1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fscrypt.h: declarations for per-file encryption
4 *
5 * Filesystems that implement per-file encryption must include this header
6 * file.
7 *
8 * Copyright (C) 2015, Google, Inc.
9 *
10 * Written by Michael Halcrow, 2015.
11 * Modified by Jaegeuk Kim, 2015.
12 */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20
21 #define FS_CRYPTO_BLOCK_SIZE 16
22
23 union fscrypt_policy;
24 struct fscrypt_info;
25 struct seq_file;
26
27 struct fscrypt_str {
28 unsigned char *name;
29 u32 len;
30 };
31
32 struct fscrypt_name {
33 const struct qstr *usr_fname;
34 struct fscrypt_str disk_name;
35 u32 hash;
36 u32 minor_hash;
37 struct fscrypt_str crypto_buf;
38 bool is_nokey_name;
39 };
40
41 #define FSTR_INIT(n, l) { .name = n, .len = l }
42 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
43 #define fname_name(p) ((p)->disk_name.name)
44 #define fname_len(p) ((p)->disk_name.len)
45
46 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
47 #define FSCRYPT_SET_CONTEXT_MAX_SIZE 40
48
49 #ifdef CONFIG_FS_ENCRYPTION
50
51 /*
52 * If set, the fscrypt bounce page pool won't be allocated (unless another
53 * filesystem needs it). Set this if the filesystem always uses its own bounce
54 * pages for writes and therefore won't need the fscrypt bounce page pool.
55 */
56 #define FS_CFLG_OWN_PAGES (1U << 1)
57
58 /* Crypto operations for filesystems */
59 struct fscrypt_operations {
60
61 /* Set of optional flags; see above for allowed flags */
62 unsigned int flags;
63
64 /*
65 * If set, this is a filesystem-specific key description prefix that
66 * will be accepted for "logon" keys for v1 fscrypt policies, in
67 * addition to the generic prefix "fscrypt:". This functionality is
68 * deprecated, so new filesystems shouldn't set this field.
69 */
70 const char *key_prefix;
71
72 /*
73 * Get the fscrypt context of the given inode.
74 *
75 * @inode: the inode whose context to get
76 * @ctx: the buffer into which to get the context
77 * @len: length of the @ctx buffer in bytes
78 *
79 * Return: On success, returns the length of the context in bytes; this
80 * may be less than @len. On failure, returns -ENODATA if the
81 * inode doesn't have a context, -ERANGE if the context is
82 * longer than @len, or another -errno code.
83 */
84 int (*get_context)(struct inode *inode, void *ctx, size_t len);
85
86 /*
87 * Set an fscrypt context on the given inode.
88 *
89 * @inode: the inode whose context to set. The inode won't already have
90 * an fscrypt context.
91 * @ctx: the context to set
92 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
93 * @fs_data: If called from fscrypt_set_context(), this will be the
94 * value the filesystem passed to fscrypt_set_context().
95 * Otherwise (i.e. when called from
96 * FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
97 *
98 * i_rwsem will be held for write.
99 *
100 * Return: 0 on success, -errno on failure.
101 */
102 int (*set_context)(struct inode *inode, const void *ctx, size_t len,
103 void *fs_data);
104
105 /*
106 * Get the dummy fscrypt policy in use on the filesystem (if any).
107 *
108 * Filesystems only need to implement this function if they support the
109 * test_dummy_encryption mount option.
110 *
111 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
112 * mounted with test_dummy_encryption; otherwise NULL.
113 */
114 const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
115
116 /*
117 * Check whether a directory is empty. i_rwsem will be held for write.
118 */
119 bool (*empty_dir)(struct inode *inode);
120
121 /* The filesystem's maximum ciphertext filename length, in bytes */
122 unsigned int max_namelen;
123
124 /*
125 * Check whether the filesystem's inode numbers and UUID are stable,
126 * meaning that they will never be changed even by offline operations
127 * such as filesystem shrinking and therefore can be used in the
128 * encryption without the possibility of files becoming unreadable.
129 *
130 * Filesystems only need to implement this function if they want to
131 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These
132 * flags are designed to work around the limitations of UFS and eMMC
133 * inline crypto hardware, and they shouldn't be used in scenarios where
134 * such hardware isn't being used.
135 *
136 * Leaving this NULL is equivalent to always returning false.
137 */
138 bool (*has_stable_inodes)(struct super_block *sb);
139
140 /*
141 * Get the number of bits that the filesystem uses to represent inode
142 * numbers and file logical block numbers.
143 *
144 * By default, both of these are assumed to be 64-bit. This function
145 * can be implemented to declare that either or both of these numbers is
146 * shorter, which may allow the use of the
147 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
148 * inline crypto hardware whose maximum DUN length is less than 64 bits
149 * (e.g., eMMC v5.2 spec compliant hardware). This function only needs
150 * to be implemented if support for one of these features is needed.
151 */
152 void (*get_ino_and_lblk_bits)(struct super_block *sb,
153 int *ino_bits_ret, int *lblk_bits_ret);
154
155 /*
156 * Return the number of block devices to which the filesystem may write
157 * encrypted file contents.
158 *
159 * If the filesystem can use multiple block devices (other than block
160 * devices that aren't used for encrypted file contents, such as
161 * external journal devices), and wants to support inline encryption,
162 * then it must implement this function. Otherwise it's not needed.
163 */
164 int (*get_num_devices)(struct super_block *sb);
165
166 /*
167 * If ->get_num_devices() returns a value greater than 1, then this
168 * function is called to get the array of request_queues that the
169 * filesystem is using -- one per block device. (There may be duplicate
170 * entries in this array, as block devices can share a request_queue.)
171 */
172 void (*get_devices)(struct super_block *sb,
173 struct request_queue **devs);
174 };
175
fscrypt_get_info(const struct inode * inode)176 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
177 {
178 /*
179 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
180 * I.e., another task may publish ->i_crypt_info concurrently, executing
181 * a RELEASE barrier. We need to use smp_load_acquire() here to safely
182 * ACQUIRE the memory the other task published.
183 */
184 return smp_load_acquire(&inode->i_crypt_info);
185 }
186
187 /**
188 * fscrypt_needs_contents_encryption() - check whether an inode needs
189 * contents encryption
190 * @inode: the inode to check
191 *
192 * Return: %true iff the inode is an encrypted regular file and the kernel was
193 * built with fscrypt support.
194 *
195 * If you need to know whether the encrypt bit is set even when the kernel was
196 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
197 */
fscrypt_needs_contents_encryption(const struct inode * inode)198 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
199 {
200 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
201 }
202
203 /*
204 * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
205 * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
206 * cleared. Note that we don't have to support arbitrary moves of this flag
207 * because fscrypt doesn't allow no-key names to be the source or target of a
208 * rename().
209 */
fscrypt_handle_d_move(struct dentry * dentry)210 static inline void fscrypt_handle_d_move(struct dentry *dentry)
211 {
212 dentry->d_flags &= ~DCACHE_NOKEY_NAME;
213 }
214
215 /**
216 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
217 * @dentry: the dentry to check
218 *
219 * This returns true if the dentry is a no-key dentry. A no-key dentry is a
220 * dentry that was created in an encrypted directory that hasn't had its
221 * encryption key added yet. Such dentries may be either positive or negative.
222 *
223 * When a filesystem is asked to create a new filename in an encrypted directory
224 * and the new filename's dentry is a no-key dentry, it must fail the operation
225 * with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
226 * ->rename(), and ->link(). (However, ->rename() and ->link() are already
227 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
228 *
229 * This is necessary because creating a filename requires the directory's
230 * encryption key, but just checking for the key on the directory inode during
231 * the final filesystem operation doesn't guarantee that the key was available
232 * during the preceding dentry lookup. And the key must have already been
233 * available during the dentry lookup in order for it to have been checked
234 * whether the filename already exists in the directory and for the new file's
235 * dentry not to be invalidated due to it incorrectly having the no-key flag.
236 *
237 * Return: %true if the dentry is a no-key name
238 */
fscrypt_is_nokey_name(const struct dentry * dentry)239 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
240 {
241 return dentry->d_flags & DCACHE_NOKEY_NAME;
242 }
243
244 /* crypto.c */
245 void fscrypt_enqueue_decrypt_work(struct work_struct *);
246
247 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
248 unsigned int len,
249 unsigned int offs,
250 gfp_t gfp_flags);
251 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
252 unsigned int len, unsigned int offs,
253 u64 lblk_num, gfp_t gfp_flags);
254
255 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
256 unsigned int offs);
257 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
258 unsigned int len, unsigned int offs,
259 u64 lblk_num);
260
fscrypt_is_bounce_page(struct page * page)261 static inline bool fscrypt_is_bounce_page(struct page *page)
262 {
263 return page->mapping == NULL;
264 }
265
fscrypt_pagecache_page(struct page * bounce_page)266 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
267 {
268 return (struct page *)page_private(bounce_page);
269 }
270
271 void fscrypt_free_bounce_page(struct page *bounce_page);
272
273 /* policy.c */
274 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
275 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
276 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
277 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
278 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
279 int fscrypt_set_context(struct inode *inode, void *fs_data);
280
281 struct fscrypt_dummy_policy {
282 const union fscrypt_policy *policy;
283 };
284
285 int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
286 struct fscrypt_dummy_policy *dummy_policy);
287 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
288 struct super_block *sb);
289 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)290 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
291 {
292 kfree(dummy_policy->policy);
293 dummy_policy->policy = NULL;
294 }
295
296 /* keyring.c */
297 void fscrypt_sb_free(struct super_block *sb);
298 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
299 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
300 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
301 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
302
303 /* keysetup.c */
304 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
305 bool *encrypt_ret);
306 void fscrypt_put_encryption_info(struct inode *inode);
307 void fscrypt_free_inode(struct inode *inode);
308 int fscrypt_drop_inode(struct inode *inode);
309
310 /* fname.c */
311 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
312 int lookup, struct fscrypt_name *fname);
313
fscrypt_free_filename(struct fscrypt_name * fname)314 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
315 {
316 kfree(fname->crypto_buf.name);
317 }
318
319 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
320 struct fscrypt_str *crypto_str);
321 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
322 int fscrypt_fname_disk_to_usr(const struct inode *inode,
323 u32 hash, u32 minor_hash,
324 const struct fscrypt_str *iname,
325 struct fscrypt_str *oname);
326 bool fscrypt_match_name(const struct fscrypt_name *fname,
327 const u8 *de_name, u32 de_name_len);
328 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
329 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
330
331 /* bio.c */
332 void fscrypt_decrypt_bio(struct bio *bio);
333 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
334 sector_t pblk, unsigned int len);
335
336 /* hooks.c */
337 int fscrypt_file_open(struct inode *inode, struct file *filp);
338 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
339 struct dentry *dentry);
340 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
341 struct inode *new_dir, struct dentry *new_dentry,
342 unsigned int flags);
343 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
344 struct fscrypt_name *fname);
345 int __fscrypt_prepare_readdir(struct inode *dir);
346 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
347 int fscrypt_prepare_setflags(struct inode *inode,
348 unsigned int oldflags, unsigned int flags);
349 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
350 unsigned int len, unsigned int max_len,
351 struct fscrypt_str *disk_link);
352 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
353 unsigned int len, struct fscrypt_str *disk_link);
354 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
355 unsigned int max_size,
356 struct delayed_call *done);
357 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)358 static inline void fscrypt_set_ops(struct super_block *sb,
359 const struct fscrypt_operations *s_cop)
360 {
361 sb->s_cop = s_cop;
362 }
363 #else /* !CONFIG_FS_ENCRYPTION */
364
fscrypt_get_info(const struct inode * inode)365 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
366 {
367 return NULL;
368 }
369
fscrypt_needs_contents_encryption(const struct inode * inode)370 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
371 {
372 return false;
373 }
374
fscrypt_handle_d_move(struct dentry * dentry)375 static inline void fscrypt_handle_d_move(struct dentry *dentry)
376 {
377 }
378
fscrypt_is_nokey_name(const struct dentry * dentry)379 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
380 {
381 return false;
382 }
383
384 /* crypto.c */
fscrypt_enqueue_decrypt_work(struct work_struct * work)385 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
386 {
387 }
388
fscrypt_encrypt_pagecache_blocks(struct page * page,unsigned int len,unsigned int offs,gfp_t gfp_flags)389 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
390 unsigned int len,
391 unsigned int offs,
392 gfp_t gfp_flags)
393 {
394 return ERR_PTR(-EOPNOTSUPP);
395 }
396
fscrypt_encrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num,gfp_t gfp_flags)397 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
398 struct page *page,
399 unsigned int len,
400 unsigned int offs, u64 lblk_num,
401 gfp_t gfp_flags)
402 {
403 return -EOPNOTSUPP;
404 }
405
fscrypt_decrypt_pagecache_blocks(struct page * page,unsigned int len,unsigned int offs)406 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
407 unsigned int len,
408 unsigned int offs)
409 {
410 return -EOPNOTSUPP;
411 }
412
fscrypt_decrypt_block_inplace(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num)413 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
414 struct page *page,
415 unsigned int len,
416 unsigned int offs, u64 lblk_num)
417 {
418 return -EOPNOTSUPP;
419 }
420
fscrypt_is_bounce_page(struct page * page)421 static inline bool fscrypt_is_bounce_page(struct page *page)
422 {
423 return false;
424 }
425
fscrypt_pagecache_page(struct page * bounce_page)426 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
427 {
428 WARN_ON_ONCE(1);
429 return ERR_PTR(-EINVAL);
430 }
431
fscrypt_free_bounce_page(struct page * bounce_page)432 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
433 {
434 }
435
436 /* policy.c */
fscrypt_ioctl_set_policy(struct file * filp,const void __user * arg)437 static inline int fscrypt_ioctl_set_policy(struct file *filp,
438 const void __user *arg)
439 {
440 return -EOPNOTSUPP;
441 }
442
fscrypt_ioctl_get_policy(struct file * filp,void __user * arg)443 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
444 {
445 return -EOPNOTSUPP;
446 }
447
fscrypt_ioctl_get_policy_ex(struct file * filp,void __user * arg)448 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
449 void __user *arg)
450 {
451 return -EOPNOTSUPP;
452 }
453
fscrypt_ioctl_get_nonce(struct file * filp,void __user * arg)454 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
455 {
456 return -EOPNOTSUPP;
457 }
458
fscrypt_has_permitted_context(struct inode * parent,struct inode * child)459 static inline int fscrypt_has_permitted_context(struct inode *parent,
460 struct inode *child)
461 {
462 return 0;
463 }
464
fscrypt_set_context(struct inode * inode,void * fs_data)465 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
466 {
467 return -EOPNOTSUPP;
468 }
469
470 struct fscrypt_dummy_policy {
471 };
472
fscrypt_show_test_dummy_encryption(struct seq_file * seq,char sep,struct super_block * sb)473 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
474 char sep,
475 struct super_block *sb)
476 {
477 }
478
479 static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy * dummy_policy)480 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
481 {
482 }
483
484 /* keyring.c */
fscrypt_sb_free(struct super_block * sb)485 static inline void fscrypt_sb_free(struct super_block *sb)
486 {
487 }
488
fscrypt_ioctl_add_key(struct file * filp,void __user * arg)489 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
490 {
491 return -EOPNOTSUPP;
492 }
493
fscrypt_ioctl_remove_key(struct file * filp,void __user * arg)494 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
495 {
496 return -EOPNOTSUPP;
497 }
498
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * arg)499 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
500 void __user *arg)
501 {
502 return -EOPNOTSUPP;
503 }
504
fscrypt_ioctl_get_key_status(struct file * filp,void __user * arg)505 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
506 void __user *arg)
507 {
508 return -EOPNOTSUPP;
509 }
510
511 /* keysetup.c */
512
fscrypt_prepare_new_inode(struct inode * dir,struct inode * inode,bool * encrypt_ret)513 static inline int fscrypt_prepare_new_inode(struct inode *dir,
514 struct inode *inode,
515 bool *encrypt_ret)
516 {
517 if (IS_ENCRYPTED(dir))
518 return -EOPNOTSUPP;
519 return 0;
520 }
521
fscrypt_put_encryption_info(struct inode * inode)522 static inline void fscrypt_put_encryption_info(struct inode *inode)
523 {
524 return;
525 }
526
fscrypt_free_inode(struct inode * inode)527 static inline void fscrypt_free_inode(struct inode *inode)
528 {
529 }
530
fscrypt_drop_inode(struct inode * inode)531 static inline int fscrypt_drop_inode(struct inode *inode)
532 {
533 return 0;
534 }
535
536 /* fname.c */
fscrypt_setup_filename(struct inode * dir,const struct qstr * iname,int lookup,struct fscrypt_name * fname)537 static inline int fscrypt_setup_filename(struct inode *dir,
538 const struct qstr *iname,
539 int lookup, struct fscrypt_name *fname)
540 {
541 if (IS_ENCRYPTED(dir))
542 return -EOPNOTSUPP;
543
544 memset(fname, 0, sizeof(*fname));
545 fname->usr_fname = iname;
546 fname->disk_name.name = (unsigned char *)iname->name;
547 fname->disk_name.len = iname->len;
548 return 0;
549 }
550
fscrypt_free_filename(struct fscrypt_name * fname)551 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
552 {
553 return;
554 }
555
fscrypt_fname_alloc_buffer(u32 max_encrypted_len,struct fscrypt_str * crypto_str)556 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
557 struct fscrypt_str *crypto_str)
558 {
559 return -EOPNOTSUPP;
560 }
561
fscrypt_fname_free_buffer(struct fscrypt_str * crypto_str)562 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
563 {
564 return;
565 }
566
fscrypt_fname_disk_to_usr(const struct inode * inode,u32 hash,u32 minor_hash,const struct fscrypt_str * iname,struct fscrypt_str * oname)567 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
568 u32 hash, u32 minor_hash,
569 const struct fscrypt_str *iname,
570 struct fscrypt_str *oname)
571 {
572 return -EOPNOTSUPP;
573 }
574
fscrypt_match_name(const struct fscrypt_name * fname,const u8 * de_name,u32 de_name_len)575 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
576 const u8 *de_name, u32 de_name_len)
577 {
578 /* Encryption support disabled; use standard comparison */
579 if (de_name_len != fname->disk_name.len)
580 return false;
581 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
582 }
583
fscrypt_fname_siphash(const struct inode * dir,const struct qstr * name)584 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
585 const struct qstr *name)
586 {
587 WARN_ON_ONCE(1);
588 return 0;
589 }
590
fscrypt_d_revalidate(struct dentry * dentry,unsigned int flags)591 static inline int fscrypt_d_revalidate(struct dentry *dentry,
592 unsigned int flags)
593 {
594 return 1;
595 }
596
597 /* bio.c */
fscrypt_decrypt_bio(struct bio * bio)598 static inline void fscrypt_decrypt_bio(struct bio *bio)
599 {
600 }
601
fscrypt_zeroout_range(const struct inode * inode,pgoff_t lblk,sector_t pblk,unsigned int len)602 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
603 sector_t pblk, unsigned int len)
604 {
605 return -EOPNOTSUPP;
606 }
607
608 /* hooks.c */
609
fscrypt_file_open(struct inode * inode,struct file * filp)610 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
611 {
612 if (IS_ENCRYPTED(inode))
613 return -EOPNOTSUPP;
614 return 0;
615 }
616
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)617 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
618 struct dentry *dentry)
619 {
620 return -EOPNOTSUPP;
621 }
622
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)623 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
624 struct dentry *old_dentry,
625 struct inode *new_dir,
626 struct dentry *new_dentry,
627 unsigned int flags)
628 {
629 return -EOPNOTSUPP;
630 }
631
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)632 static inline int __fscrypt_prepare_lookup(struct inode *dir,
633 struct dentry *dentry,
634 struct fscrypt_name *fname)
635 {
636 return -EOPNOTSUPP;
637 }
638
__fscrypt_prepare_readdir(struct inode * dir)639 static inline int __fscrypt_prepare_readdir(struct inode *dir)
640 {
641 return -EOPNOTSUPP;
642 }
643
__fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)644 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
645 struct iattr *attr)
646 {
647 return -EOPNOTSUPP;
648 }
649
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)650 static inline int fscrypt_prepare_setflags(struct inode *inode,
651 unsigned int oldflags,
652 unsigned int flags)
653 {
654 return 0;
655 }
656
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)657 static inline int fscrypt_prepare_symlink(struct inode *dir,
658 const char *target,
659 unsigned int len,
660 unsigned int max_len,
661 struct fscrypt_str *disk_link)
662 {
663 if (IS_ENCRYPTED(dir))
664 return -EOPNOTSUPP;
665 disk_link->name = (unsigned char *)target;
666 disk_link->len = len + 1;
667 if (disk_link->len > max_len)
668 return -ENAMETOOLONG;
669 return 0;
670 }
671
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)672 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
673 const char *target,
674 unsigned int len,
675 struct fscrypt_str *disk_link)
676 {
677 return -EOPNOTSUPP;
678 }
679
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)680 static inline const char *fscrypt_get_symlink(struct inode *inode,
681 const void *caddr,
682 unsigned int max_size,
683 struct delayed_call *done)
684 {
685 return ERR_PTR(-EOPNOTSUPP);
686 }
687
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)688 static inline int fscrypt_symlink_getattr(const struct path *path,
689 struct kstat *stat)
690 {
691 return -EOPNOTSUPP;
692 }
693
fscrypt_set_ops(struct super_block * sb,const struct fscrypt_operations * s_cop)694 static inline void fscrypt_set_ops(struct super_block *sb,
695 const struct fscrypt_operations *s_cop)
696 {
697 }
698
699 #endif /* !CONFIG_FS_ENCRYPTION */
700
701 /* inline_crypt.c */
702 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
703
704 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
705
706 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
707 const struct inode *inode, u64 first_lblk,
708 gfp_t gfp_mask);
709
710 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
711 const struct buffer_head *first_bh,
712 gfp_t gfp_mask);
713
714 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
715 u64 next_lblk);
716
717 bool fscrypt_mergeable_bio_bh(struct bio *bio,
718 const struct buffer_head *next_bh);
719
720 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
721
__fscrypt_inode_uses_inline_crypto(const struct inode * inode)722 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
723 {
724 return false;
725 }
726
fscrypt_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,u64 first_lblk,gfp_t gfp_mask)727 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
728 const struct inode *inode,
729 u64 first_lblk, gfp_t gfp_mask) { }
730
fscrypt_set_bio_crypt_ctx_bh(struct bio * bio,const struct buffer_head * first_bh,gfp_t gfp_mask)731 static inline void fscrypt_set_bio_crypt_ctx_bh(
732 struct bio *bio,
733 const struct buffer_head *first_bh,
734 gfp_t gfp_mask) { }
735
fscrypt_mergeable_bio(struct bio * bio,const struct inode * inode,u64 next_lblk)736 static inline bool fscrypt_mergeable_bio(struct bio *bio,
737 const struct inode *inode,
738 u64 next_lblk)
739 {
740 return true;
741 }
742
fscrypt_mergeable_bio_bh(struct bio * bio,const struct buffer_head * next_bh)743 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
744 const struct buffer_head *next_bh)
745 {
746 return true;
747 }
748 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
749
750 /**
751 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
752 * encryption
753 * @inode: an inode. If encrypted, its key must be set up.
754 *
755 * Return: true if the inode requires file contents encryption and if the
756 * encryption should be done in the block layer via blk-crypto rather
757 * than in the filesystem layer.
758 */
fscrypt_inode_uses_inline_crypto(const struct inode * inode)759 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
760 {
761 return fscrypt_needs_contents_encryption(inode) &&
762 __fscrypt_inode_uses_inline_crypto(inode);
763 }
764
765 /**
766 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
767 * encryption
768 * @inode: an inode. If encrypted, its key must be set up.
769 *
770 * Return: true if the inode requires file contents encryption and if the
771 * encryption should be done in the filesystem layer rather than in the
772 * block layer via blk-crypto.
773 */
fscrypt_inode_uses_fs_layer_crypto(const struct inode * inode)774 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
775 {
776 return fscrypt_needs_contents_encryption(inode) &&
777 !__fscrypt_inode_uses_inline_crypto(inode);
778 }
779
780 /**
781 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
782 * @inode: the inode to check
783 *
784 * Return: %true if the inode has had its encryption key set up, else %false.
785 *
786 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
787 * set up the key first.
788 */
fscrypt_has_encryption_key(const struct inode * inode)789 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
790 {
791 return fscrypt_get_info(inode) != NULL;
792 }
793
794 /**
795 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
796 * directory
797 * @old_dentry: an existing dentry for the inode being linked
798 * @dir: the target directory
799 * @dentry: negative dentry for the target filename
800 *
801 * A new link can only be added to an encrypted directory if the directory's
802 * encryption key is available --- since otherwise we'd have no way to encrypt
803 * the filename.
804 *
805 * We also verify that the link will not violate the constraint that all files
806 * in an encrypted directory tree use the same encryption policy.
807 *
808 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
809 * -EXDEV if the link would result in an inconsistent encryption policy, or
810 * another -errno code.
811 */
fscrypt_prepare_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)812 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
813 struct inode *dir,
814 struct dentry *dentry)
815 {
816 if (IS_ENCRYPTED(dir))
817 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
818 return 0;
819 }
820
821 /**
822 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
823 * directories
824 * @old_dir: source directory
825 * @old_dentry: dentry for source file
826 * @new_dir: target directory
827 * @new_dentry: dentry for target location (may be negative unless exchanging)
828 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
829 *
830 * Prepare for ->rename() where the source and/or target directories may be
831 * encrypted. A new link can only be added to an encrypted directory if the
832 * directory's encryption key is available --- since otherwise we'd have no way
833 * to encrypt the filename. A rename to an existing name, on the other hand,
834 * *is* cryptographically possible without the key. However, we take the more
835 * conservative approach and just forbid all no-key renames.
836 *
837 * We also verify that the rename will not violate the constraint that all files
838 * in an encrypted directory tree use the same encryption policy.
839 *
840 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
841 * rename would cause inconsistent encryption policies, or another -errno code.
842 */
fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)843 static inline int fscrypt_prepare_rename(struct inode *old_dir,
844 struct dentry *old_dentry,
845 struct inode *new_dir,
846 struct dentry *new_dentry,
847 unsigned int flags)
848 {
849 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
850 return __fscrypt_prepare_rename(old_dir, old_dentry,
851 new_dir, new_dentry, flags);
852 return 0;
853 }
854
855 /**
856 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
857 * directory
858 * @dir: directory being searched
859 * @dentry: filename being looked up
860 * @fname: (output) the name to use to search the on-disk directory
861 *
862 * Prepare for ->lookup() in a directory which may be encrypted by determining
863 * the name that will actually be used to search the directory on-disk. If the
864 * directory's encryption policy is supported by this kernel and its encryption
865 * key is available, then the lookup is assumed to be by plaintext name;
866 * otherwise, it is assumed to be by no-key name.
867 *
868 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
869 * name. In this case the filesystem must assign the dentry a dentry_operations
870 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
871 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
872 * directory's encryption key is later added.
873 *
874 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
875 * filename isn't a valid no-key name, so a negative dentry should be created;
876 * or another -errno code.
877 */
fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)878 static inline int fscrypt_prepare_lookup(struct inode *dir,
879 struct dentry *dentry,
880 struct fscrypt_name *fname)
881 {
882 if (IS_ENCRYPTED(dir))
883 return __fscrypt_prepare_lookup(dir, dentry, fname);
884
885 memset(fname, 0, sizeof(*fname));
886 fname->usr_fname = &dentry->d_name;
887 fname->disk_name.name = (unsigned char *)dentry->d_name.name;
888 fname->disk_name.len = dentry->d_name.len;
889 return 0;
890 }
891
892 /**
893 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
894 * @dir: the directory inode
895 *
896 * If the directory is encrypted and it doesn't already have its encryption key
897 * set up, try to set it up so that the filenames will be listed in plaintext
898 * form rather than in no-key form.
899 *
900 * Return: 0 on success; -errno on error. Note that the encryption key being
901 * unavailable is not considered an error. It is also not an error if
902 * the encryption policy is unsupported by this kernel; that is treated
903 * like the key being unavailable, so that files can still be deleted.
904 */
fscrypt_prepare_readdir(struct inode * dir)905 static inline int fscrypt_prepare_readdir(struct inode *dir)
906 {
907 if (IS_ENCRYPTED(dir))
908 return __fscrypt_prepare_readdir(dir);
909 return 0;
910 }
911
912 /**
913 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
914 * attributes
915 * @dentry: dentry through which the inode is being changed
916 * @attr: attributes to change
917 *
918 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
919 * most attribute changes are allowed even without the encryption key. However,
920 * without the encryption key we do have to forbid truncates. This is needed
921 * because the size being truncated to may not be a multiple of the filesystem
922 * block size, and in that case we'd have to decrypt the final block, zero the
923 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a
924 * filesystem block boundary, but it's simpler to just forbid all truncates ---
925 * and we already forbid all other contents modifications without the key.)
926 *
927 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
928 * if a problem occurred while setting up the encryption key.
929 */
fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)930 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
931 struct iattr *attr)
932 {
933 if (IS_ENCRYPTED(d_inode(dentry)))
934 return __fscrypt_prepare_setattr(dentry, attr);
935 return 0;
936 }
937
938 /**
939 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
940 * @inode: symlink inode
941 * @target: plaintext symlink target
942 * @len: length of @target excluding null terminator
943 * @disk_link: (in/out) the on-disk symlink target being prepared
944 *
945 * If the symlink target needs to be encrypted, then this function encrypts it
946 * into @disk_link->name. fscrypt_prepare_symlink() must have been called
947 * previously to compute @disk_link->len. If the filesystem did not allocate a
948 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
949 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
950 *
951 * Return: 0 on success, -errno on failure
952 */
fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)953 static inline int fscrypt_encrypt_symlink(struct inode *inode,
954 const char *target,
955 unsigned int len,
956 struct fscrypt_str *disk_link)
957 {
958 if (IS_ENCRYPTED(inode))
959 return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
960 return 0;
961 }
962
963 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
fscrypt_finalize_bounce_page(struct page ** pagep)964 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
965 {
966 struct page *page = *pagep;
967
968 if (fscrypt_is_bounce_page(page)) {
969 *pagep = fscrypt_pagecache_page(page);
970 fscrypt_free_bounce_page(page);
971 }
972 }
973
974 #endif /* _LINUX_FSCRYPT_H */
975