1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/mutex.h>
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13 
14 #include "trace.h"
15 #include "trace_output.h"
16 
17 #define DEFAULT_SYS_FILTER_MESSAGE					\
18 	"### global filter ###\n"					\
19 	"# Use this to set filters for multiple events.\n"		\
20 	"# Only events with the given fields will be affected.\n"	\
21 	"# If no events are modified, an error message will be displayed here"
22 
23 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
24 #define OPS					\
25 	C( OP_GLOB,	"~"  ),			\
26 	C( OP_NE,	"!=" ),			\
27 	C( OP_EQ,	"==" ),			\
28 	C( OP_LE,	"<=" ),			\
29 	C( OP_LT,	"<"  ),			\
30 	C( OP_GE,	">=" ),			\
31 	C( OP_GT,	">"  ),			\
32 	C( OP_BAND,	"&"  ),			\
33 	C( OP_MAX,	NULL )
34 
35 #undef C
36 #define C(a, b)	a
37 
38 enum filter_op_ids { OPS };
39 
40 #undef C
41 #define C(a, b)	b
42 
43 static const char * ops[] = { OPS };
44 
45 /*
46  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
47  * pred_funcs_##type below must match the order of them above.
48  */
49 #define PRED_FUNC_START			OP_LE
50 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
51 
52 #define ERRORS								\
53 	C(NONE,			"No error"),				\
54 	C(INVALID_OP,		"Invalid operator"),			\
55 	C(TOO_MANY_OPEN,	"Too many '('"),			\
56 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
57 	C(MISSING_QUOTE,	"Missing matching quote"),		\
58 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
59 	C(EXPECT_STRING,	"Expecting string field"),		\
60 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
61 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
62 	C(FIELD_NOT_FOUND,	"Field not found"),			\
63 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
64 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
65 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
66 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
67 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
68 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
69 	C(NO_FILTER,		"No filter found"),
70 
71 #undef C
72 #define C(a, b)		FILT_ERR_##a
73 
74 enum { ERRORS };
75 
76 #undef C
77 #define C(a, b)		b
78 
79 static char *err_text[] = { ERRORS };
80 
81 /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)82 static bool is_not(const char *str)
83 {
84 	switch (str[1]) {
85 	case '=':
86 	case '~':
87 		return false;
88 	}
89 	return true;
90 }
91 
92 /**
93  * prog_entry - a singe entry in the filter program
94  * @target:	     Index to jump to on a branch (actually one minus the index)
95  * @when_to_branch:  The value of the result of the predicate to do a branch
96  * @pred:	     The predicate to execute.
97  */
98 struct prog_entry {
99 	int			target;
100 	int			when_to_branch;
101 	struct filter_pred	*pred;
102 };
103 
104 /**
105  * update_preds- assign a program entry a label target
106  * @prog: The program array
107  * @N: The index of the current entry in @prog
108  * @when_to_branch: What to assign a program entry for its branch condition
109  *
110  * The program entry at @N has a target that points to the index of a program
111  * entry that can have its target and when_to_branch fields updated.
112  * Update the current program entry denoted by index @N target field to be
113  * that of the updated entry. This will denote the entry to update if
114  * we are processing an "||" after an "&&"
115  */
update_preds(struct prog_entry * prog,int N,int invert)116 static void update_preds(struct prog_entry *prog, int N, int invert)
117 {
118 	int t, s;
119 
120 	t = prog[N].target;
121 	s = prog[t].target;
122 	prog[t].when_to_branch = invert;
123 	prog[t].target = N;
124 	prog[N].target = s;
125 }
126 
127 struct filter_parse_error {
128 	int lasterr;
129 	int lasterr_pos;
130 };
131 
parse_error(struct filter_parse_error * pe,int err,int pos)132 static void parse_error(struct filter_parse_error *pe, int err, int pos)
133 {
134 	pe->lasterr = err;
135 	pe->lasterr_pos = pos;
136 }
137 
138 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
139 			     struct filter_parse_error *pe,
140 			     struct filter_pred **pred);
141 
142 enum {
143 	INVERT		= 1,
144 	PROCESS_AND	= 2,
145 	PROCESS_OR	= 4,
146 };
147 
148 /*
149  * Without going into a formal proof, this explains the method that is used in
150  * parsing the logical expressions.
151  *
152  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
153  * The first pass will convert it into the following program:
154  *
155  * n1: r=a;       l1: if (!r) goto l4;
156  * n2: r=b;       l2: if (!r) goto l4;
157  * n3: r=c; r=!r; l3: if (r) goto l4;
158  * n4: r=g; r=!r; l4: if (r) goto l5;
159  * n5: r=d;       l5: if (r) goto T
160  * n6: r=e;       l6: if (!r) goto l7;
161  * n7: r=f; r=!r; l7: if (!r) goto F
162  * T: return TRUE
163  * F: return FALSE
164  *
165  * To do this, we use a data structure to represent each of the above
166  * predicate and conditions that has:
167  *
168  *  predicate, when_to_branch, invert, target
169  *
170  * The "predicate" will hold the function to determine the result "r".
171  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
172  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
173  * The "invert" holds whether the value should be reversed before testing.
174  * The "target" contains the label "l#" to jump to.
175  *
176  * A stack is created to hold values when parentheses are used.
177  *
178  * To simplify the logic, the labels will start at 0 and not 1.
179  *
180  * The possible invert values are 1 and 0. The number of "!"s that are in scope
181  * before the predicate determines the invert value, if the number is odd then
182  * the invert value is 1 and 0 otherwise. This means the invert value only
183  * needs to be toggled when a new "!" is introduced compared to what is stored
184  * on the stack, where parentheses were used.
185  *
186  * The top of the stack and "invert" are initialized to zero.
187  *
188  * ** FIRST PASS **
189  *
190  * #1 A loop through all the tokens is done:
191  *
192  * #2 If the token is an "(", the stack is push, and the current stack value
193  *    gets the current invert value, and the loop continues to the next token.
194  *    The top of the stack saves the "invert" value to keep track of what
195  *    the current inversion is. As "!(a && !b || c)" would require all
196  *    predicates being affected separately by the "!" before the parentheses.
197  *    And that would end up being equivalent to "(!a || b) && !c"
198  *
199  * #3 If the token is an "!", the current "invert" value gets inverted, and
200  *    the loop continues. Note, if the next token is a predicate, then
201  *    this "invert" value is only valid for the current program entry,
202  *    and does not affect other predicates later on.
203  *
204  * The only other acceptable token is the predicate string.
205  *
206  * #4 A new entry into the program is added saving: the predicate and the
207  *    current value of "invert". The target is currently assigned to the
208  *    previous program index (this will not be its final value).
209  *
210  * #5 We now enter another loop and look at the next token. The only valid
211  *    tokens are ")", "&&", "||" or end of the input string "\0".
212  *
213  * #6 The invert variable is reset to the current value saved on the top of
214  *    the stack.
215  *
216  * #7 The top of the stack holds not only the current invert value, but also
217  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
218  *    precedence than "||". That is "a && b || c && d" is equivalent to
219  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
220  *    to be processed. This is the case if an "&&" was the last token. If it was
221  *    then we call update_preds(). This takes the program, the current index in
222  *    the program, and the current value of "invert".  More will be described
223  *    below about this function.
224  *
225  * #8 If the next token is "&&" then we set a flag in the top of the stack
226  *    that denotes that "&&" needs to be processed, break out of this loop
227  *    and continue with the outer loop.
228  *
229  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
230  *    This is called with the program, the current index in the program, but
231  *    this time with an inverted value of "invert" (that is !invert). This is
232  *    because the value taken will become the "when_to_branch" value of the
233  *    program.
234  *    Note, this is called when the next token is not an "&&". As stated before,
235  *    "&&" takes higher precedence, and "||" should not be processed yet if the
236  *    next logical operation is "&&".
237  *
238  * #10 If the next token is "||" then we set a flag in the top of the stack
239  *     that denotes that "||" needs to be processed, break out of this loop
240  *     and continue with the outer loop.
241  *
242  * #11 If this is the end of the input string "\0" then we break out of both
243  *     loops.
244  *
245  * #12 Otherwise, the next token is ")", where we pop the stack and continue
246  *     this inner loop.
247  *
248  * Now to discuss the update_pred() function, as that is key to the setting up
249  * of the program. Remember the "target" of the program is initialized to the
250  * previous index and not the "l" label. The target holds the index into the
251  * program that gets affected by the operand. Thus if we have something like
252  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
253  * When we process "b", its target is "0", which is the index of "a", as that's
254  * the predicate that is affected by "||". But because the next token after "b"
255  * is "&&" we don't call update_preds(). Instead continue to "c". As the
256  * next token after "c" is not "&&" but the end of input, we first process the
257  * "&&" by calling update_preds() for the "&&" then we process the "||" by
258  * callin updates_preds() with the values for processing "||".
259  *
260  * What does that mean? What update_preds() does is to first save the "target"
261  * of the program entry indexed by the current program entry's "target"
262  * (remember the "target" is initialized to previous program entry), and then
263  * sets that "target" to the current index which represents the label "l#".
264  * That entry's "when_to_branch" is set to the value passed in (the "invert"
265  * or "!invert"). Then it sets the current program entry's target to the saved
266  * "target" value (the old value of the program that had its "target" updated
267  * to the label).
268  *
269  * Looking back at "a || b && c", we have the following steps:
270  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
271  *  "||" - flag that we need to process "||"; continue outer loop
272  *  "b"  - prog[1] = { "b", X, 0 }
273  *  "&&" - flag that we need to process "&&"; continue outer loop
274  * (Notice we did not process "||")
275  *  "c"  - prog[2] = { "c", X, 1 }
276  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
277  *    t = prog[2].target; // t = 1
278  *    s = prog[t].target; // s = 0
279  *    prog[t].target = 2; // Set target to "l2"
280  *    prog[t].when_to_branch = 0;
281  *    prog[2].target = s;
282  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
283  *    t = prog[2].target; // t = 0
284  *    s = prog[t].target; // s = -1
285  *    prog[t].target = 2; // Set target to "l2"
286  *    prog[t].when_to_branch = 1;
287  *    prog[2].target = s;
288  *
289  * #13 Which brings us to the final step of the first pass, which is to set
290  *     the last program entry's when_to_branch and target, which will be
291  *     when_to_branch = 0; target = N; ( the label after the program entry after
292  *     the last program entry processed above).
293  *
294  * If we denote "TRUE" to be the entry after the last program entry processed,
295  * and "FALSE" the program entry after that, we are now done with the first
296  * pass.
297  *
298  * Making the above "a || b && c" have a progam of:
299  *  prog[0] = { "a", 1, 2 }
300  *  prog[1] = { "b", 0, 2 }
301  *  prog[2] = { "c", 0, 3 }
302  *
303  * Which translates into:
304  * n0: r = a; l0: if (r) goto l2;
305  * n1: r = b; l1: if (!r) goto l2;
306  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
307  * T: return TRUE; l3:
308  * F: return FALSE
309  *
310  * Although, after the first pass, the program is correct, it is
311  * inefficient. The simple sample of "a || b && c" could be easily been
312  * converted into:
313  * n0: r = a; if (r) goto T
314  * n1: r = b; if (!r) goto F
315  * n2: r = c; if (!r) goto F
316  * T: return TRUE;
317  * F: return FALSE;
318  *
319  * The First Pass is over the input string. The next too passes are over
320  * the program itself.
321  *
322  * ** SECOND PASS **
323  *
324  * Which brings us to the second pass. If a jump to a label has the
325  * same condition as that label, it can instead jump to its target.
326  * The original example of "a && !(!b || (c && g)) || d || e && !f"
327  * where the first pass gives us:
328  *
329  * n1: r=a;       l1: if (!r) goto l4;
330  * n2: r=b;       l2: if (!r) goto l4;
331  * n3: r=c; r=!r; l3: if (r) goto l4;
332  * n4: r=g; r=!r; l4: if (r) goto l5;
333  * n5: r=d;       l5: if (r) goto T
334  * n6: r=e;       l6: if (!r) goto l7;
335  * n7: r=f; r=!r; l7: if (!r) goto F:
336  * T: return TRUE;
337  * F: return FALSE
338  *
339  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
340  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
341  * to go directly to T. To accomplish this, we start from the last
342  * entry in the program and work our way back. If the target of the entry
343  * has the same "when_to_branch" then we could use that entry's target.
344  * Doing this, the above would end up as:
345  *
346  * n1: r=a;       l1: if (!r) goto l4;
347  * n2: r=b;       l2: if (!r) goto l4;
348  * n3: r=c; r=!r; l3: if (r) goto T;
349  * n4: r=g; r=!r; l4: if (r) goto T;
350  * n5: r=d;       l5: if (r) goto T;
351  * n6: r=e;       l6: if (!r) goto F;
352  * n7: r=f; r=!r; l7: if (!r) goto F;
353  * T: return TRUE
354  * F: return FALSE
355  *
356  * In that same pass, if the "when_to_branch" doesn't match, we can simply
357  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
358  * where "l4: if (r) goto T;", then we can convert l2 to be:
359  * "l2: if (!r) goto n5;".
360  *
361  * This will have the second pass give us:
362  * n1: r=a;       l1: if (!r) goto n5;
363  * n2: r=b;       l2: if (!r) goto n5;
364  * n3: r=c; r=!r; l3: if (r) goto T;
365  * n4: r=g; r=!r; l4: if (r) goto T;
366  * n5: r=d;       l5: if (r) goto T
367  * n6: r=e;       l6: if (!r) goto F;
368  * n7: r=f; r=!r; l7: if (!r) goto F
369  * T: return TRUE
370  * F: return FALSE
371  *
372  * Notice, all the "l#" labels are no longer used, and they can now
373  * be discarded.
374  *
375  * ** THIRD PASS **
376  *
377  * For the third pass we deal with the inverts. As they simply just
378  * make the "when_to_branch" get inverted, a simple loop over the
379  * program to that does: "when_to_branch ^= invert;" will do the
380  * job, leaving us with:
381  * n1: r=a; if (!r) goto n5;
382  * n2: r=b; if (!r) goto n5;
383  * n3: r=c: if (!r) goto T;
384  * n4: r=g; if (!r) goto T;
385  * n5: r=d; if (r) goto T
386  * n6: r=e; if (!r) goto F;
387  * n7: r=f; if (r) goto F
388  * T: return TRUE
389  * F: return FALSE
390  *
391  * As "r = a; if (!r) goto n5;" is obviously the same as
392  * "if (!a) goto n5;" without doing anything we can interperate the
393  * program as:
394  * n1: if (!a) goto n5;
395  * n2: if (!b) goto n5;
396  * n3: if (!c) goto T;
397  * n4: if (!g) goto T;
398  * n5: if (d) goto T
399  * n6: if (!e) goto F;
400  * n7: if (f) goto F
401  * T: return TRUE
402  * F: return FALSE
403  *
404  * Since the inverts are discarded at the end, there's no reason to store
405  * them in the program array (and waste memory). A separate array to hold
406  * the inverts is used and freed at the end.
407  */
408 static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)409 predicate_parse(const char *str, int nr_parens, int nr_preds,
410 		parse_pred_fn parse_pred, void *data,
411 		struct filter_parse_error *pe)
412 {
413 	struct prog_entry *prog_stack;
414 	struct prog_entry *prog;
415 	const char *ptr = str;
416 	char *inverts = NULL;
417 	int *op_stack;
418 	int *top;
419 	int invert = 0;
420 	int ret = -ENOMEM;
421 	int len;
422 	int N = 0;
423 	int i;
424 
425 	nr_preds += 2; /* For TRUE and FALSE */
426 
427 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
428 	if (!op_stack)
429 		return ERR_PTR(-ENOMEM);
430 	prog_stack = kmalloc_array(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
431 	if (!prog_stack) {
432 		parse_error(pe, -ENOMEM, 0);
433 		goto out_free;
434 	}
435 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
436 	if (!inverts) {
437 		parse_error(pe, -ENOMEM, 0);
438 		goto out_free;
439 	}
440 
441 	top = op_stack;
442 	prog = prog_stack;
443 	*top = 0;
444 
445 	/* First pass */
446 	while (*ptr) {						/* #1 */
447 		const char *next = ptr++;
448 
449 		if (isspace(*next))
450 			continue;
451 
452 		switch (*next) {
453 		case '(':					/* #2 */
454 			if (top - op_stack > nr_parens)
455 				return ERR_PTR(-EINVAL);
456 			*(++top) = invert;
457 			continue;
458 		case '!':					/* #3 */
459 			if (!is_not(next))
460 				break;
461 			invert = !invert;
462 			continue;
463 		}
464 
465 		if (N >= nr_preds) {
466 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
467 			goto out_free;
468 		}
469 
470 		inverts[N] = invert;				/* #4 */
471 		prog[N].target = N-1;
472 
473 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
474 		if (len < 0) {
475 			ret = len;
476 			goto out_free;
477 		}
478 		ptr = next + len;
479 
480 		N++;
481 
482 		ret = -1;
483 		while (1) {					/* #5 */
484 			next = ptr++;
485 			if (isspace(*next))
486 				continue;
487 
488 			switch (*next) {
489 			case ')':
490 			case '\0':
491 				break;
492 			case '&':
493 			case '|':
494 				if (next[1] == next[0]) {
495 					ptr++;
496 					break;
497 				}
498 			default:
499 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
500 					    next - str);
501 				goto out_free;
502 			}
503 
504 			invert = *top & INVERT;
505 
506 			if (*top & PROCESS_AND) {		/* #7 */
507 				update_preds(prog, N - 1, invert);
508 				*top &= ~PROCESS_AND;
509 			}
510 			if (*next == '&') {			/* #8 */
511 				*top |= PROCESS_AND;
512 				break;
513 			}
514 			if (*top & PROCESS_OR) {		/* #9 */
515 				update_preds(prog, N - 1, !invert);
516 				*top &= ~PROCESS_OR;
517 			}
518 			if (*next == '|') {			/* #10 */
519 				*top |= PROCESS_OR;
520 				break;
521 			}
522 			if (!*next)				/* #11 */
523 				goto out;
524 
525 			if (top == op_stack) {
526 				ret = -1;
527 				/* Too few '(' */
528 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
529 				goto out_free;
530 			}
531 			top--;					/* #12 */
532 		}
533 	}
534  out:
535 	if (top != op_stack) {
536 		/* Too many '(' */
537 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
538 		goto out_free;
539 	}
540 
541 	if (!N) {
542 		/* No program? */
543 		ret = -EINVAL;
544 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
545 		goto out_free;
546 	}
547 
548 	prog[N].pred = NULL;					/* #13 */
549 	prog[N].target = 1;		/* TRUE */
550 	prog[N+1].pred = NULL;
551 	prog[N+1].target = 0;		/* FALSE */
552 	prog[N-1].target = N;
553 	prog[N-1].when_to_branch = false;
554 
555 	/* Second Pass */
556 	for (i = N-1 ; i--; ) {
557 		int target = prog[i].target;
558 		if (prog[i].when_to_branch == prog[target].when_to_branch)
559 			prog[i].target = prog[target].target;
560 	}
561 
562 	/* Third Pass */
563 	for (i = 0; i < N; i++) {
564 		invert = inverts[i] ^ prog[i].when_to_branch;
565 		prog[i].when_to_branch = invert;
566 		/* Make sure the program always moves forward */
567 		if (WARN_ON(prog[i].target <= i)) {
568 			ret = -EINVAL;
569 			goto out_free;
570 		}
571 	}
572 
573 	return prog;
574 out_free:
575 	kfree(op_stack);
576 	kfree(prog_stack);
577 	kfree(inverts);
578 	return ERR_PTR(ret);
579 }
580 
581 #define DEFINE_COMPARISON_PRED(type)					\
582 static int filter_pred_LT_##type(struct filter_pred *pred, void *event)	\
583 {									\
584 	type *addr = (type *)(event + pred->offset);			\
585 	type val = (type)pred->val;					\
586 	return *addr < val;						\
587 }									\
588 static int filter_pred_LE_##type(struct filter_pred *pred, void *event)	\
589 {									\
590 	type *addr = (type *)(event + pred->offset);			\
591 	type val = (type)pred->val;					\
592 	return *addr <= val;						\
593 }									\
594 static int filter_pred_GT_##type(struct filter_pred *pred, void *event)	\
595 {									\
596 	type *addr = (type *)(event + pred->offset);			\
597 	type val = (type)pred->val;					\
598 	return *addr > val;					\
599 }									\
600 static int filter_pred_GE_##type(struct filter_pred *pred, void *event)	\
601 {									\
602 	type *addr = (type *)(event + pred->offset);			\
603 	type val = (type)pred->val;					\
604 	return *addr >= val;						\
605 }									\
606 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
607 {									\
608 	type *addr = (type *)(event + pred->offset);			\
609 	type val = (type)pred->val;					\
610 	return !!(*addr & val);						\
611 }									\
612 static const filter_pred_fn_t pred_funcs_##type[] = {			\
613 	filter_pred_LE_##type,						\
614 	filter_pred_LT_##type,						\
615 	filter_pred_GE_##type,						\
616 	filter_pred_GT_##type,						\
617 	filter_pred_BAND_##type,					\
618 };
619 
620 #define DEFINE_EQUALITY_PRED(size)					\
621 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
622 {									\
623 	u##size *addr = (u##size *)(event + pred->offset);		\
624 	u##size val = (u##size)pred->val;				\
625 	int match;							\
626 									\
627 	match = (val == *addr) ^ pred->not;				\
628 									\
629 	return match;							\
630 }
631 
632 DEFINE_COMPARISON_PRED(s64);
633 DEFINE_COMPARISON_PRED(u64);
634 DEFINE_COMPARISON_PRED(s32);
635 DEFINE_COMPARISON_PRED(u32);
636 DEFINE_COMPARISON_PRED(s16);
637 DEFINE_COMPARISON_PRED(u16);
638 DEFINE_COMPARISON_PRED(s8);
639 DEFINE_COMPARISON_PRED(u8);
640 
641 DEFINE_EQUALITY_PRED(64);
642 DEFINE_EQUALITY_PRED(32);
643 DEFINE_EQUALITY_PRED(16);
644 DEFINE_EQUALITY_PRED(8);
645 
646 /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)647 static int filter_pred_string(struct filter_pred *pred, void *event)
648 {
649 	char *addr = (char *)(event + pred->offset);
650 	int cmp, match;
651 
652 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
653 
654 	match = cmp ^ pred->not;
655 
656 	return match;
657 }
658 
659 /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)660 static int filter_pred_pchar(struct filter_pred *pred, void *event)
661 {
662 	char **addr = (char **)(event + pred->offset);
663 	int cmp, match;
664 	int len = strlen(*addr) + 1;	/* including tailing '\0' */
665 
666 	cmp = pred->regex.match(*addr, &pred->regex, len);
667 
668 	match = cmp ^ pred->not;
669 
670 	return match;
671 }
672 
673 /*
674  * Filter predicate for dynamic sized arrays of characters.
675  * These are implemented through a list of strings at the end
676  * of the entry.
677  * Also each of these strings have a field in the entry which
678  * contains its offset from the beginning of the entry.
679  * We have then first to get this field, dereference it
680  * and add it to the address of the entry, and at last we have
681  * the address of the string.
682  */
filter_pred_strloc(struct filter_pred * pred,void * event)683 static int filter_pred_strloc(struct filter_pred *pred, void *event)
684 {
685 	u32 str_item = *(u32 *)(event + pred->offset);
686 	int str_loc = str_item & 0xffff;
687 	int str_len = str_item >> 16;
688 	char *addr = (char *)(event + str_loc);
689 	int cmp, match;
690 
691 	cmp = pred->regex.match(addr, &pred->regex, str_len);
692 
693 	match = cmp ^ pred->not;
694 
695 	return match;
696 }
697 
698 /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)699 static int filter_pred_cpu(struct filter_pred *pred, void *event)
700 {
701 	int cpu, cmp;
702 
703 	cpu = raw_smp_processor_id();
704 	cmp = pred->val;
705 
706 	switch (pred->op) {
707 	case OP_EQ:
708 		return cpu == cmp;
709 	case OP_NE:
710 		return cpu != cmp;
711 	case OP_LT:
712 		return cpu < cmp;
713 	case OP_LE:
714 		return cpu <= cmp;
715 	case OP_GT:
716 		return cpu > cmp;
717 	case OP_GE:
718 		return cpu >= cmp;
719 	default:
720 		return 0;
721 	}
722 }
723 
724 /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)725 static int filter_pred_comm(struct filter_pred *pred, void *event)
726 {
727 	int cmp;
728 
729 	cmp = pred->regex.match(current->comm, &pred->regex,
730 				TASK_COMM_LEN);
731 	return cmp ^ pred->not;
732 }
733 
filter_pred_none(struct filter_pred * pred,void * event)734 static int filter_pred_none(struct filter_pred *pred, void *event)
735 {
736 	return 0;
737 }
738 
739 /*
740  * regex_match_foo - Basic regex callbacks
741  *
742  * @str: the string to be searched
743  * @r:   the regex structure containing the pattern string
744  * @len: the length of the string to be searched (including '\0')
745  *
746  * Note:
747  * - @str might not be NULL-terminated if it's of type DYN_STRING
748  *   or STATIC_STRING, unless @len is zero.
749  */
750 
regex_match_full(char * str,struct regex * r,int len)751 static int regex_match_full(char *str, struct regex *r, int len)
752 {
753 	/* len of zero means str is dynamic and ends with '\0' */
754 	if (!len)
755 		return strcmp(str, r->pattern) == 0;
756 
757 	return strncmp(str, r->pattern, len) == 0;
758 }
759 
regex_match_front(char * str,struct regex * r,int len)760 static int regex_match_front(char *str, struct regex *r, int len)
761 {
762 	if (len && len < r->len)
763 		return 0;
764 
765 	return strncmp(str, r->pattern, r->len) == 0;
766 }
767 
regex_match_middle(char * str,struct regex * r,int len)768 static int regex_match_middle(char *str, struct regex *r, int len)
769 {
770 	if (!len)
771 		return strstr(str, r->pattern) != NULL;
772 
773 	return strnstr(str, r->pattern, len) != NULL;
774 }
775 
regex_match_end(char * str,struct regex * r,int len)776 static int regex_match_end(char *str, struct regex *r, int len)
777 {
778 	int strlen = len - 1;
779 
780 	if (strlen >= r->len &&
781 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
782 		return 1;
783 	return 0;
784 }
785 
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)786 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
787 {
788 	if (glob_match(r->pattern, str))
789 		return 1;
790 	return 0;
791 }
792 
793 /**
794  * filter_parse_regex - parse a basic regex
795  * @buff:   the raw regex
796  * @len:    length of the regex
797  * @search: will point to the beginning of the string to compare
798  * @not:    tell whether the match will have to be inverted
799  *
800  * This passes in a buffer containing a regex and this function will
801  * set search to point to the search part of the buffer and
802  * return the type of search it is (see enum above).
803  * This does modify buff.
804  *
805  * Returns enum type.
806  *  search returns the pointer to use for comparison.
807  *  not returns 1 if buff started with a '!'
808  *     0 otherwise.
809  */
filter_parse_regex(char * buff,int len,char ** search,int * not)810 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
811 {
812 	int type = MATCH_FULL;
813 	int i;
814 
815 	if (buff[0] == '!') {
816 		*not = 1;
817 		buff++;
818 		len--;
819 	} else
820 		*not = 0;
821 
822 	*search = buff;
823 
824 	for (i = 0; i < len; i++) {
825 		if (buff[i] == '*') {
826 			if (!i) {
827 				type = MATCH_END_ONLY;
828 			} else if (i == len - 1) {
829 				if (type == MATCH_END_ONLY)
830 					type = MATCH_MIDDLE_ONLY;
831 				else
832 					type = MATCH_FRONT_ONLY;
833 				buff[i] = 0;
834 				break;
835 			} else {	/* pattern continues, use full glob */
836 				return MATCH_GLOB;
837 			}
838 		} else if (strchr("[?\\", buff[i])) {
839 			return MATCH_GLOB;
840 		}
841 	}
842 	if (buff[0] == '*')
843 		*search = buff + 1;
844 
845 	return type;
846 }
847 
filter_build_regex(struct filter_pred * pred)848 static void filter_build_regex(struct filter_pred *pred)
849 {
850 	struct regex *r = &pred->regex;
851 	char *search;
852 	enum regex_type type = MATCH_FULL;
853 
854 	if (pred->op == OP_GLOB) {
855 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
856 		r->len = strlen(search);
857 		memmove(r->pattern, search, r->len+1);
858 	}
859 
860 	switch (type) {
861 	case MATCH_FULL:
862 		r->match = regex_match_full;
863 		break;
864 	case MATCH_FRONT_ONLY:
865 		r->match = regex_match_front;
866 		break;
867 	case MATCH_MIDDLE_ONLY:
868 		r->match = regex_match_middle;
869 		break;
870 	case MATCH_END_ONLY:
871 		r->match = regex_match_end;
872 		break;
873 	case MATCH_GLOB:
874 		r->match = regex_match_glob;
875 		break;
876 	}
877 }
878 
879 /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)880 int filter_match_preds(struct event_filter *filter, void *rec)
881 {
882 	struct prog_entry *prog;
883 	int i;
884 
885 	/* no filter is considered a match */
886 	if (!filter)
887 		return 1;
888 
889 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
890 	prog = rcu_dereference_raw(filter->prog);
891 	if (!prog)
892 		return 1;
893 
894 	for (i = 0; prog[i].pred; i++) {
895 		struct filter_pred *pred = prog[i].pred;
896 		int match = pred->fn(pred, rec);
897 		if (match == prog[i].when_to_branch)
898 			i = prog[i].target;
899 	}
900 	return prog[i].target;
901 }
902 EXPORT_SYMBOL_GPL(filter_match_preds);
903 
remove_filter_string(struct event_filter * filter)904 static void remove_filter_string(struct event_filter *filter)
905 {
906 	if (!filter)
907 		return;
908 
909 	kfree(filter->filter_string);
910 	filter->filter_string = NULL;
911 }
912 
append_filter_err(struct filter_parse_error * pe,struct event_filter * filter)913 static void append_filter_err(struct filter_parse_error *pe,
914 			      struct event_filter *filter)
915 {
916 	struct trace_seq *s;
917 	int pos = pe->lasterr_pos;
918 	char *buf;
919 	int len;
920 
921 	if (WARN_ON(!filter->filter_string))
922 		return;
923 
924 	s = kmalloc(sizeof(*s), GFP_KERNEL);
925 	if (!s)
926 		return;
927 	trace_seq_init(s);
928 
929 	len = strlen(filter->filter_string);
930 	if (pos > len)
931 		pos = len;
932 
933 	/* indexing is off by one */
934 	if (pos)
935 		pos++;
936 
937 	trace_seq_puts(s, filter->filter_string);
938 	if (pe->lasterr > 0) {
939 		trace_seq_printf(s, "\n%*s", pos, "^");
940 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
941 	} else {
942 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
943 	}
944 	trace_seq_putc(s, 0);
945 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
946 	if (buf) {
947 		kfree(filter->filter_string);
948 		filter->filter_string = buf;
949 	}
950 	kfree(s);
951 }
952 
event_filter(struct trace_event_file * file)953 static inline struct event_filter *event_filter(struct trace_event_file *file)
954 {
955 	return file->filter;
956 }
957 
958 /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)959 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
960 {
961 	struct event_filter *filter = event_filter(file);
962 
963 	if (filter && filter->filter_string)
964 		trace_seq_printf(s, "%s\n", filter->filter_string);
965 	else
966 		trace_seq_puts(s, "none\n");
967 }
968 
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)969 void print_subsystem_event_filter(struct event_subsystem *system,
970 				  struct trace_seq *s)
971 {
972 	struct event_filter *filter;
973 
974 	mutex_lock(&event_mutex);
975 	filter = system->filter;
976 	if (filter && filter->filter_string)
977 		trace_seq_printf(s, "%s\n", filter->filter_string);
978 	else
979 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
980 	mutex_unlock(&event_mutex);
981 }
982 
free_prog(struct event_filter * filter)983 static void free_prog(struct event_filter *filter)
984 {
985 	struct prog_entry *prog;
986 	int i;
987 
988 	prog = rcu_access_pointer(filter->prog);
989 	if (!prog)
990 		return;
991 
992 	for (i = 0; prog[i].pred; i++)
993 		kfree(prog[i].pred);
994 	kfree(prog);
995 }
996 
filter_disable(struct trace_event_file * file)997 static void filter_disable(struct trace_event_file *file)
998 {
999 	unsigned long old_flags = file->flags;
1000 
1001 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1002 
1003 	if (old_flags != file->flags)
1004 		trace_buffered_event_disable();
1005 }
1006 
__free_filter(struct event_filter * filter)1007 static void __free_filter(struct event_filter *filter)
1008 {
1009 	if (!filter)
1010 		return;
1011 
1012 	free_prog(filter);
1013 	kfree(filter->filter_string);
1014 	kfree(filter);
1015 }
1016 
free_event_filter(struct event_filter * filter)1017 void free_event_filter(struct event_filter *filter)
1018 {
1019 	__free_filter(filter);
1020 }
1021 
__remove_filter(struct trace_event_file * file)1022 static inline void __remove_filter(struct trace_event_file *file)
1023 {
1024 	filter_disable(file);
1025 	remove_filter_string(file->filter);
1026 }
1027 
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1028 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1029 					struct trace_array *tr)
1030 {
1031 	struct trace_event_file *file;
1032 
1033 	list_for_each_entry(file, &tr->events, list) {
1034 		if (file->system != dir)
1035 			continue;
1036 		__remove_filter(file);
1037 	}
1038 }
1039 
__free_subsystem_filter(struct trace_event_file * file)1040 static inline void __free_subsystem_filter(struct trace_event_file *file)
1041 {
1042 	__free_filter(file->filter);
1043 	file->filter = NULL;
1044 }
1045 
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr)1046 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1047 					  struct trace_array *tr)
1048 {
1049 	struct trace_event_file *file;
1050 
1051 	list_for_each_entry(file, &tr->events, list) {
1052 		if (file->system != dir)
1053 			continue;
1054 		__free_subsystem_filter(file);
1055 	}
1056 }
1057 
filter_assign_type(const char * type)1058 int filter_assign_type(const char *type)
1059 {
1060 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1061 		return FILTER_DYN_STRING;
1062 
1063 	if (strchr(type, '[') && strstr(type, "char"))
1064 		return FILTER_STATIC_STRING;
1065 
1066 	return FILTER_OTHER;
1067 }
1068 
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1069 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1070 					    int field_size, int field_is_signed)
1071 {
1072 	filter_pred_fn_t fn = NULL;
1073 	int pred_func_index = -1;
1074 
1075 	switch (op) {
1076 	case OP_EQ:
1077 	case OP_NE:
1078 		break;
1079 	default:
1080 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1081 			return NULL;
1082 		pred_func_index = op - PRED_FUNC_START;
1083 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1084 			return NULL;
1085 	}
1086 
1087 	switch (field_size) {
1088 	case 8:
1089 		if (pred_func_index < 0)
1090 			fn = filter_pred_64;
1091 		else if (field_is_signed)
1092 			fn = pred_funcs_s64[pred_func_index];
1093 		else
1094 			fn = pred_funcs_u64[pred_func_index];
1095 		break;
1096 	case 4:
1097 		if (pred_func_index < 0)
1098 			fn = filter_pred_32;
1099 		else if (field_is_signed)
1100 			fn = pred_funcs_s32[pred_func_index];
1101 		else
1102 			fn = pred_funcs_u32[pred_func_index];
1103 		break;
1104 	case 2:
1105 		if (pred_func_index < 0)
1106 			fn = filter_pred_16;
1107 		else if (field_is_signed)
1108 			fn = pred_funcs_s16[pred_func_index];
1109 		else
1110 			fn = pred_funcs_u16[pred_func_index];
1111 		break;
1112 	case 1:
1113 		if (pred_func_index < 0)
1114 			fn = filter_pred_8;
1115 		else if (field_is_signed)
1116 			fn = pred_funcs_s8[pred_func_index];
1117 		else
1118 			fn = pred_funcs_u8[pred_func_index];
1119 		break;
1120 	}
1121 
1122 	return fn;
1123 }
1124 
1125 /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1126 static int parse_pred(const char *str, void *data,
1127 		      int pos, struct filter_parse_error *pe,
1128 		      struct filter_pred **pred_ptr)
1129 {
1130 	struct trace_event_call *call = data;
1131 	struct ftrace_event_field *field;
1132 	struct filter_pred *pred = NULL;
1133 	char num_buf[24];	/* Big enough to hold an address */
1134 	char *field_name;
1135 	char q;
1136 	u64 val;
1137 	int len;
1138 	int ret;
1139 	int op;
1140 	int s;
1141 	int i = 0;
1142 
1143 	/* First find the field to associate to */
1144 	while (isspace(str[i]))
1145 		i++;
1146 	s = i;
1147 
1148 	while (isalnum(str[i]) || str[i] == '_')
1149 		i++;
1150 
1151 	len = i - s;
1152 
1153 	if (!len)
1154 		return -1;
1155 
1156 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1157 	if (!field_name)
1158 		return -ENOMEM;
1159 
1160 	/* Make sure that the field exists */
1161 
1162 	field = trace_find_event_field(call, field_name);
1163 	kfree(field_name);
1164 	if (!field) {
1165 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1166 		return -EINVAL;
1167 	}
1168 
1169 	while (isspace(str[i]))
1170 		i++;
1171 
1172 	/* Make sure this op is supported */
1173 	for (op = 0; ops[op]; op++) {
1174 		/* This is why '<=' must come before '<' in ops[] */
1175 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1176 			break;
1177 	}
1178 
1179 	if (!ops[op]) {
1180 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1181 		goto err_free;
1182 	}
1183 
1184 	i += strlen(ops[op]);
1185 
1186 	while (isspace(str[i]))
1187 		i++;
1188 
1189 	s = i;
1190 
1191 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1192 	if (!pred)
1193 		return -ENOMEM;
1194 
1195 	pred->field = field;
1196 	pred->offset = field->offset;
1197 	pred->op = op;
1198 
1199 	if (ftrace_event_is_function(call)) {
1200 		/*
1201 		 * Perf does things different with function events.
1202 		 * It only allows an "ip" field, and expects a string.
1203 		 * But the string does not need to be surrounded by quotes.
1204 		 * If it is a string, the assigned function as a nop,
1205 		 * (perf doesn't use it) and grab everything.
1206 		 */
1207 		if (strcmp(field->name, "ip") != 0) {
1208 			 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1209 			 goto err_free;
1210 		 }
1211 		 pred->fn = filter_pred_none;
1212 
1213 		 /*
1214 		  * Quotes are not required, but if they exist then we need
1215 		  * to read them till we hit a matching one.
1216 		  */
1217 		 if (str[i] == '\'' || str[i] == '"')
1218 			 q = str[i];
1219 		 else
1220 			 q = 0;
1221 
1222 		 for (i++; str[i]; i++) {
1223 			 if (q && str[i] == q)
1224 				 break;
1225 			 if (!q && (str[i] == ')' || str[i] == '&' ||
1226 				    str[i] == '|'))
1227 				 break;
1228 		 }
1229 		 /* Skip quotes */
1230 		 if (q)
1231 			 s++;
1232 		len = i - s;
1233 		if (len >= MAX_FILTER_STR_VAL) {
1234 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1235 			goto err_free;
1236 		}
1237 
1238 		pred->regex.len = len;
1239 		strncpy(pred->regex.pattern, str + s, len);
1240 		pred->regex.pattern[len] = 0;
1241 
1242 	/* This is either a string, or an integer */
1243 	} else if (str[i] == '\'' || str[i] == '"') {
1244 		char q = str[i];
1245 
1246 		/* Make sure the op is OK for strings */
1247 		switch (op) {
1248 		case OP_NE:
1249 			pred->not = 1;
1250 			/* Fall through */
1251 		case OP_GLOB:
1252 		case OP_EQ:
1253 			break;
1254 		default:
1255 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1256 			goto err_free;
1257 		}
1258 
1259 		/* Make sure the field is OK for strings */
1260 		if (!is_string_field(field)) {
1261 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1262 			goto err_free;
1263 		}
1264 
1265 		for (i++; str[i]; i++) {
1266 			if (str[i] == q)
1267 				break;
1268 		}
1269 		if (!str[i]) {
1270 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1271 			goto err_free;
1272 		}
1273 
1274 		/* Skip quotes */
1275 		s++;
1276 		len = i - s;
1277 		if (len >= MAX_FILTER_STR_VAL) {
1278 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1279 			goto err_free;
1280 		}
1281 
1282 		pred->regex.len = len;
1283 		strncpy(pred->regex.pattern, str + s, len);
1284 		pred->regex.pattern[len] = 0;
1285 
1286 		filter_build_regex(pred);
1287 
1288 		if (field->filter_type == FILTER_COMM) {
1289 			pred->fn = filter_pred_comm;
1290 
1291 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1292 			pred->fn = filter_pred_string;
1293 			pred->regex.field_len = field->size;
1294 
1295 		} else if (field->filter_type == FILTER_DYN_STRING)
1296 			pred->fn = filter_pred_strloc;
1297 		else
1298 			pred->fn = filter_pred_pchar;
1299 		/* go past the last quote */
1300 		i++;
1301 
1302 	} else if (isdigit(str[i])) {
1303 
1304 		/* Make sure the field is not a string */
1305 		if (is_string_field(field)) {
1306 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1307 			goto err_free;
1308 		}
1309 
1310 		if (op == OP_GLOB) {
1311 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1312 			goto err_free;
1313 		}
1314 
1315 		/* We allow 0xDEADBEEF */
1316 		while (isalnum(str[i]))
1317 			i++;
1318 
1319 		len = i - s;
1320 		/* 0xfeedfacedeadbeef is 18 chars max */
1321 		if (len >= sizeof(num_buf)) {
1322 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1323 			goto err_free;
1324 		}
1325 
1326 		strncpy(num_buf, str + s, len);
1327 		num_buf[len] = 0;
1328 
1329 		/* Make sure it is a value */
1330 		if (field->is_signed)
1331 			ret = kstrtoll(num_buf, 0, &val);
1332 		else
1333 			ret = kstrtoull(num_buf, 0, &val);
1334 		if (ret) {
1335 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1336 			goto err_free;
1337 		}
1338 
1339 		pred->val = val;
1340 
1341 		if (field->filter_type == FILTER_CPU)
1342 			pred->fn = filter_pred_cpu;
1343 		else {
1344 			pred->fn = select_comparison_fn(pred->op, field->size,
1345 							field->is_signed);
1346 			if (pred->op == OP_NE)
1347 				pred->not = 1;
1348 		}
1349 
1350 	} else {
1351 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1352 		goto err_free;
1353 	}
1354 
1355 	*pred_ptr = pred;
1356 	return i;
1357 
1358 err_free:
1359 	kfree(pred);
1360 	return -EINVAL;
1361 }
1362 
1363 enum {
1364 	TOO_MANY_CLOSE		= -1,
1365 	TOO_MANY_OPEN		= -2,
1366 	MISSING_QUOTE		= -3,
1367 };
1368 
1369 /*
1370  * Read the filter string once to calculate the number of predicates
1371  * as well as how deep the parentheses go.
1372  *
1373  * Returns:
1374  *   0 - everything is fine (err is undefined)
1375  *  -1 - too many ')'
1376  *  -2 - too many '('
1377  *  -3 - No matching quote
1378  */
calc_stack(const char * str,int * parens,int * preds,int * err)1379 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1380 {
1381 	bool is_pred = false;
1382 	int nr_preds = 0;
1383 	int open = 1; /* Count the expression as "(E)" */
1384 	int last_quote = 0;
1385 	int max_open = 1;
1386 	int quote = 0;
1387 	int i;
1388 
1389 	*err = 0;
1390 
1391 	for (i = 0; str[i]; i++) {
1392 		if (isspace(str[i]))
1393 			continue;
1394 		if (quote) {
1395 			if (str[i] == quote)
1396 			       quote = 0;
1397 			continue;
1398 		}
1399 
1400 		switch (str[i]) {
1401 		case '\'':
1402 		case '"':
1403 			quote = str[i];
1404 			last_quote = i;
1405 			break;
1406 		case '|':
1407 		case '&':
1408 			if (str[i+1] != str[i])
1409 				break;
1410 			is_pred = false;
1411 			continue;
1412 		case '(':
1413 			is_pred = false;
1414 			open++;
1415 			if (open > max_open)
1416 				max_open = open;
1417 			continue;
1418 		case ')':
1419 			is_pred = false;
1420 			if (open == 1) {
1421 				*err = i;
1422 				return TOO_MANY_CLOSE;
1423 			}
1424 			open--;
1425 			continue;
1426 		}
1427 		if (!is_pred) {
1428 			nr_preds++;
1429 			is_pred = true;
1430 		}
1431 	}
1432 
1433 	if (quote) {
1434 		*err = last_quote;
1435 		return MISSING_QUOTE;
1436 	}
1437 
1438 	if (open != 1) {
1439 		int level = open;
1440 
1441 		/* find the bad open */
1442 		for (i--; i; i--) {
1443 			if (quote) {
1444 				if (str[i] == quote)
1445 					quote = 0;
1446 				continue;
1447 			}
1448 			switch (str[i]) {
1449 			case '(':
1450 				if (level == open) {
1451 					*err = i;
1452 					return TOO_MANY_OPEN;
1453 				}
1454 				level--;
1455 				break;
1456 			case ')':
1457 				level++;
1458 				break;
1459 			case '\'':
1460 			case '"':
1461 				quote = str[i];
1462 				break;
1463 			}
1464 		}
1465 		/* First character is the '(' with missing ')' */
1466 		*err = 0;
1467 		return TOO_MANY_OPEN;
1468 	}
1469 
1470 	/* Set the size of the required stacks */
1471 	*parens = max_open;
1472 	*preds = nr_preds;
1473 	return 0;
1474 }
1475 
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)1476 static int process_preds(struct trace_event_call *call,
1477 			 const char *filter_string,
1478 			 struct event_filter *filter,
1479 			 struct filter_parse_error *pe)
1480 {
1481 	struct prog_entry *prog;
1482 	int nr_parens;
1483 	int nr_preds;
1484 	int index;
1485 	int ret;
1486 
1487 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1488 	if (ret < 0) {
1489 		switch (ret) {
1490 		case MISSING_QUOTE:
1491 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1492 			break;
1493 		case TOO_MANY_OPEN:
1494 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1495 			break;
1496 		default:
1497 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1498 		}
1499 		return ret;
1500 	}
1501 
1502 	if (!nr_preds)
1503 		return -EINVAL;
1504 
1505 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1506 			       parse_pred, call, pe);
1507 	if (IS_ERR(prog))
1508 		return PTR_ERR(prog);
1509 
1510 	rcu_assign_pointer(filter->prog, prog);
1511 	return 0;
1512 }
1513 
event_set_filtered_flag(struct trace_event_file * file)1514 static inline void event_set_filtered_flag(struct trace_event_file *file)
1515 {
1516 	unsigned long old_flags = file->flags;
1517 
1518 	file->flags |= EVENT_FILE_FL_FILTERED;
1519 
1520 	if (old_flags != file->flags)
1521 		trace_buffered_event_enable();
1522 }
1523 
event_set_filter(struct trace_event_file * file,struct event_filter * filter)1524 static inline void event_set_filter(struct trace_event_file *file,
1525 				    struct event_filter *filter)
1526 {
1527 	rcu_assign_pointer(file->filter, filter);
1528 }
1529 
event_clear_filter(struct trace_event_file * file)1530 static inline void event_clear_filter(struct trace_event_file *file)
1531 {
1532 	RCU_INIT_POINTER(file->filter, NULL);
1533 }
1534 
1535 static inline void
event_set_no_set_filter_flag(struct trace_event_file * file)1536 event_set_no_set_filter_flag(struct trace_event_file *file)
1537 {
1538 	file->flags |= EVENT_FILE_FL_NO_SET_FILTER;
1539 }
1540 
1541 static inline void
event_clear_no_set_filter_flag(struct trace_event_file * file)1542 event_clear_no_set_filter_flag(struct trace_event_file *file)
1543 {
1544 	file->flags &= ~EVENT_FILE_FL_NO_SET_FILTER;
1545 }
1546 
1547 static inline bool
event_no_set_filter_flag(struct trace_event_file * file)1548 event_no_set_filter_flag(struct trace_event_file *file)
1549 {
1550 	if (file->flags & EVENT_FILE_FL_NO_SET_FILTER)
1551 		return true;
1552 
1553 	return false;
1554 }
1555 
1556 struct filter_list {
1557 	struct list_head	list;
1558 	struct event_filter	*filter;
1559 };
1560 
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)1561 static int process_system_preds(struct trace_subsystem_dir *dir,
1562 				struct trace_array *tr,
1563 				struct filter_parse_error *pe,
1564 				char *filter_string)
1565 {
1566 	struct trace_event_file *file;
1567 	struct filter_list *filter_item;
1568 	struct event_filter *filter = NULL;
1569 	struct filter_list *tmp;
1570 	LIST_HEAD(filter_list);
1571 	bool fail = true;
1572 	int err;
1573 
1574 	list_for_each_entry(file, &tr->events, list) {
1575 
1576 		if (file->system != dir)
1577 			continue;
1578 
1579 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1580 		if (!filter)
1581 			goto fail_mem;
1582 
1583 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1584 		if (!filter->filter_string)
1585 			goto fail_mem;
1586 
1587 		err = process_preds(file->event_call, filter_string, filter, pe);
1588 		if (err) {
1589 			filter_disable(file);
1590 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1591 			append_filter_err(pe, filter);
1592 		} else
1593 			event_set_filtered_flag(file);
1594 
1595 
1596 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1597 		if (!filter_item)
1598 			goto fail_mem;
1599 
1600 		list_add_tail(&filter_item->list, &filter_list);
1601 		/*
1602 		 * Regardless of if this returned an error, we still
1603 		 * replace the filter for the call.
1604 		 */
1605 		filter_item->filter = event_filter(file);
1606 		event_set_filter(file, filter);
1607 		filter = NULL;
1608 
1609 		fail = false;
1610 	}
1611 
1612 	if (fail)
1613 		goto fail;
1614 
1615 	/*
1616 	 * The calls can still be using the old filters.
1617 	 * Do a synchronize_sched() and to ensure all calls are
1618 	 * done with them before we free them.
1619 	 */
1620 	tracepoint_synchronize_unregister();
1621 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1622 		__free_filter(filter_item->filter);
1623 		list_del(&filter_item->list);
1624 		kfree(filter_item);
1625 	}
1626 	return 0;
1627  fail:
1628 	/* No call succeeded */
1629 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1630 		list_del(&filter_item->list);
1631 		kfree(filter_item);
1632 	}
1633 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1634 	return -EINVAL;
1635  fail_mem:
1636 	kfree(filter);
1637 	/* If any call succeeded, we still need to sync */
1638 	if (!fail)
1639 		tracepoint_synchronize_unregister();
1640 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1641 		__free_filter(filter_item->filter);
1642 		list_del(&filter_item->list);
1643 		kfree(filter_item);
1644 	}
1645 	return -ENOMEM;
1646 }
1647 
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)1648 static int create_filter_start(char *filter_string, bool set_str,
1649 			       struct filter_parse_error **pse,
1650 			       struct event_filter **filterp)
1651 {
1652 	struct event_filter *filter;
1653 	struct filter_parse_error *pe = NULL;
1654 	int err = 0;
1655 
1656 	if (WARN_ON_ONCE(*pse || *filterp))
1657 		return -EINVAL;
1658 
1659 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1660 	if (filter && set_str) {
1661 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1662 		if (!filter->filter_string)
1663 			err = -ENOMEM;
1664 	}
1665 
1666 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1667 
1668 	if (!filter || !pe || err) {
1669 		kfree(pe);
1670 		__free_filter(filter);
1671 		return -ENOMEM;
1672 	}
1673 
1674 	/* we're committed to creating a new filter */
1675 	*filterp = filter;
1676 	*pse = pe;
1677 
1678 	return 0;
1679 }
1680 
create_filter_finish(struct filter_parse_error * pe)1681 static void create_filter_finish(struct filter_parse_error *pe)
1682 {
1683 	kfree(pe);
1684 }
1685 
1686 /**
1687  * create_filter - create a filter for a trace_event_call
1688  * @call: trace_event_call to create a filter for
1689  * @filter_str: filter string
1690  * @set_str: remember @filter_str and enable detailed error in filter
1691  * @filterp: out param for created filter (always updated on return)
1692  *           Must be a pointer that references a NULL pointer.
1693  *
1694  * Creates a filter for @call with @filter_str.  If @set_str is %true,
1695  * @filter_str is copied and recorded in the new filter.
1696  *
1697  * On success, returns 0 and *@filterp points to the new filter.  On
1698  * failure, returns -errno and *@filterp may point to %NULL or to a new
1699  * filter.  In the latter case, the returned filter contains error
1700  * information if @set_str is %true and the caller is responsible for
1701  * freeing it.
1702  */
create_filter(struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)1703 static int create_filter(struct trace_event_call *call,
1704 			 char *filter_string, bool set_str,
1705 			 struct event_filter **filterp)
1706 {
1707 	struct filter_parse_error *pe = NULL;
1708 	int err;
1709 
1710 	/* filterp must point to NULL */
1711 	if (WARN_ON(*filterp))
1712 		*filterp = NULL;
1713 
1714 	err = create_filter_start(filter_string, set_str, &pe, filterp);
1715 	if (err)
1716 		return err;
1717 
1718 	err = process_preds(call, filter_string, *filterp, pe);
1719 	if (err && set_str)
1720 		append_filter_err(pe, *filterp);
1721 
1722 	return err;
1723 }
1724 
create_event_filter(struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)1725 int create_event_filter(struct trace_event_call *call,
1726 			char *filter_str, bool set_str,
1727 			struct event_filter **filterp)
1728 {
1729 	return create_filter(call, filter_str, set_str, filterp);
1730 }
1731 
1732 /**
1733  * create_system_filter - create a filter for an event_subsystem
1734  * @system: event_subsystem to create a filter for
1735  * @filter_str: filter string
1736  * @filterp: out param for created filter (always updated on return)
1737  *
1738  * Identical to create_filter() except that it creates a subsystem filter
1739  * and always remembers @filter_str.
1740  */
create_system_filter(struct trace_subsystem_dir * dir,struct trace_array * tr,char * filter_str,struct event_filter ** filterp)1741 static int create_system_filter(struct trace_subsystem_dir *dir,
1742 				struct trace_array *tr,
1743 				char *filter_str, struct event_filter **filterp)
1744 {
1745 	struct filter_parse_error *pe = NULL;
1746 	int err;
1747 
1748 	err = create_filter_start(filter_str, true, &pe, filterp);
1749 	if (!err) {
1750 		err = process_system_preds(dir, tr, pe, filter_str);
1751 		if (!err) {
1752 			/* System filters just show a default message */
1753 			kfree((*filterp)->filter_string);
1754 			(*filterp)->filter_string = NULL;
1755 		} else {
1756 			append_filter_err(pe, *filterp);
1757 		}
1758 	}
1759 	create_filter_finish(pe);
1760 
1761 	return err;
1762 }
1763 
1764 /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)1765 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1766 {
1767 	struct trace_event_call *call = file->event_call;
1768 	struct event_filter *filter = NULL;
1769 	int err;
1770 
1771 	if (!strcmp(strstrip(filter_string), "0")) {
1772 		filter_disable(file);
1773 		filter = event_filter(file);
1774 
1775 		if (!filter)
1776 			return 0;
1777 
1778 		event_clear_filter(file);
1779 
1780 		/* Make sure the filter is not being used */
1781 		tracepoint_synchronize_unregister();
1782 		__free_filter(filter);
1783 
1784 		return 0;
1785 	}
1786 
1787 	err = create_filter(call, filter_string, true, &filter);
1788 
1789 	/*
1790 	 * Always swap the call filter with the new filter
1791 	 * even if there was an error. If there was an error
1792 	 * in the filter, we disable the filter and show the error
1793 	 * string
1794 	 */
1795 	if (filter) {
1796 		struct event_filter *tmp;
1797 
1798 		tmp = event_filter(file);
1799 		if (!err)
1800 			event_set_filtered_flag(file);
1801 		else
1802 			filter_disable(file);
1803 
1804 		event_set_filter(file, filter);
1805 
1806 		if (tmp) {
1807 			/* Make sure the call is done with the filter */
1808 			tracepoint_synchronize_unregister();
1809 			__free_filter(tmp);
1810 		}
1811 	}
1812 
1813 	return err;
1814 }
1815 
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)1816 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1817 				 char *filter_string)
1818 {
1819 	struct event_subsystem *system = dir->subsystem;
1820 	struct trace_array *tr = dir->tr;
1821 	struct event_filter *filter = NULL;
1822 	int err = 0;
1823 
1824 	mutex_lock(&event_mutex);
1825 
1826 	/* Make sure the system still has events */
1827 	if (!dir->nr_events) {
1828 		err = -ENODEV;
1829 		goto out_unlock;
1830 	}
1831 
1832 	if (!strcmp(strstrip(filter_string), "0")) {
1833 		filter_free_subsystem_preds(dir, tr);
1834 		remove_filter_string(system->filter);
1835 		filter = system->filter;
1836 		system->filter = NULL;
1837 		/* Ensure all filters are no longer used */
1838 		tracepoint_synchronize_unregister();
1839 		filter_free_subsystem_filters(dir, tr);
1840 		__free_filter(filter);
1841 		goto out_unlock;
1842 	}
1843 
1844 	err = create_system_filter(dir, tr, filter_string, &filter);
1845 	if (filter) {
1846 		/*
1847 		 * No event actually uses the system filter
1848 		 * we can free it without synchronize_sched().
1849 		 */
1850 		__free_filter(system->filter);
1851 		system->filter = filter;
1852 	}
1853 out_unlock:
1854 	mutex_unlock(&event_mutex);
1855 
1856 	return err;
1857 }
1858 
1859 #ifdef CONFIG_PERF_EVENTS
1860 
ftrace_profile_free_filter(struct perf_event * event)1861 void ftrace_profile_free_filter(struct perf_event *event)
1862 {
1863 	struct event_filter *filter = event->filter;
1864 
1865 	event->filter = NULL;
1866 	__free_filter(filter);
1867 }
1868 
1869 struct function_filter_data {
1870 	struct ftrace_ops *ops;
1871 	int first_filter;
1872 	int first_notrace;
1873 };
1874 
1875 #ifdef CONFIG_FUNCTION_TRACER
1876 static char **
ftrace_function_filter_re(char * buf,int len,int * count)1877 ftrace_function_filter_re(char *buf, int len, int *count)
1878 {
1879 	char *str, **re;
1880 
1881 	str = kstrndup(buf, len, GFP_KERNEL);
1882 	if (!str)
1883 		return NULL;
1884 
1885 	/*
1886 	 * The argv_split function takes white space
1887 	 * as a separator, so convert ',' into spaces.
1888 	 */
1889 	strreplace(str, ',', ' ');
1890 
1891 	re = argv_split(GFP_KERNEL, str, count);
1892 	kfree(str);
1893 	return re;
1894 }
1895 
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)1896 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1897 				      int reset, char *re, int len)
1898 {
1899 	int ret;
1900 
1901 	if (filter)
1902 		ret = ftrace_set_filter(ops, re, len, reset);
1903 	else
1904 		ret = ftrace_set_notrace(ops, re, len, reset);
1905 
1906 	return ret;
1907 }
1908 
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)1909 static int __ftrace_function_set_filter(int filter, char *buf, int len,
1910 					struct function_filter_data *data)
1911 {
1912 	int i, re_cnt, ret = -EINVAL;
1913 	int *reset;
1914 	char **re;
1915 
1916 	reset = filter ? &data->first_filter : &data->first_notrace;
1917 
1918 	/*
1919 	 * The 'ip' field could have multiple filters set, separated
1920 	 * either by space or comma. We first cut the filter and apply
1921 	 * all pieces separatelly.
1922 	 */
1923 	re = ftrace_function_filter_re(buf, len, &re_cnt);
1924 	if (!re)
1925 		return -EINVAL;
1926 
1927 	for (i = 0; i < re_cnt; i++) {
1928 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
1929 						 re[i], strlen(re[i]));
1930 		if (ret)
1931 			break;
1932 
1933 		if (*reset)
1934 			*reset = 0;
1935 	}
1936 
1937 	argv_free(re);
1938 	return ret;
1939 }
1940 
ftrace_function_check_pred(struct filter_pred * pred)1941 static int ftrace_function_check_pred(struct filter_pred *pred)
1942 {
1943 	struct ftrace_event_field *field = pred->field;
1944 
1945 	/*
1946 	 * Check the predicate for function trace, verify:
1947 	 *  - only '==' and '!=' is used
1948 	 *  - the 'ip' field is used
1949 	 */
1950 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
1951 		return -EINVAL;
1952 
1953 	if (strcmp(field->name, "ip"))
1954 		return -EINVAL;
1955 
1956 	return 0;
1957 }
1958 
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)1959 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
1960 					   struct function_filter_data *data)
1961 {
1962 	int ret;
1963 
1964 	/* Checking the node is valid for function trace. */
1965 	ret = ftrace_function_check_pred(pred);
1966 	if (ret)
1967 		return ret;
1968 
1969 	return __ftrace_function_set_filter(pred->op == OP_EQ,
1970 					    pred->regex.pattern,
1971 					    pred->regex.len,
1972 					    data);
1973 }
1974 
is_or(struct prog_entry * prog,int i)1975 static bool is_or(struct prog_entry *prog, int i)
1976 {
1977 	int target;
1978 
1979 	/*
1980 	 * Only "||" is allowed for function events, thus,
1981 	 * all true branches should jump to true, and any
1982 	 * false branch should jump to false.
1983 	 */
1984 	target = prog[i].target + 1;
1985 	/* True and false have NULL preds (all prog entries should jump to one */
1986 	if (prog[target].pred)
1987 		return false;
1988 
1989 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
1990 	return prog[i].when_to_branch == prog[target].target;
1991 }
1992 
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)1993 static int ftrace_function_set_filter(struct perf_event *event,
1994 				      struct event_filter *filter)
1995 {
1996 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
1997 						lockdep_is_held(&event_mutex));
1998 	struct function_filter_data data = {
1999 		.first_filter  = 1,
2000 		.first_notrace = 1,
2001 		.ops           = &event->ftrace_ops,
2002 	};
2003 	int i;
2004 
2005 	for (i = 0; prog[i].pred; i++) {
2006 		struct filter_pred *pred = prog[i].pred;
2007 
2008 		if (!is_or(prog, i))
2009 			return -EINVAL;
2010 
2011 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2012 			return -EINVAL;
2013 	}
2014 	return 0;
2015 }
2016 #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2017 static int ftrace_function_set_filter(struct perf_event *event,
2018 				      struct event_filter *filter)
2019 {
2020 	return -ENODEV;
2021 }
2022 #endif /* CONFIG_FUNCTION_TRACER */
2023 
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2024 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2025 			      char *filter_str)
2026 {
2027 	int err;
2028 	struct event_filter *filter = NULL;
2029 	struct trace_event_call *call;
2030 
2031 	mutex_lock(&event_mutex);
2032 
2033 	call = event->tp_event;
2034 
2035 	err = -EINVAL;
2036 	if (!call)
2037 		goto out_unlock;
2038 
2039 	err = -EEXIST;
2040 	if (event->filter)
2041 		goto out_unlock;
2042 
2043 	err = create_filter(call, filter_str, false, &filter);
2044 	if (err)
2045 		goto free_filter;
2046 
2047 	if (ftrace_event_is_function(call))
2048 		err = ftrace_function_set_filter(event, filter);
2049 	else
2050 		event->filter = filter;
2051 
2052 free_filter:
2053 	if (err || ftrace_event_is_function(call))
2054 		__free_filter(filter);
2055 
2056 out_unlock:
2057 	mutex_unlock(&event_mutex);
2058 
2059 	return err;
2060 }
2061 
2062 #endif /* CONFIG_PERF_EVENTS */
2063 
2064 #ifdef CONFIG_FTRACE_STARTUP_TEST
2065 
2066 #include <linux/types.h>
2067 #include <linux/tracepoint.h>
2068 
2069 #define CREATE_TRACE_POINTS
2070 #include "trace_events_filter_test.h"
2071 
2072 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2073 { \
2074 	.filter = FILTER, \
2075 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2076 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2077 	.match  = m, \
2078 	.not_visited = nvisit, \
2079 }
2080 #define YES 1
2081 #define NO  0
2082 
2083 static struct test_filter_data_t {
2084 	char *filter;
2085 	struct trace_event_raw_ftrace_test_filter rec;
2086 	int match;
2087 	char *not_visited;
2088 } test_filter_data[] = {
2089 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2090 	       "e == 1 && f == 1 && g == 1 && h == 1"
2091 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2092 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2093 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2094 #undef FILTER
2095 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2096 	       "e == 1 || f == 1 || g == 1 || h == 1"
2097 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2098 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2099 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2100 #undef FILTER
2101 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2102 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2103 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2104 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2105 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2106 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2107 #undef FILTER
2108 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2109 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2110 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2111 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2112 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2113 #undef FILTER
2114 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2115 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2116 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2117 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2118 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2119 #undef FILTER
2120 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2121 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2122 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2123 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2124 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2125 #undef FILTER
2126 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2127 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2128 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2129 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2130 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2131 #undef FILTER
2132 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2133 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2134 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2135 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2136 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2137 };
2138 
2139 #undef DATA_REC
2140 #undef FILTER
2141 #undef YES
2142 #undef NO
2143 
2144 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2145 
2146 static int test_pred_visited;
2147 
test_pred_visited_fn(struct filter_pred * pred,void * event)2148 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2149 {
2150 	struct ftrace_event_field *field = pred->field;
2151 
2152 	test_pred_visited = 1;
2153 	printk(KERN_INFO "\npred visited %s\n", field->name);
2154 	return 1;
2155 }
2156 
update_pred_fn(struct event_filter * filter,char * fields)2157 static void update_pred_fn(struct event_filter *filter, char *fields)
2158 {
2159 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2160 						lockdep_is_held(&event_mutex));
2161 	int i;
2162 
2163 	for (i = 0; prog[i].pred; i++) {
2164 		struct filter_pred *pred = prog[i].pred;
2165 		struct ftrace_event_field *field = pred->field;
2166 
2167 		WARN_ON_ONCE(!pred->fn);
2168 
2169 		if (!field) {
2170 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2171 			continue;
2172 		}
2173 
2174 		if (!strchr(fields, *field->name))
2175 			continue;
2176 
2177 		pred->fn = test_pred_visited_fn;
2178 	}
2179 }
2180 
ftrace_test_event_filter(void)2181 static __init int ftrace_test_event_filter(void)
2182 {
2183 	int i;
2184 
2185 	printk(KERN_INFO "Testing ftrace filter: ");
2186 
2187 	for (i = 0; i < DATA_CNT; i++) {
2188 		struct event_filter *filter = NULL;
2189 		struct test_filter_data_t *d = &test_filter_data[i];
2190 		int err;
2191 
2192 		err = create_filter(&event_ftrace_test_filter, d->filter,
2193 				    false, &filter);
2194 		if (err) {
2195 			printk(KERN_INFO
2196 			       "Failed to get filter for '%s', err %d\n",
2197 			       d->filter, err);
2198 			__free_filter(filter);
2199 			break;
2200 		}
2201 
2202 		/* Needed to dereference filter->prog */
2203 		mutex_lock(&event_mutex);
2204 		/*
2205 		 * The preemption disabling is not really needed for self
2206 		 * tests, but the rcu dereference will complain without it.
2207 		 */
2208 		preempt_disable();
2209 		if (*d->not_visited)
2210 			update_pred_fn(filter, d->not_visited);
2211 
2212 		test_pred_visited = 0;
2213 		err = filter_match_preds(filter, &d->rec);
2214 		preempt_enable();
2215 
2216 		mutex_unlock(&event_mutex);
2217 
2218 		__free_filter(filter);
2219 
2220 		if (test_pred_visited) {
2221 			printk(KERN_INFO
2222 			       "Failed, unwanted pred visited for filter %s\n",
2223 			       d->filter);
2224 			break;
2225 		}
2226 
2227 		if (err != d->match) {
2228 			printk(KERN_INFO
2229 			       "Failed to match filter '%s', expected %d\n",
2230 			       d->filter, d->match);
2231 			break;
2232 		}
2233 	}
2234 
2235 	if (i == DATA_CNT)
2236 		printk(KERN_CONT "OK\n");
2237 
2238 	return 0;
2239 }
2240 
2241 late_initcall(ftrace_test_event_filter);
2242 
2243 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2244