1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale LBC and UPM routines.
4 *
5 * Copyright © 2007-2008 MontaVista Software, Inc.
6 * Copyright © 2010 Freescale Semiconductor
7 *
8 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
9 * Author: Jack Lan <Jack.Lan@freescale.com>
10 * Author: Roy Zang <tie-fei.zang@freescale.com>
11 */
12
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/kernel.h>
16 #include <linux/compiler.h>
17 #include <linux/spinlock.h>
18 #include <linux/types.h>
19 #include <linux/io.h>
20 #include <linux/of.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/platform_device.h>
24 #include <linux/interrupt.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/syscore_ops.h>
27 #include <asm/prom.h>
28 #include <asm/fsl_lbc.h>
29
30 static DEFINE_SPINLOCK(fsl_lbc_lock);
31 struct fsl_lbc_ctrl *fsl_lbc_ctrl_dev;
32 EXPORT_SYMBOL(fsl_lbc_ctrl_dev);
33
34 /**
35 * fsl_lbc_addr - convert the base address
36 * @addr_base: base address of the memory bank
37 *
38 * This function converts a base address of lbc into the right format for the
39 * BR register. If the SOC has eLBC then it returns 32bit physical address
40 * else it convers a 34bit local bus physical address to correct format of
41 * 32bit address for BR register (Example: MPC8641).
42 */
fsl_lbc_addr(phys_addr_t addr_base)43 u32 fsl_lbc_addr(phys_addr_t addr_base)
44 {
45 struct device_node *np = fsl_lbc_ctrl_dev->dev->of_node;
46 u32 addr = addr_base & 0xffff8000;
47
48 if (of_device_is_compatible(np, "fsl,elbc"))
49 return addr;
50
51 return addr | ((addr_base & 0x300000000ull) >> 19);
52 }
53 EXPORT_SYMBOL(fsl_lbc_addr);
54
55 /**
56 * fsl_lbc_find - find Localbus bank
57 * @addr_base: base address of the memory bank
58 *
59 * This function walks LBC banks comparing "Base address" field of the BR
60 * registers with the supplied addr_base argument. When bases match this
61 * function returns bank number (starting with 0), otherwise it returns
62 * appropriate errno value.
63 */
fsl_lbc_find(phys_addr_t addr_base)64 int fsl_lbc_find(phys_addr_t addr_base)
65 {
66 int i;
67 struct fsl_lbc_regs __iomem *lbc;
68
69 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
70 return -ENODEV;
71
72 lbc = fsl_lbc_ctrl_dev->regs;
73 for (i = 0; i < ARRAY_SIZE(lbc->bank); i++) {
74 u32 br = in_be32(&lbc->bank[i].br);
75 u32 or = in_be32(&lbc->bank[i].or);
76
77 if (br & BR_V && (br & or & BR_BA) == fsl_lbc_addr(addr_base))
78 return i;
79 }
80
81 return -ENOENT;
82 }
83 EXPORT_SYMBOL(fsl_lbc_find);
84
85 /**
86 * fsl_upm_find - find pre-programmed UPM via base address
87 * @addr_base: base address of the memory bank controlled by the UPM
88 * @upm: pointer to the allocated fsl_upm structure
89 *
90 * This function fills fsl_upm structure so you can use it with the rest of
91 * UPM API. On success this function returns 0, otherwise it returns
92 * appropriate errno value.
93 */
fsl_upm_find(phys_addr_t addr_base,struct fsl_upm * upm)94 int fsl_upm_find(phys_addr_t addr_base, struct fsl_upm *upm)
95 {
96 int bank;
97 u32 br;
98 struct fsl_lbc_regs __iomem *lbc;
99
100 bank = fsl_lbc_find(addr_base);
101 if (bank < 0)
102 return bank;
103
104 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
105 return -ENODEV;
106
107 lbc = fsl_lbc_ctrl_dev->regs;
108 br = in_be32(&lbc->bank[bank].br);
109
110 switch (br & BR_MSEL) {
111 case BR_MS_UPMA:
112 upm->mxmr = &lbc->mamr;
113 break;
114 case BR_MS_UPMB:
115 upm->mxmr = &lbc->mbmr;
116 break;
117 case BR_MS_UPMC:
118 upm->mxmr = &lbc->mcmr;
119 break;
120 default:
121 return -EINVAL;
122 }
123
124 switch (br & BR_PS) {
125 case BR_PS_8:
126 upm->width = 8;
127 break;
128 case BR_PS_16:
129 upm->width = 16;
130 break;
131 case BR_PS_32:
132 upm->width = 32;
133 break;
134 default:
135 return -EINVAL;
136 }
137
138 return 0;
139 }
140 EXPORT_SYMBOL(fsl_upm_find);
141
142 /**
143 * fsl_upm_run_pattern - actually run an UPM pattern
144 * @upm: pointer to the fsl_upm structure obtained via fsl_upm_find
145 * @io_base: remapped pointer to where memory access should happen
146 * @mar: MAR register content during pattern execution
147 *
148 * This function triggers dummy write to the memory specified by the io_base,
149 * thus UPM pattern actually executed. Note that mar usage depends on the
150 * pre-programmed AMX bits in the UPM RAM.
151 */
fsl_upm_run_pattern(struct fsl_upm * upm,void __iomem * io_base,u32 mar)152 int fsl_upm_run_pattern(struct fsl_upm *upm, void __iomem *io_base, u32 mar)
153 {
154 int ret = 0;
155 unsigned long flags;
156
157 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
158 return -ENODEV;
159
160 spin_lock_irqsave(&fsl_lbc_lock, flags);
161
162 out_be32(&fsl_lbc_ctrl_dev->regs->mar, mar);
163
164 switch (upm->width) {
165 case 8:
166 out_8(io_base, 0x0);
167 break;
168 case 16:
169 out_be16(io_base, 0x0);
170 break;
171 case 32:
172 out_be32(io_base, 0x0);
173 break;
174 default:
175 ret = -EINVAL;
176 break;
177 }
178
179 spin_unlock_irqrestore(&fsl_lbc_lock, flags);
180
181 return ret;
182 }
183 EXPORT_SYMBOL(fsl_upm_run_pattern);
184
fsl_lbc_ctrl_init(struct fsl_lbc_ctrl * ctrl,struct device_node * node)185 static int fsl_lbc_ctrl_init(struct fsl_lbc_ctrl *ctrl,
186 struct device_node *node)
187 {
188 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
189
190 /* clear event registers */
191 setbits32(&lbc->ltesr, LTESR_CLEAR);
192 out_be32(&lbc->lteatr, 0);
193 out_be32(&lbc->ltear, 0);
194 out_be32(&lbc->lteccr, LTECCR_CLEAR);
195 out_be32(&lbc->ltedr, LTEDR_ENABLE);
196
197 /* Set the monitor timeout value to the maximum for erratum A001 */
198 if (of_device_is_compatible(node, "fsl,elbc"))
199 clrsetbits_be32(&lbc->lbcr, LBCR_BMT, LBCR_BMTPS);
200
201 return 0;
202 }
203
204 /*
205 * NOTE: This interrupt is used to report localbus events of various kinds,
206 * such as transaction errors on the chipselects.
207 */
208
fsl_lbc_ctrl_irq(int irqno,void * data)209 static irqreturn_t fsl_lbc_ctrl_irq(int irqno, void *data)
210 {
211 struct fsl_lbc_ctrl *ctrl = data;
212 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
213 u32 status;
214 unsigned long flags;
215
216 spin_lock_irqsave(&fsl_lbc_lock, flags);
217 status = in_be32(&lbc->ltesr);
218 if (!status) {
219 spin_unlock_irqrestore(&fsl_lbc_lock, flags);
220 return IRQ_NONE;
221 }
222
223 out_be32(&lbc->ltesr, LTESR_CLEAR);
224 out_be32(&lbc->lteatr, 0);
225 out_be32(&lbc->ltear, 0);
226 ctrl->irq_status = status;
227
228 if (status & LTESR_BM)
229 dev_err(ctrl->dev, "Local bus monitor time-out: "
230 "LTESR 0x%08X\n", status);
231 if (status & LTESR_WP)
232 dev_err(ctrl->dev, "Write protect error: "
233 "LTESR 0x%08X\n", status);
234 if (status & LTESR_ATMW)
235 dev_err(ctrl->dev, "Atomic write error: "
236 "LTESR 0x%08X\n", status);
237 if (status & LTESR_ATMR)
238 dev_err(ctrl->dev, "Atomic read error: "
239 "LTESR 0x%08X\n", status);
240 if (status & LTESR_CS)
241 dev_err(ctrl->dev, "Chip select error: "
242 "LTESR 0x%08X\n", status);
243 if (status & LTESR_FCT) {
244 dev_err(ctrl->dev, "FCM command time-out: "
245 "LTESR 0x%08X\n", status);
246 smp_wmb();
247 wake_up(&ctrl->irq_wait);
248 }
249 if (status & LTESR_PAR) {
250 dev_err(ctrl->dev, "Parity or Uncorrectable ECC error: "
251 "LTESR 0x%08X\n", status);
252 smp_wmb();
253 wake_up(&ctrl->irq_wait);
254 }
255 if (status & LTESR_CC) {
256 smp_wmb();
257 wake_up(&ctrl->irq_wait);
258 }
259 if (status & ~LTESR_MASK)
260 dev_err(ctrl->dev, "Unknown error: "
261 "LTESR 0x%08X\n", status);
262 spin_unlock_irqrestore(&fsl_lbc_lock, flags);
263 return IRQ_HANDLED;
264 }
265
266 /*
267 * fsl_lbc_ctrl_probe
268 *
269 * called by device layer when it finds a device matching
270 * one our driver can handled. This code allocates all of
271 * the resources needed for the controller only. The
272 * resources for the NAND banks themselves are allocated
273 * in the chip probe function.
274 */
275
fsl_lbc_ctrl_probe(struct platform_device * dev)276 static int fsl_lbc_ctrl_probe(struct platform_device *dev)
277 {
278 int ret;
279
280 if (!dev->dev.of_node) {
281 dev_err(&dev->dev, "Device OF-Node is NULL");
282 return -EFAULT;
283 }
284
285 fsl_lbc_ctrl_dev = kzalloc(sizeof(*fsl_lbc_ctrl_dev), GFP_KERNEL);
286 if (!fsl_lbc_ctrl_dev)
287 return -ENOMEM;
288
289 dev_set_drvdata(&dev->dev, fsl_lbc_ctrl_dev);
290
291 spin_lock_init(&fsl_lbc_ctrl_dev->lock);
292 init_waitqueue_head(&fsl_lbc_ctrl_dev->irq_wait);
293
294 fsl_lbc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
295 if (!fsl_lbc_ctrl_dev->regs) {
296 dev_err(&dev->dev, "failed to get memory region\n");
297 ret = -ENODEV;
298 goto err;
299 }
300
301 fsl_lbc_ctrl_dev->irq[0] = irq_of_parse_and_map(dev->dev.of_node, 0);
302 if (!fsl_lbc_ctrl_dev->irq[0]) {
303 dev_err(&dev->dev, "failed to get irq resource\n");
304 ret = -ENODEV;
305 goto err;
306 }
307
308 fsl_lbc_ctrl_dev->dev = &dev->dev;
309
310 ret = fsl_lbc_ctrl_init(fsl_lbc_ctrl_dev, dev->dev.of_node);
311 if (ret < 0)
312 goto err;
313
314 ret = request_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_irq, 0,
315 "fsl-lbc", fsl_lbc_ctrl_dev);
316 if (ret != 0) {
317 dev_err(&dev->dev, "failed to install irq (%d)\n",
318 fsl_lbc_ctrl_dev->irq[0]);
319 ret = fsl_lbc_ctrl_dev->irq[0];
320 goto err;
321 }
322
323 fsl_lbc_ctrl_dev->irq[1] = irq_of_parse_and_map(dev->dev.of_node, 1);
324 if (fsl_lbc_ctrl_dev->irq[1]) {
325 ret = request_irq(fsl_lbc_ctrl_dev->irq[1], fsl_lbc_ctrl_irq,
326 IRQF_SHARED, "fsl-lbc-err", fsl_lbc_ctrl_dev);
327 if (ret) {
328 dev_err(&dev->dev, "failed to install irq (%d)\n",
329 fsl_lbc_ctrl_dev->irq[1]);
330 ret = fsl_lbc_ctrl_dev->irq[1];
331 goto err1;
332 }
333 }
334
335 /* Enable interrupts for any detected events */
336 out_be32(&fsl_lbc_ctrl_dev->regs->lteir, LTEIR_ENABLE);
337
338 return 0;
339
340 err1:
341 free_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_dev);
342 err:
343 iounmap(fsl_lbc_ctrl_dev->regs);
344 kfree(fsl_lbc_ctrl_dev);
345 fsl_lbc_ctrl_dev = NULL;
346 return ret;
347 }
348
349 #ifdef CONFIG_SUSPEND
350
351 /* save lbc registers */
fsl_lbc_syscore_suspend(void)352 static int fsl_lbc_syscore_suspend(void)
353 {
354 struct fsl_lbc_ctrl *ctrl;
355 struct fsl_lbc_regs __iomem *lbc;
356
357 ctrl = fsl_lbc_ctrl_dev;
358 if (!ctrl)
359 goto out;
360
361 lbc = ctrl->regs;
362 if (!lbc)
363 goto out;
364
365 ctrl->saved_regs = kmalloc(sizeof(struct fsl_lbc_regs), GFP_KERNEL);
366 if (!ctrl->saved_regs)
367 return -ENOMEM;
368
369 _memcpy_fromio(ctrl->saved_regs, lbc, sizeof(struct fsl_lbc_regs));
370
371 out:
372 return 0;
373 }
374
375 /* restore lbc registers */
fsl_lbc_syscore_resume(void)376 static void fsl_lbc_syscore_resume(void)
377 {
378 struct fsl_lbc_ctrl *ctrl;
379 struct fsl_lbc_regs __iomem *lbc;
380
381 ctrl = fsl_lbc_ctrl_dev;
382 if (!ctrl)
383 goto out;
384
385 lbc = ctrl->regs;
386 if (!lbc)
387 goto out;
388
389 if (ctrl->saved_regs) {
390 _memcpy_toio(lbc, ctrl->saved_regs,
391 sizeof(struct fsl_lbc_regs));
392 kfree(ctrl->saved_regs);
393 ctrl->saved_regs = NULL;
394 }
395
396 out:
397 return;
398 }
399 #endif /* CONFIG_SUSPEND */
400
401 static const struct of_device_id fsl_lbc_match[] = {
402 { .compatible = "fsl,elbc", },
403 { .compatible = "fsl,pq3-localbus", },
404 { .compatible = "fsl,pq2-localbus", },
405 { .compatible = "fsl,pq2pro-localbus", },
406 {},
407 };
408
409 #ifdef CONFIG_SUSPEND
410 static struct syscore_ops lbc_syscore_pm_ops = {
411 .suspend = fsl_lbc_syscore_suspend,
412 .resume = fsl_lbc_syscore_resume,
413 };
414 #endif
415
416 static struct platform_driver fsl_lbc_ctrl_driver = {
417 .driver = {
418 .name = "fsl-lbc",
419 .of_match_table = fsl_lbc_match,
420 },
421 .probe = fsl_lbc_ctrl_probe,
422 };
423
fsl_lbc_init(void)424 static int __init fsl_lbc_init(void)
425 {
426 #ifdef CONFIG_SUSPEND
427 register_syscore_ops(&lbc_syscore_pm_ops);
428 #endif
429 return platform_driver_register(&fsl_lbc_ctrl_driver);
430 }
431 subsys_initcall(fsl_lbc_init);
432