1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Support for Versatile FPGA-based IRQ controllers
4  */
5 #include <linux/bitops.h>
6 #include <linux/irq.h>
7 #include <linux/io.h>
8 #include <linux/irqchip.h>
9 #include <linux/irqchip/versatile-fpga.h>
10 #include <linux/irqdomain.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 
16 #include <asm/exception.h>
17 #include <asm/mach/irq.h>
18 
19 #define IRQ_STATUS		0x00
20 #define IRQ_RAW_STATUS		0x04
21 #define IRQ_ENABLE_SET		0x08
22 #define IRQ_ENABLE_CLEAR	0x0c
23 #define INT_SOFT_SET		0x10
24 #define INT_SOFT_CLEAR		0x14
25 #define FIQ_STATUS		0x20
26 #define FIQ_RAW_STATUS		0x24
27 #define FIQ_ENABLE		0x28
28 #define FIQ_ENABLE_SET		0x28
29 #define FIQ_ENABLE_CLEAR	0x2C
30 
31 #define PIC_ENABLES             0x20	/* set interrupt pass through bits */
32 
33 /**
34  * struct fpga_irq_data - irq data container for the FPGA IRQ controller
35  * @base: memory offset in virtual memory
36  * @chip: chip container for this instance
37  * @domain: IRQ domain for this instance
38  * @valid: mask for valid IRQs on this controller
39  * @used_irqs: number of active IRQs on this controller
40  */
41 struct fpga_irq_data {
42 	void __iomem *base;
43 	struct irq_chip chip;
44 	u32 valid;
45 	struct irq_domain *domain;
46 	u8 used_irqs;
47 };
48 
49 /* we cannot allocate memory when the controllers are initially registered */
50 static struct fpga_irq_data fpga_irq_devices[CONFIG_VERSATILE_FPGA_IRQ_NR];
51 static int fpga_irq_id;
52 
fpga_irq_mask(struct irq_data * d)53 static void fpga_irq_mask(struct irq_data *d)
54 {
55 	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
56 	u32 mask = 1 << d->hwirq;
57 
58 	writel(mask, f->base + IRQ_ENABLE_CLEAR);
59 }
60 
fpga_irq_unmask(struct irq_data * d)61 static void fpga_irq_unmask(struct irq_data *d)
62 {
63 	struct fpga_irq_data *f = irq_data_get_irq_chip_data(d);
64 	u32 mask = 1 << d->hwirq;
65 
66 	writel(mask, f->base + IRQ_ENABLE_SET);
67 }
68 
fpga_irq_handle(struct irq_desc * desc)69 static void fpga_irq_handle(struct irq_desc *desc)
70 {
71 	struct fpga_irq_data *f = irq_desc_get_handler_data(desc);
72 	u32 status = readl(f->base + IRQ_STATUS);
73 
74 	if (status == 0) {
75 		do_bad_IRQ(desc);
76 		return;
77 	}
78 
79 	do {
80 		unsigned int irq = ffs(status) - 1;
81 
82 		status &= ~(1 << irq);
83 		generic_handle_irq(irq_find_mapping(f->domain, irq));
84 	} while (status);
85 }
86 
87 /*
88  * Handle each interrupt in a single FPGA IRQ controller.  Returns non-zero
89  * if we've handled at least one interrupt.  This does a single read of the
90  * status register and handles all interrupts in order from LSB first.
91  */
handle_one_fpga(struct fpga_irq_data * f,struct pt_regs * regs)92 static int handle_one_fpga(struct fpga_irq_data *f, struct pt_regs *regs)
93 {
94 	int handled = 0;
95 	int irq;
96 	u32 status;
97 
98 	while ((status  = readl(f->base + IRQ_STATUS))) {
99 		irq = ffs(status) - 1;
100 		handle_domain_irq(f->domain, irq, regs);
101 		handled = 1;
102 	}
103 
104 	return handled;
105 }
106 
107 /*
108  * Keep iterating over all registered FPGA IRQ controllers until there are
109  * no pending interrupts.
110  */
fpga_handle_irq(struct pt_regs * regs)111 asmlinkage void __exception_irq_entry fpga_handle_irq(struct pt_regs *regs)
112 {
113 	int i, handled;
114 
115 	do {
116 		for (i = 0, handled = 0; i < fpga_irq_id; ++i)
117 			handled |= handle_one_fpga(&fpga_irq_devices[i], regs);
118 	} while (handled);
119 }
120 
fpga_irqdomain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hwirq)121 static int fpga_irqdomain_map(struct irq_domain *d, unsigned int irq,
122 		irq_hw_number_t hwirq)
123 {
124 	struct fpga_irq_data *f = d->host_data;
125 
126 	/* Skip invalid IRQs, only register handlers for the real ones */
127 	if (!(f->valid & BIT(hwirq)))
128 		return -EPERM;
129 	irq_set_chip_data(irq, f);
130 	irq_set_chip_and_handler(irq, &f->chip,
131 				handle_level_irq);
132 	irq_set_probe(irq);
133 	return 0;
134 }
135 
136 static const struct irq_domain_ops fpga_irqdomain_ops = {
137 	.map = fpga_irqdomain_map,
138 	.xlate = irq_domain_xlate_onetwocell,
139 };
140 
fpga_irq_init(void __iomem * base,const char * name,int irq_start,int parent_irq,u32 valid,struct device_node * node)141 void __init fpga_irq_init(void __iomem *base, const char *name, int irq_start,
142 			  int parent_irq, u32 valid, struct device_node *node)
143 {
144 	struct fpga_irq_data *f;
145 	int i;
146 
147 	if (fpga_irq_id >= ARRAY_SIZE(fpga_irq_devices)) {
148 		pr_err("%s: too few FPGA IRQ controllers, increase CONFIG_VERSATILE_FPGA_IRQ_NR\n", __func__);
149 		return;
150 	}
151 	f = &fpga_irq_devices[fpga_irq_id];
152 	f->base = base;
153 	f->chip.name = name;
154 	f->chip.irq_ack = fpga_irq_mask;
155 	f->chip.irq_mask = fpga_irq_mask;
156 	f->chip.irq_unmask = fpga_irq_unmask;
157 	f->valid = valid;
158 
159 	if (parent_irq != -1) {
160 		irq_set_chained_handler_and_data(parent_irq, fpga_irq_handle,
161 						 f);
162 	}
163 
164 	/* This will also allocate irq descriptors */
165 	f->domain = irq_domain_add_simple(node, fls(valid), irq_start,
166 					  &fpga_irqdomain_ops, f);
167 
168 	/* This will allocate all valid descriptors in the linear case */
169 	for (i = 0; i < fls(valid); i++)
170 		if (valid & BIT(i)) {
171 			if (!irq_start)
172 				irq_create_mapping(f->domain, i);
173 			f->used_irqs++;
174 		}
175 
176 	pr_info("FPGA IRQ chip %d \"%s\" @ %p, %u irqs",
177 		fpga_irq_id, name, base, f->used_irqs);
178 	if (parent_irq != -1)
179 		pr_cont(", parent IRQ: %d\n", parent_irq);
180 	else
181 		pr_cont("\n");
182 
183 	fpga_irq_id++;
184 }
185 
186 #ifdef CONFIG_OF
fpga_irq_of_init(struct device_node * node,struct device_node * parent)187 int __init fpga_irq_of_init(struct device_node *node,
188 			    struct device_node *parent)
189 {
190 	void __iomem *base;
191 	u32 clear_mask;
192 	u32 valid_mask;
193 	int parent_irq;
194 
195 	if (WARN_ON(!node))
196 		return -ENODEV;
197 
198 	base = of_iomap(node, 0);
199 	WARN(!base, "unable to map fpga irq registers\n");
200 
201 	if (of_property_read_u32(node, "clear-mask", &clear_mask))
202 		clear_mask = 0;
203 
204 	if (of_property_read_u32(node, "valid-mask", &valid_mask))
205 		valid_mask = 0;
206 
207 	/* Some chips are cascaded from a parent IRQ */
208 	parent_irq = irq_of_parse_and_map(node, 0);
209 	if (!parent_irq) {
210 		set_handle_irq(fpga_handle_irq);
211 		parent_irq = -1;
212 	}
213 
214 	fpga_irq_init(base, node->name, 0, parent_irq, valid_mask, node);
215 
216 	writel(clear_mask, base + IRQ_ENABLE_CLEAR);
217 	writel(clear_mask, base + FIQ_ENABLE_CLEAR);
218 
219 	/*
220 	 * On Versatile AB/PB, some secondary interrupts have a direct
221 	 * pass-thru to the primary controller for IRQs 20 and 22-31 which need
222 	 * to be enabled. See section 3.10 of the Versatile AB user guide.
223 	 */
224 	if (of_device_is_compatible(node, "arm,versatile-sic"))
225 		writel(0xffd00000, base + PIC_ENABLES);
226 
227 	return 0;
228 }
229 IRQCHIP_DECLARE(arm_fpga, "arm,versatile-fpga-irq", fpga_irq_of_init);
230 IRQCHIP_DECLARE(arm_fpga_sic, "arm,versatile-sic", fpga_irq_of_init);
231 IRQCHIP_DECLARE(ox810se_rps, "oxsemi,ox810se-rps-irq", fpga_irq_of_init);
232 #endif
233