1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/sched/signal.h>
15 #include <linux/uio.h>
16 #include <linux/miscdevice.h>
17 #include <linux/pagemap.h>
18 #include <linux/file.h>
19 #include <linux/slab.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/swap.h>
22 #include <linux/splice.h>
23 #include <linux/sched.h>
24 
25 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
26 MODULE_ALIAS("devname:fuse");
27 
28 /* Ordinary requests have even IDs, while interrupts IDs are odd */
29 #define FUSE_INT_REQ_BIT (1ULL << 0)
30 #define FUSE_REQ_ID_STEP (1ULL << 1)
31 
32 static struct kmem_cache *fuse_req_cachep;
33 
fuse_get_dev(struct file * file)34 static struct fuse_dev *fuse_get_dev(struct file *file)
35 {
36 	/*
37 	 * Lockless access is OK, because file->private data is set
38 	 * once during mount and is valid until the file is released.
39 	 */
40 	return READ_ONCE(file->private_data);
41 }
42 
fuse_request_init(struct fuse_mount * fm,struct fuse_req * req)43 static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req)
44 {
45 	INIT_LIST_HEAD(&req->list);
46 	INIT_LIST_HEAD(&req->intr_entry);
47 	init_waitqueue_head(&req->waitq);
48 	refcount_set(&req->count, 1);
49 	__set_bit(FR_PENDING, &req->flags);
50 	req->fm = fm;
51 }
52 
fuse_request_alloc(struct fuse_mount * fm,gfp_t flags)53 static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags)
54 {
55 	struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags);
56 	if (req)
57 		fuse_request_init(fm, req);
58 
59 	return req;
60 }
61 
fuse_request_free(struct fuse_req * req)62 static void fuse_request_free(struct fuse_req *req)
63 {
64 	kmem_cache_free(fuse_req_cachep, req);
65 }
66 
__fuse_get_request(struct fuse_req * req)67 static void __fuse_get_request(struct fuse_req *req)
68 {
69 	refcount_inc(&req->count);
70 }
71 
72 /* Must be called with > 1 refcount */
__fuse_put_request(struct fuse_req * req)73 static void __fuse_put_request(struct fuse_req *req)
74 {
75 	refcount_dec(&req->count);
76 }
77 
fuse_set_initialized(struct fuse_conn * fc)78 void fuse_set_initialized(struct fuse_conn *fc)
79 {
80 	/* Make sure stores before this are seen on another CPU */
81 	smp_wmb();
82 	fc->initialized = 1;
83 }
84 
fuse_block_alloc(struct fuse_conn * fc,bool for_background)85 static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background)
86 {
87 	return !fc->initialized || (for_background && fc->blocked);
88 }
89 
fuse_drop_waiting(struct fuse_conn * fc)90 static void fuse_drop_waiting(struct fuse_conn *fc)
91 {
92 	/*
93 	 * lockess check of fc->connected is okay, because atomic_dec_and_test()
94 	 * provides a memory barrier matched with the one in fuse_wait_aborted()
95 	 * to ensure no wake-up is missed.
96 	 */
97 	if (atomic_dec_and_test(&fc->num_waiting) &&
98 	    !READ_ONCE(fc->connected)) {
99 		/* wake up aborters */
100 		wake_up_all(&fc->blocked_waitq);
101 	}
102 }
103 
104 static void fuse_put_request(struct fuse_req *req);
105 
fuse_get_req(struct fuse_mount * fm,bool for_background)106 static struct fuse_req *fuse_get_req(struct fuse_mount *fm, bool for_background)
107 {
108 	struct fuse_conn *fc = fm->fc;
109 	struct fuse_req *req;
110 	int err;
111 	atomic_inc(&fc->num_waiting);
112 
113 	if (fuse_block_alloc(fc, for_background)) {
114 		err = -EINTR;
115 		if (wait_event_killable_exclusive(fc->blocked_waitq,
116 				!fuse_block_alloc(fc, for_background)))
117 			goto out;
118 	}
119 	/* Matches smp_wmb() in fuse_set_initialized() */
120 	smp_rmb();
121 
122 	err = -ENOTCONN;
123 	if (!fc->connected)
124 		goto out;
125 
126 	err = -ECONNREFUSED;
127 	if (fc->conn_error)
128 		goto out;
129 
130 	req = fuse_request_alloc(fm, GFP_KERNEL);
131 	err = -ENOMEM;
132 	if (!req) {
133 		if (for_background)
134 			wake_up(&fc->blocked_waitq);
135 		goto out;
136 	}
137 
138 	req->in.h.uid = from_kuid(fc->user_ns, current_fsuid());
139 	req->in.h.gid = from_kgid(fc->user_ns, current_fsgid());
140 	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
141 
142 	__set_bit(FR_WAITING, &req->flags);
143 	if (for_background)
144 		__set_bit(FR_BACKGROUND, &req->flags);
145 
146 	if (unlikely(req->in.h.uid == ((uid_t)-1) ||
147 		     req->in.h.gid == ((gid_t)-1))) {
148 		fuse_put_request(req);
149 		return ERR_PTR(-EOVERFLOW);
150 	}
151 	return req;
152 
153  out:
154 	fuse_drop_waiting(fc);
155 	return ERR_PTR(err);
156 }
157 
fuse_put_request(struct fuse_req * req)158 static void fuse_put_request(struct fuse_req *req)
159 {
160 	struct fuse_conn *fc = req->fm->fc;
161 
162 	if (refcount_dec_and_test(&req->count)) {
163 		if (test_bit(FR_BACKGROUND, &req->flags)) {
164 			/*
165 			 * We get here in the unlikely case that a background
166 			 * request was allocated but not sent
167 			 */
168 			spin_lock(&fc->bg_lock);
169 			if (!fc->blocked)
170 				wake_up(&fc->blocked_waitq);
171 			spin_unlock(&fc->bg_lock);
172 		}
173 
174 		if (test_bit(FR_WAITING, &req->flags)) {
175 			__clear_bit(FR_WAITING, &req->flags);
176 			fuse_drop_waiting(fc);
177 		}
178 
179 		fuse_request_free(req);
180 	}
181 }
182 
fuse_len_args(unsigned int numargs,struct fuse_arg * args)183 unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args)
184 {
185 	unsigned nbytes = 0;
186 	unsigned i;
187 
188 	for (i = 0; i < numargs; i++)
189 		nbytes += args[i].size;
190 
191 	return nbytes;
192 }
193 EXPORT_SYMBOL_GPL(fuse_len_args);
194 
fuse_get_unique(struct fuse_iqueue * fiq)195 u64 fuse_get_unique(struct fuse_iqueue *fiq)
196 {
197 	fiq->reqctr += FUSE_REQ_ID_STEP;
198 	return fiq->reqctr;
199 }
200 EXPORT_SYMBOL_GPL(fuse_get_unique);
201 
fuse_req_hash(u64 unique)202 static unsigned int fuse_req_hash(u64 unique)
203 {
204 	return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS);
205 }
206 
207 /**
208  * A new request is available, wake fiq->waitq
209  */
fuse_dev_wake_and_unlock(struct fuse_iqueue * fiq)210 static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq)
211 __releases(fiq->lock)
212 {
213 	wake_up(&fiq->waitq);
214 	kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
215 	spin_unlock(&fiq->lock);
216 }
217 
218 const struct fuse_iqueue_ops fuse_dev_fiq_ops = {
219 	.wake_forget_and_unlock		= fuse_dev_wake_and_unlock,
220 	.wake_interrupt_and_unlock	= fuse_dev_wake_and_unlock,
221 	.wake_pending_and_unlock	= fuse_dev_wake_and_unlock,
222 };
223 EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops);
224 
queue_request_and_unlock(struct fuse_iqueue * fiq,struct fuse_req * req)225 static void queue_request_and_unlock(struct fuse_iqueue *fiq,
226 				     struct fuse_req *req)
227 __releases(fiq->lock)
228 {
229 	req->in.h.len = sizeof(struct fuse_in_header) +
230 		fuse_len_args(req->args->in_numargs,
231 			      (struct fuse_arg *) req->args->in_args);
232 	list_add_tail(&req->list, &fiq->pending);
233 	fiq->ops->wake_pending_and_unlock(fiq);
234 }
235 
fuse_queue_forget(struct fuse_conn * fc,struct fuse_forget_link * forget,u64 nodeid,u64 nlookup)236 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
237 		       u64 nodeid, u64 nlookup)
238 {
239 	struct fuse_iqueue *fiq = &fc->iq;
240 
241 	forget->forget_one.nodeid = nodeid;
242 	forget->forget_one.nlookup = nlookup;
243 
244 	spin_lock(&fiq->lock);
245 	if (fiq->connected) {
246 		fiq->forget_list_tail->next = forget;
247 		fiq->forget_list_tail = forget;
248 		fiq->ops->wake_forget_and_unlock(fiq);
249 	} else {
250 		kfree(forget);
251 		spin_unlock(&fiq->lock);
252 	}
253 }
254 
flush_bg_queue(struct fuse_conn * fc)255 static void flush_bg_queue(struct fuse_conn *fc)
256 {
257 	struct fuse_iqueue *fiq = &fc->iq;
258 
259 	while (fc->active_background < fc->max_background &&
260 	       !list_empty(&fc->bg_queue)) {
261 		struct fuse_req *req;
262 
263 		req = list_first_entry(&fc->bg_queue, struct fuse_req, list);
264 		list_del(&req->list);
265 		fc->active_background++;
266 		spin_lock(&fiq->lock);
267 		req->in.h.unique = fuse_get_unique(fiq);
268 		queue_request_and_unlock(fiq, req);
269 	}
270 }
271 
272 /*
273  * This function is called when a request is finished.  Either a reply
274  * has arrived or it was aborted (and not yet sent) or some error
275  * occurred during communication with userspace, or the device file
276  * was closed.  The requester thread is woken up (if still waiting),
277  * the 'end' callback is called if given, else the reference to the
278  * request is released
279  */
fuse_request_end(struct fuse_req * req)280 void fuse_request_end(struct fuse_req *req)
281 {
282 	struct fuse_mount *fm = req->fm;
283 	struct fuse_conn *fc = fm->fc;
284 	struct fuse_iqueue *fiq = &fc->iq;
285 
286 	if (test_and_set_bit(FR_FINISHED, &req->flags))
287 		goto put_request;
288 
289 	/*
290 	 * test_and_set_bit() implies smp_mb() between bit
291 	 * changing and below FR_INTERRUPTED check. Pairs with
292 	 * smp_mb() from queue_interrupt().
293 	 */
294 	if (test_bit(FR_INTERRUPTED, &req->flags)) {
295 		spin_lock(&fiq->lock);
296 		list_del_init(&req->intr_entry);
297 		spin_unlock(&fiq->lock);
298 	}
299 	WARN_ON(test_bit(FR_PENDING, &req->flags));
300 	WARN_ON(test_bit(FR_SENT, &req->flags));
301 	if (test_bit(FR_BACKGROUND, &req->flags)) {
302 		spin_lock(&fc->bg_lock);
303 		clear_bit(FR_BACKGROUND, &req->flags);
304 		if (fc->num_background == fc->max_background) {
305 			fc->blocked = 0;
306 			wake_up(&fc->blocked_waitq);
307 		} else if (!fc->blocked) {
308 			/*
309 			 * Wake up next waiter, if any.  It's okay to use
310 			 * waitqueue_active(), as we've already synced up
311 			 * fc->blocked with waiters with the wake_up() call
312 			 * above.
313 			 */
314 			if (waitqueue_active(&fc->blocked_waitq))
315 				wake_up(&fc->blocked_waitq);
316 		}
317 
318 		fc->num_background--;
319 		fc->active_background--;
320 		flush_bg_queue(fc);
321 		spin_unlock(&fc->bg_lock);
322 	} else {
323 		/* Wake up waiter sleeping in request_wait_answer() */
324 		wake_up(&req->waitq);
325 	}
326 
327 	if (test_bit(FR_ASYNC, &req->flags))
328 		req->args->end(fm, req->args, req->out.h.error);
329 put_request:
330 	fuse_put_request(req);
331 }
332 EXPORT_SYMBOL_GPL(fuse_request_end);
333 
queue_interrupt(struct fuse_req * req)334 static int queue_interrupt(struct fuse_req *req)
335 {
336 	struct fuse_iqueue *fiq = &req->fm->fc->iq;
337 
338 	spin_lock(&fiq->lock);
339 	/* Check for we've sent request to interrupt this req */
340 	if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) {
341 		spin_unlock(&fiq->lock);
342 		return -EINVAL;
343 	}
344 
345 	if (list_empty(&req->intr_entry)) {
346 		list_add_tail(&req->intr_entry, &fiq->interrupts);
347 		/*
348 		 * Pairs with smp_mb() implied by test_and_set_bit()
349 		 * from fuse_request_end().
350 		 */
351 		smp_mb();
352 		if (test_bit(FR_FINISHED, &req->flags)) {
353 			list_del_init(&req->intr_entry);
354 			spin_unlock(&fiq->lock);
355 			return 0;
356 		}
357 		fiq->ops->wake_interrupt_and_unlock(fiq);
358 	} else {
359 		spin_unlock(&fiq->lock);
360 	}
361 	return 0;
362 }
363 
request_wait_answer(struct fuse_req * req)364 static void request_wait_answer(struct fuse_req *req)
365 {
366 	struct fuse_conn *fc = req->fm->fc;
367 	struct fuse_iqueue *fiq = &fc->iq;
368 	int err;
369 
370 	if (!fc->no_interrupt) {
371 		/* Any signal may interrupt this */
372 		err = wait_event_interruptible(req->waitq,
373 					test_bit(FR_FINISHED, &req->flags));
374 		if (!err)
375 			return;
376 
377 		set_bit(FR_INTERRUPTED, &req->flags);
378 		/* matches barrier in fuse_dev_do_read() */
379 		smp_mb__after_atomic();
380 		if (test_bit(FR_SENT, &req->flags))
381 			queue_interrupt(req);
382 	}
383 
384 	if (!test_bit(FR_FORCE, &req->flags)) {
385 		/* Only fatal signals may interrupt this */
386 		err = wait_event_killable(req->waitq,
387 					test_bit(FR_FINISHED, &req->flags));
388 		if (!err)
389 			return;
390 
391 		spin_lock(&fiq->lock);
392 		/* Request is not yet in userspace, bail out */
393 		if (test_bit(FR_PENDING, &req->flags)) {
394 			list_del(&req->list);
395 			spin_unlock(&fiq->lock);
396 			__fuse_put_request(req);
397 			req->out.h.error = -EINTR;
398 			return;
399 		}
400 		spin_unlock(&fiq->lock);
401 	}
402 
403 	/*
404 	 * Either request is already in userspace, or it was forced.
405 	 * Wait it out.
406 	 */
407 	wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags));
408 }
409 
__fuse_request_send(struct fuse_req * req)410 static void __fuse_request_send(struct fuse_req *req)
411 {
412 	struct fuse_iqueue *fiq = &req->fm->fc->iq;
413 
414 	BUG_ON(test_bit(FR_BACKGROUND, &req->flags));
415 	spin_lock(&fiq->lock);
416 	if (!fiq->connected) {
417 		spin_unlock(&fiq->lock);
418 		req->out.h.error = -ENOTCONN;
419 	} else {
420 		req->in.h.unique = fuse_get_unique(fiq);
421 		/* acquire extra reference, since request is still needed
422 		   after fuse_request_end() */
423 		__fuse_get_request(req);
424 		queue_request_and_unlock(fiq, req);
425 
426 		request_wait_answer(req);
427 		/* Pairs with smp_wmb() in fuse_request_end() */
428 		smp_rmb();
429 	}
430 }
431 
fuse_adjust_compat(struct fuse_conn * fc,struct fuse_args * args)432 static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args)
433 {
434 	if (fc->minor < 4 && args->opcode == FUSE_STATFS)
435 		args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE;
436 
437 	if (fc->minor < 9) {
438 		switch (args->opcode) {
439 		case FUSE_LOOKUP:
440 		case FUSE_CREATE:
441 		case FUSE_MKNOD:
442 		case FUSE_MKDIR:
443 		case FUSE_SYMLINK:
444 		case FUSE_LINK:
445 			args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE;
446 			break;
447 		case FUSE_GETATTR:
448 		case FUSE_SETATTR:
449 			args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE;
450 			break;
451 		}
452 	}
453 	if (fc->minor < 12) {
454 		switch (args->opcode) {
455 		case FUSE_CREATE:
456 			args->in_args[0].size = sizeof(struct fuse_open_in);
457 			break;
458 		case FUSE_MKNOD:
459 			args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE;
460 			break;
461 		}
462 	}
463 }
464 
fuse_force_creds(struct fuse_req * req)465 static void fuse_force_creds(struct fuse_req *req)
466 {
467 	struct fuse_conn *fc = req->fm->fc;
468 
469 	req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid());
470 	req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid());
471 	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
472 }
473 
fuse_args_to_req(struct fuse_req * req,struct fuse_args * args)474 static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args)
475 {
476 	req->in.h.opcode = args->opcode;
477 	req->in.h.nodeid = args->nodeid;
478 	req->args = args;
479 	if (args->end)
480 		__set_bit(FR_ASYNC, &req->flags);
481 }
482 
fuse_simple_request(struct fuse_mount * fm,struct fuse_args * args)483 ssize_t fuse_simple_request(struct fuse_mount *fm, struct fuse_args *args)
484 {
485 	struct fuse_conn *fc = fm->fc;
486 	struct fuse_req *req;
487 	ssize_t ret;
488 
489 	if (args->force) {
490 		atomic_inc(&fc->num_waiting);
491 		req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL);
492 
493 		if (!args->nocreds)
494 			fuse_force_creds(req);
495 
496 		__set_bit(FR_WAITING, &req->flags);
497 		__set_bit(FR_FORCE, &req->flags);
498 	} else {
499 		WARN_ON(args->nocreds);
500 		req = fuse_get_req(fm, false);
501 		if (IS_ERR(req))
502 			return PTR_ERR(req);
503 	}
504 
505 	/* Needs to be done after fuse_get_req() so that fc->minor is valid */
506 	fuse_adjust_compat(fc, args);
507 	fuse_args_to_req(req, args);
508 
509 	if (!args->noreply)
510 		__set_bit(FR_ISREPLY, &req->flags);
511 	__fuse_request_send(req);
512 	ret = req->out.h.error;
513 	if (!ret && args->out_argvar) {
514 		BUG_ON(args->out_numargs == 0);
515 		ret = args->out_args[args->out_numargs - 1].size;
516 	}
517 	fuse_put_request(req);
518 
519 	return ret;
520 }
521 
fuse_request_queue_background(struct fuse_req * req)522 static bool fuse_request_queue_background(struct fuse_req *req)
523 {
524 	struct fuse_mount *fm = req->fm;
525 	struct fuse_conn *fc = fm->fc;
526 	bool queued = false;
527 
528 	WARN_ON(!test_bit(FR_BACKGROUND, &req->flags));
529 	if (!test_bit(FR_WAITING, &req->flags)) {
530 		__set_bit(FR_WAITING, &req->flags);
531 		atomic_inc(&fc->num_waiting);
532 	}
533 	__set_bit(FR_ISREPLY, &req->flags);
534 	spin_lock(&fc->bg_lock);
535 	if (likely(fc->connected)) {
536 		fc->num_background++;
537 		if (fc->num_background == fc->max_background)
538 			fc->blocked = 1;
539 		list_add_tail(&req->list, &fc->bg_queue);
540 		flush_bg_queue(fc);
541 		queued = true;
542 	}
543 	spin_unlock(&fc->bg_lock);
544 
545 	return queued;
546 }
547 
fuse_simple_background(struct fuse_mount * fm,struct fuse_args * args,gfp_t gfp_flags)548 int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args,
549 			    gfp_t gfp_flags)
550 {
551 	struct fuse_req *req;
552 
553 	if (args->force) {
554 		WARN_ON(!args->nocreds);
555 		req = fuse_request_alloc(fm, gfp_flags);
556 		if (!req)
557 			return -ENOMEM;
558 		__set_bit(FR_BACKGROUND, &req->flags);
559 	} else {
560 		WARN_ON(args->nocreds);
561 		req = fuse_get_req(fm, true);
562 		if (IS_ERR(req))
563 			return PTR_ERR(req);
564 	}
565 
566 	fuse_args_to_req(req, args);
567 
568 	if (!fuse_request_queue_background(req)) {
569 		fuse_put_request(req);
570 		return -ENOTCONN;
571 	}
572 
573 	return 0;
574 }
575 EXPORT_SYMBOL_GPL(fuse_simple_background);
576 
fuse_simple_notify_reply(struct fuse_mount * fm,struct fuse_args * args,u64 unique)577 static int fuse_simple_notify_reply(struct fuse_mount *fm,
578 				    struct fuse_args *args, u64 unique)
579 {
580 	struct fuse_req *req;
581 	struct fuse_iqueue *fiq = &fm->fc->iq;
582 	int err = 0;
583 
584 	req = fuse_get_req(fm, false);
585 	if (IS_ERR(req))
586 		return PTR_ERR(req);
587 
588 	__clear_bit(FR_ISREPLY, &req->flags);
589 	req->in.h.unique = unique;
590 
591 	fuse_args_to_req(req, args);
592 
593 	spin_lock(&fiq->lock);
594 	if (fiq->connected) {
595 		queue_request_and_unlock(fiq, req);
596 	} else {
597 		err = -ENODEV;
598 		spin_unlock(&fiq->lock);
599 		fuse_put_request(req);
600 	}
601 
602 	return err;
603 }
604 
605 /*
606  * Lock the request.  Up to the next unlock_request() there mustn't be
607  * anything that could cause a page-fault.  If the request was already
608  * aborted bail out.
609  */
lock_request(struct fuse_req * req)610 static int lock_request(struct fuse_req *req)
611 {
612 	int err = 0;
613 	if (req) {
614 		spin_lock(&req->waitq.lock);
615 		if (test_bit(FR_ABORTED, &req->flags))
616 			err = -ENOENT;
617 		else
618 			set_bit(FR_LOCKED, &req->flags);
619 		spin_unlock(&req->waitq.lock);
620 	}
621 	return err;
622 }
623 
624 /*
625  * Unlock request.  If it was aborted while locked, caller is responsible
626  * for unlocking and ending the request.
627  */
unlock_request(struct fuse_req * req)628 static int unlock_request(struct fuse_req *req)
629 {
630 	int err = 0;
631 	if (req) {
632 		spin_lock(&req->waitq.lock);
633 		if (test_bit(FR_ABORTED, &req->flags))
634 			err = -ENOENT;
635 		else
636 			clear_bit(FR_LOCKED, &req->flags);
637 		spin_unlock(&req->waitq.lock);
638 	}
639 	return err;
640 }
641 
642 struct fuse_copy_state {
643 	int write;
644 	struct fuse_req *req;
645 	struct iov_iter *iter;
646 	struct pipe_buffer *pipebufs;
647 	struct pipe_buffer *currbuf;
648 	struct pipe_inode_info *pipe;
649 	unsigned long nr_segs;
650 	struct page *pg;
651 	unsigned len;
652 	unsigned offset;
653 	unsigned move_pages:1;
654 };
655 
fuse_copy_init(struct fuse_copy_state * cs,int write,struct iov_iter * iter)656 static void fuse_copy_init(struct fuse_copy_state *cs, int write,
657 			   struct iov_iter *iter)
658 {
659 	memset(cs, 0, sizeof(*cs));
660 	cs->write = write;
661 	cs->iter = iter;
662 }
663 
664 /* Unmap and put previous page of userspace buffer */
fuse_copy_finish(struct fuse_copy_state * cs)665 static void fuse_copy_finish(struct fuse_copy_state *cs)
666 {
667 	if (cs->currbuf) {
668 		struct pipe_buffer *buf = cs->currbuf;
669 
670 		if (cs->write)
671 			buf->len = PAGE_SIZE - cs->len;
672 		cs->currbuf = NULL;
673 	} else if (cs->pg) {
674 		if (cs->write) {
675 			flush_dcache_page(cs->pg);
676 			set_page_dirty_lock(cs->pg);
677 		}
678 		put_page(cs->pg);
679 	}
680 	cs->pg = NULL;
681 }
682 
683 /*
684  * Get another pagefull of userspace buffer, and map it to kernel
685  * address space, and lock request
686  */
fuse_copy_fill(struct fuse_copy_state * cs)687 static int fuse_copy_fill(struct fuse_copy_state *cs)
688 {
689 	struct page *page;
690 	int err;
691 
692 	err = unlock_request(cs->req);
693 	if (err)
694 		return err;
695 
696 	fuse_copy_finish(cs);
697 	if (cs->pipebufs) {
698 		struct pipe_buffer *buf = cs->pipebufs;
699 
700 		if (!cs->write) {
701 			err = pipe_buf_confirm(cs->pipe, buf);
702 			if (err)
703 				return err;
704 
705 			BUG_ON(!cs->nr_segs);
706 			cs->currbuf = buf;
707 			cs->pg = buf->page;
708 			cs->offset = buf->offset;
709 			cs->len = buf->len;
710 			cs->pipebufs++;
711 			cs->nr_segs--;
712 		} else {
713 			if (cs->nr_segs >= cs->pipe->max_usage)
714 				return -EIO;
715 
716 			page = alloc_page(GFP_HIGHUSER);
717 			if (!page)
718 				return -ENOMEM;
719 
720 			buf->page = page;
721 			buf->offset = 0;
722 			buf->len = 0;
723 
724 			cs->currbuf = buf;
725 			cs->pg = page;
726 			cs->offset = 0;
727 			cs->len = PAGE_SIZE;
728 			cs->pipebufs++;
729 			cs->nr_segs++;
730 		}
731 	} else {
732 		size_t off;
733 		err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off);
734 		if (err < 0)
735 			return err;
736 		BUG_ON(!err);
737 		cs->len = err;
738 		cs->offset = off;
739 		cs->pg = page;
740 	}
741 
742 	return lock_request(cs->req);
743 }
744 
745 /* Do as much copy to/from userspace buffer as we can */
fuse_copy_do(struct fuse_copy_state * cs,void ** val,unsigned * size)746 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
747 {
748 	unsigned ncpy = min(*size, cs->len);
749 	if (val) {
750 		void *pgaddr = kmap_local_page(cs->pg);
751 		void *buf = pgaddr + cs->offset;
752 
753 		if (cs->write)
754 			memcpy(buf, *val, ncpy);
755 		else
756 			memcpy(*val, buf, ncpy);
757 
758 		kunmap_local(pgaddr);
759 		*val += ncpy;
760 	}
761 	*size -= ncpy;
762 	cs->len -= ncpy;
763 	cs->offset += ncpy;
764 	return ncpy;
765 }
766 
fuse_check_page(struct page * page)767 static int fuse_check_page(struct page *page)
768 {
769 	if (page_mapcount(page) ||
770 	    page->mapping != NULL ||
771 	    (page->flags & PAGE_FLAGS_CHECK_AT_PREP &
772 	     ~(1 << PG_locked |
773 	       1 << PG_referenced |
774 	       1 << PG_uptodate |
775 	       1 << PG_lru |
776 	       1 << PG_active |
777 	       1 << PG_workingset |
778 	       1 << PG_reclaim |
779 	       1 << PG_waiters |
780 	       LRU_GEN_MASK | LRU_REFS_MASK))) {
781 		dump_page(page, "fuse: trying to steal weird page");
782 		return 1;
783 	}
784 	return 0;
785 }
786 
fuse_try_move_page(struct fuse_copy_state * cs,struct page ** pagep)787 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
788 {
789 	int err;
790 	struct page *oldpage = *pagep;
791 	struct page *newpage;
792 	struct pipe_buffer *buf = cs->pipebufs;
793 
794 	get_page(oldpage);
795 	err = unlock_request(cs->req);
796 	if (err)
797 		goto out_put_old;
798 
799 	fuse_copy_finish(cs);
800 
801 	err = pipe_buf_confirm(cs->pipe, buf);
802 	if (err)
803 		goto out_put_old;
804 
805 	BUG_ON(!cs->nr_segs);
806 	cs->currbuf = buf;
807 	cs->len = buf->len;
808 	cs->pipebufs++;
809 	cs->nr_segs--;
810 
811 	if (cs->len != PAGE_SIZE)
812 		goto out_fallback;
813 
814 	if (!pipe_buf_try_steal(cs->pipe, buf))
815 		goto out_fallback;
816 
817 	newpage = buf->page;
818 
819 	if (!PageUptodate(newpage))
820 		SetPageUptodate(newpage);
821 
822 	ClearPageMappedToDisk(newpage);
823 
824 	if (fuse_check_page(newpage) != 0)
825 		goto out_fallback_unlock;
826 
827 	/*
828 	 * This is a new and locked page, it shouldn't be mapped or
829 	 * have any special flags on it
830 	 */
831 	if (WARN_ON(page_mapped(oldpage)))
832 		goto out_fallback_unlock;
833 	if (WARN_ON(page_has_private(oldpage)))
834 		goto out_fallback_unlock;
835 	if (WARN_ON(PageDirty(oldpage) || PageWriteback(oldpage)))
836 		goto out_fallback_unlock;
837 	if (WARN_ON(PageMlocked(oldpage)))
838 		goto out_fallback_unlock;
839 
840 	replace_page_cache_page(oldpage, newpage);
841 
842 	get_page(newpage);
843 
844 	if (!(buf->flags & PIPE_BUF_FLAG_LRU))
845 		lru_cache_add(newpage);
846 
847 	/*
848 	 * Release while we have extra ref on stolen page.  Otherwise
849 	 * anon_pipe_buf_release() might think the page can be reused.
850 	 */
851 	pipe_buf_release(cs->pipe, buf);
852 
853 	err = 0;
854 	spin_lock(&cs->req->waitq.lock);
855 	if (test_bit(FR_ABORTED, &cs->req->flags))
856 		err = -ENOENT;
857 	else
858 		*pagep = newpage;
859 	spin_unlock(&cs->req->waitq.lock);
860 
861 	if (err) {
862 		unlock_page(newpage);
863 		put_page(newpage);
864 		goto out_put_old;
865 	}
866 
867 	unlock_page(oldpage);
868 	/* Drop ref for ap->pages[] array */
869 	put_page(oldpage);
870 	cs->len = 0;
871 
872 	err = 0;
873 out_put_old:
874 	/* Drop ref obtained in this function */
875 	put_page(oldpage);
876 	return err;
877 
878 out_fallback_unlock:
879 	unlock_page(newpage);
880 out_fallback:
881 	cs->pg = buf->page;
882 	cs->offset = buf->offset;
883 
884 	err = lock_request(cs->req);
885 	if (!err)
886 		err = 1;
887 
888 	goto out_put_old;
889 }
890 
fuse_ref_page(struct fuse_copy_state * cs,struct page * page,unsigned offset,unsigned count)891 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
892 			 unsigned offset, unsigned count)
893 {
894 	struct pipe_buffer *buf;
895 	int err;
896 
897 	if (cs->nr_segs >= cs->pipe->max_usage)
898 		return -EIO;
899 
900 	get_page(page);
901 	err = unlock_request(cs->req);
902 	if (err) {
903 		put_page(page);
904 		return err;
905 	}
906 
907 	fuse_copy_finish(cs);
908 
909 	buf = cs->pipebufs;
910 	buf->page = page;
911 	buf->offset = offset;
912 	buf->len = count;
913 
914 	cs->pipebufs++;
915 	cs->nr_segs++;
916 	cs->len = 0;
917 
918 	return 0;
919 }
920 
921 /*
922  * Copy a page in the request to/from the userspace buffer.  Must be
923  * done atomically
924  */
fuse_copy_page(struct fuse_copy_state * cs,struct page ** pagep,unsigned offset,unsigned count,int zeroing)925 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
926 			  unsigned offset, unsigned count, int zeroing)
927 {
928 	int err;
929 	struct page *page = *pagep;
930 
931 	if (page && zeroing && count < PAGE_SIZE)
932 		clear_highpage(page);
933 
934 	while (count) {
935 		if (cs->write && cs->pipebufs && page) {
936 			/*
937 			 * Can't control lifetime of pipe buffers, so always
938 			 * copy user pages.
939 			 */
940 			if (cs->req->args->user_pages) {
941 				err = fuse_copy_fill(cs);
942 				if (err)
943 					return err;
944 			} else {
945 				return fuse_ref_page(cs, page, offset, count);
946 			}
947 		} else if (!cs->len) {
948 			if (cs->move_pages && page &&
949 			    offset == 0 && count == PAGE_SIZE) {
950 				err = fuse_try_move_page(cs, pagep);
951 				if (err <= 0)
952 					return err;
953 			} else {
954 				err = fuse_copy_fill(cs);
955 				if (err)
956 					return err;
957 			}
958 		}
959 		if (page) {
960 			void *mapaddr = kmap_local_page(page);
961 			void *buf = mapaddr + offset;
962 			offset += fuse_copy_do(cs, &buf, &count);
963 			kunmap_local(mapaddr);
964 		} else
965 			offset += fuse_copy_do(cs, NULL, &count);
966 	}
967 	if (page && !cs->write)
968 		flush_dcache_page(page);
969 	return 0;
970 }
971 
972 /* Copy pages in the request to/from userspace buffer */
fuse_copy_pages(struct fuse_copy_state * cs,unsigned nbytes,int zeroing)973 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
974 			   int zeroing)
975 {
976 	unsigned i;
977 	struct fuse_req *req = cs->req;
978 	struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args);
979 
980 
981 	for (i = 0; i < ap->num_pages && (nbytes || zeroing); i++) {
982 		int err;
983 		unsigned int offset = ap->descs[i].offset;
984 		unsigned int count = min(nbytes, ap->descs[i].length);
985 
986 		err = fuse_copy_page(cs, &ap->pages[i], offset, count, zeroing);
987 		if (err)
988 			return err;
989 
990 		nbytes -= count;
991 	}
992 	return 0;
993 }
994 
995 /* Copy a single argument in the request to/from userspace buffer */
fuse_copy_one(struct fuse_copy_state * cs,void * val,unsigned size)996 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
997 {
998 	while (size) {
999 		if (!cs->len) {
1000 			int err = fuse_copy_fill(cs);
1001 			if (err)
1002 				return err;
1003 		}
1004 		fuse_copy_do(cs, &val, &size);
1005 	}
1006 	return 0;
1007 }
1008 
1009 /* Copy request arguments to/from userspace buffer */
fuse_copy_args(struct fuse_copy_state * cs,unsigned numargs,unsigned argpages,struct fuse_arg * args,int zeroing)1010 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
1011 			  unsigned argpages, struct fuse_arg *args,
1012 			  int zeroing)
1013 {
1014 	int err = 0;
1015 	unsigned i;
1016 
1017 	for (i = 0; !err && i < numargs; i++)  {
1018 		struct fuse_arg *arg = &args[i];
1019 		if (i == numargs - 1 && argpages)
1020 			err = fuse_copy_pages(cs, arg->size, zeroing);
1021 		else
1022 			err = fuse_copy_one(cs, arg->value, arg->size);
1023 	}
1024 	return err;
1025 }
1026 
forget_pending(struct fuse_iqueue * fiq)1027 static int forget_pending(struct fuse_iqueue *fiq)
1028 {
1029 	return fiq->forget_list_head.next != NULL;
1030 }
1031 
request_pending(struct fuse_iqueue * fiq)1032 static int request_pending(struct fuse_iqueue *fiq)
1033 {
1034 	return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) ||
1035 		forget_pending(fiq);
1036 }
1037 
1038 /*
1039  * Transfer an interrupt request to userspace
1040  *
1041  * Unlike other requests this is assembled on demand, without a need
1042  * to allocate a separate fuse_req structure.
1043  *
1044  * Called with fiq->lock held, releases it
1045  */
fuse_read_interrupt(struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes,struct fuse_req * req)1046 static int fuse_read_interrupt(struct fuse_iqueue *fiq,
1047 			       struct fuse_copy_state *cs,
1048 			       size_t nbytes, struct fuse_req *req)
1049 __releases(fiq->lock)
1050 {
1051 	struct fuse_in_header ih;
1052 	struct fuse_interrupt_in arg;
1053 	unsigned reqsize = sizeof(ih) + sizeof(arg);
1054 	int err;
1055 
1056 	list_del_init(&req->intr_entry);
1057 	memset(&ih, 0, sizeof(ih));
1058 	memset(&arg, 0, sizeof(arg));
1059 	ih.len = reqsize;
1060 	ih.opcode = FUSE_INTERRUPT;
1061 	ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT);
1062 	arg.unique = req->in.h.unique;
1063 
1064 	spin_unlock(&fiq->lock);
1065 	if (nbytes < reqsize)
1066 		return -EINVAL;
1067 
1068 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1069 	if (!err)
1070 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1071 	fuse_copy_finish(cs);
1072 
1073 	return err ? err : reqsize;
1074 }
1075 
fuse_dequeue_forget(struct fuse_iqueue * fiq,unsigned int max,unsigned int * countp)1076 struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq,
1077 					     unsigned int max,
1078 					     unsigned int *countp)
1079 {
1080 	struct fuse_forget_link *head = fiq->forget_list_head.next;
1081 	struct fuse_forget_link **newhead = &head;
1082 	unsigned count;
1083 
1084 	for (count = 0; *newhead != NULL && count < max; count++)
1085 		newhead = &(*newhead)->next;
1086 
1087 	fiq->forget_list_head.next = *newhead;
1088 	*newhead = NULL;
1089 	if (fiq->forget_list_head.next == NULL)
1090 		fiq->forget_list_tail = &fiq->forget_list_head;
1091 
1092 	if (countp != NULL)
1093 		*countp = count;
1094 
1095 	return head;
1096 }
1097 EXPORT_SYMBOL(fuse_dequeue_forget);
1098 
fuse_read_single_forget(struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes)1099 static int fuse_read_single_forget(struct fuse_iqueue *fiq,
1100 				   struct fuse_copy_state *cs,
1101 				   size_t nbytes)
1102 __releases(fiq->lock)
1103 {
1104 	int err;
1105 	struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL);
1106 	struct fuse_forget_in arg = {
1107 		.nlookup = forget->forget_one.nlookup,
1108 	};
1109 	struct fuse_in_header ih = {
1110 		.opcode = FUSE_FORGET,
1111 		.nodeid = forget->forget_one.nodeid,
1112 		.unique = fuse_get_unique(fiq),
1113 		.len = sizeof(ih) + sizeof(arg),
1114 	};
1115 
1116 	spin_unlock(&fiq->lock);
1117 	kfree(forget);
1118 	if (nbytes < ih.len)
1119 		return -EINVAL;
1120 
1121 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1122 	if (!err)
1123 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1124 	fuse_copy_finish(cs);
1125 
1126 	if (err)
1127 		return err;
1128 
1129 	return ih.len;
1130 }
1131 
fuse_read_batch_forget(struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes)1132 static int fuse_read_batch_forget(struct fuse_iqueue *fiq,
1133 				   struct fuse_copy_state *cs, size_t nbytes)
1134 __releases(fiq->lock)
1135 {
1136 	int err;
1137 	unsigned max_forgets;
1138 	unsigned count;
1139 	struct fuse_forget_link *head;
1140 	struct fuse_batch_forget_in arg = { .count = 0 };
1141 	struct fuse_in_header ih = {
1142 		.opcode = FUSE_BATCH_FORGET,
1143 		.unique = fuse_get_unique(fiq),
1144 		.len = sizeof(ih) + sizeof(arg),
1145 	};
1146 
1147 	if (nbytes < ih.len) {
1148 		spin_unlock(&fiq->lock);
1149 		return -EINVAL;
1150 	}
1151 
1152 	max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1153 	head = fuse_dequeue_forget(fiq, max_forgets, &count);
1154 	spin_unlock(&fiq->lock);
1155 
1156 	arg.count = count;
1157 	ih.len += count * sizeof(struct fuse_forget_one);
1158 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1159 	if (!err)
1160 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1161 
1162 	while (head) {
1163 		struct fuse_forget_link *forget = head;
1164 
1165 		if (!err) {
1166 			err = fuse_copy_one(cs, &forget->forget_one,
1167 					    sizeof(forget->forget_one));
1168 		}
1169 		head = forget->next;
1170 		kfree(forget);
1171 	}
1172 
1173 	fuse_copy_finish(cs);
1174 
1175 	if (err)
1176 		return err;
1177 
1178 	return ih.len;
1179 }
1180 
fuse_read_forget(struct fuse_conn * fc,struct fuse_iqueue * fiq,struct fuse_copy_state * cs,size_t nbytes)1181 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq,
1182 			    struct fuse_copy_state *cs,
1183 			    size_t nbytes)
1184 __releases(fiq->lock)
1185 {
1186 	if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL)
1187 		return fuse_read_single_forget(fiq, cs, nbytes);
1188 	else
1189 		return fuse_read_batch_forget(fiq, cs, nbytes);
1190 }
1191 
1192 /*
1193  * Read a single request into the userspace filesystem's buffer.  This
1194  * function waits until a request is available, then removes it from
1195  * the pending list and copies request data to userspace buffer.  If
1196  * no reply is needed (FORGET) or request has been aborted or there
1197  * was an error during the copying then it's finished by calling
1198  * fuse_request_end().  Otherwise add it to the processing list, and set
1199  * the 'sent' flag.
1200  */
fuse_dev_do_read(struct fuse_dev * fud,struct file * file,struct fuse_copy_state * cs,size_t nbytes)1201 static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file,
1202 				struct fuse_copy_state *cs, size_t nbytes)
1203 {
1204 	ssize_t err;
1205 	struct fuse_conn *fc = fud->fc;
1206 	struct fuse_iqueue *fiq = &fc->iq;
1207 	struct fuse_pqueue *fpq = &fud->pq;
1208 	struct fuse_req *req;
1209 	struct fuse_args *args;
1210 	unsigned reqsize;
1211 	unsigned int hash;
1212 
1213 	/*
1214 	 * Require sane minimum read buffer - that has capacity for fixed part
1215 	 * of any request header + negotiated max_write room for data.
1216 	 *
1217 	 * Historically libfuse reserves 4K for fixed header room, but e.g.
1218 	 * GlusterFS reserves only 80 bytes
1219 	 *
1220 	 *	= `sizeof(fuse_in_header) + sizeof(fuse_write_in)`
1221 	 *
1222 	 * which is the absolute minimum any sane filesystem should be using
1223 	 * for header room.
1224 	 */
1225 	if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER,
1226 			   sizeof(struct fuse_in_header) +
1227 			   sizeof(struct fuse_write_in) +
1228 			   fc->max_write))
1229 		return -EINVAL;
1230 
1231  restart:
1232 	for (;;) {
1233 		spin_lock(&fiq->lock);
1234 		if (!fiq->connected || request_pending(fiq))
1235 			break;
1236 		spin_unlock(&fiq->lock);
1237 
1238 		if (file->f_flags & O_NONBLOCK)
1239 			return -EAGAIN;
1240 		err = wait_event_interruptible_exclusive(fiq->waitq,
1241 				!fiq->connected || request_pending(fiq));
1242 		if (err)
1243 			return err;
1244 	}
1245 
1246 	if (!fiq->connected) {
1247 		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1248 		goto err_unlock;
1249 	}
1250 
1251 	if (!list_empty(&fiq->interrupts)) {
1252 		req = list_entry(fiq->interrupts.next, struct fuse_req,
1253 				 intr_entry);
1254 		return fuse_read_interrupt(fiq, cs, nbytes, req);
1255 	}
1256 
1257 	if (forget_pending(fiq)) {
1258 		if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0)
1259 			return fuse_read_forget(fc, fiq, cs, nbytes);
1260 
1261 		if (fiq->forget_batch <= -8)
1262 			fiq->forget_batch = 16;
1263 	}
1264 
1265 	req = list_entry(fiq->pending.next, struct fuse_req, list);
1266 	clear_bit(FR_PENDING, &req->flags);
1267 	list_del_init(&req->list);
1268 	spin_unlock(&fiq->lock);
1269 
1270 	args = req->args;
1271 	reqsize = req->in.h.len;
1272 
1273 	/* If request is too large, reply with an error and restart the read */
1274 	if (nbytes < reqsize) {
1275 		req->out.h.error = -EIO;
1276 		/* SETXATTR is special, since it may contain too large data */
1277 		if (args->opcode == FUSE_SETXATTR)
1278 			req->out.h.error = -E2BIG;
1279 		fuse_request_end(req);
1280 		goto restart;
1281 	}
1282 	spin_lock(&fpq->lock);
1283 	/*
1284 	 *  Must not put request on fpq->io queue after having been shut down by
1285 	 *  fuse_abort_conn()
1286 	 */
1287 	if (!fpq->connected) {
1288 		req->out.h.error = err = -ECONNABORTED;
1289 		goto out_end;
1290 
1291 	}
1292 	list_add(&req->list, &fpq->io);
1293 	spin_unlock(&fpq->lock);
1294 	cs->req = req;
1295 	err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h));
1296 	if (!err)
1297 		err = fuse_copy_args(cs, args->in_numargs, args->in_pages,
1298 				     (struct fuse_arg *) args->in_args, 0);
1299 	fuse_copy_finish(cs);
1300 	spin_lock(&fpq->lock);
1301 	clear_bit(FR_LOCKED, &req->flags);
1302 	if (!fpq->connected) {
1303 		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1304 		goto out_end;
1305 	}
1306 	if (err) {
1307 		req->out.h.error = -EIO;
1308 		goto out_end;
1309 	}
1310 	if (!test_bit(FR_ISREPLY, &req->flags)) {
1311 		err = reqsize;
1312 		goto out_end;
1313 	}
1314 	hash = fuse_req_hash(req->in.h.unique);
1315 	list_move_tail(&req->list, &fpq->processing[hash]);
1316 	__fuse_get_request(req);
1317 	set_bit(FR_SENT, &req->flags);
1318 	spin_unlock(&fpq->lock);
1319 	/* matches barrier in request_wait_answer() */
1320 	smp_mb__after_atomic();
1321 	if (test_bit(FR_INTERRUPTED, &req->flags))
1322 		queue_interrupt(req);
1323 	fuse_put_request(req);
1324 
1325 	return reqsize;
1326 
1327 out_end:
1328 	if (!test_bit(FR_PRIVATE, &req->flags))
1329 		list_del_init(&req->list);
1330 	spin_unlock(&fpq->lock);
1331 	fuse_request_end(req);
1332 	return err;
1333 
1334  err_unlock:
1335 	spin_unlock(&fiq->lock);
1336 	return err;
1337 }
1338 
fuse_dev_open(struct inode * inode,struct file * file)1339 static int fuse_dev_open(struct inode *inode, struct file *file)
1340 {
1341 	/*
1342 	 * The fuse device's file's private_data is used to hold
1343 	 * the fuse_conn(ection) when it is mounted, and is used to
1344 	 * keep track of whether the file has been mounted already.
1345 	 */
1346 	file->private_data = NULL;
1347 	return 0;
1348 }
1349 
fuse_dev_read(struct kiocb * iocb,struct iov_iter * to)1350 static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to)
1351 {
1352 	struct fuse_copy_state cs;
1353 	struct file *file = iocb->ki_filp;
1354 	struct fuse_dev *fud = fuse_get_dev(file);
1355 
1356 	if (!fud)
1357 		return -EPERM;
1358 
1359 	if (!user_backed_iter(to))
1360 		return -EINVAL;
1361 
1362 	fuse_copy_init(&cs, 1, to);
1363 
1364 	return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to));
1365 }
1366 
fuse_dev_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1367 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1368 				    struct pipe_inode_info *pipe,
1369 				    size_t len, unsigned int flags)
1370 {
1371 	int total, ret;
1372 	int page_nr = 0;
1373 	struct pipe_buffer *bufs;
1374 	struct fuse_copy_state cs;
1375 	struct fuse_dev *fud = fuse_get_dev(in);
1376 
1377 	if (!fud)
1378 		return -EPERM;
1379 
1380 	bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer),
1381 			      GFP_KERNEL);
1382 	if (!bufs)
1383 		return -ENOMEM;
1384 
1385 	fuse_copy_init(&cs, 1, NULL);
1386 	cs.pipebufs = bufs;
1387 	cs.pipe = pipe;
1388 	ret = fuse_dev_do_read(fud, in, &cs, len);
1389 	if (ret < 0)
1390 		goto out;
1391 
1392 	if (pipe_occupancy(pipe->head, pipe->tail) + cs.nr_segs > pipe->max_usage) {
1393 		ret = -EIO;
1394 		goto out;
1395 	}
1396 
1397 	for (ret = total = 0; page_nr < cs.nr_segs; total += ret) {
1398 		/*
1399 		 * Need to be careful about this.  Having buf->ops in module
1400 		 * code can Oops if the buffer persists after module unload.
1401 		 */
1402 		bufs[page_nr].ops = &nosteal_pipe_buf_ops;
1403 		bufs[page_nr].flags = 0;
1404 		ret = add_to_pipe(pipe, &bufs[page_nr++]);
1405 		if (unlikely(ret < 0))
1406 			break;
1407 	}
1408 	if (total)
1409 		ret = total;
1410 out:
1411 	for (; page_nr < cs.nr_segs; page_nr++)
1412 		put_page(bufs[page_nr].page);
1413 
1414 	kvfree(bufs);
1415 	return ret;
1416 }
1417 
fuse_notify_poll(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1418 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1419 			    struct fuse_copy_state *cs)
1420 {
1421 	struct fuse_notify_poll_wakeup_out outarg;
1422 	int err = -EINVAL;
1423 
1424 	if (size != sizeof(outarg))
1425 		goto err;
1426 
1427 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1428 	if (err)
1429 		goto err;
1430 
1431 	fuse_copy_finish(cs);
1432 	return fuse_notify_poll_wakeup(fc, &outarg);
1433 
1434 err:
1435 	fuse_copy_finish(cs);
1436 	return err;
1437 }
1438 
fuse_notify_inval_inode(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1439 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1440 				   struct fuse_copy_state *cs)
1441 {
1442 	struct fuse_notify_inval_inode_out outarg;
1443 	int err = -EINVAL;
1444 
1445 	if (size != sizeof(outarg))
1446 		goto err;
1447 
1448 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1449 	if (err)
1450 		goto err;
1451 	fuse_copy_finish(cs);
1452 
1453 	down_read(&fc->killsb);
1454 	err = fuse_reverse_inval_inode(fc, outarg.ino,
1455 				       outarg.off, outarg.len);
1456 	up_read(&fc->killsb);
1457 	return err;
1458 
1459 err:
1460 	fuse_copy_finish(cs);
1461 	return err;
1462 }
1463 
fuse_notify_inval_entry(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1464 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1465 				   struct fuse_copy_state *cs)
1466 {
1467 	struct fuse_notify_inval_entry_out outarg;
1468 	int err = -ENOMEM;
1469 	char *buf;
1470 	struct qstr name;
1471 
1472 	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1473 	if (!buf)
1474 		goto err;
1475 
1476 	err = -EINVAL;
1477 	if (size < sizeof(outarg))
1478 		goto err;
1479 
1480 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1481 	if (err)
1482 		goto err;
1483 
1484 	err = -ENAMETOOLONG;
1485 	if (outarg.namelen > FUSE_NAME_MAX)
1486 		goto err;
1487 
1488 	err = -EINVAL;
1489 	if (size != sizeof(outarg) + outarg.namelen + 1)
1490 		goto err;
1491 
1492 	name.name = buf;
1493 	name.len = outarg.namelen;
1494 	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1495 	if (err)
1496 		goto err;
1497 	fuse_copy_finish(cs);
1498 	buf[outarg.namelen] = 0;
1499 
1500 	down_read(&fc->killsb);
1501 	err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name);
1502 	up_read(&fc->killsb);
1503 	kfree(buf);
1504 	return err;
1505 
1506 err:
1507 	kfree(buf);
1508 	fuse_copy_finish(cs);
1509 	return err;
1510 }
1511 
fuse_notify_delete(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1512 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size,
1513 			      struct fuse_copy_state *cs)
1514 {
1515 	struct fuse_notify_delete_out outarg;
1516 	int err = -ENOMEM;
1517 	char *buf;
1518 	struct qstr name;
1519 
1520 	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1521 	if (!buf)
1522 		goto err;
1523 
1524 	err = -EINVAL;
1525 	if (size < sizeof(outarg))
1526 		goto err;
1527 
1528 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1529 	if (err)
1530 		goto err;
1531 
1532 	err = -ENAMETOOLONG;
1533 	if (outarg.namelen > FUSE_NAME_MAX)
1534 		goto err;
1535 
1536 	err = -EINVAL;
1537 	if (size != sizeof(outarg) + outarg.namelen + 1)
1538 		goto err;
1539 
1540 	name.name = buf;
1541 	name.len = outarg.namelen;
1542 	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1543 	if (err)
1544 		goto err;
1545 	fuse_copy_finish(cs);
1546 	buf[outarg.namelen] = 0;
1547 
1548 	down_read(&fc->killsb);
1549 	err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name);
1550 	up_read(&fc->killsb);
1551 	kfree(buf);
1552 	return err;
1553 
1554 err:
1555 	kfree(buf);
1556 	fuse_copy_finish(cs);
1557 	return err;
1558 }
1559 
fuse_notify_store(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1560 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1561 			     struct fuse_copy_state *cs)
1562 {
1563 	struct fuse_notify_store_out outarg;
1564 	struct inode *inode;
1565 	struct address_space *mapping;
1566 	u64 nodeid;
1567 	int err;
1568 	pgoff_t index;
1569 	unsigned int offset;
1570 	unsigned int num;
1571 	loff_t file_size;
1572 	loff_t end;
1573 
1574 	err = -EINVAL;
1575 	if (size < sizeof(outarg))
1576 		goto out_finish;
1577 
1578 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1579 	if (err)
1580 		goto out_finish;
1581 
1582 	err = -EINVAL;
1583 	if (size - sizeof(outarg) != outarg.size)
1584 		goto out_finish;
1585 
1586 	nodeid = outarg.nodeid;
1587 
1588 	down_read(&fc->killsb);
1589 
1590 	err = -ENOENT;
1591 	inode = fuse_ilookup(fc, nodeid,  NULL);
1592 	if (!inode)
1593 		goto out_up_killsb;
1594 
1595 	mapping = inode->i_mapping;
1596 	index = outarg.offset >> PAGE_SHIFT;
1597 	offset = outarg.offset & ~PAGE_MASK;
1598 	file_size = i_size_read(inode);
1599 	end = outarg.offset + outarg.size;
1600 	if (end > file_size) {
1601 		file_size = end;
1602 		fuse_write_update_attr(inode, file_size, outarg.size);
1603 	}
1604 
1605 	num = outarg.size;
1606 	while (num) {
1607 		struct page *page;
1608 		unsigned int this_num;
1609 
1610 		err = -ENOMEM;
1611 		page = find_or_create_page(mapping, index,
1612 					   mapping_gfp_mask(mapping));
1613 		if (!page)
1614 			goto out_iput;
1615 
1616 		this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1617 		err = fuse_copy_page(cs, &page, offset, this_num, 0);
1618 		if (!err && offset == 0 &&
1619 		    (this_num == PAGE_SIZE || file_size == end))
1620 			SetPageUptodate(page);
1621 		unlock_page(page);
1622 		put_page(page);
1623 
1624 		if (err)
1625 			goto out_iput;
1626 
1627 		num -= this_num;
1628 		offset = 0;
1629 		index++;
1630 	}
1631 
1632 	err = 0;
1633 
1634 out_iput:
1635 	iput(inode);
1636 out_up_killsb:
1637 	up_read(&fc->killsb);
1638 out_finish:
1639 	fuse_copy_finish(cs);
1640 	return err;
1641 }
1642 
1643 struct fuse_retrieve_args {
1644 	struct fuse_args_pages ap;
1645 	struct fuse_notify_retrieve_in inarg;
1646 };
1647 
fuse_retrieve_end(struct fuse_mount * fm,struct fuse_args * args,int error)1648 static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args,
1649 			      int error)
1650 {
1651 	struct fuse_retrieve_args *ra =
1652 		container_of(args, typeof(*ra), ap.args);
1653 
1654 	release_pages(ra->ap.pages, ra->ap.num_pages);
1655 	kfree(ra);
1656 }
1657 
fuse_retrieve(struct fuse_mount * fm,struct inode * inode,struct fuse_notify_retrieve_out * outarg)1658 static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode,
1659 			 struct fuse_notify_retrieve_out *outarg)
1660 {
1661 	int err;
1662 	struct address_space *mapping = inode->i_mapping;
1663 	pgoff_t index;
1664 	loff_t file_size;
1665 	unsigned int num;
1666 	unsigned int offset;
1667 	size_t total_len = 0;
1668 	unsigned int num_pages;
1669 	struct fuse_conn *fc = fm->fc;
1670 	struct fuse_retrieve_args *ra;
1671 	size_t args_size = sizeof(*ra);
1672 	struct fuse_args_pages *ap;
1673 	struct fuse_args *args;
1674 
1675 	offset = outarg->offset & ~PAGE_MASK;
1676 	file_size = i_size_read(inode);
1677 
1678 	num = min(outarg->size, fc->max_write);
1679 	if (outarg->offset > file_size)
1680 		num = 0;
1681 	else if (outarg->offset + num > file_size)
1682 		num = file_size - outarg->offset;
1683 
1684 	num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1685 	num_pages = min(num_pages, fc->max_pages);
1686 
1687 	args_size += num_pages * (sizeof(ap->pages[0]) + sizeof(ap->descs[0]));
1688 
1689 	ra = kzalloc(args_size, GFP_KERNEL);
1690 	if (!ra)
1691 		return -ENOMEM;
1692 
1693 	ap = &ra->ap;
1694 	ap->pages = (void *) (ra + 1);
1695 	ap->descs = (void *) (ap->pages + num_pages);
1696 
1697 	args = &ap->args;
1698 	args->nodeid = outarg->nodeid;
1699 	args->opcode = FUSE_NOTIFY_REPLY;
1700 	args->in_numargs = 2;
1701 	args->in_pages = true;
1702 	args->end = fuse_retrieve_end;
1703 
1704 	index = outarg->offset >> PAGE_SHIFT;
1705 
1706 	while (num && ap->num_pages < num_pages) {
1707 		struct page *page;
1708 		unsigned int this_num;
1709 
1710 		page = find_get_page(mapping, index);
1711 		if (!page)
1712 			break;
1713 
1714 		this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1715 		ap->pages[ap->num_pages] = page;
1716 		ap->descs[ap->num_pages].offset = offset;
1717 		ap->descs[ap->num_pages].length = this_num;
1718 		ap->num_pages++;
1719 
1720 		offset = 0;
1721 		num -= this_num;
1722 		total_len += this_num;
1723 		index++;
1724 	}
1725 	ra->inarg.offset = outarg->offset;
1726 	ra->inarg.size = total_len;
1727 	args->in_args[0].size = sizeof(ra->inarg);
1728 	args->in_args[0].value = &ra->inarg;
1729 	args->in_args[1].size = total_len;
1730 
1731 	err = fuse_simple_notify_reply(fm, args, outarg->notify_unique);
1732 	if (err)
1733 		fuse_retrieve_end(fm, args, err);
1734 
1735 	return err;
1736 }
1737 
fuse_notify_retrieve(struct fuse_conn * fc,unsigned int size,struct fuse_copy_state * cs)1738 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1739 				struct fuse_copy_state *cs)
1740 {
1741 	struct fuse_notify_retrieve_out outarg;
1742 	struct fuse_mount *fm;
1743 	struct inode *inode;
1744 	u64 nodeid;
1745 	int err;
1746 
1747 	err = -EINVAL;
1748 	if (size != sizeof(outarg))
1749 		goto copy_finish;
1750 
1751 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1752 	if (err)
1753 		goto copy_finish;
1754 
1755 	fuse_copy_finish(cs);
1756 
1757 	down_read(&fc->killsb);
1758 	err = -ENOENT;
1759 	nodeid = outarg.nodeid;
1760 
1761 	inode = fuse_ilookup(fc, nodeid, &fm);
1762 	if (inode) {
1763 		err = fuse_retrieve(fm, inode, &outarg);
1764 		iput(inode);
1765 	}
1766 	up_read(&fc->killsb);
1767 
1768 	return err;
1769 
1770 copy_finish:
1771 	fuse_copy_finish(cs);
1772 	return err;
1773 }
1774 
fuse_notify(struct fuse_conn * fc,enum fuse_notify_code code,unsigned int size,struct fuse_copy_state * cs)1775 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1776 		       unsigned int size, struct fuse_copy_state *cs)
1777 {
1778 	/* Don't try to move pages (yet) */
1779 	cs->move_pages = 0;
1780 
1781 	switch (code) {
1782 	case FUSE_NOTIFY_POLL:
1783 		return fuse_notify_poll(fc, size, cs);
1784 
1785 	case FUSE_NOTIFY_INVAL_INODE:
1786 		return fuse_notify_inval_inode(fc, size, cs);
1787 
1788 	case FUSE_NOTIFY_INVAL_ENTRY:
1789 		return fuse_notify_inval_entry(fc, size, cs);
1790 
1791 	case FUSE_NOTIFY_STORE:
1792 		return fuse_notify_store(fc, size, cs);
1793 
1794 	case FUSE_NOTIFY_RETRIEVE:
1795 		return fuse_notify_retrieve(fc, size, cs);
1796 
1797 	case FUSE_NOTIFY_DELETE:
1798 		return fuse_notify_delete(fc, size, cs);
1799 
1800 	default:
1801 		fuse_copy_finish(cs);
1802 		return -EINVAL;
1803 	}
1804 }
1805 
1806 /* Look up request on processing list by unique ID */
request_find(struct fuse_pqueue * fpq,u64 unique)1807 static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique)
1808 {
1809 	unsigned int hash = fuse_req_hash(unique);
1810 	struct fuse_req *req;
1811 
1812 	list_for_each_entry(req, &fpq->processing[hash], list) {
1813 		if (req->in.h.unique == unique)
1814 			return req;
1815 	}
1816 	return NULL;
1817 }
1818 
copy_out_args(struct fuse_copy_state * cs,struct fuse_args * args,unsigned nbytes)1819 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args,
1820 			 unsigned nbytes)
1821 {
1822 	unsigned reqsize = sizeof(struct fuse_out_header);
1823 
1824 	reqsize += fuse_len_args(args->out_numargs, args->out_args);
1825 
1826 	if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar))
1827 		return -EINVAL;
1828 	else if (reqsize > nbytes) {
1829 		struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1];
1830 		unsigned diffsize = reqsize - nbytes;
1831 
1832 		if (diffsize > lastarg->size)
1833 			return -EINVAL;
1834 		lastarg->size -= diffsize;
1835 	}
1836 	return fuse_copy_args(cs, args->out_numargs, args->out_pages,
1837 			      args->out_args, args->page_zeroing);
1838 }
1839 
1840 /*
1841  * Write a single reply to a request.  First the header is copied from
1842  * the write buffer.  The request is then searched on the processing
1843  * list by the unique ID found in the header.  If found, then remove
1844  * it from the list and copy the rest of the buffer to the request.
1845  * The request is finished by calling fuse_request_end().
1846  */
fuse_dev_do_write(struct fuse_dev * fud,struct fuse_copy_state * cs,size_t nbytes)1847 static ssize_t fuse_dev_do_write(struct fuse_dev *fud,
1848 				 struct fuse_copy_state *cs, size_t nbytes)
1849 {
1850 	int err;
1851 	struct fuse_conn *fc = fud->fc;
1852 	struct fuse_pqueue *fpq = &fud->pq;
1853 	struct fuse_req *req;
1854 	struct fuse_out_header oh;
1855 
1856 	err = -EINVAL;
1857 	if (nbytes < sizeof(struct fuse_out_header))
1858 		goto out;
1859 
1860 	err = fuse_copy_one(cs, &oh, sizeof(oh));
1861 	if (err)
1862 		goto copy_finish;
1863 
1864 	err = -EINVAL;
1865 	if (oh.len != nbytes)
1866 		goto copy_finish;
1867 
1868 	/*
1869 	 * Zero oh.unique indicates unsolicited notification message
1870 	 * and error contains notification code.
1871 	 */
1872 	if (!oh.unique) {
1873 		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1874 		goto out;
1875 	}
1876 
1877 	err = -EINVAL;
1878 	if (oh.error <= -512 || oh.error > 0)
1879 		goto copy_finish;
1880 
1881 	spin_lock(&fpq->lock);
1882 	req = NULL;
1883 	if (fpq->connected)
1884 		req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT);
1885 
1886 	err = -ENOENT;
1887 	if (!req) {
1888 		spin_unlock(&fpq->lock);
1889 		goto copy_finish;
1890 	}
1891 
1892 	/* Is it an interrupt reply ID? */
1893 	if (oh.unique & FUSE_INT_REQ_BIT) {
1894 		__fuse_get_request(req);
1895 		spin_unlock(&fpq->lock);
1896 
1897 		err = 0;
1898 		if (nbytes != sizeof(struct fuse_out_header))
1899 			err = -EINVAL;
1900 		else if (oh.error == -ENOSYS)
1901 			fc->no_interrupt = 1;
1902 		else if (oh.error == -EAGAIN)
1903 			err = queue_interrupt(req);
1904 
1905 		fuse_put_request(req);
1906 
1907 		goto copy_finish;
1908 	}
1909 
1910 	clear_bit(FR_SENT, &req->flags);
1911 	list_move(&req->list, &fpq->io);
1912 	req->out.h = oh;
1913 	set_bit(FR_LOCKED, &req->flags);
1914 	spin_unlock(&fpq->lock);
1915 	cs->req = req;
1916 	if (!req->args->page_replace)
1917 		cs->move_pages = 0;
1918 
1919 	if (oh.error)
1920 		err = nbytes != sizeof(oh) ? -EINVAL : 0;
1921 	else
1922 		err = copy_out_args(cs, req->args, nbytes);
1923 	fuse_copy_finish(cs);
1924 
1925 	spin_lock(&fpq->lock);
1926 	clear_bit(FR_LOCKED, &req->flags);
1927 	if (!fpq->connected)
1928 		err = -ENOENT;
1929 	else if (err)
1930 		req->out.h.error = -EIO;
1931 	if (!test_bit(FR_PRIVATE, &req->flags))
1932 		list_del_init(&req->list);
1933 	spin_unlock(&fpq->lock);
1934 
1935 	fuse_request_end(req);
1936 out:
1937 	return err ? err : nbytes;
1938 
1939 copy_finish:
1940 	fuse_copy_finish(cs);
1941 	goto out;
1942 }
1943 
fuse_dev_write(struct kiocb * iocb,struct iov_iter * from)1944 static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from)
1945 {
1946 	struct fuse_copy_state cs;
1947 	struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp);
1948 
1949 	if (!fud)
1950 		return -EPERM;
1951 
1952 	if (!user_backed_iter(from))
1953 		return -EINVAL;
1954 
1955 	fuse_copy_init(&cs, 0, from);
1956 
1957 	return fuse_dev_do_write(fud, &cs, iov_iter_count(from));
1958 }
1959 
fuse_dev_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1960 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
1961 				     struct file *out, loff_t *ppos,
1962 				     size_t len, unsigned int flags)
1963 {
1964 	unsigned int head, tail, mask, count;
1965 	unsigned nbuf;
1966 	unsigned idx;
1967 	struct pipe_buffer *bufs;
1968 	struct fuse_copy_state cs;
1969 	struct fuse_dev *fud;
1970 	size_t rem;
1971 	ssize_t ret;
1972 
1973 	fud = fuse_get_dev(out);
1974 	if (!fud)
1975 		return -EPERM;
1976 
1977 	pipe_lock(pipe);
1978 
1979 	head = pipe->head;
1980 	tail = pipe->tail;
1981 	mask = pipe->ring_size - 1;
1982 	count = head - tail;
1983 
1984 	bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL);
1985 	if (!bufs) {
1986 		pipe_unlock(pipe);
1987 		return -ENOMEM;
1988 	}
1989 
1990 	nbuf = 0;
1991 	rem = 0;
1992 	for (idx = tail; idx != head && rem < len; idx++)
1993 		rem += pipe->bufs[idx & mask].len;
1994 
1995 	ret = -EINVAL;
1996 	if (rem < len)
1997 		goto out_free;
1998 
1999 	rem = len;
2000 	while (rem) {
2001 		struct pipe_buffer *ibuf;
2002 		struct pipe_buffer *obuf;
2003 
2004 		if (WARN_ON(nbuf >= count || tail == head))
2005 			goto out_free;
2006 
2007 		ibuf = &pipe->bufs[tail & mask];
2008 		obuf = &bufs[nbuf];
2009 
2010 		if (rem >= ibuf->len) {
2011 			*obuf = *ibuf;
2012 			ibuf->ops = NULL;
2013 			tail++;
2014 			pipe->tail = tail;
2015 		} else {
2016 			if (!pipe_buf_get(pipe, ibuf))
2017 				goto out_free;
2018 
2019 			*obuf = *ibuf;
2020 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2021 			obuf->len = rem;
2022 			ibuf->offset += obuf->len;
2023 			ibuf->len -= obuf->len;
2024 		}
2025 		nbuf++;
2026 		rem -= obuf->len;
2027 	}
2028 	pipe_unlock(pipe);
2029 
2030 	fuse_copy_init(&cs, 0, NULL);
2031 	cs.pipebufs = bufs;
2032 	cs.nr_segs = nbuf;
2033 	cs.pipe = pipe;
2034 
2035 	if (flags & SPLICE_F_MOVE)
2036 		cs.move_pages = 1;
2037 
2038 	ret = fuse_dev_do_write(fud, &cs, len);
2039 
2040 	pipe_lock(pipe);
2041 out_free:
2042 	for (idx = 0; idx < nbuf; idx++) {
2043 		struct pipe_buffer *buf = &bufs[idx];
2044 
2045 		if (buf->ops)
2046 			pipe_buf_release(pipe, buf);
2047 	}
2048 	pipe_unlock(pipe);
2049 
2050 	kvfree(bufs);
2051 	return ret;
2052 }
2053 
fuse_dev_poll(struct file * file,poll_table * wait)2054 static __poll_t fuse_dev_poll(struct file *file, poll_table *wait)
2055 {
2056 	__poll_t mask = EPOLLOUT | EPOLLWRNORM;
2057 	struct fuse_iqueue *fiq;
2058 	struct fuse_dev *fud = fuse_get_dev(file);
2059 
2060 	if (!fud)
2061 		return EPOLLERR;
2062 
2063 	fiq = &fud->fc->iq;
2064 	poll_wait(file, &fiq->waitq, wait);
2065 
2066 	spin_lock(&fiq->lock);
2067 	if (!fiq->connected)
2068 		mask = EPOLLERR;
2069 	else if (request_pending(fiq))
2070 		mask |= EPOLLIN | EPOLLRDNORM;
2071 	spin_unlock(&fiq->lock);
2072 
2073 	return mask;
2074 }
2075 
2076 /* Abort all requests on the given list (pending or processing) */
end_requests(struct list_head * head)2077 static void end_requests(struct list_head *head)
2078 {
2079 	while (!list_empty(head)) {
2080 		struct fuse_req *req;
2081 		req = list_entry(head->next, struct fuse_req, list);
2082 		req->out.h.error = -ECONNABORTED;
2083 		clear_bit(FR_SENT, &req->flags);
2084 		list_del_init(&req->list);
2085 		fuse_request_end(req);
2086 	}
2087 }
2088 
end_polls(struct fuse_conn * fc)2089 static void end_polls(struct fuse_conn *fc)
2090 {
2091 	struct rb_node *p;
2092 
2093 	p = rb_first(&fc->polled_files);
2094 
2095 	while (p) {
2096 		struct fuse_file *ff;
2097 		ff = rb_entry(p, struct fuse_file, polled_node);
2098 		wake_up_interruptible_all(&ff->poll_wait);
2099 
2100 		p = rb_next(p);
2101 	}
2102 }
2103 
2104 /*
2105  * Abort all requests.
2106  *
2107  * Emergency exit in case of a malicious or accidental deadlock, or just a hung
2108  * filesystem.
2109  *
2110  * The same effect is usually achievable through killing the filesystem daemon
2111  * and all users of the filesystem.  The exception is the combination of an
2112  * asynchronous request and the tricky deadlock (see
2113  * Documentation/filesystems/fuse.rst).
2114  *
2115  * Aborting requests under I/O goes as follows: 1: Separate out unlocked
2116  * requests, they should be finished off immediately.  Locked requests will be
2117  * finished after unlock; see unlock_request(). 2: Finish off the unlocked
2118  * requests.  It is possible that some request will finish before we can.  This
2119  * is OK, the request will in that case be removed from the list before we touch
2120  * it.
2121  */
fuse_abort_conn(struct fuse_conn * fc)2122 void fuse_abort_conn(struct fuse_conn *fc)
2123 {
2124 	struct fuse_iqueue *fiq = &fc->iq;
2125 
2126 	spin_lock(&fc->lock);
2127 	if (fc->connected) {
2128 		struct fuse_dev *fud;
2129 		struct fuse_req *req, *next;
2130 		LIST_HEAD(to_end);
2131 		unsigned int i;
2132 
2133 		/* Background queuing checks fc->connected under bg_lock */
2134 		spin_lock(&fc->bg_lock);
2135 		fc->connected = 0;
2136 		spin_unlock(&fc->bg_lock);
2137 
2138 		fuse_set_initialized(fc);
2139 		list_for_each_entry(fud, &fc->devices, entry) {
2140 			struct fuse_pqueue *fpq = &fud->pq;
2141 
2142 			spin_lock(&fpq->lock);
2143 			fpq->connected = 0;
2144 			list_for_each_entry_safe(req, next, &fpq->io, list) {
2145 				req->out.h.error = -ECONNABORTED;
2146 				spin_lock(&req->waitq.lock);
2147 				set_bit(FR_ABORTED, &req->flags);
2148 				if (!test_bit(FR_LOCKED, &req->flags)) {
2149 					set_bit(FR_PRIVATE, &req->flags);
2150 					__fuse_get_request(req);
2151 					list_move(&req->list, &to_end);
2152 				}
2153 				spin_unlock(&req->waitq.lock);
2154 			}
2155 			for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2156 				list_splice_tail_init(&fpq->processing[i],
2157 						      &to_end);
2158 			spin_unlock(&fpq->lock);
2159 		}
2160 		spin_lock(&fc->bg_lock);
2161 		fc->blocked = 0;
2162 		fc->max_background = UINT_MAX;
2163 		flush_bg_queue(fc);
2164 		spin_unlock(&fc->bg_lock);
2165 
2166 		spin_lock(&fiq->lock);
2167 		fiq->connected = 0;
2168 		list_for_each_entry(req, &fiq->pending, list)
2169 			clear_bit(FR_PENDING, &req->flags);
2170 		list_splice_tail_init(&fiq->pending, &to_end);
2171 		while (forget_pending(fiq))
2172 			kfree(fuse_dequeue_forget(fiq, 1, NULL));
2173 		wake_up_all(&fiq->waitq);
2174 		spin_unlock(&fiq->lock);
2175 		kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
2176 		end_polls(fc);
2177 		wake_up_all(&fc->blocked_waitq);
2178 		spin_unlock(&fc->lock);
2179 
2180 		end_requests(&to_end);
2181 	} else {
2182 		spin_unlock(&fc->lock);
2183 	}
2184 }
2185 EXPORT_SYMBOL_GPL(fuse_abort_conn);
2186 
fuse_wait_aborted(struct fuse_conn * fc)2187 void fuse_wait_aborted(struct fuse_conn *fc)
2188 {
2189 	/* matches implicit memory barrier in fuse_drop_waiting() */
2190 	smp_mb();
2191 	wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0);
2192 }
2193 
fuse_dev_release(struct inode * inode,struct file * file)2194 int fuse_dev_release(struct inode *inode, struct file *file)
2195 {
2196 	struct fuse_dev *fud = fuse_get_dev(file);
2197 
2198 	if (fud) {
2199 		struct fuse_conn *fc = fud->fc;
2200 		struct fuse_pqueue *fpq = &fud->pq;
2201 		LIST_HEAD(to_end);
2202 		unsigned int i;
2203 
2204 		spin_lock(&fpq->lock);
2205 		WARN_ON(!list_empty(&fpq->io));
2206 		for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2207 			list_splice_init(&fpq->processing[i], &to_end);
2208 		spin_unlock(&fpq->lock);
2209 
2210 		end_requests(&to_end);
2211 
2212 		/* Are we the last open device? */
2213 		if (atomic_dec_and_test(&fc->dev_count)) {
2214 			WARN_ON(fc->iq.fasync != NULL);
2215 			fuse_abort_conn(fc);
2216 		}
2217 		fuse_dev_free(fud);
2218 	}
2219 	return 0;
2220 }
2221 EXPORT_SYMBOL_GPL(fuse_dev_release);
2222 
fuse_dev_fasync(int fd,struct file * file,int on)2223 static int fuse_dev_fasync(int fd, struct file *file, int on)
2224 {
2225 	struct fuse_dev *fud = fuse_get_dev(file);
2226 
2227 	if (!fud)
2228 		return -EPERM;
2229 
2230 	/* No locking - fasync_helper does its own locking */
2231 	return fasync_helper(fd, file, on, &fud->fc->iq.fasync);
2232 }
2233 
fuse_device_clone(struct fuse_conn * fc,struct file * new)2234 static int fuse_device_clone(struct fuse_conn *fc, struct file *new)
2235 {
2236 	struct fuse_dev *fud;
2237 
2238 	if (new->private_data)
2239 		return -EINVAL;
2240 
2241 	fud = fuse_dev_alloc_install(fc);
2242 	if (!fud)
2243 		return -ENOMEM;
2244 
2245 	new->private_data = fud;
2246 	atomic_inc(&fc->dev_count);
2247 
2248 	return 0;
2249 }
2250 
fuse_dev_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2251 static long fuse_dev_ioctl(struct file *file, unsigned int cmd,
2252 			   unsigned long arg)
2253 {
2254 	int res;
2255 	int oldfd;
2256 	struct fuse_dev *fud = NULL;
2257 
2258 	switch (cmd) {
2259 	case FUSE_DEV_IOC_CLONE:
2260 		res = -EFAULT;
2261 		if (!get_user(oldfd, (__u32 __user *)arg)) {
2262 			struct file *old = fget(oldfd);
2263 
2264 			res = -EINVAL;
2265 			if (old) {
2266 				/*
2267 				 * Check against file->f_op because CUSE
2268 				 * uses the same ioctl handler.
2269 				 */
2270 				if (old->f_op == file->f_op &&
2271 				    old->f_cred->user_ns == file->f_cred->user_ns)
2272 					fud = fuse_get_dev(old);
2273 
2274 				if (fud) {
2275 					mutex_lock(&fuse_mutex);
2276 					res = fuse_device_clone(fud->fc, file);
2277 					mutex_unlock(&fuse_mutex);
2278 				}
2279 				fput(old);
2280 			}
2281 		}
2282 		break;
2283 	default:
2284 		res = -ENOTTY;
2285 		break;
2286 	}
2287 	return res;
2288 }
2289 
2290 const struct file_operations fuse_dev_operations = {
2291 	.owner		= THIS_MODULE,
2292 	.open		= fuse_dev_open,
2293 	.llseek		= no_llseek,
2294 	.read_iter	= fuse_dev_read,
2295 	.splice_read	= fuse_dev_splice_read,
2296 	.write_iter	= fuse_dev_write,
2297 	.splice_write	= fuse_dev_splice_write,
2298 	.poll		= fuse_dev_poll,
2299 	.release	= fuse_dev_release,
2300 	.fasync		= fuse_dev_fasync,
2301 	.unlocked_ioctl = fuse_dev_ioctl,
2302 	.compat_ioctl   = compat_ptr_ioctl,
2303 };
2304 EXPORT_SYMBOL_GPL(fuse_dev_operations);
2305 
2306 static struct miscdevice fuse_miscdevice = {
2307 	.minor = FUSE_MINOR,
2308 	.name  = "fuse",
2309 	.fops = &fuse_dev_operations,
2310 };
2311 
fuse_dev_init(void)2312 int __init fuse_dev_init(void)
2313 {
2314 	int err = -ENOMEM;
2315 	fuse_req_cachep = kmem_cache_create("fuse_request",
2316 					    sizeof(struct fuse_req),
2317 					    0, 0, NULL);
2318 	if (!fuse_req_cachep)
2319 		goto out;
2320 
2321 	err = misc_register(&fuse_miscdevice);
2322 	if (err)
2323 		goto out_cache_clean;
2324 
2325 	return 0;
2326 
2327  out_cache_clean:
2328 	kmem_cache_destroy(fuse_req_cachep);
2329  out:
2330 	return err;
2331 }
2332 
fuse_dev_cleanup(void)2333 void fuse_dev_cleanup(void)
2334 {
2335 	misc_deregister(&fuse_miscdevice);
2336 	kmem_cache_destroy(fuse_req_cachep);
2337 }
2338