1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/elf.h>
31
32 #include <asm/compat.h>
33 #include <asm/cpufeature.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/fpsimd.h>
36 #include <asm/mte.h>
37 #include <asm/pointer_auth.h>
38 #include <asm/stacktrace.h>
39 #include <asm/syscall.h>
40 #include <asm/traps.h>
41 #include <asm/system_misc.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/syscalls.h>
45
46 struct pt_regs_offset {
47 const char *name;
48 int offset;
49 };
50
51 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
52 #define REG_OFFSET_END {.name = NULL, .offset = 0}
53 #define GPR_OFFSET_NAME(r) \
54 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
55
56 static const struct pt_regs_offset regoffset_table[] = {
57 GPR_OFFSET_NAME(0),
58 GPR_OFFSET_NAME(1),
59 GPR_OFFSET_NAME(2),
60 GPR_OFFSET_NAME(3),
61 GPR_OFFSET_NAME(4),
62 GPR_OFFSET_NAME(5),
63 GPR_OFFSET_NAME(6),
64 GPR_OFFSET_NAME(7),
65 GPR_OFFSET_NAME(8),
66 GPR_OFFSET_NAME(9),
67 GPR_OFFSET_NAME(10),
68 GPR_OFFSET_NAME(11),
69 GPR_OFFSET_NAME(12),
70 GPR_OFFSET_NAME(13),
71 GPR_OFFSET_NAME(14),
72 GPR_OFFSET_NAME(15),
73 GPR_OFFSET_NAME(16),
74 GPR_OFFSET_NAME(17),
75 GPR_OFFSET_NAME(18),
76 GPR_OFFSET_NAME(19),
77 GPR_OFFSET_NAME(20),
78 GPR_OFFSET_NAME(21),
79 GPR_OFFSET_NAME(22),
80 GPR_OFFSET_NAME(23),
81 GPR_OFFSET_NAME(24),
82 GPR_OFFSET_NAME(25),
83 GPR_OFFSET_NAME(26),
84 GPR_OFFSET_NAME(27),
85 GPR_OFFSET_NAME(28),
86 GPR_OFFSET_NAME(29),
87 GPR_OFFSET_NAME(30),
88 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
89 REG_OFFSET_NAME(sp),
90 REG_OFFSET_NAME(pc),
91 REG_OFFSET_NAME(pstate),
92 REG_OFFSET_END,
93 };
94
95 /**
96 * regs_query_register_offset() - query register offset from its name
97 * @name: the name of a register
98 *
99 * regs_query_register_offset() returns the offset of a register in struct
100 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
101 */
regs_query_register_offset(const char * name)102 int regs_query_register_offset(const char *name)
103 {
104 const struct pt_regs_offset *roff;
105
106 for (roff = regoffset_table; roff->name != NULL; roff++)
107 if (!strcmp(roff->name, name))
108 return roff->offset;
109 return -EINVAL;
110 }
111
112 /**
113 * regs_within_kernel_stack() - check the address in the stack
114 * @regs: pt_regs which contains kernel stack pointer.
115 * @addr: address which is checked.
116 *
117 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
118 * If @addr is within the kernel stack, it returns true. If not, returns false.
119 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)120 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
121 {
122 return ((addr & ~(THREAD_SIZE - 1)) ==
123 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
124 on_irq_stack(addr, sizeof(unsigned long));
125 }
126
127 /**
128 * regs_get_kernel_stack_nth() - get Nth entry of the stack
129 * @regs: pt_regs which contains kernel stack pointer.
130 * @n: stack entry number.
131 *
132 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
133 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
134 * this returns 0.
135 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)136 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
137 {
138 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
139
140 addr += n;
141 if (regs_within_kernel_stack(regs, (unsigned long)addr))
142 return *addr;
143 else
144 return 0;
145 }
146
147 /*
148 * TODO: does not yet catch signals sent when the child dies.
149 * in exit.c or in signal.c.
150 */
151
152 /*
153 * Called by kernel/ptrace.c when detaching..
154 */
ptrace_disable(struct task_struct * child)155 void ptrace_disable(struct task_struct *child)
156 {
157 /*
158 * This would be better off in core code, but PTRACE_DETACH has
159 * grown its fair share of arch-specific worts and changing it
160 * is likely to cause regressions on obscure architectures.
161 */
162 user_disable_single_step(child);
163 }
164
165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
166 /*
167 * Handle hitting a HW-breakpoint.
168 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)169 static void ptrace_hbptriggered(struct perf_event *bp,
170 struct perf_sample_data *data,
171 struct pt_regs *regs)
172 {
173 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
174 const char *desc = "Hardware breakpoint trap (ptrace)";
175
176 #ifdef CONFIG_COMPAT
177 if (is_compat_task()) {
178 int si_errno = 0;
179 int i;
180
181 for (i = 0; i < ARM_MAX_BRP; ++i) {
182 if (current->thread.debug.hbp_break[i] == bp) {
183 si_errno = (i << 1) + 1;
184 break;
185 }
186 }
187
188 for (i = 0; i < ARM_MAX_WRP; ++i) {
189 if (current->thread.debug.hbp_watch[i] == bp) {
190 si_errno = -((i << 1) + 1);
191 break;
192 }
193 }
194 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
195 desc);
196 return;
197 }
198 #endif
199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203 * Unregister breakpoints from this task and reset the pointers in
204 * the thread_struct.
205 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 int i;
209 struct thread_struct *t = &tsk->thread;
210
211 for (i = 0; i < ARM_MAX_BRP; i++) {
212 if (t->debug.hbp_break[i]) {
213 unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 t->debug.hbp_break[i] = NULL;
215 }
216 }
217
218 for (i = 0; i < ARM_MAX_WRP; i++) {
219 if (t->debug.hbp_watch[i]) {
220 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 t->debug.hbp_watch[i] = NULL;
222 }
223 }
224 }
225
ptrace_hw_copy_thread(struct task_struct * tsk)226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 struct task_struct *tsk,
233 unsigned long idx)
234 {
235 struct perf_event *bp = ERR_PTR(-EINVAL);
236
237 switch (note_type) {
238 case NT_ARM_HW_BREAK:
239 if (idx >= ARM_MAX_BRP)
240 goto out;
241 idx = array_index_nospec(idx, ARM_MAX_BRP);
242 bp = tsk->thread.debug.hbp_break[idx];
243 break;
244 case NT_ARM_HW_WATCH:
245 if (idx >= ARM_MAX_WRP)
246 goto out;
247 idx = array_index_nospec(idx, ARM_MAX_WRP);
248 bp = tsk->thread.debug.hbp_watch[idx];
249 break;
250 }
251
252 out:
253 return bp;
254 }
255
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)256 static int ptrace_hbp_set_event(unsigned int note_type,
257 struct task_struct *tsk,
258 unsigned long idx,
259 struct perf_event *bp)
260 {
261 int err = -EINVAL;
262
263 switch (note_type) {
264 case NT_ARM_HW_BREAK:
265 if (idx >= ARM_MAX_BRP)
266 goto out;
267 idx = array_index_nospec(idx, ARM_MAX_BRP);
268 tsk->thread.debug.hbp_break[idx] = bp;
269 err = 0;
270 break;
271 case NT_ARM_HW_WATCH:
272 if (idx >= ARM_MAX_WRP)
273 goto out;
274 idx = array_index_nospec(idx, ARM_MAX_WRP);
275 tsk->thread.debug.hbp_watch[idx] = bp;
276 err = 0;
277 break;
278 }
279
280 out:
281 return err;
282 }
283
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 struct task_struct *tsk,
286 unsigned long idx)
287 {
288 struct perf_event *bp;
289 struct perf_event_attr attr;
290 int err, type;
291
292 switch (note_type) {
293 case NT_ARM_HW_BREAK:
294 type = HW_BREAKPOINT_X;
295 break;
296 case NT_ARM_HW_WATCH:
297 type = HW_BREAKPOINT_RW;
298 break;
299 default:
300 return ERR_PTR(-EINVAL);
301 }
302
303 ptrace_breakpoint_init(&attr);
304
305 /*
306 * Initialise fields to sane defaults
307 * (i.e. values that will pass validation).
308 */
309 attr.bp_addr = 0;
310 attr.bp_len = HW_BREAKPOINT_LEN_4;
311 attr.bp_type = type;
312 attr.disabled = 1;
313
314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 if (IS_ERR(bp))
316 return bp;
317
318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 if (err)
320 return ERR_PTR(err);
321
322 return bp;
323 }
324
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 struct arch_hw_breakpoint_ctrl ctrl,
327 struct perf_event_attr *attr)
328 {
329 int err, len, type, offset, disabled = !ctrl.enabled;
330
331 attr->disabled = disabled;
332 if (disabled)
333 return 0;
334
335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 if (err)
337 return err;
338
339 switch (note_type) {
340 case NT_ARM_HW_BREAK:
341 if ((type & HW_BREAKPOINT_X) != type)
342 return -EINVAL;
343 break;
344 case NT_ARM_HW_WATCH:
345 if ((type & HW_BREAKPOINT_RW) != type)
346 return -EINVAL;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 attr->bp_len = len;
353 attr->bp_type = type;
354 attr->bp_addr += offset;
355
356 return 0;
357 }
358
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 u8 num;
362 u32 reg = 0;
363
364 switch (note_type) {
365 case NT_ARM_HW_BREAK:
366 num = hw_breakpoint_slots(TYPE_INST);
367 break;
368 case NT_ARM_HW_WATCH:
369 num = hw_breakpoint_slots(TYPE_DATA);
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 reg |= debug_monitors_arch();
376 reg <<= 8;
377 reg |= num;
378
379 *info = reg;
380 return 0;
381 }
382
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 struct task_struct *tsk,
385 unsigned long idx,
386 u32 *ctrl)
387 {
388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390 if (IS_ERR(bp))
391 return PTR_ERR(bp);
392
393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 return 0;
395 }
396
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 struct task_struct *tsk,
399 unsigned long idx,
400 u64 *addr)
401 {
402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404 if (IS_ERR(bp))
405 return PTR_ERR(bp);
406
407 *addr = bp ? counter_arch_bp(bp)->address : 0;
408 return 0;
409 }
410
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 struct task_struct *tsk,
413 unsigned long idx)
414 {
415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417 if (!bp)
418 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420 return bp;
421 }
422
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 struct task_struct *tsk,
425 unsigned long idx,
426 u32 uctrl)
427 {
428 int err;
429 struct perf_event *bp;
430 struct perf_event_attr attr;
431 struct arch_hw_breakpoint_ctrl ctrl;
432
433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 if (IS_ERR(bp)) {
435 err = PTR_ERR(bp);
436 return err;
437 }
438
439 attr = bp->attr;
440 decode_ctrl_reg(uctrl, &ctrl);
441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 if (err)
443 return err;
444
445 return modify_user_hw_breakpoint(bp, &attr);
446 }
447
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 struct task_struct *tsk,
450 unsigned long idx,
451 u64 addr)
452 {
453 int err;
454 struct perf_event *bp;
455 struct perf_event_attr attr;
456
457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 if (IS_ERR(bp)) {
459 err = PTR_ERR(bp);
460 return err;
461 }
462
463 attr = bp->attr;
464 attr.bp_addr = addr;
465 err = modify_user_hw_breakpoint(bp, &attr);
466 return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ sizeof(u32)
472
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)473 static int hw_break_get(struct task_struct *target,
474 const struct user_regset *regset,
475 struct membuf to)
476 {
477 unsigned int note_type = regset->core_note_type;
478 int ret, idx = 0;
479 u32 info, ctrl;
480 u64 addr;
481
482 /* Resource info */
483 ret = ptrace_hbp_get_resource_info(note_type, &info);
484 if (ret)
485 return ret;
486
487 membuf_write(&to, &info, sizeof(info));
488 membuf_zero(&to, sizeof(u32));
489 /* (address, ctrl) registers */
490 while (to.left) {
491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 if (ret)
493 return ret;
494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 if (ret)
496 return ret;
497 membuf_store(&to, addr);
498 membuf_store(&to, ctrl);
499 membuf_zero(&to, sizeof(u32));
500 idx++;
501 }
502 return 0;
503 }
504
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)505 static int hw_break_set(struct task_struct *target,
506 const struct user_regset *regset,
507 unsigned int pos, unsigned int count,
508 const void *kbuf, const void __user *ubuf)
509 {
510 unsigned int note_type = regset->core_note_type;
511 int ret, idx = 0, offset, limit;
512 u32 ctrl;
513 u64 addr;
514
515 /* Resource info and pad */
516 offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518
519 /* (address, ctrl) registers */
520 limit = regset->n * regset->size;
521 while (count && offset < limit) {
522 if (count < PTRACE_HBP_ADDR_SZ)
523 return -EINVAL;
524 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
525 offset, offset + PTRACE_HBP_ADDR_SZ);
526 if (ret)
527 return ret;
528 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
529 if (ret)
530 return ret;
531 offset += PTRACE_HBP_ADDR_SZ;
532
533 if (!count)
534 break;
535 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
536 offset, offset + PTRACE_HBP_CTRL_SZ);
537 if (ret)
538 return ret;
539 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
540 if (ret)
541 return ret;
542 offset += PTRACE_HBP_CTRL_SZ;
543
544 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
545 offset, offset + PTRACE_HBP_PAD_SZ);
546 offset += PTRACE_HBP_PAD_SZ;
547 idx++;
548 }
549
550 return 0;
551 }
552 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
553
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)554 static int gpr_get(struct task_struct *target,
555 const struct user_regset *regset,
556 struct membuf to)
557 {
558 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
559 return membuf_write(&to, uregs, sizeof(*uregs));
560 }
561
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)562 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
563 unsigned int pos, unsigned int count,
564 const void *kbuf, const void __user *ubuf)
565 {
566 int ret;
567 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
568
569 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
570 if (ret)
571 return ret;
572
573 if (!valid_user_regs(&newregs, target))
574 return -EINVAL;
575
576 task_pt_regs(target)->user_regs = newregs;
577 return 0;
578 }
579
fpr_active(struct task_struct * target,const struct user_regset * regset)580 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
581 {
582 if (!system_supports_fpsimd())
583 return -ENODEV;
584 return regset->n;
585 }
586
587 /*
588 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
589 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)590 static int __fpr_get(struct task_struct *target,
591 const struct user_regset *regset,
592 struct membuf to)
593 {
594 struct user_fpsimd_state *uregs;
595
596 sve_sync_to_fpsimd(target);
597
598 uregs = &target->thread.uw.fpsimd_state;
599
600 return membuf_write(&to, uregs, sizeof(*uregs));
601 }
602
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)603 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
604 struct membuf to)
605 {
606 if (!system_supports_fpsimd())
607 return -EINVAL;
608
609 if (target == current)
610 fpsimd_preserve_current_state();
611
612 return __fpr_get(target, regset, to);
613 }
614
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)615 static int __fpr_set(struct task_struct *target,
616 const struct user_regset *regset,
617 unsigned int pos, unsigned int count,
618 const void *kbuf, const void __user *ubuf,
619 unsigned int start_pos)
620 {
621 int ret;
622 struct user_fpsimd_state newstate;
623
624 /*
625 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
626 * short copyin can't resurrect stale data.
627 */
628 sve_sync_to_fpsimd(target);
629
630 newstate = target->thread.uw.fpsimd_state;
631
632 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
633 start_pos, start_pos + sizeof(newstate));
634 if (ret)
635 return ret;
636
637 target->thread.uw.fpsimd_state = newstate;
638
639 return ret;
640 }
641
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)642 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
643 unsigned int pos, unsigned int count,
644 const void *kbuf, const void __user *ubuf)
645 {
646 int ret;
647
648 if (!system_supports_fpsimd())
649 return -EINVAL;
650
651 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
652 if (ret)
653 return ret;
654
655 sve_sync_from_fpsimd_zeropad(target);
656 fpsimd_flush_task_state(target);
657
658 return ret;
659 }
660
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)661 static int tls_get(struct task_struct *target, const struct user_regset *regset,
662 struct membuf to)
663 {
664 int ret;
665
666 if (target == current)
667 tls_preserve_current_state();
668
669 ret = membuf_store(&to, target->thread.uw.tp_value);
670 if (system_supports_tpidr2())
671 ret = membuf_store(&to, target->thread.tpidr2_el0);
672 else
673 ret = membuf_zero(&to, sizeof(u64));
674
675 return ret;
676 }
677
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)678 static int tls_set(struct task_struct *target, const struct user_regset *regset,
679 unsigned int pos, unsigned int count,
680 const void *kbuf, const void __user *ubuf)
681 {
682 int ret;
683 unsigned long tls[2];
684
685 tls[0] = target->thread.uw.tp_value;
686 if (system_supports_tpidr2())
687 tls[1] = target->thread.tpidr2_el0;
688
689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, tls, 0, count);
690 if (ret)
691 return ret;
692
693 target->thread.uw.tp_value = tls[0];
694 if (system_supports_tpidr2())
695 target->thread.tpidr2_el0 = tls[1];
696
697 return ret;
698 }
699
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)700 static int system_call_get(struct task_struct *target,
701 const struct user_regset *regset,
702 struct membuf to)
703 {
704 return membuf_store(&to, task_pt_regs(target)->syscallno);
705 }
706
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)707 static int system_call_set(struct task_struct *target,
708 const struct user_regset *regset,
709 unsigned int pos, unsigned int count,
710 const void *kbuf, const void __user *ubuf)
711 {
712 int syscallno = task_pt_regs(target)->syscallno;
713 int ret;
714
715 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
716 if (ret)
717 return ret;
718
719 task_pt_regs(target)->syscallno = syscallno;
720 return ret;
721 }
722
723 #ifdef CONFIG_ARM64_SVE
724
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target,enum vec_type type)725 static void sve_init_header_from_task(struct user_sve_header *header,
726 struct task_struct *target,
727 enum vec_type type)
728 {
729 unsigned int vq;
730 bool active;
731 bool fpsimd_only;
732 enum vec_type task_type;
733
734 memset(header, 0, sizeof(*header));
735
736 /* Check if the requested registers are active for the task */
737 if (thread_sm_enabled(&target->thread))
738 task_type = ARM64_VEC_SME;
739 else
740 task_type = ARM64_VEC_SVE;
741 active = (task_type == type);
742
743 switch (type) {
744 case ARM64_VEC_SVE:
745 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
746 header->flags |= SVE_PT_VL_INHERIT;
747 fpsimd_only = !test_tsk_thread_flag(target, TIF_SVE);
748 break;
749 case ARM64_VEC_SME:
750 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
751 header->flags |= SVE_PT_VL_INHERIT;
752 fpsimd_only = false;
753 break;
754 default:
755 WARN_ON_ONCE(1);
756 return;
757 }
758
759 if (active) {
760 if (fpsimd_only) {
761 header->flags |= SVE_PT_REGS_FPSIMD;
762 } else {
763 header->flags |= SVE_PT_REGS_SVE;
764 }
765 }
766
767 header->vl = task_get_vl(target, type);
768 vq = sve_vq_from_vl(header->vl);
769
770 header->max_vl = vec_max_vl(type);
771 header->size = SVE_PT_SIZE(vq, header->flags);
772 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
773 SVE_PT_REGS_SVE);
774 }
775
sve_size_from_header(struct user_sve_header const * header)776 static unsigned int sve_size_from_header(struct user_sve_header const *header)
777 {
778 return ALIGN(header->size, SVE_VQ_BYTES);
779 }
780
sve_get_common(struct task_struct * target,const struct user_regset * regset,struct membuf to,enum vec_type type)781 static int sve_get_common(struct task_struct *target,
782 const struct user_regset *regset,
783 struct membuf to,
784 enum vec_type type)
785 {
786 struct user_sve_header header;
787 unsigned int vq;
788 unsigned long start, end;
789
790 /* Header */
791 sve_init_header_from_task(&header, target, type);
792 vq = sve_vq_from_vl(header.vl);
793
794 membuf_write(&to, &header, sizeof(header));
795
796 if (target == current)
797 fpsimd_preserve_current_state();
798
799 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
800 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
801
802 switch ((header.flags & SVE_PT_REGS_MASK)) {
803 case SVE_PT_REGS_FPSIMD:
804 return __fpr_get(target, regset, to);
805
806 case SVE_PT_REGS_SVE:
807 start = SVE_PT_SVE_OFFSET;
808 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
809 membuf_write(&to, target->thread.sve_state, end - start);
810
811 start = end;
812 end = SVE_PT_SVE_FPSR_OFFSET(vq);
813 membuf_zero(&to, end - start);
814
815 /*
816 * Copy fpsr, and fpcr which must follow contiguously in
817 * struct fpsimd_state:
818 */
819 start = end;
820 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
821 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr,
822 end - start);
823
824 start = end;
825 end = sve_size_from_header(&header);
826 return membuf_zero(&to, end - start);
827
828 default:
829 return 0;
830 }
831 }
832
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)833 static int sve_get(struct task_struct *target,
834 const struct user_regset *regset,
835 struct membuf to)
836 {
837 if (!system_supports_sve())
838 return -EINVAL;
839
840 return sve_get_common(target, regset, to, ARM64_VEC_SVE);
841 }
842
sve_set_common(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,enum vec_type type)843 static int sve_set_common(struct task_struct *target,
844 const struct user_regset *regset,
845 unsigned int pos, unsigned int count,
846 const void *kbuf, const void __user *ubuf,
847 enum vec_type type)
848 {
849 int ret;
850 struct user_sve_header header;
851 unsigned int vq;
852 unsigned long start, end;
853
854 /* Header */
855 if (count < sizeof(header))
856 return -EINVAL;
857 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
858 0, sizeof(header));
859 if (ret)
860 goto out;
861
862 /*
863 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
864 * vec_set_vector_length(), which will also validate them for us:
865 */
866 ret = vec_set_vector_length(target, type, header.vl,
867 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
868 if (ret)
869 goto out;
870
871 /* Actual VL set may be less than the user asked for: */
872 vq = sve_vq_from_vl(task_get_vl(target, type));
873
874 /* Enter/exit streaming mode */
875 if (system_supports_sme()) {
876 u64 old_svcr = target->thread.svcr;
877
878 switch (type) {
879 case ARM64_VEC_SVE:
880 target->thread.svcr &= ~SVCR_SM_MASK;
881 break;
882 case ARM64_VEC_SME:
883 target->thread.svcr |= SVCR_SM_MASK;
884
885 /*
886 * Disable traps and ensure there is SME storage but
887 * preserve any currently set values in ZA/ZT.
888 */
889 sme_alloc(target, false);
890 set_tsk_thread_flag(target, TIF_SME);
891 break;
892 default:
893 WARN_ON_ONCE(1);
894 ret = -EINVAL;
895 goto out;
896 }
897
898 /*
899 * If we switched then invalidate any existing SVE
900 * state and ensure there's storage.
901 */
902 if (target->thread.svcr != old_svcr)
903 sve_alloc(target, true);
904 }
905
906 /* Registers: FPSIMD-only case */
907
908 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
909 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
910 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
911 SVE_PT_FPSIMD_OFFSET);
912 clear_tsk_thread_flag(target, TIF_SVE);
913 target->thread.fp_type = FP_STATE_FPSIMD;
914 goto out;
915 }
916
917 /*
918 * Otherwise: no registers or full SVE case. For backwards
919 * compatibility reasons we treat empty flags as SVE registers.
920 */
921
922 /*
923 * If setting a different VL from the requested VL and there is
924 * register data, the data layout will be wrong: don't even
925 * try to set the registers in this case.
926 */
927 if (count && vq != sve_vq_from_vl(header.vl)) {
928 ret = -EIO;
929 goto out;
930 }
931
932 sve_alloc(target, true);
933 if (!target->thread.sve_state) {
934 ret = -ENOMEM;
935 clear_tsk_thread_flag(target, TIF_SVE);
936 target->thread.fp_type = FP_STATE_FPSIMD;
937 goto out;
938 }
939
940 /*
941 * Ensure target->thread.sve_state is up to date with target's
942 * FPSIMD regs, so that a short copyin leaves trailing
943 * registers unmodified. Only enable SVE if we are
944 * configuring normal SVE, a system with streaming SVE may not
945 * have normal SVE.
946 */
947 fpsimd_sync_to_sve(target);
948 if (type == ARM64_VEC_SVE)
949 set_tsk_thread_flag(target, TIF_SVE);
950 target->thread.fp_type = FP_STATE_SVE;
951
952 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
953 start = SVE_PT_SVE_OFFSET;
954 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
955 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
956 target->thread.sve_state,
957 start, end);
958 if (ret)
959 goto out;
960
961 start = end;
962 end = SVE_PT_SVE_FPSR_OFFSET(vq);
963 user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, start, end);
964
965 /*
966 * Copy fpsr, and fpcr which must follow contiguously in
967 * struct fpsimd_state:
968 */
969 start = end;
970 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
971 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
972 &target->thread.uw.fpsimd_state.fpsr,
973 start, end);
974
975 out:
976 fpsimd_flush_task_state(target);
977 return ret;
978 }
979
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)980 static int sve_set(struct task_struct *target,
981 const struct user_regset *regset,
982 unsigned int pos, unsigned int count,
983 const void *kbuf, const void __user *ubuf)
984 {
985 if (!system_supports_sve())
986 return -EINVAL;
987
988 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
989 ARM64_VEC_SVE);
990 }
991
992 #endif /* CONFIG_ARM64_SVE */
993
994 #ifdef CONFIG_ARM64_SME
995
ssve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)996 static int ssve_get(struct task_struct *target,
997 const struct user_regset *regset,
998 struct membuf to)
999 {
1000 if (!system_supports_sme())
1001 return -EINVAL;
1002
1003 return sve_get_common(target, regset, to, ARM64_VEC_SME);
1004 }
1005
ssve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1006 static int ssve_set(struct task_struct *target,
1007 const struct user_regset *regset,
1008 unsigned int pos, unsigned int count,
1009 const void *kbuf, const void __user *ubuf)
1010 {
1011 if (!system_supports_sme())
1012 return -EINVAL;
1013
1014 return sve_set_common(target, regset, pos, count, kbuf, ubuf,
1015 ARM64_VEC_SME);
1016 }
1017
za_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1018 static int za_get(struct task_struct *target,
1019 const struct user_regset *regset,
1020 struct membuf to)
1021 {
1022 struct user_za_header header;
1023 unsigned int vq;
1024 unsigned long start, end;
1025
1026 if (!system_supports_sme())
1027 return -EINVAL;
1028
1029 /* Header */
1030 memset(&header, 0, sizeof(header));
1031
1032 if (test_tsk_thread_flag(target, TIF_SME_VL_INHERIT))
1033 header.flags |= ZA_PT_VL_INHERIT;
1034
1035 header.vl = task_get_sme_vl(target);
1036 vq = sve_vq_from_vl(header.vl);
1037 header.max_vl = sme_max_vl();
1038 header.max_size = ZA_PT_SIZE(vq);
1039
1040 /* If ZA is not active there is only the header */
1041 if (thread_za_enabled(&target->thread))
1042 header.size = ZA_PT_SIZE(vq);
1043 else
1044 header.size = ZA_PT_ZA_OFFSET;
1045
1046 membuf_write(&to, &header, sizeof(header));
1047
1048 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1049 end = ZA_PT_ZA_OFFSET;
1050
1051 if (target == current)
1052 fpsimd_preserve_current_state();
1053
1054 /* Any register data to include? */
1055 if (thread_za_enabled(&target->thread)) {
1056 start = end;
1057 end = ZA_PT_SIZE(vq);
1058 membuf_write(&to, target->thread.sme_state, end - start);
1059 }
1060
1061 /* Zero any trailing padding */
1062 start = end;
1063 end = ALIGN(header.size, SVE_VQ_BYTES);
1064 return membuf_zero(&to, end - start);
1065 }
1066
za_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1067 static int za_set(struct task_struct *target,
1068 const struct user_regset *regset,
1069 unsigned int pos, unsigned int count,
1070 const void *kbuf, const void __user *ubuf)
1071 {
1072 int ret;
1073 struct user_za_header header;
1074 unsigned int vq;
1075 unsigned long start, end;
1076
1077 if (!system_supports_sme())
1078 return -EINVAL;
1079
1080 /* Header */
1081 if (count < sizeof(header))
1082 return -EINVAL;
1083 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
1084 0, sizeof(header));
1085 if (ret)
1086 goto out;
1087
1088 /*
1089 * All current ZA_PT_* flags are consumed by
1090 * vec_set_vector_length(), which will also validate them for
1091 * us:
1092 */
1093 ret = vec_set_vector_length(target, ARM64_VEC_SME, header.vl,
1094 ((unsigned long)header.flags) << 16);
1095 if (ret)
1096 goto out;
1097
1098 /* Actual VL set may be less than the user asked for: */
1099 vq = sve_vq_from_vl(task_get_sme_vl(target));
1100
1101 /* Ensure there is some SVE storage for streaming mode */
1102 if (!target->thread.sve_state) {
1103 sve_alloc(target, false);
1104 if (!target->thread.sve_state) {
1105 ret = -ENOMEM;
1106 goto out;
1107 }
1108 }
1109
1110 /* Allocate/reinit ZA storage */
1111 sme_alloc(target, true);
1112 if (!target->thread.sme_state) {
1113 ret = -ENOMEM;
1114 goto out;
1115 }
1116
1117 /* If there is no data then disable ZA */
1118 if (!count) {
1119 target->thread.svcr &= ~SVCR_ZA_MASK;
1120 goto out;
1121 }
1122
1123 /*
1124 * If setting a different VL from the requested VL and there is
1125 * register data, the data layout will be wrong: don't even
1126 * try to set the registers in this case.
1127 */
1128 if (vq != sve_vq_from_vl(header.vl)) {
1129 ret = -EIO;
1130 goto out;
1131 }
1132
1133 BUILD_BUG_ON(ZA_PT_ZA_OFFSET != sizeof(header));
1134 start = ZA_PT_ZA_OFFSET;
1135 end = ZA_PT_SIZE(vq);
1136 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1137 target->thread.sme_state,
1138 start, end);
1139 if (ret)
1140 goto out;
1141
1142 /* Mark ZA as active and let userspace use it */
1143 set_tsk_thread_flag(target, TIF_SME);
1144 target->thread.svcr |= SVCR_ZA_MASK;
1145
1146 out:
1147 fpsimd_flush_task_state(target);
1148 return ret;
1149 }
1150
zt_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1151 static int zt_get(struct task_struct *target,
1152 const struct user_regset *regset,
1153 struct membuf to)
1154 {
1155 if (!system_supports_sme2())
1156 return -EINVAL;
1157
1158 /*
1159 * If PSTATE.ZA is not set then ZT will be zeroed when it is
1160 * enabled so report the current register value as zero.
1161 */
1162 if (thread_za_enabled(&target->thread))
1163 membuf_write(&to, thread_zt_state(&target->thread),
1164 ZT_SIG_REG_BYTES);
1165 else
1166 membuf_zero(&to, ZT_SIG_REG_BYTES);
1167
1168 return 0;
1169 }
1170
zt_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1171 static int zt_set(struct task_struct *target,
1172 const struct user_regset *regset,
1173 unsigned int pos, unsigned int count,
1174 const void *kbuf, const void __user *ubuf)
1175 {
1176 int ret;
1177
1178 if (!system_supports_sme2())
1179 return -EINVAL;
1180
1181 /* Ensure SVE storage in case this is first use of SME */
1182 sve_alloc(target, false);
1183 if (!target->thread.sve_state)
1184 return -ENOMEM;
1185
1186 if (!thread_za_enabled(&target->thread)) {
1187 sme_alloc(target, true);
1188 if (!target->thread.sme_state)
1189 return -ENOMEM;
1190 }
1191
1192 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1193 thread_zt_state(&target->thread),
1194 0, ZT_SIG_REG_BYTES);
1195 if (ret == 0) {
1196 target->thread.svcr |= SVCR_ZA_MASK;
1197 set_tsk_thread_flag(target, TIF_SME);
1198 }
1199
1200 fpsimd_flush_task_state(target);
1201
1202 return ret;
1203 }
1204
1205 #endif /* CONFIG_ARM64_SME */
1206
1207 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1208 static int pac_mask_get(struct task_struct *target,
1209 const struct user_regset *regset,
1210 struct membuf to)
1211 {
1212 /*
1213 * The PAC bits can differ across data and instruction pointers
1214 * depending on TCR_EL1.TBID*, which we may make use of in future, so
1215 * we expose separate masks.
1216 */
1217 unsigned long mask = ptrauth_user_pac_mask();
1218 struct user_pac_mask uregs = {
1219 .data_mask = mask,
1220 .insn_mask = mask,
1221 };
1222
1223 if (!system_supports_address_auth())
1224 return -EINVAL;
1225
1226 return membuf_write(&to, &uregs, sizeof(uregs));
1227 }
1228
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1229 static int pac_enabled_keys_get(struct task_struct *target,
1230 const struct user_regset *regset,
1231 struct membuf to)
1232 {
1233 long enabled_keys = ptrauth_get_enabled_keys(target);
1234
1235 if (IS_ERR_VALUE(enabled_keys))
1236 return enabled_keys;
1237
1238 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
1239 }
1240
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1241 static int pac_enabled_keys_set(struct task_struct *target,
1242 const struct user_regset *regset,
1243 unsigned int pos, unsigned int count,
1244 const void *kbuf, const void __user *ubuf)
1245 {
1246 int ret;
1247 long enabled_keys = ptrauth_get_enabled_keys(target);
1248
1249 if (IS_ERR_VALUE(enabled_keys))
1250 return enabled_keys;
1251
1252 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
1253 sizeof(long));
1254 if (ret)
1255 return ret;
1256
1257 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
1258 enabled_keys);
1259 }
1260
1261 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)1262 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
1263 {
1264 return (__uint128_t)key->hi << 64 | key->lo;
1265 }
1266
pac_key_from_user(__uint128_t ukey)1267 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
1268 {
1269 struct ptrauth_key key = {
1270 .lo = (unsigned long)ukey,
1271 .hi = (unsigned long)(ukey >> 64),
1272 };
1273
1274 return key;
1275 }
1276
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)1277 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
1278 const struct ptrauth_keys_user *keys)
1279 {
1280 ukeys->apiakey = pac_key_to_user(&keys->apia);
1281 ukeys->apibkey = pac_key_to_user(&keys->apib);
1282 ukeys->apdakey = pac_key_to_user(&keys->apda);
1283 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
1284 }
1285
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)1286 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
1287 const struct user_pac_address_keys *ukeys)
1288 {
1289 keys->apia = pac_key_from_user(ukeys->apiakey);
1290 keys->apib = pac_key_from_user(ukeys->apibkey);
1291 keys->apda = pac_key_from_user(ukeys->apdakey);
1292 keys->apdb = pac_key_from_user(ukeys->apdbkey);
1293 }
1294
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1295 static int pac_address_keys_get(struct task_struct *target,
1296 const struct user_regset *regset,
1297 struct membuf to)
1298 {
1299 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1300 struct user_pac_address_keys user_keys;
1301
1302 if (!system_supports_address_auth())
1303 return -EINVAL;
1304
1305 pac_address_keys_to_user(&user_keys, keys);
1306
1307 return membuf_write(&to, &user_keys, sizeof(user_keys));
1308 }
1309
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1310 static int pac_address_keys_set(struct task_struct *target,
1311 const struct user_regset *regset,
1312 unsigned int pos, unsigned int count,
1313 const void *kbuf, const void __user *ubuf)
1314 {
1315 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1316 struct user_pac_address_keys user_keys;
1317 int ret;
1318
1319 if (!system_supports_address_auth())
1320 return -EINVAL;
1321
1322 pac_address_keys_to_user(&user_keys, keys);
1323 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1324 &user_keys, 0, -1);
1325 if (ret)
1326 return ret;
1327 pac_address_keys_from_user(keys, &user_keys);
1328
1329 return 0;
1330 }
1331
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1332 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1333 const struct ptrauth_keys_user *keys)
1334 {
1335 ukeys->apgakey = pac_key_to_user(&keys->apga);
1336 }
1337
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1338 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1339 const struct user_pac_generic_keys *ukeys)
1340 {
1341 keys->apga = pac_key_from_user(ukeys->apgakey);
1342 }
1343
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1344 static int pac_generic_keys_get(struct task_struct *target,
1345 const struct user_regset *regset,
1346 struct membuf to)
1347 {
1348 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1349 struct user_pac_generic_keys user_keys;
1350
1351 if (!system_supports_generic_auth())
1352 return -EINVAL;
1353
1354 pac_generic_keys_to_user(&user_keys, keys);
1355
1356 return membuf_write(&to, &user_keys, sizeof(user_keys));
1357 }
1358
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1359 static int pac_generic_keys_set(struct task_struct *target,
1360 const struct user_regset *regset,
1361 unsigned int pos, unsigned int count,
1362 const void *kbuf, const void __user *ubuf)
1363 {
1364 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1365 struct user_pac_generic_keys user_keys;
1366 int ret;
1367
1368 if (!system_supports_generic_auth())
1369 return -EINVAL;
1370
1371 pac_generic_keys_to_user(&user_keys, keys);
1372 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1373 &user_keys, 0, -1);
1374 if (ret)
1375 return ret;
1376 pac_generic_keys_from_user(keys, &user_keys);
1377
1378 return 0;
1379 }
1380 #endif /* CONFIG_CHECKPOINT_RESTORE */
1381 #endif /* CONFIG_ARM64_PTR_AUTH */
1382
1383 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1384 static int tagged_addr_ctrl_get(struct task_struct *target,
1385 const struct user_regset *regset,
1386 struct membuf to)
1387 {
1388 long ctrl = get_tagged_addr_ctrl(target);
1389
1390 if (IS_ERR_VALUE(ctrl))
1391 return ctrl;
1392
1393 return membuf_write(&to, &ctrl, sizeof(ctrl));
1394 }
1395
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1396 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1397 user_regset *regset, unsigned int pos,
1398 unsigned int count, const void *kbuf, const
1399 void __user *ubuf)
1400 {
1401 int ret;
1402 long ctrl;
1403
1404 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1405 if (ret)
1406 return ret;
1407
1408 return set_tagged_addr_ctrl(target, ctrl);
1409 }
1410 #endif
1411
1412 enum aarch64_regset {
1413 REGSET_GPR,
1414 REGSET_FPR,
1415 REGSET_TLS,
1416 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1417 REGSET_HW_BREAK,
1418 REGSET_HW_WATCH,
1419 #endif
1420 REGSET_SYSTEM_CALL,
1421 #ifdef CONFIG_ARM64_SVE
1422 REGSET_SVE,
1423 #endif
1424 #ifdef CONFIG_ARM64_SME
1425 REGSET_SSVE,
1426 REGSET_ZA,
1427 REGSET_ZT,
1428 #endif
1429 #ifdef CONFIG_ARM64_PTR_AUTH
1430 REGSET_PAC_MASK,
1431 REGSET_PAC_ENABLED_KEYS,
1432 #ifdef CONFIG_CHECKPOINT_RESTORE
1433 REGSET_PACA_KEYS,
1434 REGSET_PACG_KEYS,
1435 #endif
1436 #endif
1437 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1438 REGSET_TAGGED_ADDR_CTRL,
1439 #endif
1440 };
1441
1442 static const struct user_regset aarch64_regsets[] = {
1443 [REGSET_GPR] = {
1444 .core_note_type = NT_PRSTATUS,
1445 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1446 .size = sizeof(u64),
1447 .align = sizeof(u64),
1448 .regset_get = gpr_get,
1449 .set = gpr_set
1450 },
1451 [REGSET_FPR] = {
1452 .core_note_type = NT_PRFPREG,
1453 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1454 /*
1455 * We pretend we have 32-bit registers because the fpsr and
1456 * fpcr are 32-bits wide.
1457 */
1458 .size = sizeof(u32),
1459 .align = sizeof(u32),
1460 .active = fpr_active,
1461 .regset_get = fpr_get,
1462 .set = fpr_set
1463 },
1464 [REGSET_TLS] = {
1465 .core_note_type = NT_ARM_TLS,
1466 .n = 2,
1467 .size = sizeof(void *),
1468 .align = sizeof(void *),
1469 .regset_get = tls_get,
1470 .set = tls_set,
1471 },
1472 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1473 [REGSET_HW_BREAK] = {
1474 .core_note_type = NT_ARM_HW_BREAK,
1475 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1476 .size = sizeof(u32),
1477 .align = sizeof(u32),
1478 .regset_get = hw_break_get,
1479 .set = hw_break_set,
1480 },
1481 [REGSET_HW_WATCH] = {
1482 .core_note_type = NT_ARM_HW_WATCH,
1483 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1484 .size = sizeof(u32),
1485 .align = sizeof(u32),
1486 .regset_get = hw_break_get,
1487 .set = hw_break_set,
1488 },
1489 #endif
1490 [REGSET_SYSTEM_CALL] = {
1491 .core_note_type = NT_ARM_SYSTEM_CALL,
1492 .n = 1,
1493 .size = sizeof(int),
1494 .align = sizeof(int),
1495 .regset_get = system_call_get,
1496 .set = system_call_set,
1497 },
1498 #ifdef CONFIG_ARM64_SVE
1499 [REGSET_SVE] = { /* Scalable Vector Extension */
1500 .core_note_type = NT_ARM_SVE,
1501 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1502 SVE_VQ_BYTES),
1503 .size = SVE_VQ_BYTES,
1504 .align = SVE_VQ_BYTES,
1505 .regset_get = sve_get,
1506 .set = sve_set,
1507 },
1508 #endif
1509 #ifdef CONFIG_ARM64_SME
1510 [REGSET_SSVE] = { /* Streaming mode SVE */
1511 .core_note_type = NT_ARM_SSVE,
1512 .n = DIV_ROUND_UP(SVE_PT_SIZE(SME_VQ_MAX, SVE_PT_REGS_SVE),
1513 SVE_VQ_BYTES),
1514 .size = SVE_VQ_BYTES,
1515 .align = SVE_VQ_BYTES,
1516 .regset_get = ssve_get,
1517 .set = ssve_set,
1518 },
1519 [REGSET_ZA] = { /* SME ZA */
1520 .core_note_type = NT_ARM_ZA,
1521 /*
1522 * ZA is a single register but it's variably sized and
1523 * the ptrace core requires that the size of any data
1524 * be an exact multiple of the configured register
1525 * size so report as though we had SVE_VQ_BYTES
1526 * registers. These values aren't exposed to
1527 * userspace.
1528 */
1529 .n = DIV_ROUND_UP(ZA_PT_SIZE(SME_VQ_MAX), SVE_VQ_BYTES),
1530 .size = SVE_VQ_BYTES,
1531 .align = SVE_VQ_BYTES,
1532 .regset_get = za_get,
1533 .set = za_set,
1534 },
1535 [REGSET_ZT] = { /* SME ZT */
1536 .core_note_type = NT_ARM_ZT,
1537 .n = 1,
1538 .size = ZT_SIG_REG_BYTES,
1539 .align = sizeof(u64),
1540 .regset_get = zt_get,
1541 .set = zt_set,
1542 },
1543 #endif
1544 #ifdef CONFIG_ARM64_PTR_AUTH
1545 [REGSET_PAC_MASK] = {
1546 .core_note_type = NT_ARM_PAC_MASK,
1547 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1548 .size = sizeof(u64),
1549 .align = sizeof(u64),
1550 .regset_get = pac_mask_get,
1551 /* this cannot be set dynamically */
1552 },
1553 [REGSET_PAC_ENABLED_KEYS] = {
1554 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1555 .n = 1,
1556 .size = sizeof(long),
1557 .align = sizeof(long),
1558 .regset_get = pac_enabled_keys_get,
1559 .set = pac_enabled_keys_set,
1560 },
1561 #ifdef CONFIG_CHECKPOINT_RESTORE
1562 [REGSET_PACA_KEYS] = {
1563 .core_note_type = NT_ARM_PACA_KEYS,
1564 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1565 .size = sizeof(__uint128_t),
1566 .align = sizeof(__uint128_t),
1567 .regset_get = pac_address_keys_get,
1568 .set = pac_address_keys_set,
1569 },
1570 [REGSET_PACG_KEYS] = {
1571 .core_note_type = NT_ARM_PACG_KEYS,
1572 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1573 .size = sizeof(__uint128_t),
1574 .align = sizeof(__uint128_t),
1575 .regset_get = pac_generic_keys_get,
1576 .set = pac_generic_keys_set,
1577 },
1578 #endif
1579 #endif
1580 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1581 [REGSET_TAGGED_ADDR_CTRL] = {
1582 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1583 .n = 1,
1584 .size = sizeof(long),
1585 .align = sizeof(long),
1586 .regset_get = tagged_addr_ctrl_get,
1587 .set = tagged_addr_ctrl_set,
1588 },
1589 #endif
1590 };
1591
1592 static const struct user_regset_view user_aarch64_view = {
1593 .name = "aarch64", .e_machine = EM_AARCH64,
1594 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1595 };
1596
1597 #ifdef CONFIG_COMPAT
1598 enum compat_regset {
1599 REGSET_COMPAT_GPR,
1600 REGSET_COMPAT_VFP,
1601 };
1602
compat_get_user_reg(struct task_struct * task,int idx)1603 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1604 {
1605 struct pt_regs *regs = task_pt_regs(task);
1606
1607 switch (idx) {
1608 case 15:
1609 return regs->pc;
1610 case 16:
1611 return pstate_to_compat_psr(regs->pstate);
1612 case 17:
1613 return regs->orig_x0;
1614 default:
1615 return regs->regs[idx];
1616 }
1617 }
1618
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1619 static int compat_gpr_get(struct task_struct *target,
1620 const struct user_regset *regset,
1621 struct membuf to)
1622 {
1623 int i = 0;
1624
1625 while (to.left)
1626 membuf_store(&to, compat_get_user_reg(target, i++));
1627 return 0;
1628 }
1629
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1630 static int compat_gpr_set(struct task_struct *target,
1631 const struct user_regset *regset,
1632 unsigned int pos, unsigned int count,
1633 const void *kbuf, const void __user *ubuf)
1634 {
1635 struct pt_regs newregs;
1636 int ret = 0;
1637 unsigned int i, start, num_regs;
1638
1639 /* Calculate the number of AArch32 registers contained in count */
1640 num_regs = count / regset->size;
1641
1642 /* Convert pos into an register number */
1643 start = pos / regset->size;
1644
1645 if (start + num_regs > regset->n)
1646 return -EIO;
1647
1648 newregs = *task_pt_regs(target);
1649
1650 for (i = 0; i < num_regs; ++i) {
1651 unsigned int idx = start + i;
1652 compat_ulong_t reg;
1653
1654 if (kbuf) {
1655 memcpy(®, kbuf, sizeof(reg));
1656 kbuf += sizeof(reg);
1657 } else {
1658 ret = copy_from_user(®, ubuf, sizeof(reg));
1659 if (ret) {
1660 ret = -EFAULT;
1661 break;
1662 }
1663
1664 ubuf += sizeof(reg);
1665 }
1666
1667 switch (idx) {
1668 case 15:
1669 newregs.pc = reg;
1670 break;
1671 case 16:
1672 reg = compat_psr_to_pstate(reg);
1673 newregs.pstate = reg;
1674 break;
1675 case 17:
1676 newregs.orig_x0 = reg;
1677 break;
1678 default:
1679 newregs.regs[idx] = reg;
1680 }
1681
1682 }
1683
1684 if (valid_user_regs(&newregs.user_regs, target))
1685 *task_pt_regs(target) = newregs;
1686 else
1687 ret = -EINVAL;
1688
1689 return ret;
1690 }
1691
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1692 static int compat_vfp_get(struct task_struct *target,
1693 const struct user_regset *regset,
1694 struct membuf to)
1695 {
1696 struct user_fpsimd_state *uregs;
1697 compat_ulong_t fpscr;
1698
1699 if (!system_supports_fpsimd())
1700 return -EINVAL;
1701
1702 uregs = &target->thread.uw.fpsimd_state;
1703
1704 if (target == current)
1705 fpsimd_preserve_current_state();
1706
1707 /*
1708 * The VFP registers are packed into the fpsimd_state, so they all sit
1709 * nicely together for us. We just need to create the fpscr separately.
1710 */
1711 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1712 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1713 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1714 return membuf_store(&to, fpscr);
1715 }
1716
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1717 static int compat_vfp_set(struct task_struct *target,
1718 const struct user_regset *regset,
1719 unsigned int pos, unsigned int count,
1720 const void *kbuf, const void __user *ubuf)
1721 {
1722 struct user_fpsimd_state *uregs;
1723 compat_ulong_t fpscr;
1724 int ret, vregs_end_pos;
1725
1726 if (!system_supports_fpsimd())
1727 return -EINVAL;
1728
1729 uregs = &target->thread.uw.fpsimd_state;
1730
1731 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1732 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1733 vregs_end_pos);
1734
1735 if (count && !ret) {
1736 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1737 vregs_end_pos, VFP_STATE_SIZE);
1738 if (!ret) {
1739 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1740 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1741 }
1742 }
1743
1744 fpsimd_flush_task_state(target);
1745 return ret;
1746 }
1747
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1748 static int compat_tls_get(struct task_struct *target,
1749 const struct user_regset *regset,
1750 struct membuf to)
1751 {
1752 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1753 }
1754
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1755 static int compat_tls_set(struct task_struct *target,
1756 const struct user_regset *regset, unsigned int pos,
1757 unsigned int count, const void *kbuf,
1758 const void __user *ubuf)
1759 {
1760 int ret;
1761 compat_ulong_t tls = target->thread.uw.tp_value;
1762
1763 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1764 if (ret)
1765 return ret;
1766
1767 target->thread.uw.tp_value = tls;
1768 return ret;
1769 }
1770
1771 static const struct user_regset aarch32_regsets[] = {
1772 [REGSET_COMPAT_GPR] = {
1773 .core_note_type = NT_PRSTATUS,
1774 .n = COMPAT_ELF_NGREG,
1775 .size = sizeof(compat_elf_greg_t),
1776 .align = sizeof(compat_elf_greg_t),
1777 .regset_get = compat_gpr_get,
1778 .set = compat_gpr_set
1779 },
1780 [REGSET_COMPAT_VFP] = {
1781 .core_note_type = NT_ARM_VFP,
1782 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1783 .size = sizeof(compat_ulong_t),
1784 .align = sizeof(compat_ulong_t),
1785 .active = fpr_active,
1786 .regset_get = compat_vfp_get,
1787 .set = compat_vfp_set
1788 },
1789 };
1790
1791 static const struct user_regset_view user_aarch32_view = {
1792 .name = "aarch32", .e_machine = EM_ARM,
1793 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1794 };
1795
1796 static const struct user_regset aarch32_ptrace_regsets[] = {
1797 [REGSET_GPR] = {
1798 .core_note_type = NT_PRSTATUS,
1799 .n = COMPAT_ELF_NGREG,
1800 .size = sizeof(compat_elf_greg_t),
1801 .align = sizeof(compat_elf_greg_t),
1802 .regset_get = compat_gpr_get,
1803 .set = compat_gpr_set
1804 },
1805 [REGSET_FPR] = {
1806 .core_note_type = NT_ARM_VFP,
1807 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1808 .size = sizeof(compat_ulong_t),
1809 .align = sizeof(compat_ulong_t),
1810 .regset_get = compat_vfp_get,
1811 .set = compat_vfp_set
1812 },
1813 [REGSET_TLS] = {
1814 .core_note_type = NT_ARM_TLS,
1815 .n = 1,
1816 .size = sizeof(compat_ulong_t),
1817 .align = sizeof(compat_ulong_t),
1818 .regset_get = compat_tls_get,
1819 .set = compat_tls_set,
1820 },
1821 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1822 [REGSET_HW_BREAK] = {
1823 .core_note_type = NT_ARM_HW_BREAK,
1824 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1825 .size = sizeof(u32),
1826 .align = sizeof(u32),
1827 .regset_get = hw_break_get,
1828 .set = hw_break_set,
1829 },
1830 [REGSET_HW_WATCH] = {
1831 .core_note_type = NT_ARM_HW_WATCH,
1832 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1833 .size = sizeof(u32),
1834 .align = sizeof(u32),
1835 .regset_get = hw_break_get,
1836 .set = hw_break_set,
1837 },
1838 #endif
1839 [REGSET_SYSTEM_CALL] = {
1840 .core_note_type = NT_ARM_SYSTEM_CALL,
1841 .n = 1,
1842 .size = sizeof(int),
1843 .align = sizeof(int),
1844 .regset_get = system_call_get,
1845 .set = system_call_set,
1846 },
1847 };
1848
1849 static const struct user_regset_view user_aarch32_ptrace_view = {
1850 .name = "aarch32", .e_machine = EM_ARM,
1851 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1852 };
1853
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1854 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1855 compat_ulong_t __user *ret)
1856 {
1857 compat_ulong_t tmp;
1858
1859 if (off & 3)
1860 return -EIO;
1861
1862 if (off == COMPAT_PT_TEXT_ADDR)
1863 tmp = tsk->mm->start_code;
1864 else if (off == COMPAT_PT_DATA_ADDR)
1865 tmp = tsk->mm->start_data;
1866 else if (off == COMPAT_PT_TEXT_END_ADDR)
1867 tmp = tsk->mm->end_code;
1868 else if (off < sizeof(compat_elf_gregset_t))
1869 tmp = compat_get_user_reg(tsk, off >> 2);
1870 else if (off >= COMPAT_USER_SZ)
1871 return -EIO;
1872 else
1873 tmp = 0;
1874
1875 return put_user(tmp, ret);
1876 }
1877
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1878 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1879 compat_ulong_t val)
1880 {
1881 struct pt_regs newregs = *task_pt_regs(tsk);
1882 unsigned int idx = off / 4;
1883
1884 if (off & 3 || off >= COMPAT_USER_SZ)
1885 return -EIO;
1886
1887 if (off >= sizeof(compat_elf_gregset_t))
1888 return 0;
1889
1890 switch (idx) {
1891 case 15:
1892 newregs.pc = val;
1893 break;
1894 case 16:
1895 newregs.pstate = compat_psr_to_pstate(val);
1896 break;
1897 case 17:
1898 newregs.orig_x0 = val;
1899 break;
1900 default:
1901 newregs.regs[idx] = val;
1902 }
1903
1904 if (!valid_user_regs(&newregs.user_regs, tsk))
1905 return -EINVAL;
1906
1907 *task_pt_regs(tsk) = newregs;
1908 return 0;
1909 }
1910
1911 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1912
1913 /*
1914 * Convert a virtual register number into an index for a thread_info
1915 * breakpoint array. Breakpoints are identified using positive numbers
1916 * whilst watchpoints are negative. The registers are laid out as pairs
1917 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1918 * Register 0 is reserved for describing resource information.
1919 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1920 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1921 {
1922 return (abs(num) - 1) >> 1;
1923 }
1924
compat_ptrace_hbp_get_resource_info(u32 * kdata)1925 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1926 {
1927 u8 num_brps, num_wrps, debug_arch, wp_len;
1928 u32 reg = 0;
1929
1930 num_brps = hw_breakpoint_slots(TYPE_INST);
1931 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1932
1933 debug_arch = debug_monitors_arch();
1934 wp_len = 8;
1935 reg |= debug_arch;
1936 reg <<= 8;
1937 reg |= wp_len;
1938 reg <<= 8;
1939 reg |= num_wrps;
1940 reg <<= 8;
1941 reg |= num_brps;
1942
1943 *kdata = reg;
1944 return 0;
1945 }
1946
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1947 static int compat_ptrace_hbp_get(unsigned int note_type,
1948 struct task_struct *tsk,
1949 compat_long_t num,
1950 u32 *kdata)
1951 {
1952 u64 addr = 0;
1953 u32 ctrl = 0;
1954
1955 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1956
1957 if (num & 1) {
1958 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1959 *kdata = (u32)addr;
1960 } else {
1961 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1962 *kdata = ctrl;
1963 }
1964
1965 return err;
1966 }
1967
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1968 static int compat_ptrace_hbp_set(unsigned int note_type,
1969 struct task_struct *tsk,
1970 compat_long_t num,
1971 u32 *kdata)
1972 {
1973 u64 addr;
1974 u32 ctrl;
1975
1976 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1977
1978 if (num & 1) {
1979 addr = *kdata;
1980 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1981 } else {
1982 ctrl = *kdata;
1983 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1984 }
1985
1986 return err;
1987 }
1988
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1989 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1990 compat_ulong_t __user *data)
1991 {
1992 int ret;
1993 u32 kdata;
1994
1995 /* Watchpoint */
1996 if (num < 0) {
1997 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1998 /* Resource info */
1999 } else if (num == 0) {
2000 ret = compat_ptrace_hbp_get_resource_info(&kdata);
2001 /* Breakpoint */
2002 } else {
2003 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
2004 }
2005
2006 if (!ret)
2007 ret = put_user(kdata, data);
2008
2009 return ret;
2010 }
2011
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)2012 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
2013 compat_ulong_t __user *data)
2014 {
2015 int ret;
2016 u32 kdata = 0;
2017
2018 if (num == 0)
2019 return 0;
2020
2021 ret = get_user(kdata, data);
2022 if (ret)
2023 return ret;
2024
2025 if (num < 0)
2026 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
2027 else
2028 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
2029
2030 return ret;
2031 }
2032 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2033
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)2034 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
2035 compat_ulong_t caddr, compat_ulong_t cdata)
2036 {
2037 unsigned long addr = caddr;
2038 unsigned long data = cdata;
2039 void __user *datap = compat_ptr(data);
2040 int ret;
2041
2042 switch (request) {
2043 case PTRACE_PEEKUSR:
2044 ret = compat_ptrace_read_user(child, addr, datap);
2045 break;
2046
2047 case PTRACE_POKEUSR:
2048 ret = compat_ptrace_write_user(child, addr, data);
2049 break;
2050
2051 case COMPAT_PTRACE_GETREGS:
2052 ret = copy_regset_to_user(child,
2053 &user_aarch32_view,
2054 REGSET_COMPAT_GPR,
2055 0, sizeof(compat_elf_gregset_t),
2056 datap);
2057 break;
2058
2059 case COMPAT_PTRACE_SETREGS:
2060 ret = copy_regset_from_user(child,
2061 &user_aarch32_view,
2062 REGSET_COMPAT_GPR,
2063 0, sizeof(compat_elf_gregset_t),
2064 datap);
2065 break;
2066
2067 case COMPAT_PTRACE_GET_THREAD_AREA:
2068 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
2069 (compat_ulong_t __user *)datap);
2070 break;
2071
2072 case COMPAT_PTRACE_SET_SYSCALL:
2073 task_pt_regs(child)->syscallno = data;
2074 ret = 0;
2075 break;
2076
2077 case COMPAT_PTRACE_GETVFPREGS:
2078 ret = copy_regset_to_user(child,
2079 &user_aarch32_view,
2080 REGSET_COMPAT_VFP,
2081 0, VFP_STATE_SIZE,
2082 datap);
2083 break;
2084
2085 case COMPAT_PTRACE_SETVFPREGS:
2086 ret = copy_regset_from_user(child,
2087 &user_aarch32_view,
2088 REGSET_COMPAT_VFP,
2089 0, VFP_STATE_SIZE,
2090 datap);
2091 break;
2092
2093 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2094 case COMPAT_PTRACE_GETHBPREGS:
2095 ret = compat_ptrace_gethbpregs(child, addr, datap);
2096 break;
2097
2098 case COMPAT_PTRACE_SETHBPREGS:
2099 ret = compat_ptrace_sethbpregs(child, addr, datap);
2100 break;
2101 #endif
2102
2103 default:
2104 ret = compat_ptrace_request(child, request, addr,
2105 data);
2106 break;
2107 }
2108
2109 return ret;
2110 }
2111 #endif /* CONFIG_COMPAT */
2112
task_user_regset_view(struct task_struct * task)2113 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2114 {
2115 #ifdef CONFIG_COMPAT
2116 /*
2117 * Core dumping of 32-bit tasks or compat ptrace requests must use the
2118 * user_aarch32_view compatible with arm32. Native ptrace requests on
2119 * 32-bit children use an extended user_aarch32_ptrace_view to allow
2120 * access to the TLS register.
2121 */
2122 if (is_compat_task())
2123 return &user_aarch32_view;
2124 else if (is_compat_thread(task_thread_info(task)))
2125 return &user_aarch32_ptrace_view;
2126 #endif
2127 return &user_aarch64_view;
2128 }
2129
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)2130 long arch_ptrace(struct task_struct *child, long request,
2131 unsigned long addr, unsigned long data)
2132 {
2133 switch (request) {
2134 case PTRACE_PEEKMTETAGS:
2135 case PTRACE_POKEMTETAGS:
2136 return mte_ptrace_copy_tags(child, request, addr, data);
2137 }
2138
2139 return ptrace_request(child, request, addr, data);
2140 }
2141
2142 enum ptrace_syscall_dir {
2143 PTRACE_SYSCALL_ENTER = 0,
2144 PTRACE_SYSCALL_EXIT,
2145 };
2146
report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)2147 static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
2148 {
2149 int regno;
2150 unsigned long saved_reg;
2151
2152 /*
2153 * We have some ABI weirdness here in the way that we handle syscall
2154 * exit stops because we indicate whether or not the stop has been
2155 * signalled from syscall entry or syscall exit by clobbering a general
2156 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
2157 * and restoring its old value after the stop. This means that:
2158 *
2159 * - Any writes by the tracer to this register during the stop are
2160 * ignored/discarded.
2161 *
2162 * - The actual value of the register is not available during the stop,
2163 * so the tracer cannot save it and restore it later.
2164 *
2165 * - Syscall stops behave differently to seccomp and pseudo-step traps
2166 * (the latter do not nobble any registers).
2167 */
2168 regno = (is_compat_task() ? 12 : 7);
2169 saved_reg = regs->regs[regno];
2170 regs->regs[regno] = dir;
2171
2172 if (dir == PTRACE_SYSCALL_ENTER) {
2173 if (ptrace_report_syscall_entry(regs))
2174 forget_syscall(regs);
2175 regs->regs[regno] = saved_reg;
2176 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
2177 ptrace_report_syscall_exit(regs, 0);
2178 regs->regs[regno] = saved_reg;
2179 } else {
2180 regs->regs[regno] = saved_reg;
2181
2182 /*
2183 * Signal a pseudo-step exception since we are stepping but
2184 * tracer modifications to the registers may have rewound the
2185 * state machine.
2186 */
2187 ptrace_report_syscall_exit(regs, 1);
2188 }
2189 }
2190
syscall_trace_enter(struct pt_regs * regs)2191 int syscall_trace_enter(struct pt_regs *regs)
2192 {
2193 unsigned long flags = read_thread_flags();
2194
2195 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
2196 report_syscall(regs, PTRACE_SYSCALL_ENTER);
2197 if (flags & _TIF_SYSCALL_EMU)
2198 return NO_SYSCALL;
2199 }
2200
2201 /* Do the secure computing after ptrace; failures should be fast. */
2202 if (secure_computing() == -1)
2203 return NO_SYSCALL;
2204
2205 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
2206 trace_sys_enter(regs, regs->syscallno);
2207
2208 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
2209 regs->regs[2], regs->regs[3]);
2210
2211 return regs->syscallno;
2212 }
2213
syscall_trace_exit(struct pt_regs * regs)2214 void syscall_trace_exit(struct pt_regs *regs)
2215 {
2216 unsigned long flags = read_thread_flags();
2217
2218 audit_syscall_exit(regs);
2219
2220 if (flags & _TIF_SYSCALL_TRACEPOINT)
2221 trace_sys_exit(regs, syscall_get_return_value(current, regs));
2222
2223 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
2224 report_syscall(regs, PTRACE_SYSCALL_EXIT);
2225
2226 rseq_syscall(regs);
2227 }
2228
2229 /*
2230 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
2231 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
2232 * not described in ARM DDI 0487D.a.
2233 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
2234 * be allocated an EL0 meaning in future.
2235 * Userspace cannot use these until they have an architectural meaning.
2236 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
2237 * We also reserve IL for the kernel; SS is handled dynamically.
2238 */
2239 #define SPSR_EL1_AARCH64_RES0_BITS \
2240 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
2241 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
2242 #define SPSR_EL1_AARCH32_RES0_BITS \
2243 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
2244
valid_compat_regs(struct user_pt_regs * regs)2245 static int valid_compat_regs(struct user_pt_regs *regs)
2246 {
2247 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
2248
2249 if (!system_supports_mixed_endian_el0()) {
2250 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
2251 regs->pstate |= PSR_AA32_E_BIT;
2252 else
2253 regs->pstate &= ~PSR_AA32_E_BIT;
2254 }
2255
2256 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
2257 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
2258 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
2259 (regs->pstate & PSR_AA32_F_BIT) == 0) {
2260 return 1;
2261 }
2262
2263 /*
2264 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
2265 * arch/arm.
2266 */
2267 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
2268 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
2269 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
2270 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
2271 PSR_AA32_T_BIT;
2272 regs->pstate |= PSR_MODE32_BIT;
2273
2274 return 0;
2275 }
2276
valid_native_regs(struct user_pt_regs * regs)2277 static int valid_native_regs(struct user_pt_regs *regs)
2278 {
2279 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
2280
2281 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
2282 (regs->pstate & PSR_D_BIT) == 0 &&
2283 (regs->pstate & PSR_A_BIT) == 0 &&
2284 (regs->pstate & PSR_I_BIT) == 0 &&
2285 (regs->pstate & PSR_F_BIT) == 0) {
2286 return 1;
2287 }
2288
2289 /* Force PSR to a valid 64-bit EL0t */
2290 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
2291
2292 return 0;
2293 }
2294
2295 /*
2296 * Are the current registers suitable for user mode? (used to maintain
2297 * security in signal handlers)
2298 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)2299 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
2300 {
2301 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
2302 user_regs_reset_single_step(regs, task);
2303
2304 if (is_compat_thread(task_thread_info(task)))
2305 return valid_compat_regs(regs);
2306 else
2307 return valid_native_regs(regs);
2308 }
2309