1 /*
2 * AMD CPU Microcode Update Driver for Linux
3 *
4 * This driver allows to upgrade microcode on F10h AMD
5 * CPUs and later.
6 *
7 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8 * 2013-2016 Borislav Petkov <bp@alien8.de>
9 *
10 * Author: Peter Oruba <peter.oruba@amd.com>
11 *
12 * Based on work by:
13 * Tigran Aivazian <aivazian.tigran@gmail.com>
14 *
15 * early loader:
16 * Copyright (C) 2013 Advanced Micro Devices, Inc.
17 *
18 * Author: Jacob Shin <jacob.shin@amd.com>
19 * Fixes: Borislav Petkov <bp@suse.de>
20 *
21 * Licensed under the terms of the GNU General Public
22 * License version 2. See file COPYING for details.
23 */
24 #define pr_fmt(fmt) "microcode: " fmt
25
26 #include <linux/earlycpio.h>
27 #include <linux/firmware.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <linux/initrd.h>
31 #include <linux/kernel.h>
32 #include <linux/pci.h>
33
34 #include <asm/microcode_amd.h>
35 #include <asm/microcode.h>
36 #include <asm/processor.h>
37 #include <asm/setup.h>
38 #include <asm/cpu.h>
39 #include <asm/msr.h>
40
41 static struct equiv_cpu_entry *equiv_cpu_table;
42
43 /*
44 * This points to the current valid container of microcode patches which we will
45 * save from the initrd/builtin before jettisoning its contents. @mc is the
46 * microcode patch we found to match.
47 */
48 struct cont_desc {
49 struct microcode_amd *mc;
50 u32 cpuid_1_eax;
51 u32 psize;
52 u8 *data;
53 size_t size;
54 };
55
56 static u32 ucode_new_rev;
57 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
58
59 /*
60 * Microcode patch container file is prepended to the initrd in cpio
61 * format. See Documentation/x86/microcode.txt
62 */
63 static const char
64 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
65
find_equiv_id(struct equiv_cpu_entry * equiv_table,u32 sig)66 static u16 find_equiv_id(struct equiv_cpu_entry *equiv_table, u32 sig)
67 {
68 for (; equiv_table && equiv_table->installed_cpu; equiv_table++) {
69 if (sig == equiv_table->installed_cpu)
70 return equiv_table->equiv_cpu;
71 }
72
73 return 0;
74 }
75
76 /*
77 * This scans the ucode blob for the proper container as we can have multiple
78 * containers glued together. Returns the equivalence ID from the equivalence
79 * table or 0 if none found.
80 * Returns the amount of bytes consumed while scanning. @desc contains all the
81 * data we're going to use in later stages of the application.
82 */
parse_container(u8 * ucode,ssize_t size,struct cont_desc * desc)83 static ssize_t parse_container(u8 *ucode, ssize_t size, struct cont_desc *desc)
84 {
85 struct equiv_cpu_entry *eq;
86 ssize_t orig_size = size;
87 u32 *hdr = (u32 *)ucode;
88 u16 eq_id;
89 u8 *buf;
90
91 /* Am I looking at an equivalence table header? */
92 if (hdr[0] != UCODE_MAGIC ||
93 hdr[1] != UCODE_EQUIV_CPU_TABLE_TYPE ||
94 hdr[2] == 0)
95 return CONTAINER_HDR_SZ;
96
97 buf = ucode;
98
99 eq = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
100
101 /* Find the equivalence ID of our CPU in this table: */
102 eq_id = find_equiv_id(eq, desc->cpuid_1_eax);
103
104 buf += hdr[2] + CONTAINER_HDR_SZ;
105 size -= hdr[2] + CONTAINER_HDR_SZ;
106
107 /*
108 * Scan through the rest of the container to find where it ends. We do
109 * some basic sanity-checking too.
110 */
111 while (size > 0) {
112 struct microcode_amd *mc;
113 u32 patch_size;
114
115 hdr = (u32 *)buf;
116
117 if (hdr[0] != UCODE_UCODE_TYPE)
118 break;
119
120 /* Sanity-check patch size. */
121 patch_size = hdr[1];
122 if (patch_size > PATCH_MAX_SIZE)
123 break;
124
125 /* Skip patch section header: */
126 buf += SECTION_HDR_SIZE;
127 size -= SECTION_HDR_SIZE;
128
129 mc = (struct microcode_amd *)buf;
130 if (eq_id == mc->hdr.processor_rev_id) {
131 desc->psize = patch_size;
132 desc->mc = mc;
133 }
134
135 buf += patch_size;
136 size -= patch_size;
137 }
138
139 /*
140 * If we have found a patch (desc->mc), it means we're looking at the
141 * container which has a patch for this CPU so return 0 to mean, @ucode
142 * already points to the proper container. Otherwise, we return the size
143 * we scanned so that we can advance to the next container in the
144 * buffer.
145 */
146 if (desc->mc) {
147 desc->data = ucode;
148 desc->size = orig_size - size;
149
150 return 0;
151 }
152
153 return orig_size - size;
154 }
155
156 /*
157 * Scan the ucode blob for the proper container as we can have multiple
158 * containers glued together.
159 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)160 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
161 {
162 ssize_t rem = size;
163
164 while (rem >= 0) {
165 ssize_t s = parse_container(ucode, rem, desc);
166 if (!s)
167 return;
168
169 ucode += s;
170 rem -= s;
171 }
172 }
173
__apply_microcode_amd(struct microcode_amd * mc)174 static int __apply_microcode_amd(struct microcode_amd *mc)
175 {
176 u32 rev, dummy;
177
178 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
179
180 /* verify patch application was successful */
181 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
182 if (rev != mc->hdr.patch_id)
183 return -1;
184
185 return 0;
186 }
187
188 /*
189 * Early load occurs before we can vmalloc(). So we look for the microcode
190 * patch container file in initrd, traverse equivalent cpu table, look for a
191 * matching microcode patch, and update, all in initrd memory in place.
192 * When vmalloc() is available for use later -- on 64-bit during first AP load,
193 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
194 * load_microcode_amd() to save equivalent cpu table and microcode patches in
195 * kernel heap memory.
196 *
197 * Returns true if container found (sets @desc), false otherwise.
198 */
199 static bool
apply_microcode_early_amd(u32 cpuid_1_eax,void * ucode,size_t size,bool save_patch)200 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
201 {
202 struct cont_desc desc = { 0 };
203 u8 (*patch)[PATCH_MAX_SIZE];
204 struct microcode_amd *mc;
205 u32 rev, dummy, *new_rev;
206 bool ret = false;
207
208 #ifdef CONFIG_X86_32
209 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
210 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
211 #else
212 new_rev = &ucode_new_rev;
213 patch = &amd_ucode_patch;
214 #endif
215
216 desc.cpuid_1_eax = cpuid_1_eax;
217
218 scan_containers(ucode, size, &desc);
219
220 mc = desc.mc;
221 if (!mc)
222 return ret;
223
224 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
225 if (rev >= mc->hdr.patch_id)
226 return ret;
227
228 if (!__apply_microcode_amd(mc)) {
229 *new_rev = mc->hdr.patch_id;
230 ret = true;
231
232 if (save_patch)
233 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
234 }
235
236 return ret;
237 }
238
get_builtin_microcode(struct cpio_data * cp,unsigned int family)239 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
240 {
241 #ifdef CONFIG_X86_64
242 char fw_name[36] = "amd-ucode/microcode_amd.bin";
243
244 if (family >= 0x15)
245 snprintf(fw_name, sizeof(fw_name),
246 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
247
248 return get_builtin_firmware(cp, fw_name);
249 #else
250 return false;
251 #endif
252 }
253
__load_ucode_amd(unsigned int cpuid_1_eax,struct cpio_data * ret)254 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
255 {
256 struct ucode_cpu_info *uci;
257 struct cpio_data cp;
258 const char *path;
259 bool use_pa;
260
261 if (IS_ENABLED(CONFIG_X86_32)) {
262 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
263 path = (const char *)__pa_nodebug(ucode_path);
264 use_pa = true;
265 } else {
266 uci = ucode_cpu_info;
267 path = ucode_path;
268 use_pa = false;
269 }
270
271 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
272 cp = find_microcode_in_initrd(path, use_pa);
273
274 /* Needed in load_microcode_amd() */
275 uci->cpu_sig.sig = cpuid_1_eax;
276
277 *ret = cp;
278 }
279
load_ucode_amd_bsp(unsigned int cpuid_1_eax)280 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
281 {
282 struct cpio_data cp = { };
283
284 __load_ucode_amd(cpuid_1_eax, &cp);
285 if (!(cp.data && cp.size))
286 return;
287
288 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
289 }
290
load_ucode_amd_ap(unsigned int cpuid_1_eax)291 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
292 {
293 struct microcode_amd *mc;
294 struct cpio_data cp;
295 u32 *new_rev, rev, dummy;
296
297 if (IS_ENABLED(CONFIG_X86_32)) {
298 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
299 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
300 } else {
301 mc = (struct microcode_amd *)amd_ucode_patch;
302 new_rev = &ucode_new_rev;
303 }
304
305 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
306
307 /* Check whether we have saved a new patch already: */
308 if (*new_rev && rev < mc->hdr.patch_id) {
309 if (!__apply_microcode_amd(mc)) {
310 *new_rev = mc->hdr.patch_id;
311 return;
312 }
313 }
314
315 __load_ucode_amd(cpuid_1_eax, &cp);
316 if (!(cp.data && cp.size))
317 return;
318
319 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
320 }
321
322 static enum ucode_state
323 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
324
save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)325 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
326 {
327 struct cont_desc desc = { 0 };
328 enum ucode_state ret;
329 struct cpio_data cp;
330
331 cp = find_microcode_in_initrd(ucode_path, false);
332 if (!(cp.data && cp.size))
333 return -EINVAL;
334
335 desc.cpuid_1_eax = cpuid_1_eax;
336
337 scan_containers(cp.data, cp.size, &desc);
338 if (!desc.mc)
339 return -EINVAL;
340
341 ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
342 if (ret > UCODE_UPDATED)
343 return -EINVAL;
344
345 return 0;
346 }
347
reload_ucode_amd(void)348 void reload_ucode_amd(void)
349 {
350 struct microcode_amd *mc;
351 u32 rev, dummy;
352
353 mc = (struct microcode_amd *)amd_ucode_patch;
354
355 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
356
357 if (rev < mc->hdr.patch_id) {
358 if (!__apply_microcode_amd(mc)) {
359 ucode_new_rev = mc->hdr.patch_id;
360 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
361 }
362 }
363 }
__find_equiv_id(unsigned int cpu)364 static u16 __find_equiv_id(unsigned int cpu)
365 {
366 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
367 return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
368 }
369
find_cpu_family_by_equiv_cpu(u16 equiv_cpu)370 static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
371 {
372 int i = 0;
373
374 BUG_ON(!equiv_cpu_table);
375
376 while (equiv_cpu_table[i].equiv_cpu != 0) {
377 if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
378 return equiv_cpu_table[i].installed_cpu;
379 i++;
380 }
381 return 0;
382 }
383
384 /*
385 * a small, trivial cache of per-family ucode patches
386 */
cache_find_patch(u16 equiv_cpu)387 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
388 {
389 struct ucode_patch *p;
390
391 list_for_each_entry(p, µcode_cache, plist)
392 if (p->equiv_cpu == equiv_cpu)
393 return p;
394 return NULL;
395 }
396
update_cache(struct ucode_patch * new_patch)397 static void update_cache(struct ucode_patch *new_patch)
398 {
399 struct ucode_patch *p;
400
401 list_for_each_entry(p, µcode_cache, plist) {
402 if (p->equiv_cpu == new_patch->equiv_cpu) {
403 if (p->patch_id >= new_patch->patch_id) {
404 /* we already have the latest patch */
405 kfree(new_patch->data);
406 kfree(new_patch);
407 return;
408 }
409
410 list_replace(&p->plist, &new_patch->plist);
411 kfree(p->data);
412 kfree(p);
413 return;
414 }
415 }
416 /* no patch found, add it */
417 list_add_tail(&new_patch->plist, µcode_cache);
418 }
419
free_cache(void)420 static void free_cache(void)
421 {
422 struct ucode_patch *p, *tmp;
423
424 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
425 __list_del(p->plist.prev, p->plist.next);
426 kfree(p->data);
427 kfree(p);
428 }
429 }
430
find_patch(unsigned int cpu)431 static struct ucode_patch *find_patch(unsigned int cpu)
432 {
433 u16 equiv_id;
434
435 equiv_id = __find_equiv_id(cpu);
436 if (!equiv_id)
437 return NULL;
438
439 return cache_find_patch(equiv_id);
440 }
441
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)442 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
443 {
444 struct cpuinfo_x86 *c = &cpu_data(cpu);
445 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
446 struct ucode_patch *p;
447
448 csig->sig = cpuid_eax(0x00000001);
449 csig->rev = c->microcode;
450
451 /*
452 * a patch could have been loaded early, set uci->mc so that
453 * mc_bp_resume() can call apply_microcode()
454 */
455 p = find_patch(cpu);
456 if (p && (p->patch_id == csig->rev))
457 uci->mc = p->data;
458
459 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
460
461 return 0;
462 }
463
verify_patch_size(u8 family,u32 patch_size,unsigned int size)464 static unsigned int verify_patch_size(u8 family, u32 patch_size,
465 unsigned int size)
466 {
467 u32 max_size;
468
469 #define F1XH_MPB_MAX_SIZE 2048
470 #define F14H_MPB_MAX_SIZE 1824
471 #define F15H_MPB_MAX_SIZE 4096
472 #define F16H_MPB_MAX_SIZE 3458
473 #define F17H_MPB_MAX_SIZE 3200
474
475 switch (family) {
476 case 0x14:
477 max_size = F14H_MPB_MAX_SIZE;
478 break;
479 case 0x15:
480 max_size = F15H_MPB_MAX_SIZE;
481 break;
482 case 0x16:
483 max_size = F16H_MPB_MAX_SIZE;
484 break;
485 case 0x17:
486 max_size = F17H_MPB_MAX_SIZE;
487 break;
488 default:
489 max_size = F1XH_MPB_MAX_SIZE;
490 break;
491 }
492
493 if (patch_size > min_t(u32, size, max_size)) {
494 pr_err("patch size mismatch\n");
495 return 0;
496 }
497
498 return patch_size;
499 }
500
apply_microcode_amd(int cpu)501 static enum ucode_state apply_microcode_amd(int cpu)
502 {
503 struct cpuinfo_x86 *c = &cpu_data(cpu);
504 struct microcode_amd *mc_amd;
505 struct ucode_cpu_info *uci;
506 struct ucode_patch *p;
507 enum ucode_state ret;
508 u32 rev, dummy;
509
510 BUG_ON(raw_smp_processor_id() != cpu);
511
512 uci = ucode_cpu_info + cpu;
513
514 p = find_patch(cpu);
515 if (!p)
516 return UCODE_NFOUND;
517
518 mc_amd = p->data;
519 uci->mc = p->data;
520
521 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
522
523 /* need to apply patch? */
524 if (rev >= mc_amd->hdr.patch_id) {
525 ret = UCODE_OK;
526 goto out;
527 }
528
529 if (__apply_microcode_amd(mc_amd)) {
530 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
531 cpu, mc_amd->hdr.patch_id);
532 return UCODE_ERROR;
533 }
534
535 rev = mc_amd->hdr.patch_id;
536 ret = UCODE_UPDATED;
537
538 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
539
540 out:
541 uci->cpu_sig.rev = rev;
542 c->microcode = rev;
543
544 /* Update boot_cpu_data's revision too, if we're on the BSP: */
545 if (c->cpu_index == boot_cpu_data.cpu_index)
546 boot_cpu_data.microcode = rev;
547
548 return ret;
549 }
550
install_equiv_cpu_table(const u8 * buf)551 static int install_equiv_cpu_table(const u8 *buf)
552 {
553 unsigned int *ibuf = (unsigned int *)buf;
554 unsigned int type = ibuf[1];
555 unsigned int size = ibuf[2];
556
557 if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
558 pr_err("empty section/"
559 "invalid type field in container file section header\n");
560 return -EINVAL;
561 }
562
563 equiv_cpu_table = vmalloc(size);
564 if (!equiv_cpu_table) {
565 pr_err("failed to allocate equivalent CPU table\n");
566 return -ENOMEM;
567 }
568
569 memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
570
571 /* add header length */
572 return size + CONTAINER_HDR_SZ;
573 }
574
free_equiv_cpu_table(void)575 static void free_equiv_cpu_table(void)
576 {
577 vfree(equiv_cpu_table);
578 equiv_cpu_table = NULL;
579 }
580
cleanup(void)581 static void cleanup(void)
582 {
583 free_equiv_cpu_table();
584 free_cache();
585 }
586
587 /*
588 * We return the current size even if some of the checks failed so that
589 * we can skip over the next patch. If we return a negative value, we
590 * signal a grave error like a memory allocation has failed and the
591 * driver cannot continue functioning normally. In such cases, we tear
592 * down everything we've used up so far and exit.
593 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover)594 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
595 {
596 struct microcode_header_amd *mc_hdr;
597 struct ucode_patch *patch;
598 unsigned int patch_size, crnt_size, ret;
599 u32 proc_fam;
600 u16 proc_id;
601
602 patch_size = *(u32 *)(fw + 4);
603 crnt_size = patch_size + SECTION_HDR_SIZE;
604 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
605 proc_id = mc_hdr->processor_rev_id;
606
607 proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
608 if (!proc_fam) {
609 pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
610 return crnt_size;
611 }
612
613 /* check if patch is for the current family */
614 proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
615 if (proc_fam != family)
616 return crnt_size;
617
618 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
619 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
620 mc_hdr->patch_id);
621 return crnt_size;
622 }
623
624 ret = verify_patch_size(family, patch_size, leftover);
625 if (!ret) {
626 pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
627 return crnt_size;
628 }
629
630 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
631 if (!patch) {
632 pr_err("Patch allocation failure.\n");
633 return -EINVAL;
634 }
635
636 patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
637 if (!patch->data) {
638 pr_err("Patch data allocation failure.\n");
639 kfree(patch);
640 return -EINVAL;
641 }
642
643 INIT_LIST_HEAD(&patch->plist);
644 patch->patch_id = mc_hdr->patch_id;
645 patch->equiv_cpu = proc_id;
646
647 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
648 __func__, patch->patch_id, proc_id);
649
650 /* ... and add to cache. */
651 update_cache(patch);
652
653 return crnt_size;
654 }
655
__load_microcode_amd(u8 family,const u8 * data,size_t size)656 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
657 size_t size)
658 {
659 enum ucode_state ret = UCODE_ERROR;
660 unsigned int leftover;
661 u8 *fw = (u8 *)data;
662 int crnt_size = 0;
663 int offset;
664
665 offset = install_equiv_cpu_table(data);
666 if (offset < 0) {
667 pr_err("failed to create equivalent cpu table\n");
668 return ret;
669 }
670 fw += offset;
671 leftover = size - offset;
672
673 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
674 pr_err("invalid type field in container file section header\n");
675 free_equiv_cpu_table();
676 return ret;
677 }
678
679 while (leftover) {
680 crnt_size = verify_and_add_patch(family, fw, leftover);
681 if (crnt_size < 0)
682 return ret;
683
684 fw += crnt_size;
685 leftover -= crnt_size;
686 }
687
688 return UCODE_OK;
689 }
690
691 static enum ucode_state
load_microcode_amd(bool save,u8 family,const u8 * data,size_t size)692 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
693 {
694 struct ucode_patch *p;
695 enum ucode_state ret;
696
697 /* free old equiv table */
698 free_equiv_cpu_table();
699
700 ret = __load_microcode_amd(family, data, size);
701 if (ret != UCODE_OK) {
702 cleanup();
703 return ret;
704 }
705
706 p = find_patch(0);
707 if (!p) {
708 return ret;
709 } else {
710 if (boot_cpu_data.microcode == p->patch_id)
711 return ret;
712
713 ret = UCODE_NEW;
714 }
715
716 /* save BSP's matching patch for early load */
717 if (!save)
718 return ret;
719
720 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
721 memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE));
722
723 return ret;
724 }
725
726 /*
727 * AMD microcode firmware naming convention, up to family 15h they are in
728 * the legacy file:
729 *
730 * amd-ucode/microcode_amd.bin
731 *
732 * This legacy file is always smaller than 2K in size.
733 *
734 * Beginning with family 15h, they are in family-specific firmware files:
735 *
736 * amd-ucode/microcode_amd_fam15h.bin
737 * amd-ucode/microcode_amd_fam16h.bin
738 * ...
739 *
740 * These might be larger than 2K.
741 */
request_microcode_amd(int cpu,struct device * device,bool refresh_fw)742 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
743 bool refresh_fw)
744 {
745 char fw_name[36] = "amd-ucode/microcode_amd.bin";
746 struct cpuinfo_x86 *c = &cpu_data(cpu);
747 bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
748 enum ucode_state ret = UCODE_NFOUND;
749 const struct firmware *fw;
750
751 /* reload ucode container only on the boot cpu */
752 if (!refresh_fw || !bsp)
753 return UCODE_OK;
754
755 if (c->x86 >= 0x15)
756 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
757
758 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
759 pr_debug("failed to load file %s\n", fw_name);
760 goto out;
761 }
762
763 ret = UCODE_ERROR;
764 if (*(u32 *)fw->data != UCODE_MAGIC) {
765 pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
766 goto fw_release;
767 }
768
769 ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
770
771 fw_release:
772 release_firmware(fw);
773
774 out:
775 return ret;
776 }
777
778 static enum ucode_state
request_microcode_user(int cpu,const void __user * buf,size_t size)779 request_microcode_user(int cpu, const void __user *buf, size_t size)
780 {
781 return UCODE_ERROR;
782 }
783
microcode_fini_cpu_amd(int cpu)784 static void microcode_fini_cpu_amd(int cpu)
785 {
786 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
787
788 uci->mc = NULL;
789 }
790
791 static struct microcode_ops microcode_amd_ops = {
792 .request_microcode_user = request_microcode_user,
793 .request_microcode_fw = request_microcode_amd,
794 .collect_cpu_info = collect_cpu_info_amd,
795 .apply_microcode = apply_microcode_amd,
796 .microcode_fini_cpu = microcode_fini_cpu_amd,
797 };
798
init_amd_microcode(void)799 struct microcode_ops * __init init_amd_microcode(void)
800 {
801 struct cpuinfo_x86 *c = &boot_cpu_data;
802
803 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
804 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
805 return NULL;
806 }
807
808 if (ucode_new_rev)
809 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
810 ucode_new_rev);
811
812 return µcode_amd_ops;
813 }
814
exit_amd_microcode(void)815 void __exit exit_amd_microcode(void)
816 {
817 cleanup();
818 }
819