key() - Get parameters which are the keys for a futex
462  * @uaddr:	virtual address of the futex
463  * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
464  * @key:	address where result is stored.
465  * @rw:		mapping needs to be read/write (values: FUTEX_READ,
466  *              FUTEX_WRITE)
467  *
468  * Return: a negative error code or 0
469  *
470  * The key words are stored in @key on success.
471  *
472  * For shared mappings (when @fshared), the key is:
473  *
474  *   ( inode->i_sequence, page->index, offset_within_page )
475  *
476  * [ also see get_inode_sequence_number() ]
477  *
478  * For private mappings (or when !@fshared), the key is:
479  *
480  *   ( current->mm, address, 0 )
481  *
482  * This allows (cross process, where applicable) identification of the futex
483  * without keeping the page pinned for the duration of the FUTEX_WAIT.
484  *
485  * lock_page() might sleep, the caller should not hold a spinlock.
486  */
get_futex_key(u32 __user * uaddr,bool fshared,union futex_key * key,enum futex_access rw)487 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
488 			 enum futex_access rw)
489 {
490 	unsigned long address = (unsigned long)uaddr;
491 	struct mm_struct *mm = current->mm;
492 	struct page *page, *tail;
493 	struct address_space *mapping;
494 	int err, ro = 0;
495 
496 	/*
497 	 * The futex address must be "naturally" aligned.
498 	 */
499 	key->both.offset = address % PAGE_SIZE;
500 	if (unlikely((address % sizeof(u32)) != 0))
501 		return -EINVAL;
502 	address -= key->both.offset;
503 
504 	if (unlikely(!access_ok(uaddr, sizeof(u32))))
505 		return -EFAULT;
506 
507 	if (unlikely(should_fail_futex(fshared)))
508 		return -EFAULT;
509 
510 	/*
511 	 * PROCESS_PRIVATE futexes are fast.
512 	 * As the mm cannot disappear under us and the 'key' only needs
513 	 * virtual address, we dont even have to find the underlying vma.
514 	 * Note : We do have to check 'uaddr' is a valid user address,
515 	 *        but access_ok() should be faster than find_vma()
516 	 */
517 	if (!fshared) {
518 		key->private.mm = mm;
519 		key->private.address = address;
520 		return 0;
521 	}
522 
523 again:
524 	/* Ignore any VERIFY_READ mapping (futex common case) */
525 	if (unlikely(should_fail_futex(true)))
526 		return -EFAULT;
527 
528 	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
529 	/*
530 	 * If write access is not required (eg. FUTEX_WAIT), try
531 	 * and get read-only access.
532 	 */
533 	if (err == -EFAULT && rw == FUTEX_READ) {
534 		err = get_user_pages_fast(address, 1, 0, &page);
535 		ro = 1;
536 	}
537 	if (err < 0)
538 		return err;
539 	else
540 		err = 0;
541 
542 	/*
543 	 * The treatment of mapping from this point on is critical. The page
544 	 * lock protects many things but in this context the page lock
545 	 * stabilizes mapping, prevents inode freeing in the shared
546 	 * file-backed region case and guards against movement to swap cache.
547 	 *
548 	 * Strictly speaking the page lock is not needed in all cases being
549 	 * considered here and page lock forces unnecessarily serialization
550 	 * From this point on, mapping will be re-verified if necessary and
551 	 * page lock will be acquired only if it is unavoidable
552 	 *
553 	 * Mapping checks require the head page for any compound page so the
554 	 * head page and mapping is looked up now. For anonymous pages, it
555 	 * does not matter if the page splits in the future as the key is
556 	 * based on the address. For filesystem-backed pages, the tail is
557 	 * required as the index of the page determines the key. For
558 	 * base pages, there is no tail page and tail == page.
559 	 */
560 	tail = page;
561 	page = compound_head(page);
562 	mapping = READ_ONCE(page->mapping);
563 
564 	/*
565 	 * If page->mapping is NULL, then it cannot be a PageAnon
566 	 * page; but it might be the ZERO_PAGE or in the gate area or
567 	 * in a special mapping (all cases which we are happy to fail);
568 	 * or it may have been a good file page when get_user_pages_fast
569 	 * found it, but truncated or holepunched or subjected to
570 	 * invalidate_complete_page2 before we got the page lock (also
571 	 * cases which we are happy to fail).  And we hold a reference,
572 	 * so refcount care in invalidate_complete_page's remove_mapping
573 	 * prevents drop_caches from setting mapping to NULL beneath us.
574 	 *
575 	 * The case we do have to guard against is when memory pressure made
576 	 * shmem_writepage move it from filecache to swapcache beneath us:
577 	 * an unlikely race, but we do need to retry for page->mapping.
578 	 */
579 	if (unlikely(!mapping)) {
580 		int shmem_swizzled;
581 
582 		/*
583 		 * Page lock is required to identify which special case above
584 		 * applies. If this is really a shmem page then the page lock
585 		 * will prevent unexpected transitions.
586 		 */
587 		lock_page(page);
588 		shmem_swizzled = PageSwapCache(page) || page->mapping;
589 		unlock_page(page);
590 		put_page(page);
591 
592 		if (shmem_swizzled)
593 			goto again;
594 
595 		return -EFAULT;
596 	}
597 
598 	/*
599 	 * Private mappings are handled in a simple way.
600 	 *
601 	 * If the futex key is stored on an anonymous page, then the associated
602 	 * object is the mm which is implicitly pinned by the calling process.
603 	 *
604 	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
605 	 * it's a read-only handle, it's expected that futexes attach to
606 	 * the object not the particular process.
607 	 */
608 	if (PageAnon(page)) {
609 		/*
610 		 * A RO anonymous page will never change and thus doesn't make
611 		 * sense for futex operations.
612 		 */
613 		if (unlikely(should_fail_futex(true)) || ro) {
614 			err = -EFAULT;
615 			goto out;
616 		}
617 
618 		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
619 		key->private.mm = mm;
620 		key->private.address = address;
621 
622 	} else {
623 		struct inode *inode;
624 
625 		/*
626 		 * The associated futex object in this case is the inode and
627 		 * the page->mapping must be traversed. Ordinarily this should
628 		 * be stabilised under page lock but it's not strictly
629 		 * necessary in this case as we just want to pin the inode, not
630 		 * update the radix tree or anything like that.
631 		 *
632 		 * The RCU read lock is taken as the inode is finally freed
633 		 * under RCU. If the mapping still matches expectations then the
634 		 * mapping->host can be safely accessed as being a valid inode.
635 		 */
636 		rcu_read_lock();
637 
638 		if (READ_ONCE(page->mapping) != mapping) {
639 			rcu_read_unlock();
640 			put_page(page);
641 
642 			goto again;
643 		}
644 
645 		inode = READ_ONCE(mapping->host);
646 		if (!inode) {
647 			rcu_read_unlock();
648 			put_page(page);
649 
650 			goto again;
651 		}
652 
653 		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
654 		key->shared.i_seq = get_inode_sequence_number(inode);
655 		key->shared.pgoff = basepage_index(tail);
656 		rcu_read_unlock();
657 	}
658 
659 out:
660 	put_page(page);
661 	return err;
662 }
663 
664 /**
665  * fault_in_user_writeable() - Fault in user address and verify RW access
666  * @uaddr:	pointer to faulting user space address
667  *
668  * Slow path to fixup the fault we just took in the atomic write
669  * access to @uaddr.
670  *
671  * We have no generic implementation of a non-destructive write to the
672  * user address. We know that we faulted in the atomic pagefault
673  * disabled section so we can as well avoid the #PF overhead by
674  * calling get_user_pages() right away.
675  */
fault_in_user_writeable(u32 __user * uaddr)676 static int fault_in_user_writeable(u32 __user *uaddr)
677 {
678 	struct mm_struct *mm = current->mm;
679 	int ret;
680 
681 	mmap_read_lock(mm);
682 	ret = fixup_user_fault(mm, (unsigned long)uaddr,
683 			       FAULT_FLAG_WRITE, NULL);
684 	mmap_read_unlock(mm);
685 
686 	return ret < 0 ? ret : 0;
687 }
688 
689 /**
690  * futex_top_waiter() - Return the highest priority waiter on a futex
691  * @hb:		the hash bucket the futex_q's reside in
692  * @key:	the futex key (to distinguish it from other futex futex_q's)
693  *
694  * Must be called with the hb lock held.
695  */
futex_top_waiter(struct futex_hash_bucket * hb,union futex_key * key)696 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
697 					union futex_key *key)
698 {
699 	struct futex_q *this;
700 
701 	plist_for_each_entry(this, &hb->chain, list) {
702 		if (match_futex(&this->key, key))
703 			return this;
704 	}
705 	return NULL;
706 }
707 
cmpxchg_futex_value_locked(u32 * curval,u32 __user * uaddr,u32 uval,u32 newval)708 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
709 				      u32 uval, u32 newval)
710 {
711 	int ret;
712 
713 	pagefault_disable();
714 	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
715 	pagefault_enable();
716 
717 	return ret;
718 }
719 
get_futex_value_locked(u32 * dest,u32 __user * from)720 static int get_futex_value_locked(u32 *dest, u32 __user *from)
721 {
722 	int ret;
723 
724 	pagefault_disable();
725 	ret = __get_user(*dest, from);
726 	pagefault_enable();
727 
728 	return ret ? -EFAULT : 0;
729 }
730 
731 
732 /*
733  * PI code:
734  */
refill_pi_state_cache(void)735 static int refill_pi_state_cache(void)
736 {
737 	struct futex_pi_state *pi_state;
738 
739 	if (likely(current->pi_state_cache))
740 		return 0;
741 
742 	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
743 
744 	if (!pi_state)
745 		return -ENOMEM;
746 
747 	INIT_LIST_HEAD(&pi_state->list);
748 	/* pi_mutex gets initialized later */
749 	pi_state->owner = NULL;
750 	refcount_set(&pi_state->refcount, 1);
751 	pi_state->key = FUTEX_KEY_INIT;
752 
753 	current->pi_state_cache = pi_state;
754 
755 	return 0;
756 }
757 
alloc_pi_state(void)758 static struct futex_pi_state *alloc_pi_state(void)
759 {
760 	struct futex_pi_state *pi_state = current->pi_state_cache;
761 
762 	WARN_ON(!pi_state);
763 	current->pi_state_cache = NULL;
764 
765 	return pi_state;
766 }
767 
get_pi_state(struct futex_pi_state * pi_state)768 static void get_pi_state(struct futex_pi_state *pi_state)
769 {
770 	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
771 }
772 
773 /*
774  * Drops a reference to the pi_state object and frees or caches it
775  * when the last reference is gone.
776  */
put_pi_state(struct futex_pi_state * pi_state)777 static void put_pi_state(struct futex_pi_state *pi_state)
778 {
779 	if (!pi_state)
780 		return;
781 
782 	if (!refcount_dec_and_test(&pi_state->refcount))
783 		return;
784 
785 	/*
786 	 * If pi_state->owner is NULL, the owner is most probably dying
787 	 * and has cleaned up the pi_state already
788 	 */
789 	if (pi_state->owner) {
790 		struct task_struct *owner;
791 		unsigned long flags;
792 
793 		raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
794 		owner = pi_state->owner;
795 		if (owner) {
796 			raw_spin_lock(&owner->pi_lock);
797 			list_del_init(&pi_state->list);
798 			raw_spin_unlock(&owner->pi_lock);
799 		}
800 		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
801 		raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
802 	}
803 
804 	if (current->pi_state_cache) {
805 		kfree(pi_state);
806 	} else {
807 		/*
808 		 * pi_state->list is already empty.
809 		 * clear pi_state->owner.
810 		 * refcount is at 0 - put it back to 1.
811 		 */
812 		pi_state->owner = NULL;
813 		refcount_set(&pi_state->refcount, 1);
814 		current->pi_state_cache = pi_state;
815 	}
816 }
817 
818 #ifdef CONFIG_FUTEX_PI
819 
820 /*
821  * This task is holding PI mutexes at exit time => bad.
822  * Kernel cleans up PI-state, but userspace is likely hosed.
823  * (Robust-futex cleanup is separate and might save the day for userspace.)
824  */
exit_pi_state_list(struct task_struct * curr)825 static void exit_pi_state_list(struct task_struct *curr)
826 {
827 	struct list_head *next, *head = &curr->pi_state_list;
828 	struct futex_pi_state *pi_state;
829 	struct futex_hash_bucket *hb;
830 	union futex_key key = FUTEX_KEY_INIT;
831 
832 	if (!futex_cmpxchg_enabled)
833 		return;
834 	/*
835 	 * We are a ZOMBIE and nobody can enqueue itself on
836 	 * pi_state_list anymore, but we have to be careful
837 	 * versus waiters unqueueing themselves:
838 	 */
839 	raw_spin_lock_irq(&curr->pi_lock);
840 	while (!list_empty(head)) {
841 		next = head->next;
842 		pi_state = list_entry(next, struct futex_pi_state, list);
843 		key = pi_state->key;
844 		hb = hash_futex(&key);
845 
846 		/*
847 		 * We can race against put_pi_state() removing itself from the
848 		 * list (a waiter going away). put_pi_state() will first
849 		 * decrement the reference count and then modify the list, so
850 		 * its possible to see the list entry but fail this reference
851 		 * acquire.
852 		 *
853 		 * In that case; drop the locks to let put_pi_state() make
854 		 * progress and retry the loop.
855 		 */
856 		if (!refcount_inc_not_zero(&pi_state->refcount)) {
857 			raw_spin_unlock_irq(&curr->pi_lock);
858 			cpu_relax();
859 			raw_spin_lock_irq(&curr->pi_lock);
860 			continue;
861 		}
862 		raw_spin_unlock_irq(&curr->pi_lock);
863 
864 		spin_lock(&hb->lock);
865 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
866 		raw_spin_lock(&curr->pi_lock);
867 		/*
868 		 * We dropped the pi-lock, so re-check whether this
869 		 * task still owns the PI-state:
870 		 */
871 		if (head->next != next) {
872 			/* retain curr->pi_lock for the loop invariant */
873 			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
874 			spin_unlock(&hb->lock);
875 			put_pi_state(pi_state);
876 			continue;
877 		}
878 
879 		WARN_ON(pi_state->owner != curr);
880 		WARN_ON(list_empty(&pi_state->list));
881 		list_del_init(&pi_state->list);
882 		pi_state->owner = NULL;
883 
884 		raw_spin_unlock(&curr->pi_lock);
885 		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
886 		spin_unlock(&hb->lock);
887 
888 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
889 		put_pi_state(pi_state);
890 
891 		raw_spin_lock_irq(&curr->pi_lock);
892 	}
893 	raw_spin_unlock_irq(&curr->pi_lock);
894 }
895 #else
exit_pi_state_list(struct task_struct * curr)896 static inline void exit_pi_state_list(struct task_struct *curr) { }
897 #endif
898 
899 /*
900  * We need to check the following states:
901  *
902  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
903  *
904  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
905  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
906  *
907  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
908  *
909  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
910  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
911  *
912  * [6]  Found  | Found    | task      | 0         | 1      | Valid
913  *
914  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
915  *
916  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
917  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
918  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
919  *
920  * [1]	Indicates that the kernel can acquire the futex atomically. We
921  *	came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
922  *
923  * [2]	Valid, if TID does not belong to a kernel thread. If no matching
924  *      thread is found then it indicates that the owner TID has died.
925  *
926  * [3]	Invalid. The waiter is queued on a non PI futex
927  *
928  * [4]	Valid state after exit_robust_list(), which sets the user space
929  *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
930  *
931  * [5]	The user space value got manipulated between exit_robust_list()
932  *	and exit_pi_state_list()
933  *
934  * [6]	Valid state after exit_pi_state_list() which sets the new owner in
935  *	the pi_state but cannot access the user space value.
936  *
937  * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
938  *
939  * [8]	Owner and user space value match
940  *
941  * [9]	There is no transient state which sets the user space TID to 0
942  *	except exit_robust_list(), but this is indicated by the
943  *	FUTEX_OWNER_DIED bit. See [4]
944  *
945  * [10] There is no transient state which leaves owner and user space
946  *	TID out of sync.
947  *
948  *
949  * Serialization and lifetime rules:
950  *
951  * hb->lock:
952  *
953  *	hb -> futex_q, relation
954  *	futex_q -> pi_state, relation
955  *
956  *	(cannot be raw because hb can contain arbitrary amount
957  *	 of futex_q's)
958  *
959  * pi_mutex->wait_lock:
960  *
961  *	{uval, pi_state}
962  *
963  *	(and pi_mutex 'obviously')
964  *
965  * p->pi_lock:
966  *
967  *	p->pi_state_list -> pi_state->list, relation
968  *
969  * pi_state->refcount:
970  *
971  *	pi_state lifetime
972  *
973  *
974  * Lock order:
975  *
976  *   hb->lock
977  *     pi_mutex->wait_lock
978  *       p->pi_lock
979  *
980  */
981 
982 /*
983  * Validate that the existing waiter has a pi_state and sanity check
984  * the pi_state against the user space value. If correct, attach to
985  * it.
986  */
attach_to_pi_state(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state,struct futex_pi_state ** ps)987 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
988 			      struct futex_pi_state *pi_state,
989 			      struct futex_pi_state **ps)
990 {
991 	pid_t pid = uval & FUTEX_TID_MASK;
992 	u32 uval2;
993 	int ret;
994 
995 	/*
996 	 * Userspace might have messed up non-PI and PI futexes [3]
997 	 */
998 	if (unlikely(!pi_state))
999 		return -EINVAL;
1000 
1001 	/*
1002 	 * We get here with hb->lock held, and having found a
1003 	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1004 	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1005 	 * which in turn means that futex_lock_pi() still has a reference on
1006 	 * our pi_state.
1007 	 *
1008 	 * The waiter holding a reference on @pi_state also protects against
1009 	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1010 	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1011 	 * free pi_state before we can take a reference ourselves.
1012 	 */
1013 	WARN_ON(!refcount_read(&pi_state->refcount));
1014 
1015 	/*
1016 	 * Now that we have a pi_state, we can acquire wait_lock
1017 	 * and do the state validation.
1018 	 */
1019 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1020 
1021 	/*
1022 	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1023 	 * uval was read without holding it, it can have changed. Verify it
1024 	 * still is what we expect it to be, otherwise retry the entire
1025 	 * operation.
1026 	 */
1027 	if (get_futex_value_locked(&uval2, uaddr))
1028 		goto out_efault;
1029 
1030 	if (uval != uval2)
1031 		goto out_eagain;
1032 
1033 	/*
1034 	 * Handle the owner died case:
1035 	 */
1036 	if (uval & FUTEX_OWNER_DIED) {
1037 		/*
1038 		 * exit_pi_state_list sets owner to NULL and wakes the
1039 		 * topmost waiter. The task which acquires the
1040 		 * pi_state->rt_mutex will fixup owner.
1041 		 */
1042 		if (!pi_state->owner) {
1043 			/*
1044 			 * No pi state owner, but the user space TID
1045 			 * is not 0. Inconsistent state. [5]
1046 			 */
1047 			if (pid)
1048 				goto out_einval;
1049 			/*
1050 			 * Take a ref on the state and return success. [4]
1051 			 */
1052 			goto out_attach;
1053 		}
1054 
1055 		/*
1056 		 * If TID is 0, then either the dying owner has not
1057 		 * yet executed exit_pi_state_list() or some waiter
1058 		 * acquired the rtmutex in the pi state, but did not
1059 		 * yet fixup the TID in user space.
1060 		 *
1061 		 * Take a ref on the state and return success. [6]
1062 		 */
1063 		if (!pid)
1064 			goto out_attach;
1065 	} else {
1066 		/*
1067 		 * If the owner died bit is not set, then the pi_state
1068 		 * must have an owner. [7]
1069 		 */
1070 		if (!pi_state->owner)
1071 			goto out_einval;
1072 	}
1073 
1074 	/*
1075 	 * Bail out if user space manipulated the futex value. If pi
1076 	 * state exists then the owner TID must be the same as the
1077 	 * user space TID. [9/10]
1078 	 */
1079 	if (pid != task_pid_vnr(pi_state->owner))
1080 		goto out_einval;
1081 
1082 out_attach:
1083 	get_pi_state(pi_state);
1084 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1085 	*ps = pi_state;
1086 	return 0;
1087 
1088 out_einval:
1089 	ret = -EINVAL;
1090 	goto out_error;
1091 
1092 out_eagain:
1093 	ret = -EAGAIN;
1094 	goto out_error;
1095 
1096 out_efault:
1097 	ret = -EFAULT;
1098 	goto out_error;
1099 
1100 out_error:
1101 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1102 	return ret;
1103 }
1104 
1105 /**
1106  * wait_for_owner_exiting - Block until the owner has exited
1107  * @ret: owner's current futex lock status
1108  * @exiting:	Pointer to the exiting task
1109  *
1110  * Caller must hold a refcount on @exiting.
1111  */
wait_for_owner_exiting(int ret,struct task_struct * exiting)1112 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1113 {
1114 	if (ret != -EBUSY) {
1115 		WARN_ON_ONCE(exiting);
1116 		return;
1117 	}
1118 
1119 	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1120 		return;
1121 
1122 	mutex_lock(&exiting->futex_exit_mutex);
1123 	/*
1124 	 * No point in doing state checking here. If the waiter got here
1125 	 * while the task was in exec()->exec_futex_release() then it can
1126 	 * have any FUTEX_STATE_* value when the waiter has acquired the
1127 	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1128 	 * already. Highly unlikely and not a problem. Just one more round
1129 	 * through the futex maze.
1130 	 */
1131 	mutex_unlock(&exiting->futex_exit_mutex);
1132 
1133 	put_task_struct(exiting);
1134 }
1135 
handle_exit_race(u32 __user * uaddr,u32 uval,struct task_struct * tsk)1136 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1137 			    struct task_struct *tsk)
1138 {
1139 	u32 uval2;
1140 
1141 	/*
1142 	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1143 	 * caller that the alleged owner is busy.
1144 	 */
1145 	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1146 		return -EBUSY;
1147 
1148 	/*
1149 	 * Reread the user space value to handle the following situation:
1150 	 *
1151 	 * CPU0				CPU1
1152 	 *
1153 	 * sys_exit()			sys_futex()
1154 	 *  do_exit()			 futex_lock_pi()
1155 	 *                                futex_lock_pi_atomic()
1156 	 *   exit_signals(tsk)		    No waiters:
1157 	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
1158 	 *  mm_release(tsk)		    Set waiter bit
1159 	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
1160 	 *      Set owner died		    attach_to_pi_owner() {
1161 	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
1162 	 *   }				     if (!tsk->flags & PF_EXITING) {
1163 	 *  ...				       attach();
1164 	 *  tsk->futex_state =               } else {
1165 	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1166 	 *					  FUTEX_STATE_DEAD)
1167 	 *				         return -EAGAIN;
1168 	 *				       return -ESRCH; <--- FAIL
1169 	 *				     }
1170 	 *
1171 	 * Returning ESRCH unconditionally is wrong here because the
1172 	 * user space value has been changed by the exiting task.
1173 	 *
1174 	 * The same logic applies to the case where the exiting task is
1175 	 * already gone.
1176 	 */
1177 	if (get_futex_value_locked(&uval2, uaddr))
1178 		return -EFAULT;
1179 
1180 	/* If the user space value has changed, try again. */
1181 	if (uval2 != uval)
1182 		return -EAGAIN;
1183 
1184 	/*
1185 	 * The exiting task did not have a robust list, the robust list was
1186 	 * corrupted or the user space value in *uaddr is simply bogus.
1187 	 * Give up and tell user space.
1188 	 */
1189 	return -ESRCH;
1190 }
1191 
1192 /*
1193  * Lookup the task for the TID provided from user space and attach to
1194  * it after doing proper sanity checks.
1195  */
attach_to_pi_owner(u32 __user * uaddr,u32 uval,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1196 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1197 			      struct futex_pi_state **ps,
1198 			      struct task_struct **exiting)
1199 {
1200 	pid_t pid = uval & FUTEX_TID_MASK;
1201 	struct futex_pi_state *pi_state;
1202 	struct task_struct *p;
1203 
1204 	/*
1205 	 * We are the first waiter - try to look up the real owner and attach
1206 	 * the new pi_state to it, but bail out when TID = 0 [1]
1207 	 *
1208 	 * The !pid check is paranoid. None of the call sites should end up
1209 	 * with pid == 0, but better safe than sorry. Let the caller retry
1210 	 */
1211 	if (!pid)
1212 		return -EAGAIN;
1213 	p = find_get_task_by_vpid(pid);
1214 	if (!p)
1215 		return handle_exit_race(uaddr, uval, NULL);
1216 
1217 	if (unlikely(p->flags & PF_KTHREAD)) {
1218 		put_task_struct(p);
1219 		return -EPERM;
1220 	}
1221 
1222 	/*
1223 	 * We need to look at the task state to figure out, whether the
1224 	 * task is exiting. To protect against the change of the task state
1225 	 * in futex_exit_release(), we do this protected by p->pi_lock:
1226 	 */
1227 	raw_spin_lock_irq(&p->pi_lock);
1228 	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1229 		/*
1230 		 * The task is on the way out. When the futex state is
1231 		 * FUTEX_STATE_DEAD, we know that the task has finished
1232 		 * the cleanup:
1233 		 */
1234 		int ret = handle_exit_race(uaddr, uval, p);
1235 
1236 		raw_spin_unlock_irq(&p->pi_lock);
1237 		/*
1238 		 * If the owner task is between FUTEX_STATE_EXITING and
1239 		 * FUTEX_STATE_DEAD then store the task pointer and keep
1240 		 * the reference on the task struct. The calling code will
1241 		 * drop all locks, wait for the task to reach
1242 		 * FUTEX_STATE_DEAD and then drop the refcount. This is
1243 		 * required to prevent a live lock when the current task
1244 		 * preempted the exiting task between the two states.
1245 		 */
1246 		if (ret == -EBUSY)
1247 			*exiting = p;
1248 		else
1249 			put_task_struct(p);
1250 		return ret;
1251 	}
1252 
1253 	/*
1254 	 * No existing pi state. First waiter. [2]
1255 	 *
1256 	 * This creates pi_state, we have hb->lock held, this means nothing can
1257 	 * observe this state, wait_lock is irrelevant.
1258 	 */
1259 	pi_state = alloc_pi_state();
1260 
1261 	/*
1262 	 * Initialize the pi_mutex in locked state and make @p
1263 	 * the owner of it:
1264 	 */
1265 	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1266 
1267 	/* Store the key for possible exit cleanups: */
1268 	pi_state->key = *key;
1269 
1270 	WARN_ON(!list_empty(&pi_state->list));
1271 	list_add(&pi_state->list, &p->pi_state_list);
1272 	/*
1273 	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1274 	 * because there is no concurrency as the object is not published yet.
1275 	 */
1276 	pi_state->owner = p;
1277 	raw_spin_unlock_irq(&p->pi_lock);
1278 
1279 	put_task_struct(p);
1280 
1281 	*ps = pi_state;
1282 
1283 	return 0;
1284 }
1285 
lookup_pi_state(u32 __user * uaddr,u32 uval,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct ** exiting)1286 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1287 			   struct futex_hash_bucket *hb,
1288 			   union futex_key *key, struct futex_pi_state **ps,
1289 			   struct task_struct **exiting)
1290 {
1291 	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1292 
1293 	/*
1294 	 * If there is a waiter on that futex, validate it and
1295 	 * attach to the pi_state when the validation succeeds.
1296 	 */
1297 	if (top_waiter)
1298 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1299 
1300 	/*
1301 	 * We are the first waiter - try to look up the owner based on
1302 	 * @uval and attach to it.
1303 	 */
1304 	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1305 }
1306 
lock_pi_update_atomic(u32 __user * uaddr,u32 uval,u32 newval)1307 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1308 {
1309 	int err;
1310 	u32 curval;
1311 
1312 	if (unlikely(should_fail_futex(true)))
1313 		return -EFAULT;
1314 
1315 	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1316 	if (unlikely(err))
1317 		return err;
1318 
1319 	/* If user space value changed, let the caller retry */
1320 	return curval != uval ? -EAGAIN : 0;
1321 }
1322 
1323 /**
1324  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1325  * @uaddr:		the pi futex user address
1326  * @hb:			the pi futex hash bucket
1327  * @key:		the futex key associated with uaddr and hb
1328  * @ps:			the pi_state pointer where we store the result of the
1329  *			lookup
1330  * @task:		the task to perform the atomic lock work for.  This will
1331  *			be "current" except in the case of requeue pi.
1332  * @exiting:		Pointer to store the task pointer of the owner task
1333  *			which is in the middle of exiting
1334  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1335  *
1336  * Return:
1337  *  -  0 - ready to wait;
1338  *  -  1 - acquired the lock;
1339  *  - <0 - error
1340  *
1341  * The hb->lock and futex_key refs shall be held by the caller.
1342  *
1343  * @exiting is only set when the return value is -EBUSY. If so, this holds
1344  * a refcount on the exiting task on return and the caller needs to drop it
1345  * after waiting for the exit to complete.
1346  */
futex_lock_pi_atomic(u32 __user * uaddr,struct futex_hash_bucket * hb,union futex_key * key,struct futex_pi_state ** ps,struct task_struct * task,struct task_struct ** exiting,int set_waiters)1347 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1348 				union futex_key *key,
1349 				struct futex_pi_state **ps,
1350 				struct task_struct *task,
1351 				struct task_struct **exiting,
1352 				int set_waiters)
1353 {
1354 	u32 uval, newval, vpid = task_pid_vnr(task);
1355 	struct futex_q *top_waiter;
1356 	int ret;
1357 
1358 	/*
1359 	 * Read the user space value first so we can validate a few
1360 	 * things before proceeding further.
1361 	 */
1362 	if (get_futex_value_locked(&uval, uaddr))
1363 		return -EFAULT;
1364 
1365 	if (unlikely(should_fail_futex(true)))
1366 		return -EFAULT;
1367 
1368 	/*
1369 	 * Detect deadlocks.
1370 	 */
1371 	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1372 		return -EDEADLK;
1373 
1374 	if ((unlikely(should_fail_futex(true))))
1375 		return -EDEADLK;
1376 
1377 	/*
1378 	 * Lookup existing state first. If it exists, try to attach to
1379 	 * its pi_state.
1380 	 */
1381 	top_waiter = futex_top_waiter(hb, key);
1382 	if (top_waiter)
1383 		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1384 
1385 	/*
1386 	 * No waiter and user TID is 0. We are here because the
1387 	 * waiters or the owner died bit is set or called from
1388 	 * requeue_cmp_pi or for whatever reason something took the
1389 	 * syscall.
1390 	 */
1391 	if (!(uval & FUTEX_TID_MASK)) {
1392 		/*
1393 		 * We take over the futex. No other waiters and the user space
1394 		 * TID is 0. We preserve the owner died bit.
1395 		 */
1396 		newval = uval & FUTEX_OWNER_DIED;
1397 		newval |= vpid;
1398 
1399 		/* The futex requeue_pi code can enforce the waiters bit */
1400 		if (set_waiters)
1401 			newval |= FUTEX_WAITERS;
1402 
1403 		ret = lock_pi_update_atomic(uaddr, uval, newval);
1404 		/* If the take over worked, return 1 */
1405 		return ret < 0 ? ret : 1;
1406 	}
1407 
1408 	/*
1409 	 * First waiter. Set the waiters bit before attaching ourself to
1410 	 * the owner. If owner tries to unlock, it will be forced into
1411 	 * the kernel and blocked on hb->lock.
1412 	 */
1413 	newval = uval | FUTEX_WAITERS;
1414 	ret = lock_pi_update_atomic(uaddr, uval, newval);
1415 	if (ret)
1416 		return ret;
1417 	/*
1418 	 * If the update of the user space value succeeded, we try to
1419 	 * attach to the owner. If that fails, no harm done, we only
1420 	 * set the FUTEX_WAITERS bit in the user space variable.
1421 	 */
1422 	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1423 }
1424 
1425 /**
1426  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1427  * @q:	The futex_q to unqueue
1428  *
1429  * The q->lock_ptr must not be NULL and must be held by the caller.
1430  */
__unqueue_futex(struct futex_q * q)1431 static void __unqueue_futex(struct futex_q *q)
1432 {
1433 	struct futex_hash_bucket *hb;
1434 
1435 	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1436 		return;
1437 	lockdep_assert_held(q->lock_ptr);
1438 
1439 	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1440 	plist_del(&q->list, &hb->chain);
1441 	hb_waiters_dec(hb);
1442 }
1443 
1444 /*
1445  * The hash bucket lock must be held when this is called.
1446  * Afterwards, the futex_q must not be accessed. Callers
1447  * must ensure to later call wake_up_q() for the actual
1448  * wakeups to occur.
1449  */
mark_wake_futex(struct wake_q_head * wake_q,struct futex_q * q)1450 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1451 {
1452 	struct task_struct *p = q->task;
1453 
1454 	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1455 		return;
1456 
1457 	get_task_struct(p);
1458 	__unqueue_futex(q);
1459 	/*
1460 	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1461 	 * is written, without taking any locks. This is possible in the event
1462 	 * of a spurious wakeup, for example. A memory barrier is required here
1463 	 * to prevent the following store to lock_ptr from getting ahead of the
1464 	 * plist_del in __unqueue_futex().
1465 	 */
1466 	smp_store_release(&q->lock_ptr, NULL);
1467 
1468 	/*
1469 	 * Queue the task for later wakeup for after we've released
1470 	 * the hb->lock.
1471 	 */
1472 	wake_q_add_safe(wake_q, p);
1473 }
1474 
1475 /*
1476  * Caller must hold a reference on @pi_state.
1477  */
wake_futex_pi(u32 __user * uaddr,u32 uval,struct futex_pi_state * pi_state)1478 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1479 {
1480 	u32 curval, newval;
1481 	struct task_struct *new_owner;
1482 	bool postunlock = false;
1483 	DEFINE_WAKE_Q(wake_q);
1484 	int ret = 0;
1485 
1486 	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1487 	if (WARN_ON_ONCE(!new_owner)) {
1488 		/*
1489 		 * As per the comment in futex_unlock_pi() this should not happen.
1490 		 *
1491 		 * When this happens, give up our locks and try again, giving
1492 		 * the futex_lock_pi() instance time to complete, either by
1493 		 * waiting on the rtmutex or removing itself from the futex
1494 		 * queue.
1495 		 */
1496 		ret = -EAGAIN;
1497 		goto out_unlock;
1498 	}
1499 
1500 	/*
1501 	 * We pass it to the next owner. The WAITERS bit is always kept
1502 	 * enabled while there is PI state around. We cleanup the owner
1503 	 * died bit, because we are the owner.
1504 	 */
1505 	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1506 
1507 	if (unlikely(should_fail_futex(true))) {
1508 		ret = -EFAULT;
1509 		goto out_unlock;
1510 	}
1511 
1512 	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1513 	if (!ret && (curval != uval)) {
1514 		/*
1515 		 * If a unconditional UNLOCK_PI operation (user space did not
1516 		 * try the TID->0 transition) raced with a waiter setting the
1517 		 * FUTEX_WAITERS flag between get_user() and locking the hash
1518 		 * bucket lock, retry the operation.
1519 		 */
1520 		if ((FUTEX_TID_MASK & curval) == uval)
1521 			ret = -EAGAIN;
1522 		else
1523 			ret = -EINVAL;
1524 	}
1525 
1526 	if (ret)
1527 		goto out_unlock;
1528 
1529 	/*
1530 	 * This is a point of no return; once we modify the uval there is no
1531 	 * going back and subsequent operations must not fail.
1532 	 */
1533 
1534 	raw_spin_lock(&pi_state->owner->pi_lock);
1535 	WARN_ON(list_empty(&pi_state->list));
1536 	list_del_init(&pi_state->list);
1537 	raw_spin_unlock(&pi_state->owner->pi_lock);
1538 
1539 	raw_spin_lock(&new_owner->pi_lock);
1540 	WARN_ON(!list_empty(&pi_state->list));
1541 	list_add(&pi_state->list, &new_owner->pi_state_list);
1542 	pi_state->owner = new_owner;
1543 	raw_spin_unlock(&new_owner->pi_lock);
1544 
1545 	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1546 
1547 out_unlock:
1548 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1549 
1550 	if (postunlock)
1551 		rt_mutex_postunlock(&wake_q);
1552 
1553 	return ret;
1554 }
1555 
1556 /*
1557  * Express the locking dependencies for lockdep:
1558  */
1559 static inline void
double_lock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1560 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1561 {
1562 	if (hb1 <= hb2) {
1563 		spin_lock(&hb1->lock);
1564 		if (hb1 < hb2)
1565 			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1566 	} else { /* hb1 > hb2 */
1567 		spin_lock(&hb2->lock);
1568 		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1569 	}
1570 }
1571 
1572 static inline void
double_unlock_hb(struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2)1573 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1574 {
1575 	spin_unlock(&hb1->lock);
1576 	if (hb1 != hb2)
1577 		spin_unlock(&hb2->lock);
1578 }
1579 
1580 /*
1581  * Wake up waiters matching bitset queued on this futex (uaddr).
1582  */
1583 static int
futex_wake(u32 __user * uaddr,unsigned int flags,int nr_wake,u32 bitset)1584 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1585 {
1586 	struct futex_hash_bucket *hb;
1587 	struct futex_q *this, *next;
1588 	union futex_key key = FUTEX_KEY_INIT;
1589 	int ret;
1590 	DEFINE_WAKE_Q(wake_q);
1591 
1592 	if (!bitset)
1593 		return -EINVAL;
1594 
1595 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1596 	if (unlikely(ret != 0))
1597 		return ret;
1598 
1599 	hb = hash_futex(&key);
1600 
1601 	/* Make sure we really have tasks to wakeup */
1602 	if (!hb_waiters_pending(hb))
1603 		return ret;
1604 
1605 	spin_lock(&hb->lock);
1606 
1607 	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1608 		if (match_futex (&this->key, &key)) {
1609 			if (this->pi_state || this->rt_waiter) {
1610 				ret = -EINVAL;
1611 				break;
1612 			}
1613 
1614 			/* Check if one of the bits is set in both bitsets */
1615 			if (!(this->bitset & bitset))
1616 				continue;
1617 
1618 			mark_wake_futex(&wake_q, this);
1619 			if (++ret >= nr_wake)
1620 				break;
1621 		}
1622 	}
1623 
1624 	spin_unlock(&hb->lock);
1625 	wake_up_q(&wake_q);
1626 	return ret;
1627 }
1628 
futex_atomic_op_inuser(unsigned int encoded_op,u32 __user * uaddr)1629 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1630 {
1631 	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1632 	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1633 	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1634 	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1635 	int oldval, ret;
1636 
1637 	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1638 		if (oparg < 0 || oparg > 31) {
1639 			char comm[sizeof(current->comm)];
1640 			/*
1641 			 * kill this print and return -EINVAL when userspace
1642 			 * is sane again
1643 			 */
1644 			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1645 					get_task_comm(comm, current), oparg);
1646 			oparg &= 31;
1647 		}
1648 		oparg = 1 << oparg;
1649 	}
1650 
1651 	pagefault_disable();
1652 	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1653 	pagefault_enable();
1654 	if (ret)
1655 		return ret;
1656 
1657 	switch (cmp) {
1658 	case FUTEX_OP_CMP_EQ:
1659 		return oldval == cmparg;
1660 	case FUTEX_OP_CMP_NE:
1661 		return oldval != cmparg;
1662 	case FUTEX_OP_CMP_LT:
1663 		return oldval < cmparg;
1664 	case FUTEX_OP_CMP_GE:
1665 		return oldval >= cmparg;
1666 	case FUTEX_OP_CMP_LE:
1667 		return oldval <= cmparg;
1668 	case FUTEX_OP_CMP_GT:
1669 		return oldval > cmparg;
1670 	default:
1671 		return -ENOSYS;
1672 	}
1673 }
1674 
1675 /*
1676  * Wake up all waiters hashed on the physical page that is mapped
1677  * to this virtual address:
1678  */
1679 static int
futex_wake_op(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_wake2,int op)1680 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1681 	      int nr_wake, int nr_wake2, int op)
1682 {
1683 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1684 	struct futex_hash_bucket *hb1, *hb2;
1685 	struct futex_q *this, *next;
1686 	int ret, op_ret;
1687 	DEFINE_WAKE_Q(wake_q);
1688 
1689 retry:
1690 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1691 	if (unlikely(ret != 0))
1692 		return ret;
1693 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1694 	if (unlikely(ret != 0))
1695 		return ret;
1696 
1697 	hb1 = hash_futex(&key1);
1698 	hb2 = hash_futex(&key2);
1699 
1700 retry_private:
1701 	double_lock_hb(hb1, hb2);
1702 	op_ret = futex_atomic_op_inuser(op, uaddr2);
1703 	if (unlikely(op_ret < 0)) {
1704 		double_unlock_hb(hb1, hb2);
1705 
1706 		if (!IS_ENABLED(CONFIG_MMU) ||
1707 		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1708 			/*
1709 			 * we don't get EFAULT from MMU faults if we don't have
1710 			 * an MMU, but we might get them from range checking
1711 			 */
1712 			ret = op_ret;
1713 			return ret;
1714 		}
1715 
1716 		if (op_ret == -EFAULT) {
1717 			ret = fault_in_user_writeable(uaddr2);
1718 			if (ret)
1719 				return ret;
1720 		}
1721 
1722 		if (!(flags & FLAGS_SHARED)) {
1723 			cond_resched();
1724 			goto retry_private;
1725 		}
1726 
1727 		cond_resched();
1728 		goto retry;
1729 	}
1730 
1731 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1732 		if (match_futex (&this->key, &key1)) {
1733 			if (this->pi_state || this->rt_waiter) {
1734 				ret = -EINVAL;
1735 				goto out_unlock;
1736 			}
1737 			mark_wake_futex(&wake_q, this);
1738 			if (++ret >= nr_wake)
1739 				break;
1740 		}
1741 	}
1742 
1743 	if (op_ret > 0) {
1744 		op_ret = 0;
1745 		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1746 			if (match_futex (&this->key, &key2)) {
1747 				if (this->pi_state || this->rt_waiter) {
1748 					ret = -EINVAL;
1749 					goto out_unlock;
1750 				}
1751 				mark_wake_futex(&wake_q, this);
1752 				if (++op_ret >= nr_wake2)
1753 					break;
1754 			}
1755 		}
1756 		ret += op_ret;
1757 	}
1758 
1759 out_unlock:
1760 	double_unlock_hb(hb1, hb2);
1761 	wake_up_q(&wake_q);
1762 	return ret;
1763 }
1764 
1765 /**
1766  * requeue_futex() - Requeue a futex_q from one hb to another
1767  * @q:		the futex_q to requeue
1768  * @hb1:	the source hash_bucket
1769  * @hb2:	the target hash_bucket
1770  * @key2:	the new key for the requeued futex_q
1771  */
1772 static inline
requeue_futex(struct futex_q * q,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key2)1773 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1774 		   struct futex_hash_bucket *hb2, union futex_key *key2)
1775 {
1776 
1777 	/*
1778 	 * If key1 and key2 hash to the same bucket, no need to
1779 	 * requeue.
1780 	 */
1781 	if (likely(&hb1->chain != &hb2->chain)) {
1782 		plist_del(&q->list, &hb1->chain);
1783 		hb_waiters_dec(hb1);
1784 		hb_waiters_inc(hb2);
1785 		plist_add(&q->list, &hb2->chain);
1786 		q->lock_ptr = &hb2->lock;
1787 	}
1788 	q->key = *key2;
1789 }
1790 
1791 /**
1792  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1793  * @q:		the futex_q
1794  * @key:	the key of the requeue target futex
1795  * @hb:		the hash_bucket of the requeue target futex
1796  *
1797  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1798  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1799  * to the requeue target futex so the waiter can detect the wakeup on the right
1800  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1801  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1802  * to protect access to the pi_state to fixup the owner later.  Must be called
1803  * with both q->lock_ptr and hb->lock held.
1804  */
1805 static inline
requeue_pi_wake_futex(struct futex_q * q,union futex_key * key,struct futex_hash_bucket * hb)1806 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1807 			   struct futex_hash_bucket *hb)
1808 {
1809 	q->key = *key;
1810 
1811 	__unqueue_futex(q);
1812 
1813 	WARN_ON(!q->rt_waiter);
1814 	q->rt_waiter = NULL;
1815 
1816 	q->lock_ptr = &hb->lock;
1817 
1818 	wake_up_state(q->task, TASK_NORMAL);
1819 }
1820 
1821 /**
1822  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1823  * @pifutex:		the user address of the to futex
1824  * @hb1:		the from futex hash bucket, must be locked by the caller
1825  * @hb2:		the to futex hash bucket, must be locked by the caller
1826  * @key1:		the from futex key
1827  * @key2:		the to futex key
1828  * @ps:			address to store the pi_state pointer
1829  * @exiting:		Pointer to store the task pointer of the owner task
1830  *			which is in the middle of exiting
1831  * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1832  *
1833  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1834  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1835  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1836  * hb1 and hb2 must be held by the caller.
1837  *
1838  * @exiting is only set when the return value is -EBUSY. If so, this holds
1839  * a refcount on the exiting task on return and the caller needs to drop it
1840  * after waiting for the exit to complete.
1841  *
1842  * Return:
1843  *  -  0 - failed to acquire the lock atomically;
1844  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1845  *  - <0 - error
1846  */
1847 static int
futex_proxy_trylock_atomic(u32 __user * pifutex,struct futex_hash_bucket * hb1,struct futex_hash_bucket * hb2,union futex_key * key1,union futex_key * key2,struct futex_pi_state ** ps,struct task_struct ** exiting,int set_waiters)1848 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1849 			   struct futex_hash_bucket *hb2, union futex_key *key1,
1850 			   union futex_key *key2, struct futex_pi_state **ps,
1851 			   struct task_struct **exiting, int set_waiters)
1852 {
1853 	struct futex_q *top_waiter = NULL;
1854 	u32 curval;
1855 	int ret, vpid;
1856 
1857 	if (get_futex_value_locked(&curval, pifutex))
1858 		return -EFAULT;
1859 
1860 	if (unlikely(should_fail_futex(true)))
1861 		return -EFAULT;
1862 
1863 	/*
1864 	 * Find the top_waiter and determine if there are additional waiters.
1865 	 * If the caller intends to requeue more than 1 waiter to pifutex,
1866 	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1867 	 * as we have means to handle the possible fault.  If not, don't set
1868 	 * the bit unecessarily as it will force the subsequent unlock to enter
1869 	 * the kernel.
1870 	 */
1871 	top_waiter = futex_top_waiter(hb1, key1);
1872 
1873 	/* There are no waiters, nothing for us to do. */
1874 	if (!top_waiter)
1875 		return 0;
1876 
1877 	/* Ensure we requeue to the expected futex. */
1878 	if (!match_futex(top_waiter->requeue_pi_key, key2))
1879 		return -EINVAL;
1880 
1881 	/*
1882 	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1883 	 * the contended case or if set_waiters is 1.  The pi_state is returned
1884 	 * in ps in contended cases.
1885 	 */
1886 	vpid = task_pid_vnr(top_waiter->task);
1887 	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1888 				   exiting, set_waiters);
1889 	if (ret == 1) {
1890 		requeue_pi_wake_futex(top_waiter, key2, hb2);
1891 		return vpid;
1892 	}
1893 	return ret;
1894 }
1895 
1896 /**
1897  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1898  * @uaddr1:	source futex user address
1899  * @flags:	futex flags (FLAGS_SHARED, etc.)
1900  * @uaddr2:	target futex user address
1901  * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1902  * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1903  * @cmpval:	@uaddr1 expected value (or %NULL)
1904  * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1905  *		pi futex (pi to pi requeue is not supported)
1906  *
1907  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1908  * uaddr2 atomically on behalf of the top waiter.
1909  *
1910  * Return:
1911  *  - >=0 - on success, the number of tasks requeued or woken;
1912  *  -  <0 - on error
1913  */
futex_requeue(u32 __user * uaddr1,unsigned int flags,u32 __user * uaddr2,int nr_wake,int nr_requeue,u32 * cmpval,int requeue_pi)1914 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1915 			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1916 			 u32 *cmpval, int requeue_pi)
1917 {
1918 	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1919 	int task_count = 0, ret;
1920 	struct futex_pi_state *pi_state = NULL;
1921 	struct futex_hash_bucket *hb1, *hb2;
1922 	struct futex_q *this, *next;
1923 	DEFINE_WAKE_Q(wake_q);
1924 
1925 	if (nr_wake < 0 || nr_requeue < 0)
1926 		return -EINVAL;
1927 
1928 	/*
1929 	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1930 	 * consequently the compiler knows requeue_pi is always false past
1931 	 * this point which will optimize away all the conditional code
1932 	 * further down.
1933 	 */
1934 	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1935 		return -ENOSYS;
1936 
1937 	if (requeue_pi) {
1938 		/*
1939 		 * Requeue PI only works on two distinct uaddrs. This
1940 		 * check is only valid for private futexes. See below.
1941 		 */
1942 		if (uaddr1 == uaddr2)
1943 			return -EINVAL;
1944 
1945 		/*
1946 		 * requeue_pi requires a pi_state, try to allocate it now
1947 		 * without any locks in case it fails.
1948 		 */
1949 		if (refill_pi_state_cache())
1950 			return -ENOMEM;
1951 		/*
1952 		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1953 		 * + nr_requeue, since it acquires the rt_mutex prior to
1954 		 * returning to userspace, so as to not leave the rt_mutex with
1955 		 * waiters and no owner.  However, second and third wake-ups
1956 		 * cannot be predicted as they involve race conditions with the
1957 		 * first wake and a fault while looking up the pi_state.  Both
1958 		 * pthread_cond_signal() and pthread_cond_broadcast() should
1959 		 * use nr_wake=1.
1960 		 */
1961 		if (nr_wake != 1)
1962 			return -EINVAL;
1963 	}
1964 
1965 retry:
1966 	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1967 	if (unlikely(ret != 0))
1968 		return ret;
1969 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1970 			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1971 	if (unlikely(ret != 0))
1972 		return ret;
1973 
1974 	/*
1975 	 * The check above which compares uaddrs is not sufficient for
1976 	 * shared futexes. We need to compare the keys:
1977 	 */
1978 	if (requeue_pi && match_futex(&key1, &key2))
1979 		return -EINVAL;
1980 
1981 	hb1 = hash_futex(&key1);
1982 	hb2 = hash_futex(&key2);
1983 
1984 retry_private:
1985 	hb_waiters_inc(hb2);
1986 	double_lock_hb(hb1, hb2);
1987 
1988 	if (likely(cmpval != NULL)) {
1989 		u32 curval;
1990 
1991 		ret = get_futex_value_locked(&curval, uaddr1);
1992 
1993 		if (unlikely(ret)) {
1994 			double_unlock_hb(hb1, hb2);
1995 			hb_waiters_dec(hb2);
1996 
1997 			ret = get_user(curval, uaddr1);
1998 			if (ret)
1999 				return ret;
2000 
2001 			if (!(flags & FLAGS_SHARED))
2002 				goto retry_private;
2003 
2004 			goto retry;
2005 		}
2006 		if (curval != *cmpval) {
2007 			ret = -EAGAIN;
2008 			goto out_unlock;
2009 		}
2010 	}
2011 
2012 	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2013 		struct task_struct *exiting = NULL;
2014 
2015 		/*
2016 		 * Attempt to acquire uaddr2 and wake the top waiter. If we
2017 		 * intend to requeue waiters, force setting the FUTEX_WAITERS
2018 		 * bit.  We force this here where we are able to easily handle
2019 		 * faults rather in the requeue loop below.
2020 		 */
2021 		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2022 						 &key2, &pi_state,
2023 						 &exiting, nr_requeue);
2024 
2025 		/*
2026 		 * At this point the top_waiter has either taken uaddr2 or is
2027 		 * waiting on it.  If the former, then the pi_state will not
2028 		 * exist yet, look it up one more time to ensure we have a
2029 		 * reference to it. If the lock was taken, ret contains the
2030 		 * vpid of the top waiter task.
2031 		 * If the lock was not taken, we have pi_state and an initial
2032 		 * refcount on it. In case of an error we have nothing.
2033 		 */
2034 		if (ret > 0) {
2035 			WARN_ON(pi_state);
2036 			task_count++;
2037 			/*
2038 			 * If we acquired the lock, then the user space value
2039 			 * of uaddr2 should be vpid. It cannot be changed by
2040 			 * the top waiter as it is blocked on hb2 lock if it
2041 			 * tries to do so. If something fiddled with it behind
2042 			 * our back the pi state lookup might unearth it. So
2043 			 * we rather use the known value than rereading and
2044 			 * handing potential crap to lookup_pi_state.
2045 			 *
2046 			 * If that call succeeds then we have pi_state and an
2047 			 * initial refcount on it.
2048 			 */
2049 			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2050 					      &pi_state, &exiting);
2051 		}
2052 
2053 		switch (ret) {
2054 		case 0:
2055 			/* We hold a reference on the pi state. */
2056 			break;
2057 
2058 			/* If the above failed, then pi_state is NULL */
2059 		case -EFAULT:
2060 			double_unlock_hb(hb1, hb2);
2061 			hb_waiters_dec(hb2);
2062 			ret = fault_in_user_writeable(uaddr2);
2063 			if (!ret)
2064 				goto retry;
2065 			return ret;
2066 		case -EBUSY:
2067 		case -EAGAIN:
2068 			/*
2069 			 * Two reasons for this:
2070 			 * - EBUSY: Owner is exiting and we just wait for the
2071 			 *   exit to complete.
2072 			 * - EAGAIN: The user space value changed.
2073 			 */
2074 			double_unlock_hb(hb1, hb2);
2075 			hb_waiters_dec(hb2);
2076 			/*
2077 			 * Handle the case where the owner is in the middle of
2078 			 * exiting. Wait for the exit to complete otherwise
2079 			 * this task might loop forever, aka. live lock.
2080 			 */
2081 			wait_for_owner_exiting(ret, exiting);
2082 			cond_resched();
2083 			goto retry;
2084 		default:
2085 			goto out_unlock;
2086 		}
2087 	}
2088 
2089 	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2090 		if (task_count - nr_wake >= nr_requeue)
2091 			break;
2092 
2093 		if (!match_futex(&this->key, &key1))
2094 			continue;
2095 
2096 		/*
2097 		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2098 		 * be paired with each other and no other futex ops.
2099 		 *
2100 		 * We should never be requeueing a futex_q with a pi_state,
2101 		 * which is awaiting a futex_unlock_pi().
2102 		 */
2103 		if ((requeue_pi && !this->rt_waiter) ||
2104 		    (!requeue_pi && this->rt_waiter) ||
2105 		    this->pi_state) {
2106 			ret = -EINVAL;
2107 			break;
2108 		}
2109 
2110 		/*
2111 		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2112 		 * lock, we already woke the top_waiter.  If not, it will be
2113 		 * woken by futex_unlock_pi().
2114 		 */
2115 		if (++task_count <= nr_wake && !requeue_pi) {
2116 			mark_wake_futex(&wake_q, this);
2117 			continue;
2118 		}
2119 
2120 		/* Ensure we requeue to the expected futex for requeue_pi. */
2121 		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2122 			ret = -EINVAL;
2123 			break;
2124 		}
2125 
2126 		/*
2127 		 * Requeue nr_requeue waiters and possibly one more in the case
2128 		 * of requeue_pi if we couldn't acquire the lock atomically.
2129 		 */
2130 		if (requeue_pi) {
2131 			/*
2132 			 * Prepare the waiter to take the rt_mutex. Take a
2133 			 * refcount on the pi_state and store the pointer in
2134 			 * the futex_q object of the waiter.
2135 			 */
2136 			get_pi_state(pi_state);
2137 			this->pi_state = pi_state;
2138 			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2139 							this->rt_waiter,
2140 							this->task);
2141 			if (ret == 1) {
2142 				/*
2143 				 * We got the lock. We do neither drop the
2144 				 * refcount on pi_state nor clear
2145 				 * this->pi_state because the waiter needs the
2146 				 * pi_state for cleaning up the user space
2147 				 * value. It will drop the refcount after
2148 				 * doing so.
2149 				 */
2150 				requeue_pi_wake_futex(this, &key2, hb2);
2151 				continue;
2152 			} else if (ret) {
2153 				/*
2154 				 * rt_mutex_start_proxy_lock() detected a
2155 				 * potential deadlock when we tried to queue
2156 				 * that waiter. Drop the pi_state reference
2157 				 * which we took above and remove the pointer
2158 				 * to the state from the waiters futex_q
2159 				 * object.
2160 				 */
2161 				this->pi_state = NULL;
2162 				put_pi_state(pi_state);
2163 				/*
2164 				 * We stop queueing more waiters and let user
2165 				 * space deal with the mess.
2166 				 */
2167 				break;
2168 			}
2169 		}
2170 		requeue_futex(this, hb1, hb2, &key2);
2171 	}
2172 
2173 	/*
2174 	 * We took an extra initial reference to the pi_state either
2175 	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2176 	 * need to drop it here again.
2177 	 */
2178 	put_pi_state(pi_state);
2179 
2180 out_unlock:
2181 	double_unlock_hb(hb1, hb2);
2182 	wake_up_q(&wake_q);
2183 	hb_waiters_dec(hb2);
2184 	return ret ? ret : task_count;
2185 }
2186 
2187 /* The key must be already stored in q->key. */
queue_lock(struct futex_q * q)2188 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2189 	__acquires(&hb->lock)
2190 {
2191 	struct futex_hash_bucket *hb;
2192 
2193 	hb = hash_futex(&q->key);
2194 
2195 	/*
2196 	 * Increment the counter before taking the lock so that
2197 	 * a potential waker won't miss a to-be-slept task that is
2198 	 * waiting for the spinlock. This is safe as all queue_lock()
2199 	 * users end up calling queue_me(). Similarly, for housekeeping,
2200 	 * decrement the counter at queue_unlock() when some error has
2201 	 * occurred and we don't end up adding the task to the list.
2202 	 */
2203 	hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2204 
2205 	q->lock_ptr = &hb->lock;
2206 
2207 	spin_lock(&hb->lock);
2208 	return hb;
2209 }
2210 
2211 static inline void
queue_unlock(struct futex_hash_bucket * hb)2212 queue_unlock(struct futex_hash_bucket *hb)
2213 	__releases(&hb->lock)
2214 {
2215 	spin_unlock(&hb->lock);
2216 	hb_waiters_dec(hb);
2217 }
2218 
__queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2219 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2220 {
2221 	int prio;
2222 
2223 	/*
2224 	 * The priority used to register this element is
2225 	 * - either the real thread-priority for the real-time threads
2226 	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2227 	 * - or MAX_RT_PRIO for non-RT threads.
2228 	 * Thus, all RT-threads are woken first in priority order, and
2229 	 * the others are woken last, in FIFO order.
2230 	 */
2231 	prio = min(current->normal_prio, MAX_RT_PRIO);
2232 
2233 	plist_node_init(&q->list, prio);
2234 	plist_add(&q->list, &hb->chain);
2235 	q->task = current;
2236 }
2237 
2238 /**
2239  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2240  * @q:	The futex_q to enqueue
2241  * @hb:	The destination hash bucket
2242  *
2243  * The hb->lock must be held by the caller, and is released here. A call to
2244  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2245  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2246  * or nothing if the unqueue is done as part of the wake process and the unqueue
2247  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2248  * an example).
2249  */
queue_me(struct futex_q * q,struct futex_hash_bucket * hb)2250 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2251 	__releases(&hb->lock)
2252 {
2253 	__queue_me(q, hb);
2254 	spin_unlock(&hb->lock);
2255 }
2256 
2257 /**
2258  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2259  * @q:	The futex_q to unqueue
2260  *
2261  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2262  * be paired with exactly one earlier call to queue_me().
2263  *
2264  * Return:
2265  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2266  *  - 0 - if the futex_q was already removed by the waking thread
2267  */
unqueue_me(struct futex_q * q)2268 static int unqueue_me(struct futex_q *q)
2269 {
2270 	spinlock_t *lock_ptr;
2271 	int ret = 0;
2272 
2273 	/* In the common case we don't take the spinlock, which is nice. */
2274 retry:
2275 	/*
2276 	 * q->lock_ptr can change between this read and the following spin_lock.
2277 	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2278 	 * optimizing lock_ptr out of the logic below.
2279 	 */
2280 	lock_ptr = READ_ONCE(q->lock_ptr);
2281 	if (lock_ptr != NULL) {
2282 		spin_lock(lock_ptr);
2283 		/*
2284 		 * q->lock_ptr can change between reading it and
2285 		 * spin_lock(), causing us to take the wrong lock.  This
2286 		 * corrects the race condition.
2287 		 *
2288 		 * Reasoning goes like this: if we have the wrong lock,
2289 		 * q->lock_ptr must have changed (maybe several times)
2290 		 * between reading it and the spin_lock().  It can
2291 		 * change again after the spin_lock() but only if it was
2292 		 * already changed before the spin_lock().  It cannot,
2293 		 * however, change back to the original value.  Therefore
2294 		 * we can detect whether we acquired the correct lock.
2295 		 */
2296 		if (unlikely(lock_ptr != q->lock_ptr)) {
2297 			spin_unlock(lock_ptr);
2298 			goto retry;
2299 		}
2300 		__unqueue_futex(q);
2301 
2302 		BUG_ON(q->pi_state);
2303 
2304 		spin_unlock(lock_ptr);
2305 		ret = 1;
2306 	}
2307 
2308 	return ret;
2309 }
2310 
2311 /*
2312  * PI futexes can not be requeued and must remove themself from the
2313  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2314  * and dropped here.
2315  */
unqueue_me_pi(struct futex_q * q)2316 static void unqueue_me_pi(struct futex_q *q)
2317 	__releases(q->lock_ptr)
2318 {
2319 	__unqueue_futex(q);
2320 
2321 	BUG_ON(!q->pi_state);
2322 	put_pi_state(q->pi_state);
2323 	q->pi_state = NULL;
2324 
2325 	spin_unlock(q->lock_ptr);
2326 }
2327 
fixup_pi_state_owner(u32 __user * uaddr,struct futex_q * q,struct task_struct * argowner)2328 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2329 				struct task_struct *argowner)
2330 {
2331 	struct futex_pi_state *pi_state = q->pi_state;
2332 	u32 uval, curval, newval;
2333 	struct task_struct *oldowner, *newowner;
2334 	u32 newtid;
2335 	int ret, err = 0;
2336 
2337 	lockdep_assert_held(q->lock_ptr);
2338 
2339 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2340 
2341 	oldowner = pi_state->owner;
2342 
2343 	/*
2344 	 * We are here because either:
2345 	 *
2346 	 *  - we stole the lock and pi_state->owner needs updating to reflect
2347 	 *    that (@argowner == current),
2348 	 *
2349 	 * or:
2350 	 *
2351 	 *  - someone stole our lock and we need to fix things to point to the
2352 	 *    new owner (@argowner == NULL).
2353 	 *
2354 	 * Either way, we have to replace the TID in the user space variable.
2355 	 * This must be atomic as we have to preserve the owner died bit here.
2356 	 *
2357 	 * Note: We write the user space value _before_ changing the pi_state
2358 	 * because we can fault here. Imagine swapped out pages or a fork
2359 	 * that marked all the anonymous memory readonly for cow.
2360 	 *
2361 	 * Modifying pi_state _before_ the user space value would leave the
2362 	 * pi_state in an inconsistent state when we fault here, because we
2363 	 * need to drop the locks to handle the fault. This might be observed
2364 	 * in the PID check in lookup_pi_state.
2365 	 */
2366 retry:
2367 	if (!argowner) {
2368 		if (oldowner != current) {
2369 			/*
2370 			 * We raced against a concurrent self; things are
2371 			 * already fixed up. Nothing to do.
2372 			 */
2373 			ret = 0;
2374 			goto out_unlock;
2375 		}
2376 
2377 		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2378 			/* We got the lock after all, nothing to fix. */
2379 			ret = 0;
2380 			goto out_unlock;
2381 		}
2382 
2383 		/*
2384 		 * The trylock just failed, so either there is an owner or
2385 		 * there is a higher priority waiter than this one.
2386 		 */
2387 		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2388 		/*
2389 		 * If the higher priority waiter has not yet taken over the
2390 		 * rtmutex then newowner is NULL. We can't return here with
2391 		 * that state because it's inconsistent vs. the user space
2392 		 * state. So drop the locks and try again. It's a valid
2393 		 * situation and not any different from the other retry
2394 		 * conditions.
2395 		 */
2396 		if (unlikely(!newowner)) {
2397 			err = -EAGAIN;
2398 			goto handle_err;
2399 		}
2400 	} else {
2401 		WARN_ON_ONCE(argowner != current);
2402 		if (oldowner == current) {
2403 			/*
2404 			 * We raced against a concurrent self; things are
2405 			 * already fixed up. Nothing to do.
2406 			 */
2407 			ret = 0;
2408 			goto out_unlock;
2409 		}
2410 		newowner = argowner;
2411 	}
2412 
2413 	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2414 	/* Owner died? */
2415 	if (!pi_state->owner)
2416 		newtid |= FUTEX_OWNER_DIED;
2417 
2418 	err = get_futex_value_locked(&uval, uaddr);
2419 	if (err)
2420 		goto handle_err;
2421 
2422 	for (;;) {
2423 		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2424 
2425 		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2426 		if (err)
2427 			goto handle_err;
2428 
2429 		if (curval == uval)
2430 			break;
2431 		uval = curval;
2432 	}
2433 
2434 	/*
2435 	 * We fixed up user space. Now we need to fix the pi_state
2436 	 * itself.
2437 	 */
2438 	if (pi_state->owner != NULL) {
2439 		raw_spin_lock(&pi_state->owner->pi_lock);
2440 		WARN_ON(list_empty(&pi_state->list));
2441 		list_del_init(&pi_state->list);
2442 		raw_spin_unlock(&pi_state->owner->pi_lock);
2443 	}
2444 
2445 	pi_state->owner = newowner;
2446 
2447 	raw_spin_lock(&newowner->pi_lock);
2448 	WARN_ON(!list_empty(&pi_state->list));
2449 	list_add(&pi_state->list, &newowner->pi_state_list);
2450 	raw_spin_unlock(&newowner->pi_lock);
2451 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2452 
2453 	return 0;
2454 
2455 	/*
2456 	 * In order to reschedule or handle a page fault, we need to drop the
2457 	 * locks here. In the case of a fault, this gives the other task
2458 	 * (either the highest priority waiter itself or the task which stole
2459 	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2460 	 * are back from handling the fault we need to check the pi_state after
2461 	 * reacquiring the locks and before trying to do another fixup. When
2462 	 * the fixup has been done already we simply return.
2463 	 *
2464 	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2465 	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2466 	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2467 	 */
2468 handle_err:
2469 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2470 	spin_unlock(q->lock_ptr);
2471 
2472 	switch (err) {
2473 	case -EFAULT:
2474 		ret = fault_in_user_writeable(uaddr);
2475 		break;
2476 
2477 	case -EAGAIN:
2478 		cond_resched();
2479 		ret = 0;
2480 		break;
2481 
2482 	default:
2483 		WARN_ON_ONCE(1);
2484 		ret = err;
2485 		break;
2486 	}
2487 
2488 	spin_lock(q->lock_ptr);
2489 	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2490 
2491 	/*
2492 	 * Check if someone else fixed it for us:
2493 	 */
2494 	if (pi_state->owner != oldowner) {
2495 		ret = 0;
2496 		goto out_unlock;
2497 	}
2498 
2499 	if (ret)
2500 		goto out_unlock;
2501 
2502 	goto retry;
2503 
2504 out_unlock:
2505 	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2506 	return ret;
2507 }
2508 
2509 static long futex_wait_restart(struct restart_block *restart);
2510 
2511 /**
2512  * fixup_owner() - Post lock pi_state and corner case management
2513  * @uaddr:	user address of the futex
2514  * @q:		futex_q (contains pi_state and access to the rt_mutex)
2515  * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2516  *
2517  * After attempting to lock an rt_mutex, this function is called to cleanup
2518  * the pi_state owner as well as handle race conditions that may allow us to
2519  * acquire the lock. Must be called with the hb lock held.
2520  *
2521  * Return:
2522  *  -  1 - success, lock taken;
2523  *  -  0 - success, lock not taken;
2524  *  - <0 - on error (-EFAULT)
2525  */
fixup_owner(u32 __user * uaddr,struct futex_q * q,int locked)2526 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2527 {
2528 	int ret = 0;
2529 
2530 	if (locked) {
2531 		/*
2532 		 * Got the lock. We might not be the anticipated owner if we
2533 		 * did a lock-steal - fix up the PI-state in that case:
2534 		 *
2535 		 * Speculative pi_state->owner read (we don't hold wait_lock);
2536 		 * since we own the lock pi_state->owner == current is the
2537 		 * stable state, anything else needs more attention.
2538 		 */
2539 		if (q->pi_state->owner != current)
2540 			ret = fixup_pi_state_owner(uaddr, q, current);
2541 		return ret ? ret : locked;
2542 	}
2543 
2544 	/*
2545 	 * If we didn't get the lock; check if anybody stole it from us. In
2546 	 * that case, we need to fix up the uval to point to them instead of
2547 	 * us, otherwise bad things happen. [10]
2548 	 *
2549 	 * Another speculative read; pi_state->owner == current is unstable
2550 	 * but needs our attention.
2551 	 */
2552 	if (q->pi_state->owner == current) {
2553 		ret = fixup_pi_state_owner(uaddr, q, NULL);
2554 		return ret;
2555 	}
2556 
2557 	/*
2558 	 * Paranoia check. If we did not take the lock, then we should not be
2559 	 * the owner of the rt_mutex.
2560 	 */
2561 	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2562 		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2563 				"pi-state %p\n", ret,
2564 				q->pi_state->pi_mutex.owner,
2565 				q->pi_state->owner);
2566 	}
2567 
2568 	return ret;
2569 }
2570 
2571 /**
2572  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2573  * @hb:		the futex hash bucket, must be locked by the caller
2574  * @q:		the futex_q to queue up on
2575  * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2576  */
futex_wait_queue_me(struct futex_hash_bucket * hb,struct futex_q * q,struct hrtimer_sleeper * timeout)2577 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2578 				struct hrtimer_sleeper *timeout)
2579 {
2580 	/*
2581 	 * The task state is guaranteed to be set before another task can
2582 	 * wake it. set_current_state() is implemented using smp_store_mb() and
2583 	 * queue_me() calls spin_unlock() upon completion, both serializing
2584 	 * access to the hash list and forcing another memory barrier.
2585 	 */
2586 	set_current_state(TASK_INTERRUPTIBLE);
2587 	queue_me(q, hb);
2588 
2589 	/* Arm the timer */
2590 	if (timeout)
2591 		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2592 
2593 	/*
2594 	 * If we have been removed from the hash list, then another task
2595 	 * has tried to wake us, and we can skip the call to schedule().
2596 	 */
2597 	if (likely(!plist_node_empty(&q->list))) {
2598 		/*
2599 		 * If the timer has already expired, current will already be
2600 		 * flagged for rescheduling. Only call schedule if there
2601 		 * is no timeout, or if it has yet to expire.
2602 		 */
2603 		if (!timeout || timeout->task)
2604 			freezable_schedule();
2605 	}
2606 	__set_current_state(TASK_RUNNING);
2607 }
2608 
2609 /**
2610  * futex_wait_setup() - Prepare to wait on a futex
2611  * @uaddr:	the futex userspace address
2612  * @val:	the expected value
2613  * @flags:	futex flags (FLAGS_SHARED, etc.)
2614  * @q:		the associated futex_q
2615  * @hb:		storage for hash_bucket pointer to be returned to caller
2616  *
2617  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2618  * compare it with the expected value.  Handle atomic faults internally.
2619  * Return with the hb lock held and a q.key reference on success, and unlocked
2620  * with no q.key reference on failure.
2621  *
2622  * Return:
2623  *  -  0 - uaddr contains val and hb has been locked;
2624  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2625  */
futex_wait_setup(u32 __user * uaddr,u32 val,unsigned int flags,struct futex_q * q,struct futex_hash_bucket ** hb)2626 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2627 			   struct futex_q *q, struct futex_hash_bucket **hb)
2628 {
2629 	u32 uval;
2630 	int ret;
2631 
2632 	/*
2633 	 * Access the page AFTER the hash-bucket is locked.
2634 	 * Order is important:
2635 	 *
2636 	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2637 	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2638 	 *
2639 	 * The basic logical guarantee of a futex is that it blocks ONLY
2640 	 * if cond(var) is known to be true at the time of blocking, for
2641 	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2642 	 * would open a race condition where we could block indefinitely with
2643 	 * cond(var) false, which would violate the guarantee.
2644 	 *
2645 	 * On the other hand, we insert q and release the hash-bucket only
2646 	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2647 	 * absorb a wakeup if *uaddr does not match the desired values
2648 	 * while the syscall executes.
2649 	 */
2650 retry:
2651 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2652 	if (unlikely(ret != 0))
2653 		return ret;
2654 
2655 retry_private:
2656 	*hb = queue_lock(q);
2657 
2658 	ret = get_futex_value_locked(&uval, uaddr);
2659 
2660 	if (ret) {
2661 		queue_unlock(*hb);
2662 
2663 		ret = get_user(uval, uaddr);
2664 		if (ret)
2665 			return ret;
2666 
2667 		if (!(flags & FLAGS_SHARED))
2668 			goto retry_private;
2669 
2670 		goto retry;
2671 	}
2672 
2673 	if (uval != val) {
2674 		queue_unlock(*hb);
2675 		ret = -EWOULDBLOCK;
2676 	}
2677 
2678 	return ret;
2679 }
2680 
futex_wait(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset)2681 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2682 		      ktime_t *abs_time, u32 bitset)
2683 {
2684 	struct hrtimer_sleeper timeout, *to;
2685 	struct restart_block *restart;
2686 	struct futex_hash_bucket *hb;
2687 	struct futex_q q = futex_q_init;
2688 	int ret;
2689 
2690 	if (!bitset)
2691 		return -EINVAL;
2692 	q.bitset = bitset;
2693 
2694 	to = futex_setup_timer(abs_time, &timeout, flags,
2695 			       current->timer_slack_ns);
2696 retry:
2697 	/*
2698 	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2699 	 * q.key refs.
2700 	 */
2701 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2702 	if (ret)
2703 		goto out;
2704 
2705 	/* queue_me and wait for wakeup, timeout, or a signal. */
2706 	futex_wait_queue_me(hb, &q, to);
2707 
2708 	/* If we were woken (and unqueued), we succeeded, whatever. */
2709 	ret = 0;
2710 	/* unqueue_me() drops q.key ref */
2711 	if (!unqueue_me(&q))
2712 		goto out;
2713 	ret = -ETIMEDOUT;
2714 	if (to && !to->task)
2715 		goto out;
2716 
2717 	/*
2718 	 * We expect signal_pending(current), but we might be the
2719 	 * victim of a spurious wakeup as well.
2720 	 */
2721 	if (!signal_pending(current))
2722 		goto retry;
2723 
2724 	ret = -ERESTARTSYS;
2725 	if (!abs_time)
2726 		goto out;
2727 
2728 	restart = &current->restart_block;
2729 	restart->fn = futex_wait_restart;
2730 	restart->futex.uaddr = uaddr;
2731 	restart->futex.val = val;
2732 	restart->futex.time = *abs_time;
2733 	restart->futex.bitset = bitset;
2734 	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2735 
2736 	ret = -ERESTART_RESTARTBLOCK;
2737 
2738 out:
2739 	if (to) {
2740 		hrtimer_cancel(&to->timer);
2741 		destroy_hrtimer_on_stack(&to->timer);
2742 	}
2743 	return ret;
2744 }
2745 
2746 
futex_wait_restart(struct restart_block * restart)2747 static long futex_wait_restart(struct restart_block *restart)
2748 {
2749 	u32 __user *uaddr = restart->futex.uaddr;
2750 	ktime_t t, *tp = NULL;
2751 
2752 	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2753 		t = restart->futex.time;
2754 		tp = &t;
2755 	}
2756 	restart->fn = do_no_restart_syscall;
2757 
2758 	return (long)futex_wait(uaddr, restart->futex.flags,
2759 				restart->futex.val, tp, restart->futex.bitset);
2760 }
2761 
2762 
2763 /*
2764  * Userspace tried a 0 -> TID atomic transition of the futex value
2765  * and failed. The kernel side here does the whole locking operation:
2766  * if there are waiters then it will block as a consequence of relying
2767  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2768  * a 0 value of the futex too.).
2769  *
2770  * Also serves as futex trylock_pi()'ing, and due semantics.
2771  */
futex_lock_pi(u32 __user * uaddr,unsigned int flags,ktime_t * time,int trylock)2772 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2773 			 ktime_t *time, int trylock)
2774 {
2775 	struct hrtimer_sleeper timeout, *to;
2776 	struct futex_pi_state *pi_state = NULL;
2777 	struct task_struct *exiting = NULL;
2778 	struct rt_mutex_waiter rt_waiter;
2779 	struct futex_hash_bucket *hb;
2780 	struct futex_q q = futex_q_init;
2781 	int res, ret;
2782 
2783 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2784 		return -ENOSYS;
2785 
2786 	if (refill_pi_state_cache())
2787 		return -ENOMEM;
2788 
2789 	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2790 
2791 retry:
2792 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2793 	if (unlikely(ret != 0))
2794 		goto out;
2795 
2796 retry_private:
2797 	hb = queue_lock(&q);
2798 
2799 	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2800 				   &exiting, 0);
2801 	if (unlikely(ret)) {
2802 		/*
2803 		 * Atomic work succeeded and we got the lock,
2804 		 * or failed. Either way, we do _not_ block.
2805 		 */
2806 		switch (ret) {
2807 		case 1:
2808 			/* We got the lock. */
2809 			ret = 0;
2810 			goto out_unlock_put_key;
2811 		case -EFAULT:
2812 			goto uaddr_faulted;
2813 		case -EBUSY:
2814 		case -EAGAIN:
2815 			/*
2816 			 * Two reasons for this:
2817 			 * - EBUSY: Task is exiting and we just wait for the
2818 			 *   exit to complete.
2819 			 * - EAGAIN: The user space value changed.
2820 			 */
2821 			queue_unlock(hb);
2822 			/*
2823 			 * Handle the case where the owner is in the middle of
2824 			 * exiting. Wait for the exit to complete otherwise
2825 			 * this task might loop forever, aka. live lock.
2826 			 */
2827 			wait_for_owner_exiting(ret, exiting);
2828 			cond_resched();
2829 			goto retry;
2830 		default:
2831 			goto out_unlock_put_key;
2832 		}
2833 	}
2834 
2835 	WARN_ON(!q.pi_state);
2836 
2837 	/*
2838 	 * Only actually queue now that the atomic ops are done:
2839 	 */
2840 	__queue_me(&q, hb);
2841 
2842 	if (trylock) {
2843 		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2844 		/* Fixup the trylock return value: */
2845 		ret = ret ? 0 : -EWOULDBLOCK;
2846 		goto no_block;
2847 	}
2848 
2849 	rt_mutex_init_waiter(&rt_waiter);
2850 
2851 	/*
2852 	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2853 	 * hold it while doing rt_mutex_start_proxy(), because then it will
2854 	 * include hb->lock in the blocking chain, even through we'll not in
2855 	 * fact hold it while blocking. This will lead it to report -EDEADLK
2856 	 * and BUG when futex_unlock_pi() interleaves with this.
2857 	 *
2858 	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2859 	 * latter before calling __rt_mutex_start_proxy_lock(). This
2860 	 * interleaves with futex_unlock_pi() -- which does a similar lock
2861 	 * handoff -- such that the latter can observe the futex_q::pi_state
2862 	 * before __rt_mutex_start_proxy_lock() is done.
2863 	 */
2864 	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2865 	spin_unlock(q.lock_ptr);
2866 	/*
2867 	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2868 	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2869 	 * it sees the futex_q::pi_state.
2870 	 */
2871 	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2872 	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2873 
2874 	if (ret) {
2875 		if (ret == 1)
2876 			ret = 0;
2877 		goto cleanup;
2878 	}
2879 
2880 	if (unlikely(to))
2881 		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2882 
2883 	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2884 
2885 cleanup:
2886 	spin_lock(q.lock_ptr);
2887 	/*
2888 	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2889 	 * first acquire the hb->lock before removing the lock from the
2890 	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2891 	 * lists consistent.
2892 	 *
2893 	 * In particular; it is important that futex_unlock_pi() can not
2894 	 * observe this inconsistency.
2895 	 */
2896 	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2897 		ret = 0;
2898 
2899 no_block:
2900 	/*
2901 	 * Fixup the pi_state owner and possibly acquire the lock if we
2902 	 * haven't already.
2903 	 */
2904 	res = fixup_owner(uaddr, &q, !ret);
2905 	/*
2906 	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2907 	 * the lock, clear our -ETIMEDOUT or -EINTR.
2908 	 */
2909 	if (res)
2910 		ret = (res < 0) ? res : 0;
2911 
2912 	/*
2913 	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2914 	 * it and return the fault to userspace.
2915 	 */
2916 	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2917 		pi_state = q.pi_state;
2918 		get_pi_state(pi_state);
2919 	}
2920 
2921 	/* Unqueue and drop the lock */
2922 	unqueue_me_pi(&q);
2923 
2924 	if (pi_state) {
2925 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
2926 		put_pi_state(pi_state);
2927 	}
2928 
2929 	goto out;
2930 
2931 out_unlock_put_key:
2932 	queue_unlock(hb);
2933 
2934 out:
2935 	if (to) {
2936 		hrtimer_cancel(&to->timer);
2937 		destroy_hrtimer_on_stack(&to->timer);
2938 	}
2939 	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2940 
2941 uaddr_faulted:
2942 	queue_unlock(hb);
2943 
2944 	ret = fault_in_user_writeable(uaddr);
2945 	if (ret)
2946 		goto out;
2947 
2948 	if (!(flags & FLAGS_SHARED))
2949 		goto retry_private;
2950 
2951 	goto retry;
2952 }
2953 
2954 /*
2955  * Userspace attempted a TID -> 0 atomic transition, and failed.
2956  * This is the in-kernel slowpath: we look up the PI state (if any),
2957  * and do the rt-mutex unlock.
2958  */
futex_unlock_pi(u32 __user * uaddr,unsigned int flags)2959 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2960 {
2961 	u32 curval, uval, vpid = task_pid_vnr(current);
2962 	union futex_key key = FUTEX_KEY_INIT;
2963 	struct futex_hash_bucket *hb;
2964 	struct futex_q *top_waiter;
2965 	int ret;
2966 
2967 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2968 		return -ENOSYS;
2969 
2970 retry:
2971 	if (get_user(uval, uaddr))
2972 		return -EFAULT;
2973 	/*
2974 	 * We release only a lock we actually own:
2975 	 */
2976 	if ((uval & FUTEX_TID_MASK) != vpid)
2977 		return -EPERM;
2978 
2979 	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2980 	if (ret)
2981 		return ret;
2982 
2983 	hb = hash_futex(&key);
2984 	spin_lock(&hb->lock);
2985 
2986 	/*
2987 	 * Check waiters first. We do not trust user space values at
2988 	 * all and we at least want to know if user space fiddled
2989 	 * with the futex value instead of blindly unlocking.
2990 	 */
2991 	top_waiter = futex_top_waiter(hb, &key);
2992 	if (top_waiter) {
2993 		struct futex_pi_state *pi_state = top_waiter->pi_state;
2994 
2995 		ret = -EINVAL;
2996 		if (!pi_state)
2997 			goto out_unlock;
2998 
2999 		/*
3000 		 * If current does not own the pi_state then the futex is
3001 		 * inconsistent and user space fiddled with the futex value.
3002 		 */
3003 		if (pi_state->owner != current)
3004 			goto out_unlock;
3005 
3006 		get_pi_state(pi_state);
3007 		/*
3008 		 * By taking wait_lock while still holding hb->lock, we ensure
3009 		 * there is no point where we hold neither; and therefore
3010 		 * wake_futex_pi() must observe a state consistent with what we
3011 		 * observed.
3012 		 *
3013 		 * In particular; this forces __rt_mutex_start_proxy() to
3014 		 * complete such that we're guaranteed to observe the
3015 		 * rt_waiter. Also see the WARN in wake_futex_pi().
3016 		 */
3017 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3018 		spin_unlock(&hb->lock);
3019 
3020 		/* drops pi_state->pi_mutex.wait_lock */
3021 		ret = wake_futex_pi(uaddr, uval, pi_state);
3022 
3023 		put_pi_state(pi_state);
3024 
3025 		/*
3026 		 * Success, we're done! No tricky corner cases.
3027 		 */
3028 		if (!ret)
3029 			goto out_putkey;
3030 		/*
3031 		 * The atomic access to the futex value generated a
3032 		 * pagefault, so retry the user-access and the wakeup:
3033 		 */
3034 		if (ret == -EFAULT)
3035 			goto pi_faulted;
3036 		/*
3037 		 * A unconditional UNLOCK_PI op raced against a waiter
3038 		 * setting the FUTEX_WAITERS bit. Try again.
3039 		 */
3040 		if (ret == -EAGAIN)
3041 			goto pi_retry;
3042 		/*
3043 		 * wake_futex_pi has detected invalid state. Tell user
3044 		 * space.
3045 		 */
3046 		goto out_putkey;
3047 	}
3048 
3049 	/*
3050 	 * We have no kernel internal state, i.e. no waiters in the
3051 	 * kernel. Waiters which are about to queue themselves are stuck
3052 	 * on hb->lock. So we can safely ignore them. We do neither
3053 	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3054 	 * owner.
3055 	 */
3056 	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3057 		spin_unlock(&hb->lock);
3058 		switch (ret) {
3059 		case -EFAULT:
3060 			goto pi_faulted;
3061 
3062 		case -EAGAIN:
3063 			goto pi_retry;
3064 
3065 		default:
3066 			WARN_ON_ONCE(1);
3067 			goto out_putkey;
3068 		}
3069 	}
3070 
3071 	/*
3072 	 * If uval has changed, let user space handle it.
3073 	 */
3074 	ret = (curval == uval) ? 0 : -EAGAIN;
3075 
3076 out_unlock:
3077 	spin_unlock(&hb->lock);
3078 out_putkey:
3079 	return ret;
3080 
3081 pi_retry:
3082 	cond_resched();
3083 	goto retry;
3084 
3085 pi_faulted:
3086 
3087 	ret = fault_in_user_writeable(uaddr);
3088 	if (!ret)
3089 		goto retry;
3090 
3091 	return ret;
3092 }
3093 
3094 /**
3095  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3096  * @hb:		the hash_bucket futex_q was original enqueued on
3097  * @q:		the futex_q woken while waiting to be requeued
3098  * @key2:	the futex_key of the requeue target futex
3099  * @timeout:	the timeout associated with the wait (NULL if none)
3100  *
3101  * Detect if the task was woken on the initial futex as opposed to the requeue
3102  * target futex.  If so, determine if it was a timeout or a signal that caused
3103  * the wakeup and return the appropriate error code to the caller.  Must be
3104  * called with the hb lock held.
3105  *
3106  * Return:
3107  *  -  0 = no early wakeup detected;
3108  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3109  */
3110 static inline
handle_early_requeue_pi_wakeup(struct futex_hash_bucket * hb,struct futex_q * q,union futex_key * key2,struct hrtimer_sleeper * timeout)3111 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3112 				   struct futex_q *q, union futex_key *key2,
3113 				   struct hrtimer_sleeper *timeout)
3114 {
3115 	int ret = 0;
3116 
3117 	/*
3118 	 * With the hb lock held, we avoid races while we process the wakeup.
3119 	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3120 	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3121 	 * It can't be requeued from uaddr2 to something else since we don't
3122 	 * support a PI aware source futex for requeue.
3123 	 */
3124 	if (!match_futex(&q->key, key2)) {
3125 		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3126 		/*
3127 		 * We were woken prior to requeue by a timeout or a signal.
3128 		 * Unqueue the futex_q and determine which it was.
3129 		 */
3130 		plist_del(&q->list, &hb->chain);
3131 		hb_waiters_dec(hb);
3132 
3133 		/* Handle spurious wakeups gracefully */
3134 		ret = -EWOULDBLOCK;
3135 		if (timeout && !timeout->task)
3136 			ret = -ETIMEDOUT;
3137 		else if (signal_pending(current))
3138 			ret = -ERESTARTNOINTR;
3139 	}
3140 	return ret;
3141 }
3142 
3143 /**
3144  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3145  * @uaddr:	the futex we initially wait on (non-pi)
3146  * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3147  *		the same type, no requeueing from private to shared, etc.
3148  * @val:	the expected value of uaddr
3149  * @abs_time:	absolute timeout
3150  * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3151  * @uaddr2:	the pi futex we will take prior to returning to user-space
3152  *
3153  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3154  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3155  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3156  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3157  * without one, the pi logic would not know which task to boost/deboost, if
3158  * there was a need to.
3159  *
3160  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3161  * via the following--
3162  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3163  * 2) wakeup on uaddr2 after a requeue
3164  * 3) signal
3165  * 4) timeout
3166  *
3167  * If 3, cleanup and return -ERESTARTNOINTR.
3168  *
3169  * If 2, we may then block on trying to take the rt_mutex and return via:
3170  * 5) successful lock
3171  * 6) signal
3172  * 7) timeout
3173  * 8) other lock acquisition failure
3174  *
3175  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3176  *
3177  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3178  *
3179  * Return:
3180  *  -  0 - On success;
3181  *  - <0 - On error
3182  */
futex_wait_requeue_pi(u32 __user * uaddr,unsigned int flags,u32 val,ktime_t * abs_time,u32 bitset,u32 __user * uaddr2)3183 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3184 				 u32 val, ktime_t *abs_time, u32 bitset,
3185 				 u32 __user *uaddr2)
3186 {
3187 	struct hrtimer_sleeper timeout, *to;
3188 	struct futex_pi_state *pi_state = NULL;
3189 	struct rt_mutex_waiter rt_waiter;
3190 	struct futex_hash_bucket *hb;
3191 	union futex_key key2 = FUTEX_KEY_INIT;
3192 	struct futex_q q = futex_q_init;
3193 	int res, ret;
3194 
3195 	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3196 		return -ENOSYS;
3197 
3198 	if (uaddr == uaddr2)
3199 		return -EINVAL;
3200 
3201 	if (!bitset)
3202 		return -EINVAL;
3203 
3204 	to = futex_setup_timer(abs_time, &timeout, flags,
3205 			       current->timer_slack_ns);
3206 
3207 	/*
3208 	 * The waiter is allocated on our stack, manipulated by the requeue
3209 	 * code while we sleep on uaddr.
3210 	 */
3211 	rt_mutex_init_waiter(&rt_waiter);
3212 
3213 	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3214 	if (unlikely(ret != 0))
3215 		goto out;
3216 
3217 	q.bitset = bitset;
3218 	q.rt_waiter = &rt_waiter;
3219 	q.requeue_pi_key = &key2;
3220 
3221 	/*
3222 	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3223 	 * count.
3224 	 */
3225 	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3226 	if (ret)
3227 		goto out;
3228 
3229 	/*
3230 	 * The check above which compares uaddrs is not sufficient for
3231 	 * shared futexes. We need to compare the keys:
3232 	 */
3233 	if (match_futex(&q.key, &key2)) {
3234 		queue_unlock(hb);
3235 		ret = -EINVAL;
3236 		goto out;
3237 	}
3238 
3239 	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3240 	futex_wait_queue_me(hb, &q, to);
3241 
3242 	spin_lock(&hb->lock);
3243 	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3244 	spin_unlock(&hb->lock);
3245 	if (ret)
3246 		goto out;
3247 
3248 	/*
3249 	 * In order for us to be here, we know our q.key == key2, and since
3250 	 * we took the hb->lock above, we also know that futex_requeue() has
3251 	 * completed and we no longer have to concern ourselves with a wakeup
3252 	 * race with the atomic proxy lock acquisition by the requeue code. The
3253 	 * futex_requeue dropped our key1 reference and incremented our key2
3254 	 * reference count.
3255 	 */
3256 
3257 	/* Check if the requeue code acquired the second futex for us. */
3258 	if (!q.rt_waiter) {
3259 		/*
3260 		 * Got the lock. We might not be the anticipated owner if we
3261 		 * did a lock-steal - fix up the PI-state in that case.
3262 		 */
3263 		if (q.pi_state && (q.pi_state->owner != current)) {
3264 			spin_lock(q.lock_ptr);
3265 			ret = fixup_pi_state_owner(uaddr2, &q, current);
3266 			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3267 				pi_state = q.pi_state;
3268 				get_pi_state(pi_state);
3269 			}
3270 			/*
3271 			 * Drop the reference to the pi state which
3272 			 * the requeue_pi() code acquired for us.
3273 			 */
3274 			put_pi_state(q.pi_state);
3275 			spin_unlock(q.lock_ptr);
3276 		}
3277 	} else {
3278 		struct rt_mutex *pi_mutex;
3279 
3280 		/*
3281 		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3282 		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3283 		 * the pi_state.
3284 		 */
3285 		WARN_ON(!q.pi_state);
3286 		pi_mutex = &q.pi_state->pi_mutex;
3287 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3288 
3289 		spin_lock(q.lock_ptr);
3290 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3291 			ret = 0;
3292 
3293 		debug_rt_mutex_free_waiter(&rt_waiter);
3294 		/*
3295 		 * Fixup the pi_state owner and possibly acquire the lock if we
3296 		 * haven't already.
3297 		 */
3298 		res = fixup_owner(uaddr2, &q, !ret);
3299 		/*
3300 		 * If fixup_owner() returned an error, proprogate that.  If it
3301 		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3302 		 */
3303 		if (res)
3304 			ret = (res < 0) ? res : 0;
3305 
3306 		/*
3307 		 * If fixup_pi_state_owner() faulted and was unable to handle
3308 		 * the fault, unlock the rt_mutex and return the fault to
3309 		 * userspace.
3310 		 */
3311 		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3312 			pi_state = q.pi_state;
3313 			get_pi_state(pi_state);
3314 		}
3315 
3316 		/* Unqueue and drop the lock. */
3317 		unqueue_me_pi(&q);
3318 	}
3319 
3320 	if (pi_state) {
3321 		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3322 		put_pi_state(pi_state);
3323 	}
3324 
3325 	if (ret == -EINTR) {
3326 		/*
3327 		 * We've already been requeued, but cannot restart by calling
3328 		 * futex_lock_pi() directly. We could restart this syscall, but
3329 		 * it would detect that the user space "val" changed and return
3330 		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3331 		 * -EWOULDBLOCK directly.
3332 		 */
3333 		ret = -EWOULDBLOCK;
3334 	}
3335 
3336 out:
3337 	if (to) {
3338 		hrtimer_cancel(&to->timer);
3339 		destroy_hrtimer_on_stack(&to->timer);
3340 	}
3341 	return ret;
3342 }
3343 
3344 /*
3345  * Support for robust futexes: the kernel cleans up held futexes at
3346  * thread exit time.
3347  *
3348  * Implementation: user-space maintains a per-thread list of locks it
3349  * is holding. Upon do_exit(), the kernel carefully walks this list,
3350  * and marks all locks that are owned by this thread with the
3351  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3352  * always manipulated with the lock held, so the list is private and
3353  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3354  * field, to allow the kernel to clean up if the thread dies after
3355  * acquiring the lock, but just before it could have added itself to
3356  * the list. There can only be one such pending lock.
3357  */
3358 
3359 /**
3360  * sys_set_robust_list() - Set the robust-futex list head of a task
3361  * @head:	pointer to the list-head
3362  * @len:	length of the list-head, as userspace expects
3363  */
SYSCALL_DEFINE2(set_robust_list,struct robust_list_head __user *,head,size_t,len)3364 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3365 		size_t, len)
3366 {
3367 	if (!futex_cmpxchg_enabled)
3368 		return -ENOSYS;
3369 	/*
3370 	 * The kernel knows only one size for now:
3371 	 */
3372 	if (unlikely(len != sizeof(*head)))
3373 		return -EINVAL;
3374 
3375 	current->robust_list = head;
3376 
3377 	return 0;
3378 }
3379 
3380 /**
3381  * sys_get_robust_list() - Get the robust-futex list head of a task
3382  * @pid:	pid of the process [zero for current task]
3383  * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3384  * @len_ptr:	pointer to a length field, the kernel fills in the header size
3385  */
SYSCALL_DEFINE3(get_robust_list,int,pid,struct robust_list_head __user * __user *,head_ptr,size_t __user *,len_ptr)3386 SYSCALL_DEFINE3(get_robust_list, int, pid,
3387 		struct robust_list_head __user * __user *, head_ptr,
3388 		size_t __user *, len_ptr)
3389 {
3390 	struct robust_list_head __user *head;
3391 	unsigned long ret;
3392 	struct task_struct *p;
3393 
3394 	if (!futex_cmpxchg_enabled)
3395 		return -ENOSYS;
3396 
3397 	rcu_read_lock();
3398 
3399 	ret = -ESRCH;
3400 	if (!pid)
3401 		p = current;
3402 	else {
3403 		p = find_task_by_vpid(pid);
3404 		if (!p)
3405 			goto err_unlock;
3406 	}
3407 
3408 	ret = -EPERM;
3409 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3410 		goto err_unlock;
3411 
3412 	head = p->robust_list;
3413 	rcu_read_unlock();
3414 
3415 	if (put_user(sizeof(*head), len_ptr))
3416 		return -EFAULT;
3417 	return put_user(head, head_ptr);
3418 
3419 err_unlock:
3420 	rcu_read_unlock();
3421 
3422 	return ret;
3423 }
3424 
3425 /* Constants for the pending_op argument of handle_futex_death */
3426 #define HANDLE_DEATH_PENDING	true
3427 #define HANDLE_DEATH_LIST	false
3428 
3429 /*
3430  * Process a futex-list entry, check whether it's owned by the
3431  * dying task, and do notification if so:
3432  */
handle_futex_death(u32 __user * uaddr,struct task_struct * curr,bool pi,bool pending_op)3433 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3434 			      bool pi, bool pending_op)
3435 {
3436 	u32 uval, nval, mval;
3437 	int err;
3438 
3439 	/* Futex address must be 32bit aligned */
3440 	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3441 		return -1;
3442 
3443 retry:
3444 	if (get_user(uval, uaddr))
3445 		return -1;
3446 
3447 	/*
3448 	 * Special case for regular (non PI) futexes. The unlock path in
3449 	 * user space has two race scenarios:
3450 	 *
3451 	 * 1. The unlock path releases the user space futex value and
3452 	 *    before it can execute the futex() syscall to wake up
3453 	 *    waiters it is killed.
3454 	 *
3455 	 * 2. A woken up waiter is killed before it can acquire the
3456 	 *    futex in user space.
3457 	 *
3458 	 * In both cases the TID validation below prevents a wakeup of
3459 	 * potential waiters which can cause these waiters to block
3460 	 * forever.
3461 	 *
3462 	 * In both cases the following conditions are met:
3463 	 *
3464 	 *	1) task->robust_list->list_op_pending != NULL
3465 	 *	   @pending_op == true
3466 	 *	2) User space futex value == 0
3467 	 *	3) Regular futex: @pi == false
3468 	 *
3469 	 * If these conditions are met, it is safe to attempt waking up a
3470 	 * potential waiter without touching the user space futex value and
3471 	 * trying to set the OWNER_DIED bit. The user space futex value is
3472 	 * uncontended and the rest of the user space mutex state is
3473 	 * consistent, so a woken waiter will just take over the
3474 	 * uncontended futex. Setting the OWNER_DIED bit would create
3475 	 * inconsistent state and malfunction of the user space owner died
3476 	 * handling.
3477 	 */
3478 	if (pending_op && !pi && !uval) {
3479 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3480 		return 0;
3481 	}
3482 
3483 	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3484 		return 0;
3485 
3486 	/*
3487 	 * Ok, this dying thread is truly holding a futex
3488 	 * of interest. Set the OWNER_DIED bit atomically
3489 	 * via cmpxchg, and if the value had FUTEX_WAITERS
3490 	 * set, wake up a waiter (if any). (We have to do a
3491 	 * futex_wake() even if OWNER_DIED is already set -
3492 	 * to handle the rare but possible case of recursive
3493 	 * thread-death.) The rest of the cleanup is done in
3494 	 * userspace.
3495 	 */
3496 	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3497 
3498 	/*
3499 	 * We are not holding a lock here, but we want to have
3500 	 * the pagefault_disable/enable() protection because
3501 	 * we want to handle the fault gracefully. If the
3502 	 * access fails we try to fault in the futex with R/W
3503 	 * verification via get_user_pages. get_user() above
3504 	 * does not guarantee R/W access. If that fails we
3505 	 * give up and leave the futex locked.
3506 	 */
3507 	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3508 		switch (err) {
3509 		case -EFAULT:
3510 			if (fault_in_user_writeable(uaddr))
3511 				return -1;
3512 			goto retry;
3513 
3514 		case -EAGAIN:
3515 			cond_resched();
3516 			goto retry;
3517 
3518 		default:
3519 			WARN_ON_ONCE(1);
3520 			return err;
3521 		}
3522 	}
3523 
3524 	if (nval != uval)
3525 		goto retry;
3526 
3527 	/*
3528 	 * Wake robust non-PI futexes here. The wakeup of
3529 	 * PI futexes happens in exit_pi_state():
3530 	 */
3531 	if (!pi && (uval & FUTEX_WAITERS))
3532 		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3533 
3534 	return 0;
3535 }
3536 
3537 /*
3538  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3539  */
fetch_robust_entry(struct robust_list __user ** entry,struct robust_list __user * __user * head,unsigned int * pi)3540 static inline int fetch_robust_entry(struct robust_list __user **entry,
3541 				     struct robust_list __user * __user *head,
3542 				     unsigned int *pi)
3543 {
3544 	unsigned long uentry;
3545 
3546 	if (get_user(uentry, (unsigned long __user *)head))
3547 		return -EFAULT;
3548 
3549 	*entry = (void __user *)(uentry & ~1UL);
3550 	*pi = uentry & 1;
3551 
3552 	return 0;
3553 }
3554 
3555 /*
3556  * Walk curr->robust_list (very carefully, it's a userspace list!)
3557  * and mark any locks found there dead, and notify any waiters.
3558  *
3559  * We silently return on any sign of list-walking problem.
3560  */
exit_robust_list(struct task_struct * curr)3561 static void exit_robust_list(struct task_struct *curr)
3562 {
3563 	struct robust_list_head __user *head = curr->robust_list;
3564 	struct robust_list __user *entry, *next_entry, *pending;
3565 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3566 	unsigned int next_pi;
3567 	unsigned long futex_offset;
3568 	int rc;
3569 
3570 	if (!futex_cmpxchg_enabled)
3571 		return;
3572 
3573 	/*
3574 	 * Fetch the list head (which was registered earlier, via
3575 	 * sys_set_robust_list()):
3576 	 */
3577 	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3578 		return;
3579 	/*
3580 	 * Fetch the relative futex offset:
3581 	 */
3582 	if (get_user(futex_offset, &head->futex_offset))
3583 		return;
3584 	/*
3585 	 * Fetch any possibly pending lock-add first, and handle it
3586 	 * if it exists:
3587 	 */
3588 	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3589 		return;
3590 
3591 	next_entry = NULL;	/* avoid warning with gcc */
3592 	while (entry != &head->list) {
3593 		/*
3594 		 * Fetch the next entry in the list before calling
3595 		 * handle_futex_death:
3596 		 */
3597 		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3598 		/*
3599 		 * A pending lock might already be on the list, so
3600 		 * don't process it twice:
3601 		 */
3602 		if (entry != pending) {
3603 			if (handle_futex_death((void __user *)entry + futex_offset,
3604 						curr, pi, HANDLE_DEATH_LIST))
3605 				return;
3606 		}
3607 		if (rc)
3608 			return;
3609 		entry = next_entry;
3610 		pi = next_pi;
3611 		/*
3612 		 * Avoid excessively long or circular lists:
3613 		 */
3614 		if (!--limit)
3615 			break;
3616 
3617 		cond_resched();
3618 	}
3619 
3620 	if (pending) {
3621 		handle_futex_death((void __user *)pending + futex_offset,
3622 				   curr, pip, HANDLE_DEATH_PENDING);
3623 	}
3624 }
3625 
futex_cleanup(struct task_struct * tsk)3626 static void futex_cleanup(struct task_struct *tsk)
3627 {
3628 	if (unlikely(tsk->robust_list)) {
3629 		exit_robust_list(tsk);
3630 		tsk->robust_list = NULL;
3631 	}
3632 
3633 #ifdef CONFIG_COMPAT
3634 	if (unlikely(tsk->compat_robust_list)) {
3635 		compat_exit_robust_list(tsk);
3636 		tsk->compat_robust_list = NULL;
3637 	}
3638 #endif
3639 
3640 	if (unlikely(!list_empty(&tsk->pi_state_list)))
3641 		exit_pi_state_list(tsk);
3642 }
3643 
3644 /**
3645  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3646  * @tsk:	task to set the state on
3647  *
3648  * Set the futex exit state of the task lockless. The futex waiter code
3649  * observes that state when a task is exiting and loops until the task has
3650  * actually finished the futex cleanup. The worst case for this is that the
3651  * waiter runs through the wait loop until the state becomes visible.
3652  *
3653  * This is called from the recursive fault handling path in do_exit().
3654  *
3655  * This is best effort. Either the futex exit code has run already or
3656  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3657  * take it over. If not, the problem is pushed back to user space. If the
3658  * futex exit code did not run yet, then an already queued waiter might
3659  * block forever, but there is nothing which can be done about that.
3660  */
futex_exit_recursive(struct task_struct * tsk)3661 void futex_exit_recursive(struct task_struct *tsk)
3662 {
3663 	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3664 	if (tsk->futex_state == FUTEX_STATE_EXITING)
3665 		mutex_unlock(&tsk->futex_exit_mutex);
3666 	tsk->futex_state = FUTEX_STATE_DEAD;
3667 }
3668 
futex_cleanup_begin(struct task_struct * tsk)3669 static void futex_cleanup_begin(struct task_struct *tsk)
3670 {
3671 	/*
3672 	 * Prevent various race issues against a concurrent incoming waiter
3673 	 * including live locks by forcing the waiter to block on
3674 	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3675 	 * attach_to_pi_owner().
3676 	 */
3677 	mutex_lock(&tsk->futex_exit_mutex);
3678 
3679 	/*
3680 	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3681 	 *
3682 	 * This ensures that all subsequent checks of tsk->futex_state in
3683 	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3684 	 * tsk->pi_lock held.
3685 	 *
3686 	 * It guarantees also that a pi_state which was queued right before
3687 	 * the state change under tsk->pi_lock by a concurrent waiter must
3688 	 * be observed in exit_pi_state_list().
3689 	 */
3690 	raw_spin_lock_irq(&tsk->pi_lock);
3691 	tsk->futex_state = FUTEX_STATE_EXITING;
3692 	raw_spin_unlock_irq(&tsk->pi_lock);
3693 }
3694 
futex_cleanup_end(struct task_struct * tsk,int state)3695 static void futex_cleanup_end(struct task_struct *tsk, int state)
3696 {
3697 	/*
3698 	 * Lockless store. The only side effect is that an observer might
3699 	 * take another loop until it becomes visible.
3700 	 */
3701 	tsk->futex_state = state;
3702 	/*
3703 	 * Drop the exit protection. This unblocks waiters which observed
3704 	 * FUTEX_STATE_EXITING to reevaluate the state.
3705 	 */
3706 	mutex_unlock(&tsk->futex_exit_mutex);
3707 }
3708 
futex_exec_release(struct task_struct * tsk)3709 void futex_exec_release(struct task_struct *tsk)
3710 {
3711 	/*
3712 	 * The state handling is done for consistency, but in the case of
3713 	 * exec() there is no way to prevent futher damage as the PID stays
3714 	 * the same. But for the unlikely and arguably buggy case that a
3715 	 * futex is held on exec(), this provides at least as much state
3716 	 * consistency protection which is possible.
3717 	 */
3718 	futex_cleanup_begin(tsk);
3719 	futex_cleanup(tsk);
3720 	/*
3721 	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3722 	 * exec a new binary.
3723 	 */
3724 	futex_cleanup_end(tsk, FUTEX_STATE_OK);
3725 }
3726 
futex_exit_release(struct task_struct * tsk)3727 void futex_exit_release(struct task_struct *tsk)
3728 {
3729 	futex_cleanup_begin(tsk);
3730 	futex_cleanup(tsk);
3731 	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3732 }
3733 
do_futex(u32 __user * uaddr,int op,u32 val,ktime_t * timeout,u32 __user * uaddr2,u32 val2,u32 val3)3734 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3735 		u32 __user *uaddr2, u32 val2, u32 val3)
3736 {
3737 	int cmd = op & FUTEX_CMD_MASK;
3738 	unsigned int flags = 0;
3739 
3740 	if (!(op & FUTEX_PRIVATE_FLAG))
3741 		flags |= FLAGS_SHARED;
3742 
3743 	if (op & FUTEX_CLOCK_REALTIME) {
3744 		flags |= FLAGS_CLOCKRT;
3745 		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3746 		    cmd != FUTEX_WAIT_REQUEUE_PI)
3747 			return -ENOSYS;
3748 	}
3749 
3750 	switch (cmd) {
3751 	case FUTEX_LOCK_PI:
3752 	case FUTEX_UNLOCK_PI:
3753 	case FUTEX_TRYLOCK_PI:
3754 	case FUTEX_WAIT_REQUEUE_PI:
3755 	case FUTEX_CMP_REQUEUE_PI:
3756 		if (!futex_cmpxchg_enabled)
3757 			return -ENOSYS;
3758 	}
3759 
3760 	switch (cmd) {
3761 	case FUTEX_WAIT:
3762 		val3 = FUTEX_BITSET_MATCH_ANY;
3763 		fallthrough;
3764 	case FUTEX_WAIT_BITSET:
3765 		return futex_wait(uaddr, flags, val, timeout, val3);
3766 	case FUTEX_WAKE:
3767 		val3 = FUTEX_BITSET_MATCH_ANY;
3768 		fallthrough;
3769 	case FUTEX_WAKE_BITSET:
3770 		return futex_wake(uaddr, flags, val, val3);
3771 	case FUTEX_REQUEUE:
3772 		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3773 	case FUTEX_CMP_REQUEUE:
3774 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3775 	case FUTEX_WAKE_OP:
3776 		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3777 	case FUTEX_LOCK_PI:
3778 		return futex_lock_pi(uaddr, flags, timeout, 0);
3779 	case FUTEX_UNLOCK_PI:
3780 		return futex_unlock_pi(uaddr, flags);
3781 	case FUTEX_TRYLOCK_PI:
3782 		return futex_lock_pi(uaddr, flags, NULL, 1);
3783 	case FUTEX_WAIT_REQUEUE_PI:
3784 		val3 = FUTEX_BITSET_MATCH_ANY;
3785 		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3786 					     uaddr2);
3787 	case FUTEX_CMP_REQUEUE_PI:
3788 		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3789 	}
3790 	return -ENOSYS;
3791 }
3792 
3793 
SYSCALL_DEFINE6(futex,u32 __user *,uaddr,int,op,u32,val,struct __kernel_timespec __user *,utime,u32 __user *,uaddr2,u32,val3)3794 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3795 		struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3796 		u32, val3)
3797 {
3798 	struct timespec64 ts;
3799 	ktime_t t, *tp = NULL;
3800 	u32 val2 = 0;
3801 	int cmd = op & FUTEX_CMD_MASK;
3802 
3803 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3804 		      cmd == FUTEX_WAIT_BITSET ||
3805 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3806 		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3807 			return -EFAULT;
3808 		if (get_timespec64(&ts, utime))
3809 			return -EFAULT;
3810 		if (!timespec64_valid(&ts))
3811 			return -EINVAL;
3812 
3813 		t = timespec64_to_ktime(ts);
3814 		if (cmd == FUTEX_WAIT)
3815 			t = ktime_add_safe(ktime_get(), t);
3816 		else if (!(op & FUTEX_CLOCK_REALTIME))
3817 			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3818 		tp = &t;
3819 	}
3820 	/*
3821 	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3822 	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3823 	 */
3824 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3825 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3826 		val2 = (u32) (unsigned long) utime;
3827 
3828 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3829 }
3830 
3831 #ifdef CONFIG_COMPAT
3832 /*
3833  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3834  */
3835 static inline int
compat_fetch_robust_entry(compat_uptr_t * uentry,struct robust_list __user ** entry,compat_uptr_t __user * head,unsigned int * pi)3836 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3837 		   compat_uptr_t __user *head, unsigned int *pi)
3838 {
3839 	if (get_user(*uentry, head))
3840 		return -EFAULT;
3841 
3842 	*entry = compat_ptr((*uentry) & ~1);
3843 	*pi = (unsigned int)(*uentry) & 1;
3844 
3845 	return 0;
3846 }
3847 
futex_uaddr(struct robust_list __user * entry,compat_long_t futex_offset)3848 static void __user *futex_uaddr(struct robust_list __user *entry,
3849 				compat_long_t futex_offset)
3850 {
3851 	compat_uptr_t base = ptr_to_compat(entry);
3852 	void __user *uaddr = compat_ptr(base + futex_offset);
3853 
3854 	return uaddr;
3855 }
3856 
3857 /*
3858  * Walk curr->robust_list (very carefully, it's a userspace list!)
3859  * and mark any locks found there dead, and notify any waiters.
3860  *
3861  * We silently return on any sign of list-walking problem.
3862  */
compat_exit_robust_list(struct task_struct * curr)3863 static void compat_exit_robust_list(struct task_struct *curr)
3864 {
3865 	struct compat_robust_list_head __user *head = curr->compat_robust_list;
3866 	struct robust_list __user *entry, *next_entry, *pending;
3867 	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3868 	unsigned int next_pi;
3869 	compat_uptr_t uentry, next_uentry, upending;
3870 	compat_long_t futex_offset;
3871 	int rc;
3872 
3873 	if (!futex_cmpxchg_enabled)
3874 		return;
3875 
3876 	/*
3877 	 * Fetch the list head (which was registered earlier, via
3878 	 * sys_set_robust_list()):
3879 	 */
3880 	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3881 		return;
3882 	/*
3883 	 * Fetch the relative futex offset:
3884 	 */
3885 	if (get_user(futex_offset, &head->futex_offset))
3886 		return;
3887 	/*
3888 	 * Fetch any possibly pending lock-add first, and handle it
3889 	 * if it exists:
3890 	 */
3891 	if (compat_fetch_robust_entry(&upending, &pending,
3892 			       &head->list_op_pending, &pip))
3893 		return;
3894 
3895 	next_entry = NULL;	/* avoid warning with gcc */
3896 	while (entry != (struct robust_list __user *) &head->list) {
3897 		/*
3898 		 * Fetch the next entry in the list before calling
3899 		 * handle_futex_death:
3900 		 */
3901 		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3902 			(compat_uptr_t __user *)&entry->next, &next_pi);
3903 		/*
3904 		 * A pending lock might already be on the list, so
3905 		 * dont process it twice:
3906 		 */
3907 		if (entry != pending) {
3908 			void __user *uaddr = futex_uaddr(entry, futex_offset);
3909 
3910 			if (handle_futex_death(uaddr, curr, pi,
3911 					       HANDLE_DEATH_LIST))
3912 				return;
3913 		}
3914 		if (rc)
3915 			return;
3916 		uentry = next_uentry;
3917 		entry = next_entry;
3918 		pi = next_pi;
3919 		/*
3920 		 * Avoid excessively long or circular lists:
3921 		 */
3922 		if (!--limit)
3923 			break;
3924 
3925 		cond_resched();
3926 	}
3927 	if (pending) {
3928 		void __user *uaddr = futex_uaddr(pending, futex_offset);
3929 
3930 		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3931 	}
3932 }
3933 
COMPAT_SYSCALL_DEFINE2(set_robust_list,struct compat_robust_list_head __user *,head,compat_size_t,len)3934 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3935 		struct compat_robust_list_head __user *, head,
3936 		compat_size_t, len)
3937 {
3938 	if (!futex_cmpxchg_enabled)
3939 		return -ENOSYS;
3940 
3941 	if (unlikely(len != sizeof(*head)))
3942 		return -EINVAL;
3943 
3944 	current->compat_robust_list = head;
3945 
3946 	return 0;
3947 }
3948 
COMPAT_SYSCALL_DEFINE3(get_robust_list,int,pid,compat_uptr_t __user *,head_ptr,compat_size_t __user *,len_ptr)3949 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3950 			compat_uptr_t __user *, head_ptr,
3951 			compat_size_t __user *, len_ptr)
3952 {
3953 	struct compat_robust_list_head __user *head;
3954 	unsigned long ret;
3955 	struct task_struct *p;
3956 
3957 	if (!futex_cmpxchg_enabled)
3958 		return -ENOSYS;
3959 
3960 	rcu_read_lock();
3961 
3962 	ret = -ESRCH;
3963 	if (!pid)
3964 		p = current;
3965 	else {
3966 		p = find_task_by_vpid(pid);
3967 		if (!p)
3968 			goto err_unlock;
3969 	}
3970 
3971 	ret = -EPERM;
3972 	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3973 		goto err_unlock;
3974 
3975 	head = p->compat_robust_list;
3976 	rcu_read_unlock();
3977 
3978 	if (put_user(sizeof(*head), len_ptr))
3979 		return -EFAULT;
3980 	return put_user(ptr_to_compat(head), head_ptr);
3981 
3982 err_unlock:
3983 	rcu_read_unlock();
3984 
3985 	return ret;
3986 }
3987 #endif /* CONFIG_COMPAT */
3988 
3989 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32,u32 __user *,uaddr,int,op,u32,val,struct old_timespec32 __user *,utime,u32 __user *,uaddr2,u32,val3)3990 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3991 		struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3992 		u32, val3)
3993 {
3994 	struct timespec64 ts;
3995 	ktime_t t, *tp = NULL;
3996 	int val2 = 0;
3997 	int cmd = op & FUTEX_CMD_MASK;
3998 
3999 	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4000 		      cmd == FUTEX_WAIT_BITSET ||
4001 		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
4002 		if (get_old_timespec32(&ts, utime))
4003 			return -EFAULT;
4004 		if (!timespec64_valid(&ts))
4005 			return -EINVAL;
4006 
4007 		t = timespec64_to_ktime(ts);
4008 		if (cmd == FUTEX_WAIT)
4009 			t = ktime_add_safe(ktime_get(), t);
4010 		else if (!(op & FUTEX_CLOCK_REALTIME))
4011 			t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
4012 		tp = &t;
4013 	}
4014 	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4015 	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4016 		val2 = (int) (unsigned long) utime;
4017 
4018 	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4019 }
4020 #endif /* CONFIG_COMPAT_32BIT_TIME */
4021 
futex_detect_cmpxchg(void)4022 static void __init futex_detect_cmpxchg(void)
4023 {
4024 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4025 	u32 curval;
4026 
4027 	/*
4028 	 * This will fail and we want it. Some arch implementations do
4029 	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4030 	 * functionality. We want to know that before we call in any
4031 	 * of the complex code paths. Also we want to prevent
4032 	 * registration of robust lists in that case. NULL is
4033 	 * guaranteed to fault and we get -EFAULT on functional
4034 	 * implementation, the non-functional ones will return
4035 	 * -ENOSYS.
4036 	 */
4037 	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4038 		futex_cmpxchg_enabled = 1;
4039 #endif
4040 }
4041 
futex_init(void)4042 static int __init futex_init(void)
4043 {
4044 	unsigned int futex_shift;
4045 	unsigned long i;
4046 
4047 #if CONFIG_BASE_SMALL
4048 	futex_hashsize = 16;
4049 #else
4050 	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4051 #endif
4052 
4053 	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4054 					       futex_hashsize, 0,
4055 					       futex_hashsize < 256 ? HASH_SMALL : 0,
4056 					       &futex_shift, NULL,
4057 					       futex_hashsize, futex_hashsize);
4058 	futex_hashsize = 1UL << futex_shift;
4059 
4060 	futex_detect_cmpxchg();
4061 
4062 	for (i = 0; i < futex_hashsize; i++) {
4063 		atomic_set(&futex_queues[i].waiters, 0);
4064 		plist_head_init(&futex_queues[i].chain);
4065 		spin_lock_init(&futex_queues[i].lock);
4066 	}
4067 
4068 	return 0;
4069 }
4070 core_initcall(futex_init);
4071