1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/arch/parisc/mm/init.c
4 *
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright 1999 SuSE GmbH
7 * changed by Philipp Rumpf
8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9 * Copyright 2004 Randolph Chung (tausq@debian.org)
10 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
11 *
12 */
13
14
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
35
36 extern int data_start;
37 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
38
39 #if CONFIG_PGTABLE_LEVELS == 3
40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
42 * guarantee that global objects will be laid out in memory in the same order
43 * as the order of declaration, so put these in different sections and use
44 * the linker script to order them. */
45 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
46 #endif
47
48 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
49 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
50
51 static struct resource data_resource = {
52 .name = "Kernel data",
53 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
54 };
55
56 static struct resource code_resource = {
57 .name = "Kernel code",
58 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
59 };
60
61 static struct resource pdcdata_resource = {
62 .name = "PDC data (Page Zero)",
63 .start = 0,
64 .end = 0x9ff,
65 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
66 };
67
68 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
69
70 /* The following array is initialized from the firmware specific
71 * information retrieved in kernel/inventory.c.
72 */
73
74 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
75 int npmem_ranges __initdata;
76
77 #ifdef CONFIG_64BIT
78 #define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
79 #else /* !CONFIG_64BIT */
80 #define MAX_MEM (3584U*1024U*1024U)
81 #endif /* !CONFIG_64BIT */
82
83 static unsigned long mem_limit __read_mostly = MAX_MEM;
84
mem_limit_func(void)85 static void __init mem_limit_func(void)
86 {
87 char *cp, *end;
88 unsigned long limit;
89
90 /* We need this before __setup() functions are called */
91
92 limit = MAX_MEM;
93 for (cp = boot_command_line; *cp; ) {
94 if (memcmp(cp, "mem=", 4) == 0) {
95 cp += 4;
96 limit = memparse(cp, &end);
97 if (end != cp)
98 break;
99 cp = end;
100 } else {
101 while (*cp != ' ' && *cp)
102 ++cp;
103 while (*cp == ' ')
104 ++cp;
105 }
106 }
107
108 if (limit < mem_limit)
109 mem_limit = limit;
110 }
111
112 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
113
setup_bootmem(void)114 static void __init setup_bootmem(void)
115 {
116 unsigned long mem_max;
117 #ifndef CONFIG_SPARSEMEM
118 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
119 int npmem_holes;
120 #endif
121 int i, sysram_resource_count;
122
123 disable_sr_hashing(); /* Turn off space register hashing */
124
125 /*
126 * Sort the ranges. Since the number of ranges is typically
127 * small, and performance is not an issue here, just do
128 * a simple insertion sort.
129 */
130
131 for (i = 1; i < npmem_ranges; i++) {
132 int j;
133
134 for (j = i; j > 0; j--) {
135 physmem_range_t tmp;
136
137 if (pmem_ranges[j-1].start_pfn <
138 pmem_ranges[j].start_pfn) {
139
140 break;
141 }
142 tmp = pmem_ranges[j-1];
143 pmem_ranges[j-1] = pmem_ranges[j];
144 pmem_ranges[j] = tmp;
145 }
146 }
147
148 #ifndef CONFIG_SPARSEMEM
149 /*
150 * Throw out ranges that are too far apart (controlled by
151 * MAX_GAP).
152 */
153
154 for (i = 1; i < npmem_ranges; i++) {
155 if (pmem_ranges[i].start_pfn -
156 (pmem_ranges[i-1].start_pfn +
157 pmem_ranges[i-1].pages) > MAX_GAP) {
158 npmem_ranges = i;
159 printk("Large gap in memory detected (%ld pages). "
160 "Consider turning on CONFIG_SPARSEMEM\n",
161 pmem_ranges[i].start_pfn -
162 (pmem_ranges[i-1].start_pfn +
163 pmem_ranges[i-1].pages));
164 break;
165 }
166 }
167 #endif
168
169 /* Print the memory ranges */
170 pr_info("Memory Ranges:\n");
171
172 for (i = 0; i < npmem_ranges; i++) {
173 struct resource *res = &sysram_resources[i];
174 unsigned long start;
175 unsigned long size;
176
177 size = (pmem_ranges[i].pages << PAGE_SHIFT);
178 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
179 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
180 i, start, start + (size - 1), size >> 20);
181
182 /* request memory resource */
183 res->name = "System RAM";
184 res->start = start;
185 res->end = start + size - 1;
186 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
187 request_resource(&iomem_resource, res);
188 }
189
190 sysram_resource_count = npmem_ranges;
191
192 /*
193 * For 32 bit kernels we limit the amount of memory we can
194 * support, in order to preserve enough kernel address space
195 * for other purposes. For 64 bit kernels we don't normally
196 * limit the memory, but this mechanism can be used to
197 * artificially limit the amount of memory (and it is written
198 * to work with multiple memory ranges).
199 */
200
201 mem_limit_func(); /* check for "mem=" argument */
202
203 mem_max = 0;
204 for (i = 0; i < npmem_ranges; i++) {
205 unsigned long rsize;
206
207 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
208 if ((mem_max + rsize) > mem_limit) {
209 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
210 if (mem_max == mem_limit)
211 npmem_ranges = i;
212 else {
213 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
214 - (mem_max >> PAGE_SHIFT);
215 npmem_ranges = i + 1;
216 mem_max = mem_limit;
217 }
218 break;
219 }
220 mem_max += rsize;
221 }
222
223 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
224
225 #ifndef CONFIG_SPARSEMEM
226 /* Merge the ranges, keeping track of the holes */
227 {
228 unsigned long end_pfn;
229 unsigned long hole_pages;
230
231 npmem_holes = 0;
232 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
233 for (i = 1; i < npmem_ranges; i++) {
234
235 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
236 if (hole_pages) {
237 pmem_holes[npmem_holes].start_pfn = end_pfn;
238 pmem_holes[npmem_holes++].pages = hole_pages;
239 end_pfn += hole_pages;
240 }
241 end_pfn += pmem_ranges[i].pages;
242 }
243
244 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
245 npmem_ranges = 1;
246 }
247 #endif
248
249 /*
250 * Initialize and free the full range of memory in each range.
251 */
252
253 max_pfn = 0;
254 for (i = 0; i < npmem_ranges; i++) {
255 unsigned long start_pfn;
256 unsigned long npages;
257 unsigned long start;
258 unsigned long size;
259
260 start_pfn = pmem_ranges[i].start_pfn;
261 npages = pmem_ranges[i].pages;
262
263 start = start_pfn << PAGE_SHIFT;
264 size = npages << PAGE_SHIFT;
265
266 /* add system RAM memblock */
267 memblock_add(start, size);
268
269 if ((start_pfn + npages) > max_pfn)
270 max_pfn = start_pfn + npages;
271 }
272
273 /*
274 * We can't use memblock top-down allocations because we only
275 * created the initial mapping up to KERNEL_INITIAL_SIZE in
276 * the assembly bootup code.
277 */
278 memblock_set_bottom_up(true);
279
280 /* IOMMU is always used to access "high mem" on those boxes
281 * that can support enough mem that a PCI device couldn't
282 * directly DMA to any physical addresses.
283 * ISA DMA support will need to revisit this.
284 */
285 max_low_pfn = max_pfn;
286
287 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
288
289 #define PDC_CONSOLE_IO_IODC_SIZE 32768
290
291 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
292 PDC_CONSOLE_IO_IODC_SIZE));
293 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
294 (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
295
296 #ifndef CONFIG_SPARSEMEM
297
298 /* reserve the holes */
299
300 for (i = 0; i < npmem_holes; i++) {
301 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
302 (pmem_holes[i].pages << PAGE_SHIFT));
303 }
304 #endif
305
306 #ifdef CONFIG_BLK_DEV_INITRD
307 if (initrd_start) {
308 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
309 if (__pa(initrd_start) < mem_max) {
310 unsigned long initrd_reserve;
311
312 if (__pa(initrd_end) > mem_max) {
313 initrd_reserve = mem_max - __pa(initrd_start);
314 } else {
315 initrd_reserve = initrd_end - initrd_start;
316 }
317 initrd_below_start_ok = 1;
318 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
319
320 memblock_reserve(__pa(initrd_start), initrd_reserve);
321 }
322 }
323 #endif
324
325 data_resource.start = virt_to_phys(&data_start);
326 data_resource.end = virt_to_phys(_end) - 1;
327 code_resource.start = virt_to_phys(_text);
328 code_resource.end = virt_to_phys(&data_start)-1;
329
330 /* We don't know which region the kernel will be in, so try
331 * all of them.
332 */
333 for (i = 0; i < sysram_resource_count; i++) {
334 struct resource *res = &sysram_resources[i];
335 request_resource(res, &code_resource);
336 request_resource(res, &data_resource);
337 }
338 request_resource(&sysram_resources[0], &pdcdata_resource);
339
340 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
341 pdc_pdt_init();
342
343 memblock_allow_resize();
344 memblock_dump_all();
345 }
346
347 static bool kernel_set_to_readonly;
348
map_pages(unsigned long start_vaddr,unsigned long start_paddr,unsigned long size,pgprot_t pgprot,int force)349 static void __init map_pages(unsigned long start_vaddr,
350 unsigned long start_paddr, unsigned long size,
351 pgprot_t pgprot, int force)
352 {
353 pmd_t *pmd;
354 pte_t *pg_table;
355 unsigned long end_paddr;
356 unsigned long start_pmd;
357 unsigned long start_pte;
358 unsigned long tmp1;
359 unsigned long tmp2;
360 unsigned long address;
361 unsigned long vaddr;
362 unsigned long ro_start;
363 unsigned long ro_end;
364 unsigned long kernel_start, kernel_end;
365
366 ro_start = __pa((unsigned long)_text);
367 ro_end = __pa((unsigned long)&data_start);
368 kernel_start = __pa((unsigned long)&__init_begin);
369 kernel_end = __pa((unsigned long)&_end);
370
371 end_paddr = start_paddr + size;
372
373 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
374 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
375 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
376
377 address = start_paddr;
378 vaddr = start_vaddr;
379 while (address < end_paddr) {
380 pgd_t *pgd = pgd_offset_k(vaddr);
381 p4d_t *p4d = p4d_offset(pgd, vaddr);
382 pud_t *pud = pud_offset(p4d, vaddr);
383
384 #if CONFIG_PGTABLE_LEVELS == 3
385 if (pud_none(*pud)) {
386 pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
387 PAGE_SIZE << PMD_ORDER);
388 if (!pmd)
389 panic("pmd allocation failed.\n");
390 pud_populate(NULL, pud, pmd);
391 }
392 #endif
393
394 pmd = pmd_offset(pud, vaddr);
395 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
396 if (pmd_none(*pmd)) {
397 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
398 if (!pg_table)
399 panic("page table allocation failed\n");
400 pmd_populate_kernel(NULL, pmd, pg_table);
401 }
402
403 pg_table = pte_offset_kernel(pmd, vaddr);
404 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
405 pte_t pte;
406 pgprot_t prot;
407 bool huge = false;
408
409 if (force) {
410 prot = pgprot;
411 } else if (address < kernel_start || address >= kernel_end) {
412 /* outside kernel memory */
413 prot = PAGE_KERNEL;
414 } else if (!kernel_set_to_readonly) {
415 /* still initializing, allow writing to RO memory */
416 prot = PAGE_KERNEL_RWX;
417 huge = true;
418 } else if (address >= ro_start) {
419 /* Code (ro) and Data areas */
420 prot = (address < ro_end) ?
421 PAGE_KERNEL_EXEC : PAGE_KERNEL;
422 huge = true;
423 } else {
424 prot = PAGE_KERNEL;
425 }
426
427 pte = __mk_pte(address, prot);
428 if (huge)
429 pte = pte_mkhuge(pte);
430
431 if (address >= end_paddr)
432 break;
433
434 set_pte(pg_table, pte);
435
436 address += PAGE_SIZE;
437 vaddr += PAGE_SIZE;
438 }
439 start_pte = 0;
440
441 if (address >= end_paddr)
442 break;
443 }
444 start_pmd = 0;
445 }
446 }
447
set_kernel_text_rw(int enable_read_write)448 void __init set_kernel_text_rw(int enable_read_write)
449 {
450 unsigned long start = (unsigned long) __init_begin;
451 unsigned long end = (unsigned long) &data_start;
452
453 map_pages(start, __pa(start), end-start,
454 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
455
456 /* force the kernel to see the new page table entries */
457 flush_cache_all();
458 flush_tlb_all();
459 }
460
free_initmem(void)461 void __ref free_initmem(void)
462 {
463 unsigned long init_begin = (unsigned long)__init_begin;
464 unsigned long init_end = (unsigned long)__init_end;
465 unsigned long kernel_end = (unsigned long)&_end;
466
467 /* Remap kernel text and data, but do not touch init section yet. */
468 kernel_set_to_readonly = true;
469 map_pages(init_end, __pa(init_end), kernel_end - init_end,
470 PAGE_KERNEL, 0);
471
472 /* The init text pages are marked R-X. We have to
473 * flush the icache and mark them RW-
474 *
475 * This is tricky, because map_pages is in the init section.
476 * Do a dummy remap of the data section first (the data
477 * section is already PAGE_KERNEL) to pull in the TLB entries
478 * for map_kernel */
479 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
480 PAGE_KERNEL_RWX, 1);
481 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
482 * map_pages */
483 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
484 PAGE_KERNEL, 1);
485
486 /* force the kernel to see the new TLB entries */
487 __flush_tlb_range(0, init_begin, kernel_end);
488
489 /* finally dump all the instructions which were cached, since the
490 * pages are no-longer executable */
491 flush_icache_range(init_begin, init_end);
492
493 free_initmem_default(POISON_FREE_INITMEM);
494
495 /* set up a new led state on systems shipped LED State panel */
496 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
497 }
498
499
500 #ifdef CONFIG_STRICT_KERNEL_RWX
mark_rodata_ro(void)501 void mark_rodata_ro(void)
502 {
503 /* rodata memory was already mapped with KERNEL_RO access rights by
504 pagetable_init() and map_pages(). No need to do additional stuff here */
505 unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
506
507 pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
508 }
509 #endif
510
511
512 /*
513 * Just an arbitrary offset to serve as a "hole" between mapping areas
514 * (between top of physical memory and a potential pcxl dma mapping
515 * area, and below the vmalloc mapping area).
516 *
517 * The current 32K value just means that there will be a 32K "hole"
518 * between mapping areas. That means that any out-of-bounds memory
519 * accesses will hopefully be caught. The vmalloc() routines leaves
520 * a hole of 4kB between each vmalloced area for the same reason.
521 */
522
523 /* Leave room for gateway page expansion */
524 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
525 #error KERNEL_MAP_START is in gateway reserved region
526 #endif
527 #define MAP_START (KERNEL_MAP_START)
528
529 #define VM_MAP_OFFSET (32*1024)
530 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
531 & ~(VM_MAP_OFFSET-1)))
532
533 void *parisc_vmalloc_start __ro_after_init;
534 EXPORT_SYMBOL(parisc_vmalloc_start);
535
536 #ifdef CONFIG_PA11
537 unsigned long pcxl_dma_start __ro_after_init;
538 #endif
539
mem_init(void)540 void __init mem_init(void)
541 {
542 /* Do sanity checks on IPC (compat) structures */
543 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
544 #ifndef CONFIG_64BIT
545 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
546 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
547 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
548 #endif
549 #ifdef CONFIG_COMPAT
550 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
551 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
552 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
553 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
554 #endif
555
556 /* Do sanity checks on page table constants */
557 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
558 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
559 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
560 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
561 > BITS_PER_LONG);
562
563 high_memory = __va((max_pfn << PAGE_SHIFT));
564 set_max_mapnr(max_low_pfn);
565 memblock_free_all();
566
567 #ifdef CONFIG_PA11
568 if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
569 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
570 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
571 + PCXL_DMA_MAP_SIZE);
572 } else
573 #endif
574 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
575
576 mem_init_print_info(NULL);
577
578 #if 0
579 /*
580 * Do not expose the virtual kernel memory layout to userspace.
581 * But keep code for debugging purposes.
582 */
583 printk("virtual kernel memory layout:\n"
584 " vmalloc : 0x%px - 0x%px (%4ld MB)\n"
585 " fixmap : 0x%px - 0x%px (%4ld kB)\n"
586 " memory : 0x%px - 0x%px (%4ld MB)\n"
587 " .init : 0x%px - 0x%px (%4ld kB)\n"
588 " .data : 0x%px - 0x%px (%4ld kB)\n"
589 " .text : 0x%px - 0x%px (%4ld kB)\n",
590
591 (void*)VMALLOC_START, (void*)VMALLOC_END,
592 (VMALLOC_END - VMALLOC_START) >> 20,
593
594 (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
595 (unsigned long)(FIXMAP_SIZE / 1024),
596
597 __va(0), high_memory,
598 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
599
600 __init_begin, __init_end,
601 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
602
603 _etext, _edata,
604 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
605
606 _text, _etext,
607 ((unsigned long)_etext - (unsigned long)_text) >> 10);
608 #endif
609 }
610
611 unsigned long *empty_zero_page __ro_after_init;
612 EXPORT_SYMBOL(empty_zero_page);
613
614 /*
615 * pagetable_init() sets up the page tables
616 *
617 * Note that gateway_init() places the Linux gateway page at page 0.
618 * Since gateway pages cannot be dereferenced this has the desirable
619 * side effect of trapping those pesky NULL-reference errors in the
620 * kernel.
621 */
pagetable_init(void)622 static void __init pagetable_init(void)
623 {
624 int range;
625
626 /* Map each physical memory range to its kernel vaddr */
627
628 for (range = 0; range < npmem_ranges; range++) {
629 unsigned long start_paddr;
630 unsigned long end_paddr;
631 unsigned long size;
632
633 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
634 size = pmem_ranges[range].pages << PAGE_SHIFT;
635 end_paddr = start_paddr + size;
636
637 map_pages((unsigned long)__va(start_paddr), start_paddr,
638 size, PAGE_KERNEL, 0);
639 }
640
641 #ifdef CONFIG_BLK_DEV_INITRD
642 if (initrd_end && initrd_end > mem_limit) {
643 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
644 map_pages(initrd_start, __pa(initrd_start),
645 initrd_end - initrd_start, PAGE_KERNEL, 0);
646 }
647 #endif
648
649 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
650 if (!empty_zero_page)
651 panic("zero page allocation failed.\n");
652
653 }
654
gateway_init(void)655 static void __init gateway_init(void)
656 {
657 unsigned long linux_gateway_page_addr;
658 /* FIXME: This is 'const' in order to trick the compiler
659 into not treating it as DP-relative data. */
660 extern void * const linux_gateway_page;
661
662 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
663
664 /*
665 * Setup Linux Gateway page.
666 *
667 * The Linux gateway page will reside in kernel space (on virtual
668 * page 0), so it doesn't need to be aliased into user space.
669 */
670
671 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
672 PAGE_SIZE, PAGE_GATEWAY, 1);
673 }
674
parisc_bootmem_free(void)675 static void __init parisc_bootmem_free(void)
676 {
677 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
678
679 max_zone_pfn[0] = memblock_end_of_DRAM();
680
681 free_area_init(max_zone_pfn);
682 }
683
paging_init(void)684 void __init paging_init(void)
685 {
686 setup_bootmem();
687 pagetable_init();
688 gateway_init();
689 flush_cache_all_local(); /* start with known state */
690 flush_tlb_all_local(NULL);
691
692 sparse_init();
693 parisc_bootmem_free();
694 }
695
696 #ifdef CONFIG_PA20
697
698 /*
699 * Currently, all PA20 chips have 18 bit protection IDs, which is the
700 * limiting factor (space ids are 32 bits).
701 */
702
703 #define NR_SPACE_IDS 262144
704
705 #else
706
707 /*
708 * Currently we have a one-to-one relationship between space IDs and
709 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
710 * support 15 bit protection IDs, so that is the limiting factor.
711 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
712 * probably not worth the effort for a special case here.
713 */
714
715 #define NR_SPACE_IDS 32768
716
717 #endif /* !CONFIG_PA20 */
718
719 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
720 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
721
722 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
723 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
724 static unsigned long space_id_index;
725 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
726 static unsigned long dirty_space_ids = 0;
727
728 static DEFINE_SPINLOCK(sid_lock);
729
alloc_sid(void)730 unsigned long alloc_sid(void)
731 {
732 unsigned long index;
733
734 spin_lock(&sid_lock);
735
736 if (free_space_ids == 0) {
737 if (dirty_space_ids != 0) {
738 spin_unlock(&sid_lock);
739 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
740 spin_lock(&sid_lock);
741 }
742 BUG_ON(free_space_ids == 0);
743 }
744
745 free_space_ids--;
746
747 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
748 space_id[BIT_WORD(index)] |= BIT_MASK(index);
749 space_id_index = index;
750
751 spin_unlock(&sid_lock);
752
753 return index << SPACEID_SHIFT;
754 }
755
free_sid(unsigned long spaceid)756 void free_sid(unsigned long spaceid)
757 {
758 unsigned long index = spaceid >> SPACEID_SHIFT;
759 unsigned long *dirty_space_offset, mask;
760
761 dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
762 mask = BIT_MASK(index);
763
764 spin_lock(&sid_lock);
765
766 BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
767
768 *dirty_space_offset |= mask;
769 dirty_space_ids++;
770
771 spin_unlock(&sid_lock);
772 }
773
774
775 #ifdef CONFIG_SMP
get_dirty_sids(unsigned long * ndirtyptr,unsigned long * dirty_array)776 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
777 {
778 int i;
779
780 /* NOTE: sid_lock must be held upon entry */
781
782 *ndirtyptr = dirty_space_ids;
783 if (dirty_space_ids != 0) {
784 for (i = 0; i < SID_ARRAY_SIZE; i++) {
785 dirty_array[i] = dirty_space_id[i];
786 dirty_space_id[i] = 0;
787 }
788 dirty_space_ids = 0;
789 }
790
791 return;
792 }
793
recycle_sids(unsigned long ndirty,unsigned long * dirty_array)794 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
795 {
796 int i;
797
798 /* NOTE: sid_lock must be held upon entry */
799
800 if (ndirty != 0) {
801 for (i = 0; i < SID_ARRAY_SIZE; i++) {
802 space_id[i] ^= dirty_array[i];
803 }
804
805 free_space_ids += ndirty;
806 space_id_index = 0;
807 }
808 }
809
810 #else /* CONFIG_SMP */
811
recycle_sids(void)812 static void recycle_sids(void)
813 {
814 int i;
815
816 /* NOTE: sid_lock must be held upon entry */
817
818 if (dirty_space_ids != 0) {
819 for (i = 0; i < SID_ARRAY_SIZE; i++) {
820 space_id[i] ^= dirty_space_id[i];
821 dirty_space_id[i] = 0;
822 }
823
824 free_space_ids += dirty_space_ids;
825 dirty_space_ids = 0;
826 space_id_index = 0;
827 }
828 }
829 #endif
830
831 /*
832 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
833 * purged, we can safely reuse the space ids that were released but
834 * not flushed from the tlb.
835 */
836
837 #ifdef CONFIG_SMP
838
839 static unsigned long recycle_ndirty;
840 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
841 static unsigned int recycle_inuse;
842
flush_tlb_all(void)843 void flush_tlb_all(void)
844 {
845 int do_recycle;
846
847 __inc_irq_stat(irq_tlb_count);
848 do_recycle = 0;
849 spin_lock(&sid_lock);
850 if (dirty_space_ids > RECYCLE_THRESHOLD) {
851 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
852 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
853 recycle_inuse++;
854 do_recycle++;
855 }
856 spin_unlock(&sid_lock);
857 on_each_cpu(flush_tlb_all_local, NULL, 1);
858 if (do_recycle) {
859 spin_lock(&sid_lock);
860 recycle_sids(recycle_ndirty,recycle_dirty_array);
861 recycle_inuse = 0;
862 spin_unlock(&sid_lock);
863 }
864 }
865 #else
flush_tlb_all(void)866 void flush_tlb_all(void)
867 {
868 __inc_irq_stat(irq_tlb_count);
869 spin_lock(&sid_lock);
870 flush_tlb_all_local(NULL);
871 recycle_sids();
872 spin_unlock(&sid_lock);
873 }
874 #endif
875