1 /*
2 * FP/SIMD context switching and fault handling
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/bitmap.h>
21 #include <linux/bottom_half.h>
22 #include <linux/bug.h>
23 #include <linux/cache.h>
24 #include <linux/compat.h>
25 #include <linux/cpu.h>
26 #include <linux/cpu_pm.h>
27 #include <linux/kernel.h>
28 #include <linux/linkage.h>
29 #include <linux/irqflags.h>
30 #include <linux/init.h>
31 #include <linux/percpu.h>
32 #include <linux/prctl.h>
33 #include <linux/preempt.h>
34 #include <linux/ptrace.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/signal.h>
38 #include <linux/slab.h>
39 #include <linux/stddef.h>
40 #include <linux/sysctl.h>
41
42 #include <asm/esr.h>
43 #include <asm/fpsimd.h>
44 #include <asm/cpufeature.h>
45 #include <asm/cputype.h>
46 #include <asm/processor.h>
47 #include <asm/simd.h>
48 #include <asm/sigcontext.h>
49 #include <asm/sysreg.h>
50 #include <asm/traps.h>
51
52 #define FPEXC_IOF (1 << 0)
53 #define FPEXC_DZF (1 << 1)
54 #define FPEXC_OFF (1 << 2)
55 #define FPEXC_UFF (1 << 3)
56 #define FPEXC_IXF (1 << 4)
57 #define FPEXC_IDF (1 << 7)
58
59 /*
60 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
61 *
62 * In order to reduce the number of times the FPSIMD state is needlessly saved
63 * and restored, we need to keep track of two things:
64 * (a) for each task, we need to remember which CPU was the last one to have
65 * the task's FPSIMD state loaded into its FPSIMD registers;
66 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
67 * been loaded into its FPSIMD registers most recently, or whether it has
68 * been used to perform kernel mode NEON in the meantime.
69 *
70 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
71 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
72 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
73 * address of the userland FPSIMD state of the task that was loaded onto the CPU
74 * the most recently, or NULL if kernel mode NEON has been performed after that.
75 *
76 * With this in place, we no longer have to restore the next FPSIMD state right
77 * when switching between tasks. Instead, we can defer this check to userland
78 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
79 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
80 * can omit the FPSIMD restore.
81 *
82 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
83 * indicate whether or not the userland FPSIMD state of the current task is
84 * present in the registers. The flag is set unless the FPSIMD registers of this
85 * CPU currently contain the most recent userland FPSIMD state of the current
86 * task.
87 *
88 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
89 * save the task's FPSIMD context back to task_struct from softirq context.
90 * To prevent this from racing with the manipulation of the task's FPSIMD state
91 * from task context and thereby corrupting the state, it is necessary to
92 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
93 * flag with local_bh_disable() unless softirqs are already masked.
94 *
95 * For a certain task, the sequence may look something like this:
96 * - the task gets scheduled in; if both the task's fpsimd_cpu field
97 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
98 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
99 * cleared, otherwise it is set;
100 *
101 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
102 * userland FPSIMD state is copied from memory to the registers, the task's
103 * fpsimd_cpu field is set to the id of the current CPU, the current
104 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
105 * TIF_FOREIGN_FPSTATE flag is cleared;
106 *
107 * - the task executes an ordinary syscall; upon return to userland, the
108 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
109 * restored;
110 *
111 * - the task executes a syscall which executes some NEON instructions; this is
112 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
113 * register contents to memory, clears the fpsimd_last_state per-cpu variable
114 * and sets the TIF_FOREIGN_FPSTATE flag;
115 *
116 * - the task gets preempted after kernel_neon_end() is called; as we have not
117 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
118 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
119 */
120 struct fpsimd_last_state_struct {
121 struct user_fpsimd_state *st;
122 };
123
124 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
125
126 /* Default VL for tasks that don't set it explicitly: */
127 static int sve_default_vl = -1;
128
129 #ifdef CONFIG_ARM64_SVE
130
131 /* Maximum supported vector length across all CPUs (initially poisoned) */
132 int __ro_after_init sve_max_vl = SVE_VL_MIN;
133 /* Set of available vector lengths, as vq_to_bit(vq): */
134 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135 static void __percpu *efi_sve_state;
136
137 #else /* ! CONFIG_ARM64_SVE */
138
139 /* Dummy declaration for code that will be optimised out: */
140 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
141 extern void __percpu *efi_sve_state;
142
143 #endif /* ! CONFIG_ARM64_SVE */
144
145 /*
146 * Call __sve_free() directly only if you know task can't be scheduled
147 * or preempted.
148 */
__sve_free(struct task_struct * task)149 static void __sve_free(struct task_struct *task)
150 {
151 kfree(task->thread.sve_state);
152 task->thread.sve_state = NULL;
153 }
154
sve_free(struct task_struct * task)155 static void sve_free(struct task_struct *task)
156 {
157 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
158
159 __sve_free(task);
160 }
161
162 /*
163 * TIF_SVE controls whether a task can use SVE without trapping while
164 * in userspace, and also the way a task's FPSIMD/SVE state is stored
165 * in thread_struct.
166 *
167 * The kernel uses this flag to track whether a user task is actively
168 * using SVE, and therefore whether full SVE register state needs to
169 * be tracked. If not, the cheaper FPSIMD context handling code can
170 * be used instead of the more costly SVE equivalents.
171 *
172 * * TIF_SVE set:
173 *
174 * The task can execute SVE instructions while in userspace without
175 * trapping to the kernel.
176 *
177 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
178 * corresponding Zn), P0-P15 and FFR are encoded in in
179 * task->thread.sve_state, formatted appropriately for vector
180 * length task->thread.sve_vl.
181 *
182 * task->thread.sve_state must point to a valid buffer at least
183 * sve_state_size(task) bytes in size.
184 *
185 * During any syscall, the kernel may optionally clear TIF_SVE and
186 * discard the vector state except for the FPSIMD subset.
187 *
188 * * TIF_SVE clear:
189 *
190 * An attempt by the user task to execute an SVE instruction causes
191 * do_sve_acc() to be called, which does some preparation and then
192 * sets TIF_SVE.
193 *
194 * When stored, FPSIMD registers V0-V31 are encoded in
195 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
196 * logically zero but not stored anywhere; P0-P15 and FFR are not
197 * stored and have unspecified values from userspace's point of
198 * view. For hygiene purposes, the kernel zeroes them on next use,
199 * but userspace is discouraged from relying on this.
200 *
201 * task->thread.sve_state does not need to be non-NULL, valid or any
202 * particular size: it must not be dereferenced.
203 *
204 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
205 * irrespective of whether TIF_SVE is clear or set, since these are
206 * not vector length dependent.
207 */
208
209 /*
210 * Update current's FPSIMD/SVE registers from thread_struct.
211 *
212 * This function should be called only when the FPSIMD/SVE state in
213 * thread_struct is known to be up to date, when preparing to enter
214 * userspace.
215 *
216 * Softirqs (and preemption) must be disabled.
217 */
task_fpsimd_load(void)218 static void task_fpsimd_load(void)
219 {
220 WARN_ON(!in_softirq() && !irqs_disabled());
221
222 if (system_supports_sve() && test_thread_flag(TIF_SVE))
223 sve_load_state(sve_pffr(¤t->thread),
224 ¤t->thread.uw.fpsimd_state.fpsr,
225 sve_vq_from_vl(current->thread.sve_vl) - 1);
226 else
227 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
228 }
229
230 /*
231 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
232 * date with respect to the CPU registers.
233 *
234 * Softirqs (and preemption) must be disabled.
235 */
fpsimd_save(void)236 void fpsimd_save(void)
237 {
238 struct user_fpsimd_state *st = __this_cpu_read(fpsimd_last_state.st);
239 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
240
241 WARN_ON(!in_softirq() && !irqs_disabled());
242
243 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
244 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
245 if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
246 /*
247 * Can't save the user regs, so current would
248 * re-enter user with corrupt state.
249 * There's no way to recover, so kill it:
250 */
251 force_signal_inject(SIGKILL, SI_KERNEL, 0);
252 return;
253 }
254
255 sve_save_state(sve_pffr(¤t->thread), &st->fpsr);
256 } else
257 fpsimd_save_state(st);
258 }
259 }
260
261 /*
262 * Helpers to translate bit indices in sve_vq_map to VQ values (and
263 * vice versa). This allows find_next_bit() to be used to find the
264 * _maximum_ VQ not exceeding a certain value.
265 */
266
vq_to_bit(unsigned int vq)267 static unsigned int vq_to_bit(unsigned int vq)
268 {
269 return SVE_VQ_MAX - vq;
270 }
271
bit_to_vq(unsigned int bit)272 static unsigned int bit_to_vq(unsigned int bit)
273 {
274 if (WARN_ON(bit >= SVE_VQ_MAX))
275 bit = SVE_VQ_MAX - 1;
276
277 return SVE_VQ_MAX - bit;
278 }
279
280 /*
281 * All vector length selection from userspace comes through here.
282 * We're on a slow path, so some sanity-checks are included.
283 * If things go wrong there's a bug somewhere, but try to fall back to a
284 * safe choice.
285 */
find_supported_vector_length(unsigned int vl)286 static unsigned int find_supported_vector_length(unsigned int vl)
287 {
288 int bit;
289 int max_vl = sve_max_vl;
290
291 if (WARN_ON(!sve_vl_valid(vl)))
292 vl = SVE_VL_MIN;
293
294 if (WARN_ON(!sve_vl_valid(max_vl)))
295 max_vl = SVE_VL_MIN;
296
297 if (vl > max_vl)
298 vl = max_vl;
299
300 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
301 vq_to_bit(sve_vq_from_vl(vl)));
302 return sve_vl_from_vq(bit_to_vq(bit));
303 }
304
305 #ifdef CONFIG_SYSCTL
306
sve_proc_do_default_vl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)307 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
308 void __user *buffer, size_t *lenp,
309 loff_t *ppos)
310 {
311 int ret;
312 int vl = sve_default_vl;
313 struct ctl_table tmp_table = {
314 .data = &vl,
315 .maxlen = sizeof(vl),
316 };
317
318 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
319 if (ret || !write)
320 return ret;
321
322 /* Writing -1 has the special meaning "set to max": */
323 if (vl == -1)
324 vl = sve_max_vl;
325
326 if (!sve_vl_valid(vl))
327 return -EINVAL;
328
329 sve_default_vl = find_supported_vector_length(vl);
330 return 0;
331 }
332
333 static struct ctl_table sve_default_vl_table[] = {
334 {
335 .procname = "sve_default_vector_length",
336 .mode = 0644,
337 .proc_handler = sve_proc_do_default_vl,
338 },
339 { }
340 };
341
sve_sysctl_init(void)342 static int __init sve_sysctl_init(void)
343 {
344 if (system_supports_sve())
345 if (!register_sysctl("abi", sve_default_vl_table))
346 return -EINVAL;
347
348 return 0;
349 }
350
351 #else /* ! CONFIG_SYSCTL */
sve_sysctl_init(void)352 static int __init sve_sysctl_init(void) { return 0; }
353 #endif /* ! CONFIG_SYSCTL */
354
355 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
356 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
357
358 /*
359 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
360 * task->thread.sve_state.
361 *
362 * Task can be a non-runnable task, or current. In the latter case,
363 * softirqs (and preemption) must be disabled.
364 * task->thread.sve_state must point to at least sve_state_size(task)
365 * bytes of allocated kernel memory.
366 * task->thread.uw.fpsimd_state must be up to date before calling this
367 * function.
368 */
fpsimd_to_sve(struct task_struct * task)369 static void fpsimd_to_sve(struct task_struct *task)
370 {
371 unsigned int vq;
372 void *sst = task->thread.sve_state;
373 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
374 unsigned int i;
375
376 if (!system_supports_sve())
377 return;
378
379 vq = sve_vq_from_vl(task->thread.sve_vl);
380 for (i = 0; i < 32; ++i)
381 memcpy(ZREG(sst, vq, i), &fst->vregs[i],
382 sizeof(fst->vregs[i]));
383 }
384
385 /*
386 * Transfer the SVE state in task->thread.sve_state to
387 * task->thread.uw.fpsimd_state.
388 *
389 * Task can be a non-runnable task, or current. In the latter case,
390 * softirqs (and preemption) must be disabled.
391 * task->thread.sve_state must point to at least sve_state_size(task)
392 * bytes of allocated kernel memory.
393 * task->thread.sve_state must be up to date before calling this function.
394 */
sve_to_fpsimd(struct task_struct * task)395 static void sve_to_fpsimd(struct task_struct *task)
396 {
397 unsigned int vq;
398 void const *sst = task->thread.sve_state;
399 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
400 unsigned int i;
401
402 if (!system_supports_sve())
403 return;
404
405 vq = sve_vq_from_vl(task->thread.sve_vl);
406 for (i = 0; i < 32; ++i)
407 memcpy(&fst->vregs[i], ZREG(sst, vq, i),
408 sizeof(fst->vregs[i]));
409 }
410
411 #ifdef CONFIG_ARM64_SVE
412
413 /*
414 * Return how many bytes of memory are required to store the full SVE
415 * state for task, given task's currently configured vector length.
416 */
sve_state_size(struct task_struct const * task)417 size_t sve_state_size(struct task_struct const *task)
418 {
419 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
420 }
421
422 /*
423 * Ensure that task->thread.sve_state is allocated and sufficiently large.
424 *
425 * This function should be used only in preparation for replacing
426 * task->thread.sve_state with new data. The memory is always zeroed
427 * here to prevent stale data from showing through: this is done in
428 * the interest of testability and predictability: except in the
429 * do_sve_acc() case, there is no ABI requirement to hide stale data
430 * written previously be task.
431 */
sve_alloc(struct task_struct * task)432 void sve_alloc(struct task_struct *task)
433 {
434 if (task->thread.sve_state) {
435 memset(task->thread.sve_state, 0, sve_state_size(current));
436 return;
437 }
438
439 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
440 task->thread.sve_state =
441 kzalloc(sve_state_size(task), GFP_KERNEL);
442
443 /*
444 * If future SVE revisions can have larger vectors though,
445 * this may cease to be true:
446 */
447 BUG_ON(!task->thread.sve_state);
448 }
449
450
451 /*
452 * Ensure that task->thread.sve_state is up to date with respect to
453 * the user task, irrespective of when SVE is in use or not.
454 *
455 * This should only be called by ptrace. task must be non-runnable.
456 * task->thread.sve_state must point to at least sve_state_size(task)
457 * bytes of allocated kernel memory.
458 */
fpsimd_sync_to_sve(struct task_struct * task)459 void fpsimd_sync_to_sve(struct task_struct *task)
460 {
461 if (!test_tsk_thread_flag(task, TIF_SVE))
462 fpsimd_to_sve(task);
463 }
464
465 /*
466 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
467 * the user task, irrespective of whether SVE is in use or not.
468 *
469 * This should only be called by ptrace. task must be non-runnable.
470 * task->thread.sve_state must point to at least sve_state_size(task)
471 * bytes of allocated kernel memory.
472 */
sve_sync_to_fpsimd(struct task_struct * task)473 void sve_sync_to_fpsimd(struct task_struct *task)
474 {
475 if (test_tsk_thread_flag(task, TIF_SVE))
476 sve_to_fpsimd(task);
477 }
478
479 /*
480 * Ensure that task->thread.sve_state is up to date with respect to
481 * the task->thread.uw.fpsimd_state.
482 *
483 * This should only be called by ptrace to merge new FPSIMD register
484 * values into a task for which SVE is currently active.
485 * task must be non-runnable.
486 * task->thread.sve_state must point to at least sve_state_size(task)
487 * bytes of allocated kernel memory.
488 * task->thread.uw.fpsimd_state must already have been initialised with
489 * the new FPSIMD register values to be merged in.
490 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)491 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
492 {
493 unsigned int vq;
494 void *sst = task->thread.sve_state;
495 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
496 unsigned int i;
497
498 if (!test_tsk_thread_flag(task, TIF_SVE))
499 return;
500
501 vq = sve_vq_from_vl(task->thread.sve_vl);
502
503 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
504
505 for (i = 0; i < 32; ++i)
506 memcpy(ZREG(sst, vq, i), &fst->vregs[i],
507 sizeof(fst->vregs[i]));
508 }
509
sve_set_vector_length(struct task_struct * task,unsigned long vl,unsigned long flags)510 int sve_set_vector_length(struct task_struct *task,
511 unsigned long vl, unsigned long flags)
512 {
513 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
514 PR_SVE_SET_VL_ONEXEC))
515 return -EINVAL;
516
517 if (!sve_vl_valid(vl))
518 return -EINVAL;
519
520 /*
521 * Clamp to the maximum vector length that VL-agnostic SVE code can
522 * work with. A flag may be assigned in the future to allow setting
523 * of larger vector lengths without confusing older software.
524 */
525 if (vl > SVE_VL_ARCH_MAX)
526 vl = SVE_VL_ARCH_MAX;
527
528 vl = find_supported_vector_length(vl);
529
530 if (flags & (PR_SVE_VL_INHERIT |
531 PR_SVE_SET_VL_ONEXEC))
532 task->thread.sve_vl_onexec = vl;
533 else
534 /* Reset VL to system default on next exec: */
535 task->thread.sve_vl_onexec = 0;
536
537 /* Only actually set the VL if not deferred: */
538 if (flags & PR_SVE_SET_VL_ONEXEC)
539 goto out;
540
541 if (vl == task->thread.sve_vl)
542 goto out;
543
544 /*
545 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
546 * write any live register state back to task_struct, and convert to a
547 * non-SVE thread.
548 */
549 if (task == current) {
550 local_bh_disable();
551
552 fpsimd_save();
553 set_thread_flag(TIF_FOREIGN_FPSTATE);
554 }
555
556 fpsimd_flush_task_state(task);
557 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
558 sve_to_fpsimd(task);
559
560 if (task == current)
561 local_bh_enable();
562
563 /*
564 * Force reallocation of task SVE state to the correct size
565 * on next use:
566 */
567 sve_free(task);
568
569 task->thread.sve_vl = vl;
570
571 out:
572 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
573 flags & PR_SVE_VL_INHERIT);
574
575 return 0;
576 }
577
578 /*
579 * Encode the current vector length and flags for return.
580 * This is only required for prctl(): ptrace has separate fields
581 *
582 * flags are as for sve_set_vector_length().
583 */
sve_prctl_status(unsigned long flags)584 static int sve_prctl_status(unsigned long flags)
585 {
586 int ret;
587
588 if (flags & PR_SVE_SET_VL_ONEXEC)
589 ret = current->thread.sve_vl_onexec;
590 else
591 ret = current->thread.sve_vl;
592
593 if (test_thread_flag(TIF_SVE_VL_INHERIT))
594 ret |= PR_SVE_VL_INHERIT;
595
596 return ret;
597 }
598
599 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)600 int sve_set_current_vl(unsigned long arg)
601 {
602 unsigned long vl, flags;
603 int ret;
604
605 vl = arg & PR_SVE_VL_LEN_MASK;
606 flags = arg & ~vl;
607
608 if (!system_supports_sve())
609 return -EINVAL;
610
611 ret = sve_set_vector_length(current, vl, flags);
612 if (ret)
613 return ret;
614
615 return sve_prctl_status(flags);
616 }
617
618 /* PR_SVE_GET_VL */
sve_get_current_vl(void)619 int sve_get_current_vl(void)
620 {
621 if (!system_supports_sve())
622 return -EINVAL;
623
624 return sve_prctl_status(0);
625 }
626
627 /*
628 * Bitmap for temporary storage of the per-CPU set of supported vector lengths
629 * during secondary boot.
630 */
631 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);
632
sve_probe_vqs(DECLARE_BITMAP (map,SVE_VQ_MAX))633 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
634 {
635 unsigned int vq, vl;
636 unsigned long zcr;
637
638 bitmap_zero(map, SVE_VQ_MAX);
639
640 zcr = ZCR_ELx_LEN_MASK;
641 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
642
643 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
644 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
645 vl = sve_get_vl();
646 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
647 set_bit(vq_to_bit(vq), map);
648 }
649 }
650
sve_init_vq_map(void)651 void __init sve_init_vq_map(void)
652 {
653 sve_probe_vqs(sve_vq_map);
654 }
655
656 /*
657 * If we haven't committed to the set of supported VQs yet, filter out
658 * those not supported by the current CPU.
659 */
sve_update_vq_map(void)660 void sve_update_vq_map(void)
661 {
662 sve_probe_vqs(sve_secondary_vq_map);
663 bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
664 }
665
666 /* Check whether the current CPU supports all VQs in the committed set */
sve_verify_vq_map(void)667 int sve_verify_vq_map(void)
668 {
669 int ret = 0;
670
671 sve_probe_vqs(sve_secondary_vq_map);
672 bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
673 SVE_VQ_MAX);
674 if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
675 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
676 smp_processor_id());
677 ret = -EINVAL;
678 }
679
680 return ret;
681 }
682
sve_efi_setup(void)683 static void __init sve_efi_setup(void)
684 {
685 if (!IS_ENABLED(CONFIG_EFI))
686 return;
687
688 /*
689 * alloc_percpu() warns and prints a backtrace if this goes wrong.
690 * This is evidence of a crippled system and we are returning void,
691 * so no attempt is made to handle this situation here.
692 */
693 if (!sve_vl_valid(sve_max_vl))
694 goto fail;
695
696 efi_sve_state = __alloc_percpu(
697 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
698 if (!efi_sve_state)
699 goto fail;
700
701 return;
702
703 fail:
704 panic("Cannot allocate percpu memory for EFI SVE save/restore");
705 }
706
707 /*
708 * Enable SVE for EL1.
709 * Intended for use by the cpufeatures code during CPU boot.
710 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)711 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
712 {
713 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
714 isb();
715 }
716
717 /*
718 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
719 * vector length.
720 *
721 * Use only if SVE is present.
722 * This function clobbers the SVE vector length.
723 */
read_zcr_features(void)724 u64 read_zcr_features(void)
725 {
726 u64 zcr;
727 unsigned int vq_max;
728
729 /*
730 * Set the maximum possible VL, and write zeroes to all other
731 * bits to see if they stick.
732 */
733 sve_kernel_enable(NULL);
734 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
735
736 zcr = read_sysreg_s(SYS_ZCR_EL1);
737 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
738 vq_max = sve_vq_from_vl(sve_get_vl());
739 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
740
741 return zcr;
742 }
743
sve_setup(void)744 void __init sve_setup(void)
745 {
746 u64 zcr;
747
748 if (!system_supports_sve())
749 return;
750
751 /*
752 * The SVE architecture mandates support for 128-bit vectors,
753 * so sve_vq_map must have at least SVE_VQ_MIN set.
754 * If something went wrong, at least try to patch it up:
755 */
756 if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
757 set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);
758
759 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
760 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
761
762 /*
763 * Sanity-check that the max VL we determined through CPU features
764 * corresponds properly to sve_vq_map. If not, do our best:
765 */
766 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
767 sve_max_vl = find_supported_vector_length(sve_max_vl);
768
769 /*
770 * For the default VL, pick the maximum supported value <= 64.
771 * VL == 64 is guaranteed not to grow the signal frame.
772 */
773 sve_default_vl = find_supported_vector_length(64);
774
775 pr_info("SVE: maximum available vector length %u bytes per vector\n",
776 sve_max_vl);
777 pr_info("SVE: default vector length %u bytes per vector\n",
778 sve_default_vl);
779
780 sve_efi_setup();
781 }
782
783 /*
784 * Called from the put_task_struct() path, which cannot get here
785 * unless dead_task is really dead and not schedulable.
786 */
fpsimd_release_task(struct task_struct * dead_task)787 void fpsimd_release_task(struct task_struct *dead_task)
788 {
789 __sve_free(dead_task);
790 }
791
792 #endif /* CONFIG_ARM64_SVE */
793
794 /*
795 * Trapped SVE access
796 *
797 * Storage is allocated for the full SVE state, the current FPSIMD
798 * register contents are migrated across, and TIF_SVE is set so that
799 * the SVE access trap will be disabled the next time this task
800 * reaches ret_to_user.
801 *
802 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
803 * would have disabled the SVE access trap for userspace during
804 * ret_to_user, making an SVE access trap impossible in that case.
805 */
do_sve_acc(unsigned int esr,struct pt_regs * regs)806 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
807 {
808 /* Even if we chose not to use SVE, the hardware could still trap: */
809 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
810 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
811 return;
812 }
813
814 sve_alloc(current);
815
816 local_bh_disable();
817
818 fpsimd_save();
819 fpsimd_to_sve(current);
820
821 /* Force ret_to_user to reload the registers: */
822 fpsimd_flush_task_state(current);
823 set_thread_flag(TIF_FOREIGN_FPSTATE);
824
825 if (test_and_set_thread_flag(TIF_SVE))
826 WARN_ON(1); /* SVE access shouldn't have trapped */
827
828 local_bh_enable();
829 }
830
831 /*
832 * Trapped FP/ASIMD access.
833 */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)834 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
835 {
836 /* TODO: implement lazy context saving/restoring */
837 WARN_ON(1);
838 }
839
840 /*
841 * Raise a SIGFPE for the current process.
842 */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)843 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
844 {
845 siginfo_t info;
846 unsigned int si_code = FPE_FLTUNK;
847
848 if (esr & ESR_ELx_FP_EXC_TFV) {
849 if (esr & FPEXC_IOF)
850 si_code = FPE_FLTINV;
851 else if (esr & FPEXC_DZF)
852 si_code = FPE_FLTDIV;
853 else if (esr & FPEXC_OFF)
854 si_code = FPE_FLTOVF;
855 else if (esr & FPEXC_UFF)
856 si_code = FPE_FLTUND;
857 else if (esr & FPEXC_IXF)
858 si_code = FPE_FLTRES;
859 }
860
861 clear_siginfo(&info);
862 info.si_signo = SIGFPE;
863 info.si_code = si_code;
864 info.si_addr = (void __user *)instruction_pointer(regs);
865
866 send_sig_info(SIGFPE, &info, current);
867 }
868
fpsimd_thread_switch(struct task_struct * next)869 void fpsimd_thread_switch(struct task_struct *next)
870 {
871 bool wrong_task, wrong_cpu;
872
873 if (!system_supports_fpsimd())
874 return;
875
876 /* Save unsaved fpsimd state, if any: */
877 fpsimd_save();
878
879 /*
880 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
881 * state. For kernel threads, FPSIMD registers are never loaded
882 * and wrong_task and wrong_cpu will always be true.
883 */
884 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
885 &next->thread.uw.fpsimd_state;
886 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
887
888 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
889 wrong_task || wrong_cpu);
890 }
891
fpsimd_flush_thread(void)892 void fpsimd_flush_thread(void)
893 {
894 int vl, supported_vl;
895
896 if (!system_supports_fpsimd())
897 return;
898
899 local_bh_disable();
900
901 memset(¤t->thread.uw.fpsimd_state, 0,
902 sizeof(current->thread.uw.fpsimd_state));
903 fpsimd_flush_task_state(current);
904
905 if (system_supports_sve()) {
906 clear_thread_flag(TIF_SVE);
907 sve_free(current);
908
909 /*
910 * Reset the task vector length as required.
911 * This is where we ensure that all user tasks have a valid
912 * vector length configured: no kernel task can become a user
913 * task without an exec and hence a call to this function.
914 * By the time the first call to this function is made, all
915 * early hardware probing is complete, so sve_default_vl
916 * should be valid.
917 * If a bug causes this to go wrong, we make some noise and
918 * try to fudge thread.sve_vl to a safe value here.
919 */
920 vl = current->thread.sve_vl_onexec ?
921 current->thread.sve_vl_onexec : sve_default_vl;
922
923 if (WARN_ON(!sve_vl_valid(vl)))
924 vl = SVE_VL_MIN;
925
926 supported_vl = find_supported_vector_length(vl);
927 if (WARN_ON(supported_vl != vl))
928 vl = supported_vl;
929
930 current->thread.sve_vl = vl;
931
932 /*
933 * If the task is not set to inherit, ensure that the vector
934 * length will be reset by a subsequent exec:
935 */
936 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
937 current->thread.sve_vl_onexec = 0;
938 }
939
940 set_thread_flag(TIF_FOREIGN_FPSTATE);
941
942 local_bh_enable();
943 }
944
945 /*
946 * Save the userland FPSIMD state of 'current' to memory, but only if the state
947 * currently held in the registers does in fact belong to 'current'
948 */
fpsimd_preserve_current_state(void)949 void fpsimd_preserve_current_state(void)
950 {
951 if (!system_supports_fpsimd())
952 return;
953
954 local_bh_disable();
955 fpsimd_save();
956 local_bh_enable();
957 }
958
959 /*
960 * Like fpsimd_preserve_current_state(), but ensure that
961 * current->thread.uw.fpsimd_state is updated so that it can be copied to
962 * the signal frame.
963 */
fpsimd_signal_preserve_current_state(void)964 void fpsimd_signal_preserve_current_state(void)
965 {
966 fpsimd_preserve_current_state();
967 if (system_supports_sve() && test_thread_flag(TIF_SVE))
968 sve_to_fpsimd(current);
969 }
970
971 /*
972 * Associate current's FPSIMD context with this cpu
973 * Preemption must be disabled when calling this function.
974 */
fpsimd_bind_task_to_cpu(void)975 void fpsimd_bind_task_to_cpu(void)
976 {
977 struct fpsimd_last_state_struct *last =
978 this_cpu_ptr(&fpsimd_last_state);
979
980 last->st = ¤t->thread.uw.fpsimd_state;
981 current->thread.fpsimd_cpu = smp_processor_id();
982
983 if (system_supports_sve()) {
984 /* Toggle SVE trapping for userspace if needed */
985 if (test_thread_flag(TIF_SVE))
986 sve_user_enable();
987 else
988 sve_user_disable();
989
990 /* Serialised by exception return to user */
991 }
992 }
993
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st)994 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st)
995 {
996 struct fpsimd_last_state_struct *last =
997 this_cpu_ptr(&fpsimd_last_state);
998
999 WARN_ON(!in_softirq() && !irqs_disabled());
1000
1001 last->st = st;
1002 }
1003
1004 /*
1005 * Load the userland FPSIMD state of 'current' from memory, but only if the
1006 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1007 * state of 'current'
1008 */
fpsimd_restore_current_state(void)1009 void fpsimd_restore_current_state(void)
1010 {
1011 if (!system_supports_fpsimd())
1012 return;
1013
1014 local_bh_disable();
1015
1016 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1017 task_fpsimd_load();
1018 fpsimd_bind_task_to_cpu();
1019 }
1020
1021 local_bh_enable();
1022 }
1023
1024 /*
1025 * Load an updated userland FPSIMD state for 'current' from memory and set the
1026 * flag that indicates that the FPSIMD register contents are the most recent
1027 * FPSIMD state of 'current'
1028 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1029 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1030 {
1031 if (!system_supports_fpsimd())
1032 return;
1033
1034 local_bh_disable();
1035
1036 current->thread.uw.fpsimd_state = *state;
1037 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1038 fpsimd_to_sve(current);
1039
1040 task_fpsimd_load();
1041 fpsimd_bind_task_to_cpu();
1042
1043 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1044
1045 local_bh_enable();
1046 }
1047
1048 /*
1049 * Invalidate live CPU copies of task t's FPSIMD state
1050 */
fpsimd_flush_task_state(struct task_struct * t)1051 void fpsimd_flush_task_state(struct task_struct *t)
1052 {
1053 t->thread.fpsimd_cpu = NR_CPUS;
1054 }
1055
fpsimd_flush_cpu_state(void)1056 void fpsimd_flush_cpu_state(void)
1057 {
1058 __this_cpu_write(fpsimd_last_state.st, NULL);
1059 set_thread_flag(TIF_FOREIGN_FPSTATE);
1060 }
1061
1062 #ifdef CONFIG_KERNEL_MODE_NEON
1063
1064 DEFINE_PER_CPU(bool, kernel_neon_busy);
1065 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1066
1067 /*
1068 * Kernel-side NEON support functions
1069 */
1070
1071 /*
1072 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1073 * context
1074 *
1075 * Must not be called unless may_use_simd() returns true.
1076 * Task context in the FPSIMD registers is saved back to memory as necessary.
1077 *
1078 * A matching call to kernel_neon_end() must be made before returning from the
1079 * calling context.
1080 *
1081 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1082 * called.
1083 */
kernel_neon_begin(void)1084 void kernel_neon_begin(void)
1085 {
1086 if (WARN_ON(!system_supports_fpsimd()))
1087 return;
1088
1089 BUG_ON(!may_use_simd());
1090
1091 local_bh_disable();
1092
1093 __this_cpu_write(kernel_neon_busy, true);
1094
1095 /* Save unsaved fpsimd state, if any: */
1096 fpsimd_save();
1097
1098 /* Invalidate any task state remaining in the fpsimd regs: */
1099 fpsimd_flush_cpu_state();
1100
1101 preempt_disable();
1102
1103 local_bh_enable();
1104 }
1105 EXPORT_SYMBOL(kernel_neon_begin);
1106
1107 /*
1108 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1109 *
1110 * Must be called from a context in which kernel_neon_begin() was previously
1111 * called, with no call to kernel_neon_end() in the meantime.
1112 *
1113 * The caller must not use the FPSIMD registers after this function is called,
1114 * unless kernel_neon_begin() is called again in the meantime.
1115 */
kernel_neon_end(void)1116 void kernel_neon_end(void)
1117 {
1118 bool busy;
1119
1120 if (!system_supports_fpsimd())
1121 return;
1122
1123 busy = __this_cpu_xchg(kernel_neon_busy, false);
1124 WARN_ON(!busy); /* No matching kernel_neon_begin()? */
1125
1126 preempt_enable();
1127 }
1128 EXPORT_SYMBOL(kernel_neon_end);
1129
1130 #ifdef CONFIG_EFI
1131
1132 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1133 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1134 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1135
1136 /*
1137 * EFI runtime services support functions
1138 *
1139 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1140 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1141 * is always used rather than being an optional accelerator.
1142 *
1143 * These functions provide the necessary support for ensuring FPSIMD
1144 * save/restore in the contexts from which EFI is used.
1145 *
1146 * Do not use them for any other purpose -- if tempted to do so, you are
1147 * either doing something wrong or you need to propose some refactoring.
1148 */
1149
1150 /*
1151 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1152 */
__efi_fpsimd_begin(void)1153 void __efi_fpsimd_begin(void)
1154 {
1155 if (!system_supports_fpsimd())
1156 return;
1157
1158 WARN_ON(preemptible());
1159
1160 if (may_use_simd()) {
1161 kernel_neon_begin();
1162 } else {
1163 /*
1164 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1165 * preserving:
1166 */
1167 if (system_supports_sve() && likely(efi_sve_state)) {
1168 char *sve_state = this_cpu_ptr(efi_sve_state);
1169
1170 __this_cpu_write(efi_sve_state_used, true);
1171
1172 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1173 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1174 } else {
1175 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1176 }
1177
1178 __this_cpu_write(efi_fpsimd_state_used, true);
1179 }
1180 }
1181
1182 /*
1183 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1184 */
__efi_fpsimd_end(void)1185 void __efi_fpsimd_end(void)
1186 {
1187 if (!system_supports_fpsimd())
1188 return;
1189
1190 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1191 kernel_neon_end();
1192 } else {
1193 if (system_supports_sve() &&
1194 likely(__this_cpu_read(efi_sve_state_used))) {
1195 char const *sve_state = this_cpu_ptr(efi_sve_state);
1196
1197 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1198 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1199 sve_vq_from_vl(sve_get_vl()) - 1);
1200
1201 __this_cpu_write(efi_sve_state_used, false);
1202 } else {
1203 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1204 }
1205 }
1206 }
1207
1208 #endif /* CONFIG_EFI */
1209
1210 #endif /* CONFIG_KERNEL_MODE_NEON */
1211
1212 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1213 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1214 unsigned long cmd, void *v)
1215 {
1216 switch (cmd) {
1217 case CPU_PM_ENTER:
1218 fpsimd_save();
1219 fpsimd_flush_cpu_state();
1220 break;
1221 case CPU_PM_EXIT:
1222 break;
1223 case CPU_PM_ENTER_FAILED:
1224 default:
1225 return NOTIFY_DONE;
1226 }
1227 return NOTIFY_OK;
1228 }
1229
1230 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1231 .notifier_call = fpsimd_cpu_pm_notifier,
1232 };
1233
fpsimd_pm_init(void)1234 static void __init fpsimd_pm_init(void)
1235 {
1236 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1237 }
1238
1239 #else
fpsimd_pm_init(void)1240 static inline void fpsimd_pm_init(void) { }
1241 #endif /* CONFIG_CPU_PM */
1242
1243 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)1244 static int fpsimd_cpu_dead(unsigned int cpu)
1245 {
1246 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1247 return 0;
1248 }
1249
fpsimd_hotplug_init(void)1250 static inline void fpsimd_hotplug_init(void)
1251 {
1252 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1253 NULL, fpsimd_cpu_dead);
1254 }
1255
1256 #else
fpsimd_hotplug_init(void)1257 static inline void fpsimd_hotplug_init(void) { }
1258 #endif
1259
1260 /*
1261 * FP/SIMD support code initialisation.
1262 */
fpsimd_init(void)1263 static int __init fpsimd_init(void)
1264 {
1265 if (elf_hwcap & HWCAP_FP) {
1266 fpsimd_pm_init();
1267 fpsimd_hotplug_init();
1268 } else {
1269 pr_notice("Floating-point is not implemented\n");
1270 }
1271
1272 if (!(elf_hwcap & HWCAP_ASIMD))
1273 pr_notice("Advanced SIMD is not implemented\n");
1274
1275 return sve_sysctl_init();
1276 }
1277 core_initcall(fpsimd_init);
1278