1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
4 *
5 * Copyright (c) 2009-2010 Micrel, Inc.
6 * Tristram Ha <Tristram.Ha@micrel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/mii.h>
19 #include <linux/platform_device.h>
20 #include <linux/ethtool.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/if_vlan.h>
25 #include <linux/crc32.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28
29
30 /* DMA Registers */
31
32 #define KS_DMA_TX_CTRL 0x0000
33 #define DMA_TX_ENABLE 0x00000001
34 #define DMA_TX_CRC_ENABLE 0x00000002
35 #define DMA_TX_PAD_ENABLE 0x00000004
36 #define DMA_TX_LOOPBACK 0x00000100
37 #define DMA_TX_FLOW_ENABLE 0x00000200
38 #define DMA_TX_CSUM_IP 0x00010000
39 #define DMA_TX_CSUM_TCP 0x00020000
40 #define DMA_TX_CSUM_UDP 0x00040000
41 #define DMA_TX_BURST_SIZE 0x3F000000
42
43 #define KS_DMA_RX_CTRL 0x0004
44 #define DMA_RX_ENABLE 0x00000001
45 #define KS884X_DMA_RX_MULTICAST 0x00000002
46 #define DMA_RX_PROMISCUOUS 0x00000004
47 #define DMA_RX_ERROR 0x00000008
48 #define DMA_RX_UNICAST 0x00000010
49 #define DMA_RX_ALL_MULTICAST 0x00000020
50 #define DMA_RX_BROADCAST 0x00000040
51 #define DMA_RX_FLOW_ENABLE 0x00000200
52 #define DMA_RX_CSUM_IP 0x00010000
53 #define DMA_RX_CSUM_TCP 0x00020000
54 #define DMA_RX_CSUM_UDP 0x00040000
55 #define DMA_RX_BURST_SIZE 0x3F000000
56
57 #define DMA_BURST_SHIFT 24
58 #define DMA_BURST_DEFAULT 8
59
60 #define KS_DMA_TX_START 0x0008
61 #define KS_DMA_RX_START 0x000C
62 #define DMA_START 0x00000001
63
64 #define KS_DMA_TX_ADDR 0x0010
65 #define KS_DMA_RX_ADDR 0x0014
66
67 #define DMA_ADDR_LIST_MASK 0xFFFFFFFC
68 #define DMA_ADDR_LIST_SHIFT 2
69
70 /* MTR0 */
71 #define KS884X_MULTICAST_0_OFFSET 0x0020
72 #define KS884X_MULTICAST_1_OFFSET 0x0021
73 #define KS884X_MULTICAST_2_OFFSET 0x0022
74 #define KS884x_MULTICAST_3_OFFSET 0x0023
75 /* MTR1 */
76 #define KS884X_MULTICAST_4_OFFSET 0x0024
77 #define KS884X_MULTICAST_5_OFFSET 0x0025
78 #define KS884X_MULTICAST_6_OFFSET 0x0026
79 #define KS884X_MULTICAST_7_OFFSET 0x0027
80
81 /* Interrupt Registers */
82
83 /* INTEN */
84 #define KS884X_INTERRUPTS_ENABLE 0x0028
85 /* INTST */
86 #define KS884X_INTERRUPTS_STATUS 0x002C
87
88 #define KS884X_INT_RX_STOPPED 0x02000000
89 #define KS884X_INT_TX_STOPPED 0x04000000
90 #define KS884X_INT_RX_OVERRUN 0x08000000
91 #define KS884X_INT_TX_EMPTY 0x10000000
92 #define KS884X_INT_RX 0x20000000
93 #define KS884X_INT_TX 0x40000000
94 #define KS884X_INT_PHY 0x80000000
95
96 #define KS884X_INT_RX_MASK \
97 (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
98 #define KS884X_INT_TX_MASK \
99 (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
100 #define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
101
102 /* MAC Additional Station Address */
103
104 /* MAAL0 */
105 #define KS_ADD_ADDR_0_LO 0x0080
106 /* MAAH0 */
107 #define KS_ADD_ADDR_0_HI 0x0084
108 /* MAAL1 */
109 #define KS_ADD_ADDR_1_LO 0x0088
110 /* MAAH1 */
111 #define KS_ADD_ADDR_1_HI 0x008C
112 /* MAAL2 */
113 #define KS_ADD_ADDR_2_LO 0x0090
114 /* MAAH2 */
115 #define KS_ADD_ADDR_2_HI 0x0094
116 /* MAAL3 */
117 #define KS_ADD_ADDR_3_LO 0x0098
118 /* MAAH3 */
119 #define KS_ADD_ADDR_3_HI 0x009C
120 /* MAAL4 */
121 #define KS_ADD_ADDR_4_LO 0x00A0
122 /* MAAH4 */
123 #define KS_ADD_ADDR_4_HI 0x00A4
124 /* MAAL5 */
125 #define KS_ADD_ADDR_5_LO 0x00A8
126 /* MAAH5 */
127 #define KS_ADD_ADDR_5_HI 0x00AC
128 /* MAAL6 */
129 #define KS_ADD_ADDR_6_LO 0x00B0
130 /* MAAH6 */
131 #define KS_ADD_ADDR_6_HI 0x00B4
132 /* MAAL7 */
133 #define KS_ADD_ADDR_7_LO 0x00B8
134 /* MAAH7 */
135 #define KS_ADD_ADDR_7_HI 0x00BC
136 /* MAAL8 */
137 #define KS_ADD_ADDR_8_LO 0x00C0
138 /* MAAH8 */
139 #define KS_ADD_ADDR_8_HI 0x00C4
140 /* MAAL9 */
141 #define KS_ADD_ADDR_9_LO 0x00C8
142 /* MAAH9 */
143 #define KS_ADD_ADDR_9_HI 0x00CC
144 /* MAAL10 */
145 #define KS_ADD_ADDR_A_LO 0x00D0
146 /* MAAH10 */
147 #define KS_ADD_ADDR_A_HI 0x00D4
148 /* MAAL11 */
149 #define KS_ADD_ADDR_B_LO 0x00D8
150 /* MAAH11 */
151 #define KS_ADD_ADDR_B_HI 0x00DC
152 /* MAAL12 */
153 #define KS_ADD_ADDR_C_LO 0x00E0
154 /* MAAH12 */
155 #define KS_ADD_ADDR_C_HI 0x00E4
156 /* MAAL13 */
157 #define KS_ADD_ADDR_D_LO 0x00E8
158 /* MAAH13 */
159 #define KS_ADD_ADDR_D_HI 0x00EC
160 /* MAAL14 */
161 #define KS_ADD_ADDR_E_LO 0x00F0
162 /* MAAH14 */
163 #define KS_ADD_ADDR_E_HI 0x00F4
164 /* MAAL15 */
165 #define KS_ADD_ADDR_F_LO 0x00F8
166 /* MAAH15 */
167 #define KS_ADD_ADDR_F_HI 0x00FC
168
169 #define ADD_ADDR_HI_MASK 0x0000FFFF
170 #define ADD_ADDR_ENABLE 0x80000000
171 #define ADD_ADDR_INCR 8
172
173 /* Miscellaneous Registers */
174
175 /* MARL */
176 #define KS884X_ADDR_0_OFFSET 0x0200
177 #define KS884X_ADDR_1_OFFSET 0x0201
178 /* MARM */
179 #define KS884X_ADDR_2_OFFSET 0x0202
180 #define KS884X_ADDR_3_OFFSET 0x0203
181 /* MARH */
182 #define KS884X_ADDR_4_OFFSET 0x0204
183 #define KS884X_ADDR_5_OFFSET 0x0205
184
185 /* OBCR */
186 #define KS884X_BUS_CTRL_OFFSET 0x0210
187
188 #define BUS_SPEED_125_MHZ 0x0000
189 #define BUS_SPEED_62_5_MHZ 0x0001
190 #define BUS_SPEED_41_66_MHZ 0x0002
191 #define BUS_SPEED_25_MHZ 0x0003
192
193 /* EEPCR */
194 #define KS884X_EEPROM_CTRL_OFFSET 0x0212
195
196 #define EEPROM_CHIP_SELECT 0x0001
197 #define EEPROM_SERIAL_CLOCK 0x0002
198 #define EEPROM_DATA_OUT 0x0004
199 #define EEPROM_DATA_IN 0x0008
200 #define EEPROM_ACCESS_ENABLE 0x0010
201
202 /* MBIR */
203 #define KS884X_MEM_INFO_OFFSET 0x0214
204
205 #define RX_MEM_TEST_FAILED 0x0008
206 #define RX_MEM_TEST_FINISHED 0x0010
207 #define TX_MEM_TEST_FAILED 0x0800
208 #define TX_MEM_TEST_FINISHED 0x1000
209
210 /* GCR */
211 #define KS884X_GLOBAL_CTRL_OFFSET 0x0216
212 #define GLOBAL_SOFTWARE_RESET 0x0001
213
214 #define KS8841_POWER_MANAGE_OFFSET 0x0218
215
216 /* WFCR */
217 #define KS8841_WOL_CTRL_OFFSET 0x021A
218 #define KS8841_WOL_MAGIC_ENABLE 0x0080
219 #define KS8841_WOL_FRAME3_ENABLE 0x0008
220 #define KS8841_WOL_FRAME2_ENABLE 0x0004
221 #define KS8841_WOL_FRAME1_ENABLE 0x0002
222 #define KS8841_WOL_FRAME0_ENABLE 0x0001
223
224 /* WF0 */
225 #define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
226 #define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
227 #define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
228
229 /* IACR */
230 #define KS884X_IACR_P 0x04A0
231 #define KS884X_IACR_OFFSET KS884X_IACR_P
232
233 /* IADR1 */
234 #define KS884X_IADR1_P 0x04A2
235 #define KS884X_IADR2_P 0x04A4
236 #define KS884X_IADR3_P 0x04A6
237 #define KS884X_IADR4_P 0x04A8
238 #define KS884X_IADR5_P 0x04AA
239
240 #define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
241 #define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
242
243 #define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
244 #define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
245 #define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
246 #define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
247 #define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
248 #define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
249 #define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
250 #define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
251 #define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
252
253 /* P1MBCR */
254 #define KS884X_P1MBCR_P 0x04D0
255 #define KS884X_P1MBSR_P 0x04D2
256 #define KS884X_PHY1ILR_P 0x04D4
257 #define KS884X_PHY1IHR_P 0x04D6
258 #define KS884X_P1ANAR_P 0x04D8
259 #define KS884X_P1ANLPR_P 0x04DA
260
261 /* P2MBCR */
262 #define KS884X_P2MBCR_P 0x04E0
263 #define KS884X_P2MBSR_P 0x04E2
264 #define KS884X_PHY2ILR_P 0x04E4
265 #define KS884X_PHY2IHR_P 0x04E6
266 #define KS884X_P2ANAR_P 0x04E8
267 #define KS884X_P2ANLPR_P 0x04EA
268
269 #define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
270 #define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
271
272 #define KS884X_PHY_CTRL_OFFSET 0x00
273
274 /* Mode Control Register */
275 #define PHY_REG_CTRL 0
276
277 #define PHY_RESET 0x8000
278 #define PHY_LOOPBACK 0x4000
279 #define PHY_SPEED_100MBIT 0x2000
280 #define PHY_AUTO_NEG_ENABLE 0x1000
281 #define PHY_POWER_DOWN 0x0800
282 #define PHY_MII_DISABLE 0x0400
283 #define PHY_AUTO_NEG_RESTART 0x0200
284 #define PHY_FULL_DUPLEX 0x0100
285 #define PHY_COLLISION_TEST 0x0080
286 #define PHY_HP_MDIX 0x0020
287 #define PHY_FORCE_MDIX 0x0010
288 #define PHY_AUTO_MDIX_DISABLE 0x0008
289 #define PHY_REMOTE_FAULT_DISABLE 0x0004
290 #define PHY_TRANSMIT_DISABLE 0x0002
291 #define PHY_LED_DISABLE 0x0001
292
293 #define KS884X_PHY_STATUS_OFFSET 0x02
294
295 /* Mode Status Register */
296 #define PHY_REG_STATUS 1
297
298 #define PHY_100BT4_CAPABLE 0x8000
299 #define PHY_100BTX_FD_CAPABLE 0x4000
300 #define PHY_100BTX_CAPABLE 0x2000
301 #define PHY_10BT_FD_CAPABLE 0x1000
302 #define PHY_10BT_CAPABLE 0x0800
303 #define PHY_MII_SUPPRESS_CAPABLE 0x0040
304 #define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
305 #define PHY_REMOTE_FAULT 0x0010
306 #define PHY_AUTO_NEG_CAPABLE 0x0008
307 #define PHY_LINK_STATUS 0x0004
308 #define PHY_JABBER_DETECT 0x0002
309 #define PHY_EXTENDED_CAPABILITY 0x0001
310
311 #define KS884X_PHY_ID_1_OFFSET 0x04
312 #define KS884X_PHY_ID_2_OFFSET 0x06
313
314 /* PHY Identifier Registers */
315 #define PHY_REG_ID_1 2
316 #define PHY_REG_ID_2 3
317
318 #define KS884X_PHY_AUTO_NEG_OFFSET 0x08
319
320 /* Auto-Negotiation Advertisement Register */
321 #define PHY_REG_AUTO_NEGOTIATION 4
322
323 #define PHY_AUTO_NEG_NEXT_PAGE 0x8000
324 #define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
325 /* Not supported. */
326 #define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
327 #define PHY_AUTO_NEG_SYM_PAUSE 0x0400
328 #define PHY_AUTO_NEG_100BT4 0x0200
329 #define PHY_AUTO_NEG_100BTX_FD 0x0100
330 #define PHY_AUTO_NEG_100BTX 0x0080
331 #define PHY_AUTO_NEG_10BT_FD 0x0040
332 #define PHY_AUTO_NEG_10BT 0x0020
333 #define PHY_AUTO_NEG_SELECTOR 0x001F
334 #define PHY_AUTO_NEG_802_3 0x0001
335
336 #define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
337
338 #define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
339
340 /* Auto-Negotiation Link Partner Ability Register */
341 #define PHY_REG_REMOTE_CAPABILITY 5
342
343 #define PHY_REMOTE_NEXT_PAGE 0x8000
344 #define PHY_REMOTE_ACKNOWLEDGE 0x4000
345 #define PHY_REMOTE_REMOTE_FAULT 0x2000
346 #define PHY_REMOTE_SYM_PAUSE 0x0400
347 #define PHY_REMOTE_100BTX_FD 0x0100
348 #define PHY_REMOTE_100BTX 0x0080
349 #define PHY_REMOTE_10BT_FD 0x0040
350 #define PHY_REMOTE_10BT 0x0020
351
352 /* P1VCT */
353 #define KS884X_P1VCT_P 0x04F0
354 #define KS884X_P1PHYCTRL_P 0x04F2
355
356 /* P2VCT */
357 #define KS884X_P2VCT_P 0x04F4
358 #define KS884X_P2PHYCTRL_P 0x04F6
359
360 #define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
361 #define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
362
363 #define KS884X_PHY_LINK_MD_OFFSET 0x00
364
365 #define PHY_START_CABLE_DIAG 0x8000
366 #define PHY_CABLE_DIAG_RESULT 0x6000
367 #define PHY_CABLE_STAT_NORMAL 0x0000
368 #define PHY_CABLE_STAT_OPEN 0x2000
369 #define PHY_CABLE_STAT_SHORT 0x4000
370 #define PHY_CABLE_STAT_FAILED 0x6000
371 #define PHY_CABLE_10M_SHORT 0x1000
372 #define PHY_CABLE_FAULT_COUNTER 0x01FF
373
374 #define KS884X_PHY_PHY_CTRL_OFFSET 0x02
375
376 #define PHY_STAT_REVERSED_POLARITY 0x0020
377 #define PHY_STAT_MDIX 0x0010
378 #define PHY_FORCE_LINK 0x0008
379 #define PHY_POWER_SAVING_DISABLE 0x0004
380 #define PHY_REMOTE_LOOPBACK 0x0002
381
382 /* SIDER */
383 #define KS884X_SIDER_P 0x0400
384 #define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
385 #define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
386
387 #define REG_FAMILY_ID 0x88
388
389 #define REG_CHIP_ID_41 0x8810
390 #define REG_CHIP_ID_42 0x8800
391
392 #define KS884X_CHIP_ID_MASK_41 0xFF10
393 #define KS884X_CHIP_ID_MASK 0xFFF0
394 #define KS884X_CHIP_ID_SHIFT 4
395 #define KS884X_REVISION_MASK 0x000E
396 #define KS884X_REVISION_SHIFT 1
397 #define KS8842_START 0x0001
398
399 #define CHIP_IP_41_M 0x8810
400 #define CHIP_IP_42_M 0x8800
401 #define CHIP_IP_61_M 0x8890
402 #define CHIP_IP_62_M 0x8880
403
404 #define CHIP_IP_41_P 0x8850
405 #define CHIP_IP_42_P 0x8840
406 #define CHIP_IP_61_P 0x88D0
407 #define CHIP_IP_62_P 0x88C0
408
409 /* SGCR1 */
410 #define KS8842_SGCR1_P 0x0402
411 #define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
412
413 #define SWITCH_PASS_ALL 0x8000
414 #define SWITCH_TX_FLOW_CTRL 0x2000
415 #define SWITCH_RX_FLOW_CTRL 0x1000
416 #define SWITCH_CHECK_LENGTH 0x0800
417 #define SWITCH_AGING_ENABLE 0x0400
418 #define SWITCH_FAST_AGING 0x0200
419 #define SWITCH_AGGR_BACKOFF 0x0100
420 #define SWITCH_PASS_PAUSE 0x0008
421 #define SWITCH_LINK_AUTO_AGING 0x0001
422
423 /* SGCR2 */
424 #define KS8842_SGCR2_P 0x0404
425 #define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
426
427 #define SWITCH_VLAN_ENABLE 0x8000
428 #define SWITCH_IGMP_SNOOP 0x4000
429 #define IPV6_MLD_SNOOP_ENABLE 0x2000
430 #define IPV6_MLD_SNOOP_OPTION 0x1000
431 #define PRIORITY_SCHEME_SELECT 0x0800
432 #define SWITCH_MIRROR_RX_TX 0x0100
433 #define UNICAST_VLAN_BOUNDARY 0x0080
434 #define MULTICAST_STORM_DISABLE 0x0040
435 #define SWITCH_BACK_PRESSURE 0x0020
436 #define FAIR_FLOW_CTRL 0x0010
437 #define NO_EXC_COLLISION_DROP 0x0008
438 #define SWITCH_HUGE_PACKET 0x0004
439 #define SWITCH_LEGAL_PACKET 0x0002
440 #define SWITCH_BUF_RESERVE 0x0001
441
442 /* SGCR3 */
443 #define KS8842_SGCR3_P 0x0406
444 #define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
445
446 #define BROADCAST_STORM_RATE_LO 0xFF00
447 #define SWITCH_REPEATER 0x0080
448 #define SWITCH_HALF_DUPLEX 0x0040
449 #define SWITCH_FLOW_CTRL 0x0020
450 #define SWITCH_10_MBIT 0x0010
451 #define SWITCH_REPLACE_NULL_VID 0x0008
452 #define BROADCAST_STORM_RATE_HI 0x0007
453
454 #define BROADCAST_STORM_RATE 0x07FF
455
456 /* SGCR4 */
457 #define KS8842_SGCR4_P 0x0408
458
459 /* SGCR5 */
460 #define KS8842_SGCR5_P 0x040A
461 #define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
462
463 #define LED_MODE 0x8200
464 #define LED_SPEED_DUPLEX_ACT 0x0000
465 #define LED_SPEED_DUPLEX_LINK_ACT 0x8000
466 #define LED_DUPLEX_10_100 0x0200
467
468 /* SGCR6 */
469 #define KS8842_SGCR6_P 0x0410
470 #define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
471
472 #define KS8842_PRIORITY_MASK 3
473 #define KS8842_PRIORITY_SHIFT 2
474
475 /* SGCR7 */
476 #define KS8842_SGCR7_P 0x0412
477 #define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
478
479 #define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
480 #define SWITCH_UNK_DEF_PORT_3 0x0004
481 #define SWITCH_UNK_DEF_PORT_2 0x0002
482 #define SWITCH_UNK_DEF_PORT_1 0x0001
483
484 /* MACAR1 */
485 #define KS8842_MACAR1_P 0x0470
486 #define KS8842_MACAR2_P 0x0472
487 #define KS8842_MACAR3_P 0x0474
488 #define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
489 #define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
490 #define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
491 #define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
492 #define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
493 #define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
494
495 /* TOSR1 */
496 #define KS8842_TOSR1_P 0x0480
497 #define KS8842_TOSR2_P 0x0482
498 #define KS8842_TOSR3_P 0x0484
499 #define KS8842_TOSR4_P 0x0486
500 #define KS8842_TOSR5_P 0x0488
501 #define KS8842_TOSR6_P 0x048A
502 #define KS8842_TOSR7_P 0x0490
503 #define KS8842_TOSR8_P 0x0492
504 #define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
505 #define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
506 #define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
507 #define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
508 #define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
509 #define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
510
511 #define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
512 #define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
513
514 /* P1CR1 */
515 #define KS8842_P1CR1_P 0x0500
516 #define KS8842_P1CR2_P 0x0502
517 #define KS8842_P1VIDR_P 0x0504
518 #define KS8842_P1CR3_P 0x0506
519 #define KS8842_P1IRCR_P 0x0508
520 #define KS8842_P1ERCR_P 0x050A
521 #define KS884X_P1SCSLMD_P 0x0510
522 #define KS884X_P1CR4_P 0x0512
523 #define KS884X_P1SR_P 0x0514
524
525 /* P2CR1 */
526 #define KS8842_P2CR1_P 0x0520
527 #define KS8842_P2CR2_P 0x0522
528 #define KS8842_P2VIDR_P 0x0524
529 #define KS8842_P2CR3_P 0x0526
530 #define KS8842_P2IRCR_P 0x0528
531 #define KS8842_P2ERCR_P 0x052A
532 #define KS884X_P2SCSLMD_P 0x0530
533 #define KS884X_P2CR4_P 0x0532
534 #define KS884X_P2SR_P 0x0534
535
536 /* P3CR1 */
537 #define KS8842_P3CR1_P 0x0540
538 #define KS8842_P3CR2_P 0x0542
539 #define KS8842_P3VIDR_P 0x0544
540 #define KS8842_P3CR3_P 0x0546
541 #define KS8842_P3IRCR_P 0x0548
542 #define KS8842_P3ERCR_P 0x054A
543
544 #define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
545 #define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
546 #define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
547
548 #define PORT_CTRL_ADDR(port, addr) \
549 (addr = KS8842_PORT_1_CTRL_1 + (port) * \
550 (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
551
552 #define KS8842_PORT_CTRL_1_OFFSET 0x00
553
554 #define PORT_BROADCAST_STORM 0x0080
555 #define PORT_DIFFSERV_ENABLE 0x0040
556 #define PORT_802_1P_ENABLE 0x0020
557 #define PORT_BASED_PRIORITY_MASK 0x0018
558 #define PORT_BASED_PRIORITY_BASE 0x0003
559 #define PORT_BASED_PRIORITY_SHIFT 3
560 #define PORT_BASED_PRIORITY_0 0x0000
561 #define PORT_BASED_PRIORITY_1 0x0008
562 #define PORT_BASED_PRIORITY_2 0x0010
563 #define PORT_BASED_PRIORITY_3 0x0018
564 #define PORT_INSERT_TAG 0x0004
565 #define PORT_REMOVE_TAG 0x0002
566 #define PORT_PRIO_QUEUE_ENABLE 0x0001
567
568 #define KS8842_PORT_CTRL_2_OFFSET 0x02
569
570 #define PORT_INGRESS_VLAN_FILTER 0x4000
571 #define PORT_DISCARD_NON_VID 0x2000
572 #define PORT_FORCE_FLOW_CTRL 0x1000
573 #define PORT_BACK_PRESSURE 0x0800
574 #define PORT_TX_ENABLE 0x0400
575 #define PORT_RX_ENABLE 0x0200
576 #define PORT_LEARN_DISABLE 0x0100
577 #define PORT_MIRROR_SNIFFER 0x0080
578 #define PORT_MIRROR_RX 0x0040
579 #define PORT_MIRROR_TX 0x0020
580 #define PORT_USER_PRIORITY_CEILING 0x0008
581 #define PORT_VLAN_MEMBERSHIP 0x0007
582
583 #define KS8842_PORT_CTRL_VID_OFFSET 0x04
584
585 #define PORT_DEFAULT_VID 0x0001
586
587 #define KS8842_PORT_CTRL_3_OFFSET 0x06
588
589 #define PORT_INGRESS_LIMIT_MODE 0x000C
590 #define PORT_INGRESS_ALL 0x0000
591 #define PORT_INGRESS_UNICAST 0x0004
592 #define PORT_INGRESS_MULTICAST 0x0008
593 #define PORT_INGRESS_BROADCAST 0x000C
594 #define PORT_COUNT_IFG 0x0002
595 #define PORT_COUNT_PREAMBLE 0x0001
596
597 #define KS8842_PORT_IN_RATE_OFFSET 0x08
598 #define KS8842_PORT_OUT_RATE_OFFSET 0x0A
599
600 #define PORT_PRIORITY_RATE 0x0F
601 #define PORT_PRIORITY_RATE_SHIFT 4
602
603 #define KS884X_PORT_LINK_MD 0x10
604
605 #define PORT_CABLE_10M_SHORT 0x8000
606 #define PORT_CABLE_DIAG_RESULT 0x6000
607 #define PORT_CABLE_STAT_NORMAL 0x0000
608 #define PORT_CABLE_STAT_OPEN 0x2000
609 #define PORT_CABLE_STAT_SHORT 0x4000
610 #define PORT_CABLE_STAT_FAILED 0x6000
611 #define PORT_START_CABLE_DIAG 0x1000
612 #define PORT_FORCE_LINK 0x0800
613 #define PORT_POWER_SAVING_DISABLE 0x0400
614 #define PORT_PHY_REMOTE_LOOPBACK 0x0200
615 #define PORT_CABLE_FAULT_COUNTER 0x01FF
616
617 #define KS884X_PORT_CTRL_4_OFFSET 0x12
618
619 #define PORT_LED_OFF 0x8000
620 #define PORT_TX_DISABLE 0x4000
621 #define PORT_AUTO_NEG_RESTART 0x2000
622 #define PORT_REMOTE_FAULT_DISABLE 0x1000
623 #define PORT_POWER_DOWN 0x0800
624 #define PORT_AUTO_MDIX_DISABLE 0x0400
625 #define PORT_FORCE_MDIX 0x0200
626 #define PORT_LOOPBACK 0x0100
627 #define PORT_AUTO_NEG_ENABLE 0x0080
628 #define PORT_FORCE_100_MBIT 0x0040
629 #define PORT_FORCE_FULL_DUPLEX 0x0020
630 #define PORT_AUTO_NEG_SYM_PAUSE 0x0010
631 #define PORT_AUTO_NEG_100BTX_FD 0x0008
632 #define PORT_AUTO_NEG_100BTX 0x0004
633 #define PORT_AUTO_NEG_10BT_FD 0x0002
634 #define PORT_AUTO_NEG_10BT 0x0001
635
636 #define KS884X_PORT_STATUS_OFFSET 0x14
637
638 #define PORT_HP_MDIX 0x8000
639 #define PORT_REVERSED_POLARITY 0x2000
640 #define PORT_RX_FLOW_CTRL 0x0800
641 #define PORT_TX_FLOW_CTRL 0x1000
642 #define PORT_STATUS_SPEED_100MBIT 0x0400
643 #define PORT_STATUS_FULL_DUPLEX 0x0200
644 #define PORT_REMOTE_FAULT 0x0100
645 #define PORT_MDIX_STATUS 0x0080
646 #define PORT_AUTO_NEG_COMPLETE 0x0040
647 #define PORT_STATUS_LINK_GOOD 0x0020
648 #define PORT_REMOTE_SYM_PAUSE 0x0010
649 #define PORT_REMOTE_100BTX_FD 0x0008
650 #define PORT_REMOTE_100BTX 0x0004
651 #define PORT_REMOTE_10BT_FD 0x0002
652 #define PORT_REMOTE_10BT 0x0001
653
654 /*
655 #define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
656 #define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
657 #define STATIC_MAC_TABLE_VALID 00-00080000-00000000
658 #define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
659 #define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
660 #define STATIC_MAC_TABLE_FID 00-03C00000-00000000
661 */
662
663 #define STATIC_MAC_TABLE_ADDR 0x0000FFFF
664 #define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
665 #define STATIC_MAC_TABLE_VALID 0x00080000
666 #define STATIC_MAC_TABLE_OVERRIDE 0x00100000
667 #define STATIC_MAC_TABLE_USE_FID 0x00200000
668 #define STATIC_MAC_TABLE_FID 0x03C00000
669
670 #define STATIC_MAC_FWD_PORTS_SHIFT 16
671 #define STATIC_MAC_FID_SHIFT 22
672
673 /*
674 #define VLAN_TABLE_VID 00-00000000-00000FFF
675 #define VLAN_TABLE_FID 00-00000000-0000F000
676 #define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
677 #define VLAN_TABLE_VALID 00-00000000-00080000
678 */
679
680 #define VLAN_TABLE_VID 0x00000FFF
681 #define VLAN_TABLE_FID 0x0000F000
682 #define VLAN_TABLE_MEMBERSHIP 0x00070000
683 #define VLAN_TABLE_VALID 0x00080000
684
685 #define VLAN_TABLE_FID_SHIFT 12
686 #define VLAN_TABLE_MEMBERSHIP_SHIFT 16
687
688 /*
689 #define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
690 #define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
691 #define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
692 #define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
693 #define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
694 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
695 #define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
696 #define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
697 */
698
699 #define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
700 #define DYNAMIC_MAC_TABLE_FID 0x000F0000
701 #define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
702 #define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
703 #define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
704
705 #define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
706 #define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
707 #define DYNAMIC_MAC_TABLE_RESERVED 0x78
708 #define DYNAMIC_MAC_TABLE_NOT_READY 0x80
709
710 #define DYNAMIC_MAC_FID_SHIFT 16
711 #define DYNAMIC_MAC_SRC_PORT_SHIFT 20
712 #define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
713 #define DYNAMIC_MAC_ENTRIES_SHIFT 24
714 #define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
715
716 /*
717 #define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
718 #define MIB_COUNTER_VALID 00-00000000-40000000
719 #define MIB_COUNTER_OVERFLOW 00-00000000-80000000
720 */
721
722 #define MIB_COUNTER_VALUE 0x3FFFFFFF
723 #define MIB_COUNTER_VALID 0x40000000
724 #define MIB_COUNTER_OVERFLOW 0x80000000
725
726 #define MIB_PACKET_DROPPED 0x0000FFFF
727
728 #define KS_MIB_PACKET_DROPPED_TX_0 0x100
729 #define KS_MIB_PACKET_DROPPED_TX_1 0x101
730 #define KS_MIB_PACKET_DROPPED_TX 0x102
731 #define KS_MIB_PACKET_DROPPED_RX_0 0x103
732 #define KS_MIB_PACKET_DROPPED_RX_1 0x104
733 #define KS_MIB_PACKET_DROPPED_RX 0x105
734
735 /* Change default LED mode. */
736 #define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
737
738 #define MAC_ADDR_ORDER(i) (ETH_ALEN - 1 - (i))
739
740 #define MAX_ETHERNET_BODY_SIZE 1500
741 #define ETHERNET_HEADER_SIZE (14 + VLAN_HLEN)
742
743 #define MAX_ETHERNET_PACKET_SIZE \
744 (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
745
746 #define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
747 #define MAX_RX_BUF_SIZE (1912 + 4)
748
749 #define ADDITIONAL_ENTRIES 16
750 #define MAX_MULTICAST_LIST 32
751
752 #define HW_MULTICAST_SIZE 8
753
754 #define HW_TO_DEV_PORT(port) (port - 1)
755
756 enum {
757 media_connected,
758 media_disconnected
759 };
760
761 enum {
762 OID_COUNTER_UNKOWN,
763
764 OID_COUNTER_FIRST,
765
766 /* total transmit errors */
767 OID_COUNTER_XMIT_ERROR,
768
769 /* total receive errors */
770 OID_COUNTER_RCV_ERROR,
771
772 OID_COUNTER_LAST
773 };
774
775 /*
776 * Hardware descriptor definitions
777 */
778
779 #define DESC_ALIGNMENT 16
780 #define BUFFER_ALIGNMENT 8
781
782 #define NUM_OF_RX_DESC 64
783 #define NUM_OF_TX_DESC 64
784
785 #define KS_DESC_RX_FRAME_LEN 0x000007FF
786 #define KS_DESC_RX_FRAME_TYPE 0x00008000
787 #define KS_DESC_RX_ERROR_CRC 0x00010000
788 #define KS_DESC_RX_ERROR_RUNT 0x00020000
789 #define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
790 #define KS_DESC_RX_ERROR_PHY 0x00080000
791 #define KS884X_DESC_RX_PORT_MASK 0x00300000
792 #define KS_DESC_RX_MULTICAST 0x01000000
793 #define KS_DESC_RX_ERROR 0x02000000
794 #define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
795 #define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
796 #define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
797 #define KS_DESC_RX_LAST 0x20000000
798 #define KS_DESC_RX_FIRST 0x40000000
799 #define KS_DESC_RX_ERROR_COND \
800 (KS_DESC_RX_ERROR_CRC | \
801 KS_DESC_RX_ERROR_RUNT | \
802 KS_DESC_RX_ERROR_PHY | \
803 KS_DESC_RX_ERROR_TOO_LONG)
804
805 #define KS_DESC_HW_OWNED 0x80000000
806
807 #define KS_DESC_BUF_SIZE 0x000007FF
808 #define KS884X_DESC_TX_PORT_MASK 0x00300000
809 #define KS_DESC_END_OF_RING 0x02000000
810 #define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
811 #define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
812 #define KS_DESC_TX_CSUM_GEN_IP 0x10000000
813 #define KS_DESC_TX_LAST 0x20000000
814 #define KS_DESC_TX_FIRST 0x40000000
815 #define KS_DESC_TX_INTERRUPT 0x80000000
816
817 #define KS_DESC_PORT_SHIFT 20
818
819 #define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
820
821 #define KS_DESC_TX_MASK \
822 (KS_DESC_TX_INTERRUPT | \
823 KS_DESC_TX_FIRST | \
824 KS_DESC_TX_LAST | \
825 KS_DESC_TX_CSUM_GEN_IP | \
826 KS_DESC_TX_CSUM_GEN_TCP | \
827 KS_DESC_TX_CSUM_GEN_UDP | \
828 KS_DESC_BUF_SIZE)
829
830 struct ksz_desc_rx_stat {
831 #ifdef __BIG_ENDIAN_BITFIELD
832 u32 hw_owned:1;
833 u32 first_desc:1;
834 u32 last_desc:1;
835 u32 csum_err_ip:1;
836 u32 csum_err_tcp:1;
837 u32 csum_err_udp:1;
838 u32 error:1;
839 u32 multicast:1;
840 u32 src_port:4;
841 u32 err_phy:1;
842 u32 err_too_long:1;
843 u32 err_runt:1;
844 u32 err_crc:1;
845 u32 frame_type:1;
846 u32 reserved1:4;
847 u32 frame_len:11;
848 #else
849 u32 frame_len:11;
850 u32 reserved1:4;
851 u32 frame_type:1;
852 u32 err_crc:1;
853 u32 err_runt:1;
854 u32 err_too_long:1;
855 u32 err_phy:1;
856 u32 src_port:4;
857 u32 multicast:1;
858 u32 error:1;
859 u32 csum_err_udp:1;
860 u32 csum_err_tcp:1;
861 u32 csum_err_ip:1;
862 u32 last_desc:1;
863 u32 first_desc:1;
864 u32 hw_owned:1;
865 #endif
866 };
867
868 struct ksz_desc_tx_stat {
869 #ifdef __BIG_ENDIAN_BITFIELD
870 u32 hw_owned:1;
871 u32 reserved1:31;
872 #else
873 u32 reserved1:31;
874 u32 hw_owned:1;
875 #endif
876 };
877
878 struct ksz_desc_rx_buf {
879 #ifdef __BIG_ENDIAN_BITFIELD
880 u32 reserved4:6;
881 u32 end_of_ring:1;
882 u32 reserved3:14;
883 u32 buf_size:11;
884 #else
885 u32 buf_size:11;
886 u32 reserved3:14;
887 u32 end_of_ring:1;
888 u32 reserved4:6;
889 #endif
890 };
891
892 struct ksz_desc_tx_buf {
893 #ifdef __BIG_ENDIAN_BITFIELD
894 u32 intr:1;
895 u32 first_seg:1;
896 u32 last_seg:1;
897 u32 csum_gen_ip:1;
898 u32 csum_gen_tcp:1;
899 u32 csum_gen_udp:1;
900 u32 end_of_ring:1;
901 u32 reserved4:1;
902 u32 dest_port:4;
903 u32 reserved3:9;
904 u32 buf_size:11;
905 #else
906 u32 buf_size:11;
907 u32 reserved3:9;
908 u32 dest_port:4;
909 u32 reserved4:1;
910 u32 end_of_ring:1;
911 u32 csum_gen_udp:1;
912 u32 csum_gen_tcp:1;
913 u32 csum_gen_ip:1;
914 u32 last_seg:1;
915 u32 first_seg:1;
916 u32 intr:1;
917 #endif
918 };
919
920 union desc_stat {
921 struct ksz_desc_rx_stat rx;
922 struct ksz_desc_tx_stat tx;
923 u32 data;
924 };
925
926 union desc_buf {
927 struct ksz_desc_rx_buf rx;
928 struct ksz_desc_tx_buf tx;
929 u32 data;
930 };
931
932 /**
933 * struct ksz_hw_desc - Hardware descriptor data structure
934 * @ctrl: Descriptor control value.
935 * @buf: Descriptor buffer value.
936 * @addr: Physical address of memory buffer.
937 * @next: Pointer to next hardware descriptor.
938 */
939 struct ksz_hw_desc {
940 union desc_stat ctrl;
941 union desc_buf buf;
942 u32 addr;
943 u32 next;
944 };
945
946 /**
947 * struct ksz_sw_desc - Software descriptor data structure
948 * @ctrl: Descriptor control value.
949 * @buf: Descriptor buffer value.
950 * @buf_size: Current buffers size value in hardware descriptor.
951 */
952 struct ksz_sw_desc {
953 union desc_stat ctrl;
954 union desc_buf buf;
955 u32 buf_size;
956 };
957
958 /**
959 * struct ksz_dma_buf - OS dependent DMA buffer data structure
960 * @skb: Associated socket buffer.
961 * @dma: Associated physical DMA address.
962 * len: Actual len used.
963 */
964 struct ksz_dma_buf {
965 struct sk_buff *skb;
966 dma_addr_t dma;
967 int len;
968 };
969
970 /**
971 * struct ksz_desc - Descriptor structure
972 * @phw: Hardware descriptor pointer to uncached physical memory.
973 * @sw: Cached memory to hold hardware descriptor values for
974 * manipulation.
975 * @dma_buf: Operating system dependent data structure to hold physical
976 * memory buffer allocation information.
977 */
978 struct ksz_desc {
979 struct ksz_hw_desc *phw;
980 struct ksz_sw_desc sw;
981 struct ksz_dma_buf dma_buf;
982 };
983
984 #define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
985
986 /**
987 * struct ksz_desc_info - Descriptor information data structure
988 * @ring: First descriptor in the ring.
989 * @cur: Current descriptor being manipulated.
990 * @ring_virt: First hardware descriptor in the ring.
991 * @ring_phys: The physical address of the first descriptor of the ring.
992 * @size: Size of hardware descriptor.
993 * @alloc: Number of descriptors allocated.
994 * @avail: Number of descriptors available for use.
995 * @last: Index for last descriptor released to hardware.
996 * @next: Index for next descriptor available for use.
997 * @mask: Mask for index wrapping.
998 */
999 struct ksz_desc_info {
1000 struct ksz_desc *ring;
1001 struct ksz_desc *cur;
1002 struct ksz_hw_desc *ring_virt;
1003 u32 ring_phys;
1004 int size;
1005 int alloc;
1006 int avail;
1007 int last;
1008 int next;
1009 int mask;
1010 };
1011
1012 /*
1013 * KSZ8842 switch definitions
1014 */
1015
1016 enum {
1017 TABLE_STATIC_MAC = 0,
1018 TABLE_VLAN,
1019 TABLE_DYNAMIC_MAC,
1020 TABLE_MIB
1021 };
1022
1023 #define LEARNED_MAC_TABLE_ENTRIES 1024
1024 #define STATIC_MAC_TABLE_ENTRIES 8
1025
1026 /**
1027 * struct ksz_mac_table - Static MAC table data structure
1028 * @mac_addr: MAC address to filter.
1029 * @vid: VID value.
1030 * @fid: FID value.
1031 * @ports: Port membership.
1032 * @override: Override setting.
1033 * @use_fid: FID use setting.
1034 * @valid: Valid setting indicating the entry is being used.
1035 */
1036 struct ksz_mac_table {
1037 u8 mac_addr[ETH_ALEN];
1038 u16 vid;
1039 u8 fid;
1040 u8 ports;
1041 u8 override:1;
1042 u8 use_fid:1;
1043 u8 valid:1;
1044 };
1045
1046 #define VLAN_TABLE_ENTRIES 16
1047
1048 /**
1049 * struct ksz_vlan_table - VLAN table data structure
1050 * @vid: VID value.
1051 * @fid: FID value.
1052 * @member: Port membership.
1053 */
1054 struct ksz_vlan_table {
1055 u16 vid;
1056 u8 fid;
1057 u8 member;
1058 };
1059
1060 #define DIFFSERV_ENTRIES 64
1061 #define PRIO_802_1P_ENTRIES 8
1062 #define PRIO_QUEUES 4
1063
1064 #define SWITCH_PORT_NUM 2
1065 #define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
1066 #define HOST_MASK (1 << SWITCH_PORT_NUM)
1067 #define PORT_MASK 7
1068
1069 #define MAIN_PORT 0
1070 #define OTHER_PORT 1
1071 #define HOST_PORT SWITCH_PORT_NUM
1072
1073 #define PORT_COUNTER_NUM 0x20
1074 #define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
1075
1076 #define MIB_COUNTER_RX_LO_PRIORITY 0x00
1077 #define MIB_COUNTER_RX_HI_PRIORITY 0x01
1078 #define MIB_COUNTER_RX_UNDERSIZE 0x02
1079 #define MIB_COUNTER_RX_FRAGMENT 0x03
1080 #define MIB_COUNTER_RX_OVERSIZE 0x04
1081 #define MIB_COUNTER_RX_JABBER 0x05
1082 #define MIB_COUNTER_RX_SYMBOL_ERR 0x06
1083 #define MIB_COUNTER_RX_CRC_ERR 0x07
1084 #define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
1085 #define MIB_COUNTER_RX_CTRL_8808 0x09
1086 #define MIB_COUNTER_RX_PAUSE 0x0A
1087 #define MIB_COUNTER_RX_BROADCAST 0x0B
1088 #define MIB_COUNTER_RX_MULTICAST 0x0C
1089 #define MIB_COUNTER_RX_UNICAST 0x0D
1090 #define MIB_COUNTER_RX_OCTET_64 0x0E
1091 #define MIB_COUNTER_RX_OCTET_65_127 0x0F
1092 #define MIB_COUNTER_RX_OCTET_128_255 0x10
1093 #define MIB_COUNTER_RX_OCTET_256_511 0x11
1094 #define MIB_COUNTER_RX_OCTET_512_1023 0x12
1095 #define MIB_COUNTER_RX_OCTET_1024_1522 0x13
1096 #define MIB_COUNTER_TX_LO_PRIORITY 0x14
1097 #define MIB_COUNTER_TX_HI_PRIORITY 0x15
1098 #define MIB_COUNTER_TX_LATE_COLLISION 0x16
1099 #define MIB_COUNTER_TX_PAUSE 0x17
1100 #define MIB_COUNTER_TX_BROADCAST 0x18
1101 #define MIB_COUNTER_TX_MULTICAST 0x19
1102 #define MIB_COUNTER_TX_UNICAST 0x1A
1103 #define MIB_COUNTER_TX_DEFERRED 0x1B
1104 #define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
1105 #define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1106 #define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1107 #define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
1108
1109 #define MIB_COUNTER_RX_DROPPED_PACKET 0x20
1110 #define MIB_COUNTER_TX_DROPPED_PACKET 0x21
1111
1112 /**
1113 * struct ksz_port_mib - Port MIB data structure
1114 * @cnt_ptr: Current pointer to MIB counter index.
1115 * @link_down: Indication the link has just gone down.
1116 * @state: Connection status of the port.
1117 * @mib_start: The starting counter index. Some ports do not start at 0.
1118 * @counter: 64-bit MIB counter value.
1119 * @dropped: Temporary buffer to remember last read packet dropped values.
1120 *
1121 * MIB counters needs to be read periodically so that counters do not get
1122 * overflowed and give incorrect values. A right balance is needed to
1123 * satisfy this condition and not waste too much CPU time.
1124 *
1125 * It is pointless to read MIB counters when the port is disconnected. The
1126 * @state provides the connection status so that MIB counters are read only
1127 * when the port is connected. The @link_down indicates the port is just
1128 * disconnected so that all MIB counters are read one last time to update the
1129 * information.
1130 */
1131 struct ksz_port_mib {
1132 u8 cnt_ptr;
1133 u8 link_down;
1134 u8 state;
1135 u8 mib_start;
1136
1137 u64 counter[TOTAL_PORT_COUNTER_NUM];
1138 u32 dropped[2];
1139 };
1140
1141 /**
1142 * struct ksz_port_cfg - Port configuration data structure
1143 * @vid: VID value.
1144 * @member: Port membership.
1145 * @port_prio: Port priority.
1146 * @rx_rate: Receive priority rate.
1147 * @tx_rate: Transmit priority rate.
1148 * @stp_state: Current Spanning Tree Protocol state.
1149 */
1150 struct ksz_port_cfg {
1151 u16 vid;
1152 u8 member;
1153 u8 port_prio;
1154 u32 rx_rate[PRIO_QUEUES];
1155 u32 tx_rate[PRIO_QUEUES];
1156 int stp_state;
1157 };
1158
1159 /**
1160 * struct ksz_switch - KSZ8842 switch data structure
1161 * @mac_table: MAC table entries information.
1162 * @vlan_table: VLAN table entries information.
1163 * @port_cfg: Port configuration information.
1164 * @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
1165 * (bit7 ~ bit2) field.
1166 * @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
1167 * Tag priority field.
1168 * @br_addr: Bridge address. Used for STP.
1169 * @other_addr: Other MAC address. Used for multiple network device mode.
1170 * @broad_per: Broadcast storm percentage.
1171 * @member: Current port membership. Used for STP.
1172 */
1173 struct ksz_switch {
1174 struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175 struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176 struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177
1178 u8 diffserv[DIFFSERV_ENTRIES];
1179 u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180
1181 u8 br_addr[ETH_ALEN];
1182 u8 other_addr[ETH_ALEN];
1183
1184 u8 broad_per;
1185 u8 member;
1186 };
1187
1188 #define TX_RATE_UNIT 10000
1189
1190 /**
1191 * struct ksz_port_info - Port information data structure
1192 * @state: Connection status of the port.
1193 * @tx_rate: Transmit rate divided by 10000 to get Mbit.
1194 * @duplex: Duplex mode.
1195 * @advertised: Advertised auto-negotiation setting. Used to determine link.
1196 * @partner: Auto-negotiation partner setting. Used to determine link.
1197 * @port_id: Port index to access actual hardware register.
1198 * @pdev: Pointer to OS dependent network device.
1199 */
1200 struct ksz_port_info {
1201 uint state;
1202 uint tx_rate;
1203 u8 duplex;
1204 u8 advertised;
1205 u8 partner;
1206 u8 port_id;
1207 void *pdev;
1208 };
1209
1210 #define MAX_TX_HELD_SIZE 52000
1211
1212 /* Hardware features and bug fixes. */
1213 #define LINK_INT_WORKING (1 << 0)
1214 #define SMALL_PACKET_TX_BUG (1 << 1)
1215 #define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
1216 #define RX_HUGE_FRAME (1 << 4)
1217 #define STP_SUPPORT (1 << 8)
1218
1219 /* Software overrides. */
1220 #define PAUSE_FLOW_CTRL (1 << 0)
1221 #define FAST_AGING (1 << 1)
1222
1223 /**
1224 * struct ksz_hw - KSZ884X hardware data structure
1225 * @io: Virtual address assigned.
1226 * @ksz_switch: Pointer to KSZ8842 switch.
1227 * @port_info: Port information.
1228 * @port_mib: Port MIB information.
1229 * @dev_count: Number of network devices this hardware supports.
1230 * @dst_ports: Destination ports in switch for transmission.
1231 * @id: Hardware ID. Used for display only.
1232 * @mib_cnt: Number of MIB counters this hardware has.
1233 * @mib_port_cnt: Number of ports with MIB counters.
1234 * @tx_cfg: Cached transmit control settings.
1235 * @rx_cfg: Cached receive control settings.
1236 * @intr_mask: Current interrupt mask.
1237 * @intr_set: Current interrup set.
1238 * @intr_blocked: Interrupt blocked.
1239 * @rx_desc_info: Receive descriptor information.
1240 * @tx_desc_info: Transmit descriptor information.
1241 * @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
1242 * @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
1243 * @tx_size: Transmit data size. Used for TX optimization.
1244 * The maximum is defined by MAX_TX_HELD_SIZE.
1245 * @perm_addr: Permanent MAC address.
1246 * @override_addr: Overridden MAC address.
1247 * @address: Additional MAC address entries.
1248 * @addr_list_size: Additional MAC address list size.
1249 * @mac_override: Indication of MAC address overridden.
1250 * @promiscuous: Counter to keep track of promiscuous mode set.
1251 * @all_multi: Counter to keep track of all multicast mode set.
1252 * @multi_list: Multicast address entries.
1253 * @multi_bits: Cached multicast hash table settings.
1254 * @multi_list_size: Multicast address list size.
1255 * @enabled: Indication of hardware enabled.
1256 * @rx_stop: Indication of receive process stop.
1257 * @features: Hardware features to enable.
1258 * @overrides: Hardware features to override.
1259 * @parent: Pointer to parent, network device private structure.
1260 */
1261 struct ksz_hw {
1262 void __iomem *io;
1263
1264 struct ksz_switch *ksz_switch;
1265 struct ksz_port_info port_info[SWITCH_PORT_NUM];
1266 struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1267 int dev_count;
1268 int dst_ports;
1269 int id;
1270 int mib_cnt;
1271 int mib_port_cnt;
1272
1273 u32 tx_cfg;
1274 u32 rx_cfg;
1275 u32 intr_mask;
1276 u32 intr_set;
1277 uint intr_blocked;
1278
1279 struct ksz_desc_info rx_desc_info;
1280 struct ksz_desc_info tx_desc_info;
1281
1282 int tx_int_cnt;
1283 int tx_int_mask;
1284 int tx_size;
1285
1286 u8 perm_addr[ETH_ALEN];
1287 u8 override_addr[ETH_ALEN];
1288 u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1289 u8 addr_list_size;
1290 u8 mac_override;
1291 u8 promiscuous;
1292 u8 all_multi;
1293 u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1294 u8 multi_bits[HW_MULTICAST_SIZE];
1295 u8 multi_list_size;
1296
1297 u8 enabled;
1298 u8 rx_stop;
1299 u8 reserved2[1];
1300
1301 uint features;
1302 uint overrides;
1303
1304 void *parent;
1305 };
1306
1307 enum {
1308 PHY_NO_FLOW_CTRL,
1309 PHY_FLOW_CTRL,
1310 PHY_TX_ONLY,
1311 PHY_RX_ONLY
1312 };
1313
1314 /**
1315 * struct ksz_port - Virtual port data structure
1316 * @duplex: Duplex mode setting. 1 for half duplex, 2 for full
1317 * duplex, and 0 for auto, which normally results in full
1318 * duplex.
1319 * @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
1320 * 0 for auto, which normally results in 100 Mbit.
1321 * @force_link: Force link setting. 0 for auto-negotiation, and 1 for
1322 * force.
1323 * @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
1324 * control, and PHY_FLOW_CTRL for flow control.
1325 * PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1326 * Mbit PHY.
1327 * @first_port: Index of first port this port supports.
1328 * @mib_port_cnt: Number of ports with MIB counters.
1329 * @port_cnt: Number of ports this port supports.
1330 * @counter: Port statistics counter.
1331 * @hw: Pointer to hardware structure.
1332 * @linked: Pointer to port information linked to this port.
1333 */
1334 struct ksz_port {
1335 u8 duplex;
1336 u8 speed;
1337 u8 force_link;
1338 u8 flow_ctrl;
1339
1340 int first_port;
1341 int mib_port_cnt;
1342 int port_cnt;
1343 u64 counter[OID_COUNTER_LAST];
1344
1345 struct ksz_hw *hw;
1346 struct ksz_port_info *linked;
1347 };
1348
1349 /**
1350 * struct ksz_timer_info - Timer information data structure
1351 * @timer: Kernel timer.
1352 * @cnt: Running timer counter.
1353 * @max: Number of times to run timer; -1 for infinity.
1354 * @period: Timer period in jiffies.
1355 */
1356 struct ksz_timer_info {
1357 struct timer_list timer;
1358 int cnt;
1359 int max;
1360 int period;
1361 };
1362
1363 /**
1364 * struct ksz_shared_mem - OS dependent shared memory data structure
1365 * @dma_addr: Physical DMA address allocated.
1366 * @alloc_size: Allocation size.
1367 * @phys: Actual physical address used.
1368 * @alloc_virt: Virtual address allocated.
1369 * @virt: Actual virtual address used.
1370 */
1371 struct ksz_shared_mem {
1372 dma_addr_t dma_addr;
1373 uint alloc_size;
1374 uint phys;
1375 u8 *alloc_virt;
1376 u8 *virt;
1377 };
1378
1379 /**
1380 * struct ksz_counter_info - OS dependent counter information data structure
1381 * @counter: Wait queue to wakeup after counters are read.
1382 * @time: Next time in jiffies to read counter.
1383 * @read: Indication of counters read in full or not.
1384 */
1385 struct ksz_counter_info {
1386 wait_queue_head_t counter;
1387 unsigned long time;
1388 int read;
1389 };
1390
1391 /**
1392 * struct dev_info - Network device information data structure
1393 * @dev: Pointer to network device.
1394 * @pdev: Pointer to PCI device.
1395 * @hw: Hardware structure.
1396 * @desc_pool: Physical memory used for descriptor pool.
1397 * @hwlock: Spinlock to prevent hardware from accessing.
1398 * @lock: Mutex lock to prevent device from accessing.
1399 * @dev_rcv: Receive process function used.
1400 * @last_skb: Socket buffer allocated for descriptor rx fragments.
1401 * @skb_index: Buffer index for receiving fragments.
1402 * @skb_len: Buffer length for receiving fragments.
1403 * @mib_read: Workqueue to read MIB counters.
1404 * @mib_timer_info: Timer to read MIB counters.
1405 * @counter: Used for MIB reading.
1406 * @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
1407 * the maximum is MAX_RX_BUF_SIZE.
1408 * @opened: Counter to keep track of device open.
1409 * @rx_tasklet: Receive processing tasklet.
1410 * @tx_tasklet: Transmit processing tasklet.
1411 * @wol_enable: Wake-on-LAN enable set by ethtool.
1412 * @wol_support: Wake-on-LAN support used by ethtool.
1413 * @pme_wait: Used for KSZ8841 power management.
1414 */
1415 struct dev_info {
1416 struct net_device *dev;
1417 struct pci_dev *pdev;
1418
1419 struct ksz_hw hw;
1420 struct ksz_shared_mem desc_pool;
1421
1422 spinlock_t hwlock;
1423 struct mutex lock;
1424
1425 int (*dev_rcv)(struct dev_info *);
1426
1427 struct sk_buff *last_skb;
1428 int skb_index;
1429 int skb_len;
1430
1431 struct work_struct mib_read;
1432 struct ksz_timer_info mib_timer_info;
1433 struct ksz_counter_info counter[TOTAL_PORT_NUM];
1434
1435 int mtu;
1436 int opened;
1437
1438 struct tasklet_struct rx_tasklet;
1439 struct tasklet_struct tx_tasklet;
1440
1441 int wol_enable;
1442 int wol_support;
1443 unsigned long pme_wait;
1444 };
1445
1446 /**
1447 * struct dev_priv - Network device private data structure
1448 * @adapter: Adapter device information.
1449 * @port: Port information.
1450 * @monitor_time_info: Timer to monitor ports.
1451 * @proc_sem: Semaphore for proc accessing.
1452 * @id: Device ID.
1453 * @mii_if: MII interface information.
1454 * @advertising: Temporary variable to store advertised settings.
1455 * @msg_enable: The message flags controlling driver output.
1456 * @media_state: The connection status of the device.
1457 * @multicast: The all multicast state of the device.
1458 * @promiscuous: The promiscuous state of the device.
1459 */
1460 struct dev_priv {
1461 struct dev_info *adapter;
1462 struct ksz_port port;
1463 struct ksz_timer_info monitor_timer_info;
1464
1465 struct semaphore proc_sem;
1466 int id;
1467
1468 struct mii_if_info mii_if;
1469 u32 advertising;
1470
1471 u32 msg_enable;
1472 int media_state;
1473 int multicast;
1474 int promiscuous;
1475 };
1476
1477 #define DRV_NAME "KSZ884X PCI"
1478 #define DEVICE_NAME "KSZ884x PCI"
1479 #define DRV_VERSION "1.0.0"
1480 #define DRV_RELDATE "Feb 8, 2010"
1481
1482 static char version[] =
1483 "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1484
1485 static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1486
1487 /*
1488 * Interrupt processing primary routines
1489 */
1490
hw_ack_intr(struct ksz_hw * hw,uint interrupt)1491 static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1492 {
1493 writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1494 }
1495
hw_dis_intr(struct ksz_hw * hw)1496 static inline void hw_dis_intr(struct ksz_hw *hw)
1497 {
1498 hw->intr_blocked = hw->intr_mask;
1499 writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1500 hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1501 }
1502
hw_set_intr(struct ksz_hw * hw,uint interrupt)1503 static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1504 {
1505 hw->intr_set = interrupt;
1506 writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1507 }
1508
hw_ena_intr(struct ksz_hw * hw)1509 static inline void hw_ena_intr(struct ksz_hw *hw)
1510 {
1511 hw->intr_blocked = 0;
1512 hw_set_intr(hw, hw->intr_mask);
1513 }
1514
hw_dis_intr_bit(struct ksz_hw * hw,uint bit)1515 static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1516 {
1517 hw->intr_mask &= ~(bit);
1518 }
1519
hw_turn_off_intr(struct ksz_hw * hw,uint interrupt)1520 static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1521 {
1522 u32 read_intr;
1523
1524 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1525 hw->intr_set = read_intr & ~interrupt;
1526 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1527 hw_dis_intr_bit(hw, interrupt);
1528 }
1529
1530 /**
1531 * hw_turn_on_intr - turn on specified interrupts
1532 * @hw: The hardware instance.
1533 * @bit: The interrupt bits to be on.
1534 *
1535 * This routine turns on the specified interrupts in the interrupt mask so that
1536 * those interrupts will be enabled.
1537 */
hw_turn_on_intr(struct ksz_hw * hw,u32 bit)1538 static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1539 {
1540 hw->intr_mask |= bit;
1541
1542 if (!hw->intr_blocked)
1543 hw_set_intr(hw, hw->intr_mask);
1544 }
1545
hw_ena_intr_bit(struct ksz_hw * hw,uint interrupt)1546 static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1547 {
1548 u32 read_intr;
1549
1550 read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1551 hw->intr_set = read_intr | interrupt;
1552 writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1553 }
1554
hw_read_intr(struct ksz_hw * hw,uint * status)1555 static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1556 {
1557 *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1558 *status = *status & hw->intr_set;
1559 }
1560
hw_restore_intr(struct ksz_hw * hw,uint interrupt)1561 static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1562 {
1563 if (interrupt)
1564 hw_ena_intr(hw);
1565 }
1566
1567 /**
1568 * hw_block_intr - block hardware interrupts
1569 *
1570 * This function blocks all interrupts of the hardware and returns the current
1571 * interrupt enable mask so that interrupts can be restored later.
1572 *
1573 * Return the current interrupt enable mask.
1574 */
hw_block_intr(struct ksz_hw * hw)1575 static uint hw_block_intr(struct ksz_hw *hw)
1576 {
1577 uint interrupt = 0;
1578
1579 if (!hw->intr_blocked) {
1580 hw_dis_intr(hw);
1581 interrupt = hw->intr_blocked;
1582 }
1583 return interrupt;
1584 }
1585
1586 /*
1587 * Hardware descriptor routines
1588 */
1589
reset_desc(struct ksz_desc * desc,union desc_stat status)1590 static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1591 {
1592 status.rx.hw_owned = 0;
1593 desc->phw->ctrl.data = cpu_to_le32(status.data);
1594 }
1595
release_desc(struct ksz_desc * desc)1596 static inline void release_desc(struct ksz_desc *desc)
1597 {
1598 desc->sw.ctrl.tx.hw_owned = 1;
1599 if (desc->sw.buf_size != desc->sw.buf.data) {
1600 desc->sw.buf_size = desc->sw.buf.data;
1601 desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1602 }
1603 desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1604 }
1605
get_rx_pkt(struct ksz_desc_info * info,struct ksz_desc ** desc)1606 static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1607 {
1608 *desc = &info->ring[info->last];
1609 info->last++;
1610 info->last &= info->mask;
1611 info->avail--;
1612 (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1613 }
1614
set_rx_buf(struct ksz_desc * desc,u32 addr)1615 static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1616 {
1617 desc->phw->addr = cpu_to_le32(addr);
1618 }
1619
set_rx_len(struct ksz_desc * desc,u32 len)1620 static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1621 {
1622 desc->sw.buf.rx.buf_size = len;
1623 }
1624
get_tx_pkt(struct ksz_desc_info * info,struct ksz_desc ** desc)1625 static inline void get_tx_pkt(struct ksz_desc_info *info,
1626 struct ksz_desc **desc)
1627 {
1628 *desc = &info->ring[info->next];
1629 info->next++;
1630 info->next &= info->mask;
1631 info->avail--;
1632 (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1633 }
1634
set_tx_buf(struct ksz_desc * desc,u32 addr)1635 static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1636 {
1637 desc->phw->addr = cpu_to_le32(addr);
1638 }
1639
set_tx_len(struct ksz_desc * desc,u32 len)1640 static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1641 {
1642 desc->sw.buf.tx.buf_size = len;
1643 }
1644
1645 /* Switch functions */
1646
1647 #define TABLE_READ 0x10
1648 #define TABLE_SEL_SHIFT 2
1649
1650 #define HW_DELAY(hw, reg) \
1651 do { \
1652 u16 dummy; \
1653 dummy = readw(hw->io + reg); \
1654 } while (0)
1655
1656 /**
1657 * sw_r_table - read 4 bytes of data from switch table
1658 * @hw: The hardware instance.
1659 * @table: The table selector.
1660 * @addr: The address of the table entry.
1661 * @data: Buffer to store the read data.
1662 *
1663 * This routine reads 4 bytes of data from the table of the switch.
1664 * Hardware interrupts are disabled to minimize corruption of read data.
1665 */
sw_r_table(struct ksz_hw * hw,int table,u16 addr,u32 * data)1666 static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1667 {
1668 u16 ctrl_addr;
1669 uint interrupt;
1670
1671 ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1672
1673 interrupt = hw_block_intr(hw);
1674
1675 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1676 HW_DELAY(hw, KS884X_IACR_OFFSET);
1677 *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1678
1679 hw_restore_intr(hw, interrupt);
1680 }
1681
1682 /**
1683 * sw_w_table_64 - write 8 bytes of data to the switch table
1684 * @hw: The hardware instance.
1685 * @table: The table selector.
1686 * @addr: The address of the table entry.
1687 * @data_hi: The high part of data to be written (bit63 ~ bit32).
1688 * @data_lo: The low part of data to be written (bit31 ~ bit0).
1689 *
1690 * This routine writes 8 bytes of data to the table of the switch.
1691 * Hardware interrupts are disabled to minimize corruption of written data.
1692 */
sw_w_table_64(struct ksz_hw * hw,int table,u16 addr,u32 data_hi,u32 data_lo)1693 static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1694 u32 data_lo)
1695 {
1696 u16 ctrl_addr;
1697 uint interrupt;
1698
1699 ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1700
1701 interrupt = hw_block_intr(hw);
1702
1703 writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1704 writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1705
1706 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1707 HW_DELAY(hw, KS884X_IACR_OFFSET);
1708
1709 hw_restore_intr(hw, interrupt);
1710 }
1711
1712 /**
1713 * sw_w_sta_mac_table - write to the static MAC table
1714 * @hw: The hardware instance.
1715 * @addr: The address of the table entry.
1716 * @mac_addr: The MAC address.
1717 * @ports: The port members.
1718 * @override: The flag to override the port receive/transmit settings.
1719 * @valid: The flag to indicate entry is valid.
1720 * @use_fid: The flag to indicate the FID is valid.
1721 * @fid: The FID value.
1722 *
1723 * This routine writes an entry of the static MAC table of the switch. It
1724 * calls sw_w_table_64() to write the data.
1725 */
sw_w_sta_mac_table(struct ksz_hw * hw,u16 addr,u8 * mac_addr,u8 ports,int override,int valid,int use_fid,u8 fid)1726 static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1727 u8 ports, int override, int valid, int use_fid, u8 fid)
1728 {
1729 u32 data_hi;
1730 u32 data_lo;
1731
1732 data_lo = ((u32) mac_addr[2] << 24) |
1733 ((u32) mac_addr[3] << 16) |
1734 ((u32) mac_addr[4] << 8) | mac_addr[5];
1735 data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1736 data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1737
1738 if (override)
1739 data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1740 if (use_fid) {
1741 data_hi |= STATIC_MAC_TABLE_USE_FID;
1742 data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1743 }
1744 if (valid)
1745 data_hi |= STATIC_MAC_TABLE_VALID;
1746
1747 sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1748 }
1749
1750 /**
1751 * sw_r_vlan_table - read from the VLAN table
1752 * @hw: The hardware instance.
1753 * @addr: The address of the table entry.
1754 * @vid: Buffer to store the VID.
1755 * @fid: Buffer to store the VID.
1756 * @member: Buffer to store the port membership.
1757 *
1758 * This function reads an entry of the VLAN table of the switch. It calls
1759 * sw_r_table() to get the data.
1760 *
1761 * Return 0 if the entry is valid; otherwise -1.
1762 */
sw_r_vlan_table(struct ksz_hw * hw,u16 addr,u16 * vid,u8 * fid,u8 * member)1763 static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1764 u8 *member)
1765 {
1766 u32 data;
1767
1768 sw_r_table(hw, TABLE_VLAN, addr, &data);
1769 if (data & VLAN_TABLE_VALID) {
1770 *vid = (u16)(data & VLAN_TABLE_VID);
1771 *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1772 *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1773 VLAN_TABLE_MEMBERSHIP_SHIFT);
1774 return 0;
1775 }
1776 return -1;
1777 }
1778
1779 /**
1780 * port_r_mib_cnt - read MIB counter
1781 * @hw: The hardware instance.
1782 * @port: The port index.
1783 * @addr: The address of the counter.
1784 * @cnt: Buffer to store the counter.
1785 *
1786 * This routine reads a MIB counter of the port.
1787 * Hardware interrupts are disabled to minimize corruption of read data.
1788 */
port_r_mib_cnt(struct ksz_hw * hw,int port,u16 addr,u64 * cnt)1789 static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1790 {
1791 u32 data;
1792 u16 ctrl_addr;
1793 uint interrupt;
1794 int timeout;
1795
1796 ctrl_addr = addr + PORT_COUNTER_NUM * port;
1797
1798 interrupt = hw_block_intr(hw);
1799
1800 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1801 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1802 HW_DELAY(hw, KS884X_IACR_OFFSET);
1803
1804 for (timeout = 100; timeout > 0; timeout--) {
1805 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1806
1807 if (data & MIB_COUNTER_VALID) {
1808 if (data & MIB_COUNTER_OVERFLOW)
1809 *cnt += MIB_COUNTER_VALUE + 1;
1810 *cnt += data & MIB_COUNTER_VALUE;
1811 break;
1812 }
1813 }
1814
1815 hw_restore_intr(hw, interrupt);
1816 }
1817
1818 /**
1819 * port_r_mib_pkt - read dropped packet counts
1820 * @hw: The hardware instance.
1821 * @port: The port index.
1822 * @cnt: Buffer to store the receive and transmit dropped packet counts.
1823 *
1824 * This routine reads the dropped packet counts of the port.
1825 * Hardware interrupts are disabled to minimize corruption of read data.
1826 */
port_r_mib_pkt(struct ksz_hw * hw,int port,u32 * last,u64 * cnt)1827 static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1828 {
1829 u32 cur;
1830 u32 data;
1831 u16 ctrl_addr;
1832 uint interrupt;
1833 int index;
1834
1835 index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1836 do {
1837 interrupt = hw_block_intr(hw);
1838
1839 ctrl_addr = (u16) index;
1840 ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1841 << 8);
1842 writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1843 HW_DELAY(hw, KS884X_IACR_OFFSET);
1844 data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1845
1846 hw_restore_intr(hw, interrupt);
1847
1848 data &= MIB_PACKET_DROPPED;
1849 cur = *last;
1850 if (data != cur) {
1851 *last = data;
1852 if (data < cur)
1853 data += MIB_PACKET_DROPPED + 1;
1854 data -= cur;
1855 *cnt += data;
1856 }
1857 ++last;
1858 ++cnt;
1859 index -= KS_MIB_PACKET_DROPPED_TX -
1860 KS_MIB_PACKET_DROPPED_TX_0 + 1;
1861 } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1862 }
1863
1864 /**
1865 * port_r_cnt - read MIB counters periodically
1866 * @hw: The hardware instance.
1867 * @port: The port index.
1868 *
1869 * This routine is used to read the counters of the port periodically to avoid
1870 * counter overflow. The hardware should be acquired first before calling this
1871 * routine.
1872 *
1873 * Return non-zero when not all counters not read.
1874 */
port_r_cnt(struct ksz_hw * hw,int port)1875 static int port_r_cnt(struct ksz_hw *hw, int port)
1876 {
1877 struct ksz_port_mib *mib = &hw->port_mib[port];
1878
1879 if (mib->mib_start < PORT_COUNTER_NUM)
1880 while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1881 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1882 &mib->counter[mib->cnt_ptr]);
1883 ++mib->cnt_ptr;
1884 }
1885 if (hw->mib_cnt > PORT_COUNTER_NUM)
1886 port_r_mib_pkt(hw, port, mib->dropped,
1887 &mib->counter[PORT_COUNTER_NUM]);
1888 mib->cnt_ptr = 0;
1889 return 0;
1890 }
1891
1892 /**
1893 * port_init_cnt - initialize MIB counter values
1894 * @hw: The hardware instance.
1895 * @port: The port index.
1896 *
1897 * This routine is used to initialize all counters to zero if the hardware
1898 * cannot do it after reset.
1899 */
port_init_cnt(struct ksz_hw * hw,int port)1900 static void port_init_cnt(struct ksz_hw *hw, int port)
1901 {
1902 struct ksz_port_mib *mib = &hw->port_mib[port];
1903
1904 mib->cnt_ptr = 0;
1905 if (mib->mib_start < PORT_COUNTER_NUM)
1906 do {
1907 port_r_mib_cnt(hw, port, mib->cnt_ptr,
1908 &mib->counter[mib->cnt_ptr]);
1909 ++mib->cnt_ptr;
1910 } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1911 if (hw->mib_cnt > PORT_COUNTER_NUM)
1912 port_r_mib_pkt(hw, port, mib->dropped,
1913 &mib->counter[PORT_COUNTER_NUM]);
1914 memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1915 mib->cnt_ptr = 0;
1916 }
1917
1918 /*
1919 * Port functions
1920 */
1921
1922 /**
1923 * port_chk - check port register bits
1924 * @hw: The hardware instance.
1925 * @port: The port index.
1926 * @offset: The offset of the port register.
1927 * @bits: The data bits to check.
1928 *
1929 * This function checks whether the specified bits of the port register are set
1930 * or not.
1931 *
1932 * Return 0 if the bits are not set.
1933 */
port_chk(struct ksz_hw * hw,int port,int offset,u16 bits)1934 static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1935 {
1936 u32 addr;
1937 u16 data;
1938
1939 PORT_CTRL_ADDR(port, addr);
1940 addr += offset;
1941 data = readw(hw->io + addr);
1942 return (data & bits) == bits;
1943 }
1944
1945 /**
1946 * port_cfg - set port register bits
1947 * @hw: The hardware instance.
1948 * @port: The port index.
1949 * @offset: The offset of the port register.
1950 * @bits: The data bits to set.
1951 * @set: The flag indicating whether the bits are to be set or not.
1952 *
1953 * This routine sets or resets the specified bits of the port register.
1954 */
port_cfg(struct ksz_hw * hw,int port,int offset,u16 bits,int set)1955 static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1956 int set)
1957 {
1958 u32 addr;
1959 u16 data;
1960
1961 PORT_CTRL_ADDR(port, addr);
1962 addr += offset;
1963 data = readw(hw->io + addr);
1964 if (set)
1965 data |= bits;
1966 else
1967 data &= ~bits;
1968 writew(data, hw->io + addr);
1969 }
1970
1971 /**
1972 * port_chk_shift - check port bit
1973 * @hw: The hardware instance.
1974 * @port: The port index.
1975 * @offset: The offset of the register.
1976 * @shift: Number of bits to shift.
1977 *
1978 * This function checks whether the specified port is set in the register or
1979 * not.
1980 *
1981 * Return 0 if the port is not set.
1982 */
port_chk_shift(struct ksz_hw * hw,int port,u32 addr,int shift)1983 static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1984 {
1985 u16 data;
1986 u16 bit = 1 << port;
1987
1988 data = readw(hw->io + addr);
1989 data >>= shift;
1990 return (data & bit) == bit;
1991 }
1992
1993 /**
1994 * port_cfg_shift - set port bit
1995 * @hw: The hardware instance.
1996 * @port: The port index.
1997 * @offset: The offset of the register.
1998 * @shift: Number of bits to shift.
1999 * @set: The flag indicating whether the port is to be set or not.
2000 *
2001 * This routine sets or resets the specified port in the register.
2002 */
port_cfg_shift(struct ksz_hw * hw,int port,u32 addr,int shift,int set)2003 static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2004 int set)
2005 {
2006 u16 data;
2007 u16 bits = 1 << port;
2008
2009 data = readw(hw->io + addr);
2010 bits <<= shift;
2011 if (set)
2012 data |= bits;
2013 else
2014 data &= ~bits;
2015 writew(data, hw->io + addr);
2016 }
2017
2018 /**
2019 * port_r8 - read byte from port register
2020 * @hw: The hardware instance.
2021 * @port: The port index.
2022 * @offset: The offset of the port register.
2023 * @data: Buffer to store the data.
2024 *
2025 * This routine reads a byte from the port register.
2026 */
port_r8(struct ksz_hw * hw,int port,int offset,u8 * data)2027 static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2028 {
2029 u32 addr;
2030
2031 PORT_CTRL_ADDR(port, addr);
2032 addr += offset;
2033 *data = readb(hw->io + addr);
2034 }
2035
2036 /**
2037 * port_r16 - read word from port register.
2038 * @hw: The hardware instance.
2039 * @port: The port index.
2040 * @offset: The offset of the port register.
2041 * @data: Buffer to store the data.
2042 *
2043 * This routine reads a word from the port register.
2044 */
port_r16(struct ksz_hw * hw,int port,int offset,u16 * data)2045 static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2046 {
2047 u32 addr;
2048
2049 PORT_CTRL_ADDR(port, addr);
2050 addr += offset;
2051 *data = readw(hw->io + addr);
2052 }
2053
2054 /**
2055 * port_w16 - write word to port register.
2056 * @hw: The hardware instance.
2057 * @port: The port index.
2058 * @offset: The offset of the port register.
2059 * @data: Data to write.
2060 *
2061 * This routine writes a word to the port register.
2062 */
port_w16(struct ksz_hw * hw,int port,int offset,u16 data)2063 static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2064 {
2065 u32 addr;
2066
2067 PORT_CTRL_ADDR(port, addr);
2068 addr += offset;
2069 writew(data, hw->io + addr);
2070 }
2071
2072 /**
2073 * sw_chk - check switch register bits
2074 * @hw: The hardware instance.
2075 * @addr: The address of the switch register.
2076 * @bits: The data bits to check.
2077 *
2078 * This function checks whether the specified bits of the switch register are
2079 * set or not.
2080 *
2081 * Return 0 if the bits are not set.
2082 */
sw_chk(struct ksz_hw * hw,u32 addr,u16 bits)2083 static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2084 {
2085 u16 data;
2086
2087 data = readw(hw->io + addr);
2088 return (data & bits) == bits;
2089 }
2090
2091 /**
2092 * sw_cfg - set switch register bits
2093 * @hw: The hardware instance.
2094 * @addr: The address of the switch register.
2095 * @bits: The data bits to set.
2096 * @set: The flag indicating whether the bits are to be set or not.
2097 *
2098 * This function sets or resets the specified bits of the switch register.
2099 */
sw_cfg(struct ksz_hw * hw,u32 addr,u16 bits,int set)2100 static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2101 {
2102 u16 data;
2103
2104 data = readw(hw->io + addr);
2105 if (set)
2106 data |= bits;
2107 else
2108 data &= ~bits;
2109 writew(data, hw->io + addr);
2110 }
2111
2112 /* Bandwidth */
2113
port_cfg_broad_storm(struct ksz_hw * hw,int p,int set)2114 static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2115 {
2116 port_cfg(hw, p,
2117 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2118 }
2119
port_chk_broad_storm(struct ksz_hw * hw,int p)2120 static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2121 {
2122 return port_chk(hw, p,
2123 KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2124 }
2125
2126 /* Driver set switch broadcast storm protection at 10% rate. */
2127 #define BROADCAST_STORM_PROTECTION_RATE 10
2128
2129 /* 148,800 frames * 67 ms / 100 */
2130 #define BROADCAST_STORM_VALUE 9969
2131
2132 /**
2133 * sw_cfg_broad_storm - configure broadcast storm threshold
2134 * @hw: The hardware instance.
2135 * @percent: Broadcast storm threshold in percent of transmit rate.
2136 *
2137 * This routine configures the broadcast storm threshold of the switch.
2138 */
sw_cfg_broad_storm(struct ksz_hw * hw,u8 percent)2139 static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2140 {
2141 u16 data;
2142 u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2143
2144 if (value > BROADCAST_STORM_RATE)
2145 value = BROADCAST_STORM_RATE;
2146
2147 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2148 data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2149 data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2150 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2151 }
2152
2153 /**
2154 * sw_get_board_storm - get broadcast storm threshold
2155 * @hw: The hardware instance.
2156 * @percent: Buffer to store the broadcast storm threshold percentage.
2157 *
2158 * This routine retrieves the broadcast storm threshold of the switch.
2159 */
sw_get_broad_storm(struct ksz_hw * hw,u8 * percent)2160 static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2161 {
2162 int num;
2163 u16 data;
2164
2165 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2166 num = (data & BROADCAST_STORM_RATE_HI);
2167 num <<= 8;
2168 num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2169 num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2170 *percent = (u8) num;
2171 }
2172
2173 /**
2174 * sw_dis_broad_storm - disable broadstorm
2175 * @hw: The hardware instance.
2176 * @port: The port index.
2177 *
2178 * This routine disables the broadcast storm limit function of the switch.
2179 */
sw_dis_broad_storm(struct ksz_hw * hw,int port)2180 static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2181 {
2182 port_cfg_broad_storm(hw, port, 0);
2183 }
2184
2185 /**
2186 * sw_ena_broad_storm - enable broadcast storm
2187 * @hw: The hardware instance.
2188 * @port: The port index.
2189 *
2190 * This routine enables the broadcast storm limit function of the switch.
2191 */
sw_ena_broad_storm(struct ksz_hw * hw,int port)2192 static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2193 {
2194 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2195 port_cfg_broad_storm(hw, port, 1);
2196 }
2197
2198 /**
2199 * sw_init_broad_storm - initialize broadcast storm
2200 * @hw: The hardware instance.
2201 *
2202 * This routine initializes the broadcast storm limit function of the switch.
2203 */
sw_init_broad_storm(struct ksz_hw * hw)2204 static void sw_init_broad_storm(struct ksz_hw *hw)
2205 {
2206 int port;
2207
2208 hw->ksz_switch->broad_per = 1;
2209 sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2210 for (port = 0; port < TOTAL_PORT_NUM; port++)
2211 sw_dis_broad_storm(hw, port);
2212 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2213 }
2214
2215 /**
2216 * hw_cfg_broad_storm - configure broadcast storm
2217 * @hw: The hardware instance.
2218 * @percent: Broadcast storm threshold in percent of transmit rate.
2219 *
2220 * This routine configures the broadcast storm threshold of the switch.
2221 * It is called by user functions. The hardware should be acquired first.
2222 */
hw_cfg_broad_storm(struct ksz_hw * hw,u8 percent)2223 static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2224 {
2225 if (percent > 100)
2226 percent = 100;
2227
2228 sw_cfg_broad_storm(hw, percent);
2229 sw_get_broad_storm(hw, &percent);
2230 hw->ksz_switch->broad_per = percent;
2231 }
2232
2233 /**
2234 * sw_dis_prio_rate - disable switch priority rate
2235 * @hw: The hardware instance.
2236 * @port: The port index.
2237 *
2238 * This routine disables the priority rate function of the switch.
2239 */
sw_dis_prio_rate(struct ksz_hw * hw,int port)2240 static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2241 {
2242 u32 addr;
2243
2244 PORT_CTRL_ADDR(port, addr);
2245 addr += KS8842_PORT_IN_RATE_OFFSET;
2246 writel(0, hw->io + addr);
2247 }
2248
2249 /**
2250 * sw_init_prio_rate - initialize switch prioirty rate
2251 * @hw: The hardware instance.
2252 *
2253 * This routine initializes the priority rate function of the switch.
2254 */
sw_init_prio_rate(struct ksz_hw * hw)2255 static void sw_init_prio_rate(struct ksz_hw *hw)
2256 {
2257 int port;
2258 int prio;
2259 struct ksz_switch *sw = hw->ksz_switch;
2260
2261 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2262 for (prio = 0; prio < PRIO_QUEUES; prio++) {
2263 sw->port_cfg[port].rx_rate[prio] =
2264 sw->port_cfg[port].tx_rate[prio] = 0;
2265 }
2266 sw_dis_prio_rate(hw, port);
2267 }
2268 }
2269
2270 /* Communication */
2271
port_cfg_back_pressure(struct ksz_hw * hw,int p,int set)2272 static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2273 {
2274 port_cfg(hw, p,
2275 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2276 }
2277
port_cfg_force_flow_ctrl(struct ksz_hw * hw,int p,int set)2278 static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2279 {
2280 port_cfg(hw, p,
2281 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2282 }
2283
port_chk_back_pressure(struct ksz_hw * hw,int p)2284 static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2285 {
2286 return port_chk(hw, p,
2287 KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2288 }
2289
port_chk_force_flow_ctrl(struct ksz_hw * hw,int p)2290 static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2291 {
2292 return port_chk(hw, p,
2293 KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2294 }
2295
2296 /* Spanning Tree */
2297
port_cfg_rx(struct ksz_hw * hw,int p,int set)2298 static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2299 {
2300 port_cfg(hw, p,
2301 KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2302 }
2303
port_cfg_tx(struct ksz_hw * hw,int p,int set)2304 static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2305 {
2306 port_cfg(hw, p,
2307 KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2308 }
2309
sw_cfg_fast_aging(struct ksz_hw * hw,int set)2310 static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2311 {
2312 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2313 }
2314
sw_flush_dyn_mac_table(struct ksz_hw * hw)2315 static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2316 {
2317 if (!(hw->overrides & FAST_AGING)) {
2318 sw_cfg_fast_aging(hw, 1);
2319 mdelay(1);
2320 sw_cfg_fast_aging(hw, 0);
2321 }
2322 }
2323
2324 /* VLAN */
2325
port_cfg_ins_tag(struct ksz_hw * hw,int p,int insert)2326 static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2327 {
2328 port_cfg(hw, p,
2329 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2330 }
2331
port_cfg_rmv_tag(struct ksz_hw * hw,int p,int remove)2332 static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2333 {
2334 port_cfg(hw, p,
2335 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2336 }
2337
port_chk_ins_tag(struct ksz_hw * hw,int p)2338 static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2339 {
2340 return port_chk(hw, p,
2341 KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2342 }
2343
port_chk_rmv_tag(struct ksz_hw * hw,int p)2344 static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2345 {
2346 return port_chk(hw, p,
2347 KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2348 }
2349
port_cfg_dis_non_vid(struct ksz_hw * hw,int p,int set)2350 static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2351 {
2352 port_cfg(hw, p,
2353 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2354 }
2355
port_cfg_in_filter(struct ksz_hw * hw,int p,int set)2356 static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2357 {
2358 port_cfg(hw, p,
2359 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2360 }
2361
port_chk_dis_non_vid(struct ksz_hw * hw,int p)2362 static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2363 {
2364 return port_chk(hw, p,
2365 KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2366 }
2367
port_chk_in_filter(struct ksz_hw * hw,int p)2368 static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2369 {
2370 return port_chk(hw, p,
2371 KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2372 }
2373
2374 /* Mirroring */
2375
port_cfg_mirror_sniffer(struct ksz_hw * hw,int p,int set)2376 static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2377 {
2378 port_cfg(hw, p,
2379 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2380 }
2381
port_cfg_mirror_rx(struct ksz_hw * hw,int p,int set)2382 static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2383 {
2384 port_cfg(hw, p,
2385 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2386 }
2387
port_cfg_mirror_tx(struct ksz_hw * hw,int p,int set)2388 static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2389 {
2390 port_cfg(hw, p,
2391 KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2392 }
2393
sw_cfg_mirror_rx_tx(struct ksz_hw * hw,int set)2394 static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2395 {
2396 sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2397 }
2398
sw_init_mirror(struct ksz_hw * hw)2399 static void sw_init_mirror(struct ksz_hw *hw)
2400 {
2401 int port;
2402
2403 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2404 port_cfg_mirror_sniffer(hw, port, 0);
2405 port_cfg_mirror_rx(hw, port, 0);
2406 port_cfg_mirror_tx(hw, port, 0);
2407 }
2408 sw_cfg_mirror_rx_tx(hw, 0);
2409 }
2410
sw_cfg_unk_def_deliver(struct ksz_hw * hw,int set)2411 static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2412 {
2413 sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2414 SWITCH_UNK_DEF_PORT_ENABLE, set);
2415 }
2416
sw_cfg_chk_unk_def_deliver(struct ksz_hw * hw)2417 static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2418 {
2419 return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2420 SWITCH_UNK_DEF_PORT_ENABLE);
2421 }
2422
sw_cfg_unk_def_port(struct ksz_hw * hw,int port,int set)2423 static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2424 {
2425 port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2426 }
2427
sw_chk_unk_def_port(struct ksz_hw * hw,int port)2428 static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2429 {
2430 return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2431 }
2432
2433 /* Priority */
2434
port_cfg_diffserv(struct ksz_hw * hw,int p,int set)2435 static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2436 {
2437 port_cfg(hw, p,
2438 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2439 }
2440
port_cfg_802_1p(struct ksz_hw * hw,int p,int set)2441 static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2442 {
2443 port_cfg(hw, p,
2444 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2445 }
2446
port_cfg_replace_vid(struct ksz_hw * hw,int p,int set)2447 static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2448 {
2449 port_cfg(hw, p,
2450 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2451 }
2452
port_cfg_prio(struct ksz_hw * hw,int p,int set)2453 static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2454 {
2455 port_cfg(hw, p,
2456 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2457 }
2458
port_chk_diffserv(struct ksz_hw * hw,int p)2459 static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2460 {
2461 return port_chk(hw, p,
2462 KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2463 }
2464
port_chk_802_1p(struct ksz_hw * hw,int p)2465 static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2466 {
2467 return port_chk(hw, p,
2468 KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2469 }
2470
port_chk_replace_vid(struct ksz_hw * hw,int p)2471 static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2472 {
2473 return port_chk(hw, p,
2474 KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2475 }
2476
port_chk_prio(struct ksz_hw * hw,int p)2477 static inline int port_chk_prio(struct ksz_hw *hw, int p)
2478 {
2479 return port_chk(hw, p,
2480 KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2481 }
2482
2483 /**
2484 * sw_dis_diffserv - disable switch DiffServ priority
2485 * @hw: The hardware instance.
2486 * @port: The port index.
2487 *
2488 * This routine disables the DiffServ priority function of the switch.
2489 */
sw_dis_diffserv(struct ksz_hw * hw,int port)2490 static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2491 {
2492 port_cfg_diffserv(hw, port, 0);
2493 }
2494
2495 /**
2496 * sw_dis_802_1p - disable switch 802.1p priority
2497 * @hw: The hardware instance.
2498 * @port: The port index.
2499 *
2500 * This routine disables the 802.1p priority function of the switch.
2501 */
sw_dis_802_1p(struct ksz_hw * hw,int port)2502 static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2503 {
2504 port_cfg_802_1p(hw, port, 0);
2505 }
2506
2507 /**
2508 * sw_cfg_replace_null_vid -
2509 * @hw: The hardware instance.
2510 * @set: The flag to disable or enable.
2511 *
2512 */
sw_cfg_replace_null_vid(struct ksz_hw * hw,int set)2513 static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2514 {
2515 sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2516 }
2517
2518 /**
2519 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2520 * @hw: The hardware instance.
2521 * @port: The port index.
2522 * @set: The flag to disable or enable.
2523 *
2524 * This routine enables the 802.1p priority re-mapping function of the switch.
2525 * That allows 802.1p priority field to be replaced with the port's default
2526 * tag's priority value if the ingress packet's 802.1p priority has a higher
2527 * priority than port's default tag's priority.
2528 */
sw_cfg_replace_vid(struct ksz_hw * hw,int port,int set)2529 static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2530 {
2531 port_cfg_replace_vid(hw, port, set);
2532 }
2533
2534 /**
2535 * sw_cfg_port_based - configure switch port based priority
2536 * @hw: The hardware instance.
2537 * @port: The port index.
2538 * @prio: The priority to set.
2539 *
2540 * This routine configures the port based priority of the switch.
2541 */
sw_cfg_port_based(struct ksz_hw * hw,int port,u8 prio)2542 static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2543 {
2544 u16 data;
2545
2546 if (prio > PORT_BASED_PRIORITY_BASE)
2547 prio = PORT_BASED_PRIORITY_BASE;
2548
2549 hw->ksz_switch->port_cfg[port].port_prio = prio;
2550
2551 port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2552 data &= ~PORT_BASED_PRIORITY_MASK;
2553 data |= prio << PORT_BASED_PRIORITY_SHIFT;
2554 port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2555 }
2556
2557 /**
2558 * sw_dis_multi_queue - disable transmit multiple queues
2559 * @hw: The hardware instance.
2560 * @port: The port index.
2561 *
2562 * This routine disables the transmit multiple queues selection of the switch
2563 * port. Only single transmit queue on the port.
2564 */
sw_dis_multi_queue(struct ksz_hw * hw,int port)2565 static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2566 {
2567 port_cfg_prio(hw, port, 0);
2568 }
2569
2570 /**
2571 * sw_init_prio - initialize switch priority
2572 * @hw: The hardware instance.
2573 *
2574 * This routine initializes the switch QoS priority functions.
2575 */
sw_init_prio(struct ksz_hw * hw)2576 static void sw_init_prio(struct ksz_hw *hw)
2577 {
2578 int port;
2579 int tos;
2580 struct ksz_switch *sw = hw->ksz_switch;
2581
2582 /*
2583 * Init all the 802.1p tag priority value to be assigned to different
2584 * priority queue.
2585 */
2586 sw->p_802_1p[0] = 0;
2587 sw->p_802_1p[1] = 0;
2588 sw->p_802_1p[2] = 1;
2589 sw->p_802_1p[3] = 1;
2590 sw->p_802_1p[4] = 2;
2591 sw->p_802_1p[5] = 2;
2592 sw->p_802_1p[6] = 3;
2593 sw->p_802_1p[7] = 3;
2594
2595 /*
2596 * Init all the DiffServ priority value to be assigned to priority
2597 * queue 0.
2598 */
2599 for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2600 sw->diffserv[tos] = 0;
2601
2602 /* All QoS functions disabled. */
2603 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2604 sw_dis_multi_queue(hw, port);
2605 sw_dis_diffserv(hw, port);
2606 sw_dis_802_1p(hw, port);
2607 sw_cfg_replace_vid(hw, port, 0);
2608
2609 sw->port_cfg[port].port_prio = 0;
2610 sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2611 }
2612 sw_cfg_replace_null_vid(hw, 0);
2613 }
2614
2615 /**
2616 * port_get_def_vid - get port default VID.
2617 * @hw: The hardware instance.
2618 * @port: The port index.
2619 * @vid: Buffer to store the VID.
2620 *
2621 * This routine retrieves the default VID of the port.
2622 */
port_get_def_vid(struct ksz_hw * hw,int port,u16 * vid)2623 static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2624 {
2625 u32 addr;
2626
2627 PORT_CTRL_ADDR(port, addr);
2628 addr += KS8842_PORT_CTRL_VID_OFFSET;
2629 *vid = readw(hw->io + addr);
2630 }
2631
2632 /**
2633 * sw_init_vlan - initialize switch VLAN
2634 * @hw: The hardware instance.
2635 *
2636 * This routine initializes the VLAN function of the switch.
2637 */
sw_init_vlan(struct ksz_hw * hw)2638 static void sw_init_vlan(struct ksz_hw *hw)
2639 {
2640 int port;
2641 int entry;
2642 struct ksz_switch *sw = hw->ksz_switch;
2643
2644 /* Read 16 VLAN entries from device's VLAN table. */
2645 for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2646 sw_r_vlan_table(hw, entry,
2647 &sw->vlan_table[entry].vid,
2648 &sw->vlan_table[entry].fid,
2649 &sw->vlan_table[entry].member);
2650 }
2651
2652 for (port = 0; port < TOTAL_PORT_NUM; port++) {
2653 port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2654 sw->port_cfg[port].member = PORT_MASK;
2655 }
2656 }
2657
2658 /**
2659 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2660 * @hw: The hardware instance.
2661 * @port: The port index.
2662 * @member: The port-based VLAN membership.
2663 *
2664 * This routine configures the port-based VLAN membership of the port.
2665 */
sw_cfg_port_base_vlan(struct ksz_hw * hw,int port,u8 member)2666 static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2667 {
2668 u32 addr;
2669 u8 data;
2670
2671 PORT_CTRL_ADDR(port, addr);
2672 addr += KS8842_PORT_CTRL_2_OFFSET;
2673
2674 data = readb(hw->io + addr);
2675 data &= ~PORT_VLAN_MEMBERSHIP;
2676 data |= (member & PORT_MASK);
2677 writeb(data, hw->io + addr);
2678
2679 hw->ksz_switch->port_cfg[port].member = member;
2680 }
2681
2682 /**
2683 * sw_get_addr - get the switch MAC address.
2684 * @hw: The hardware instance.
2685 * @mac_addr: Buffer to store the MAC address.
2686 *
2687 * This function retrieves the MAC address of the switch.
2688 */
sw_get_addr(struct ksz_hw * hw,u8 * mac_addr)2689 static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2690 {
2691 int i;
2692
2693 for (i = 0; i < 6; i += 2) {
2694 mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2695 mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2696 }
2697 }
2698
2699 /**
2700 * sw_set_addr - configure switch MAC address
2701 * @hw: The hardware instance.
2702 * @mac_addr: The MAC address.
2703 *
2704 * This function configures the MAC address of the switch.
2705 */
sw_set_addr(struct ksz_hw * hw,u8 * mac_addr)2706 static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2707 {
2708 int i;
2709
2710 for (i = 0; i < 6; i += 2) {
2711 writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2712 writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2713 }
2714 }
2715
2716 /**
2717 * sw_set_global_ctrl - set switch global control
2718 * @hw: The hardware instance.
2719 *
2720 * This routine sets the global control of the switch function.
2721 */
sw_set_global_ctrl(struct ksz_hw * hw)2722 static void sw_set_global_ctrl(struct ksz_hw *hw)
2723 {
2724 u16 data;
2725
2726 /* Enable switch MII flow control. */
2727 data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2728 data |= SWITCH_FLOW_CTRL;
2729 writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730
2731 data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2732
2733 /* Enable aggressive back off algorithm in half duplex mode. */
2734 data |= SWITCH_AGGR_BACKOFF;
2735
2736 /* Enable automatic fast aging when link changed detected. */
2737 data |= SWITCH_AGING_ENABLE;
2738 data |= SWITCH_LINK_AUTO_AGING;
2739
2740 if (hw->overrides & FAST_AGING)
2741 data |= SWITCH_FAST_AGING;
2742 else
2743 data &= ~SWITCH_FAST_AGING;
2744 writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2745
2746 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2747
2748 /* Enable no excessive collision drop. */
2749 data |= NO_EXC_COLLISION_DROP;
2750 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2751 }
2752
2753 enum {
2754 STP_STATE_DISABLED = 0,
2755 STP_STATE_LISTENING,
2756 STP_STATE_LEARNING,
2757 STP_STATE_FORWARDING,
2758 STP_STATE_BLOCKED,
2759 STP_STATE_SIMPLE
2760 };
2761
2762 /**
2763 * port_set_stp_state - configure port spanning tree state
2764 * @hw: The hardware instance.
2765 * @port: The port index.
2766 * @state: The spanning tree state.
2767 *
2768 * This routine configures the spanning tree state of the port.
2769 */
port_set_stp_state(struct ksz_hw * hw,int port,int state)2770 static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2771 {
2772 u16 data;
2773
2774 port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2775 switch (state) {
2776 case STP_STATE_DISABLED:
2777 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2778 data |= PORT_LEARN_DISABLE;
2779 break;
2780 case STP_STATE_LISTENING:
2781 /*
2782 * No need to turn on transmit because of port direct mode.
2783 * Turning on receive is required if static MAC table is not setup.
2784 */
2785 data &= ~PORT_TX_ENABLE;
2786 data |= PORT_RX_ENABLE;
2787 data |= PORT_LEARN_DISABLE;
2788 break;
2789 case STP_STATE_LEARNING:
2790 data &= ~PORT_TX_ENABLE;
2791 data |= PORT_RX_ENABLE;
2792 data &= ~PORT_LEARN_DISABLE;
2793 break;
2794 case STP_STATE_FORWARDING:
2795 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2796 data &= ~PORT_LEARN_DISABLE;
2797 break;
2798 case STP_STATE_BLOCKED:
2799 /*
2800 * Need to setup static MAC table with override to keep receiving BPDU
2801 * messages. See sw_init_stp routine.
2802 */
2803 data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2804 data |= PORT_LEARN_DISABLE;
2805 break;
2806 case STP_STATE_SIMPLE:
2807 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2808 data |= PORT_LEARN_DISABLE;
2809 break;
2810 }
2811 port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2812 hw->ksz_switch->port_cfg[port].stp_state = state;
2813 }
2814
2815 #define STP_ENTRY 0
2816 #define BROADCAST_ENTRY 1
2817 #define BRIDGE_ADDR_ENTRY 2
2818 #define IPV6_ADDR_ENTRY 3
2819
2820 /**
2821 * sw_clr_sta_mac_table - clear static MAC table
2822 * @hw: The hardware instance.
2823 *
2824 * This routine clears the static MAC table.
2825 */
sw_clr_sta_mac_table(struct ksz_hw * hw)2826 static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2827 {
2828 struct ksz_mac_table *entry;
2829 int i;
2830
2831 for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2832 entry = &hw->ksz_switch->mac_table[i];
2833 sw_w_sta_mac_table(hw, i,
2834 entry->mac_addr, entry->ports,
2835 entry->override, 0,
2836 entry->use_fid, entry->fid);
2837 }
2838 }
2839
2840 /**
2841 * sw_init_stp - initialize switch spanning tree support
2842 * @hw: The hardware instance.
2843 *
2844 * This routine initializes the spanning tree support of the switch.
2845 */
sw_init_stp(struct ksz_hw * hw)2846 static void sw_init_stp(struct ksz_hw *hw)
2847 {
2848 struct ksz_mac_table *entry;
2849
2850 entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2851 entry->mac_addr[0] = 0x01;
2852 entry->mac_addr[1] = 0x80;
2853 entry->mac_addr[2] = 0xC2;
2854 entry->mac_addr[3] = 0x00;
2855 entry->mac_addr[4] = 0x00;
2856 entry->mac_addr[5] = 0x00;
2857 entry->ports = HOST_MASK;
2858 entry->override = 1;
2859 entry->valid = 1;
2860 sw_w_sta_mac_table(hw, STP_ENTRY,
2861 entry->mac_addr, entry->ports,
2862 entry->override, entry->valid,
2863 entry->use_fid, entry->fid);
2864 }
2865
2866 /**
2867 * sw_block_addr - block certain packets from the host port
2868 * @hw: The hardware instance.
2869 *
2870 * This routine blocks certain packets from reaching to the host port.
2871 */
sw_block_addr(struct ksz_hw * hw)2872 static void sw_block_addr(struct ksz_hw *hw)
2873 {
2874 struct ksz_mac_table *entry;
2875 int i;
2876
2877 for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2878 entry = &hw->ksz_switch->mac_table[i];
2879 entry->valid = 0;
2880 sw_w_sta_mac_table(hw, i,
2881 entry->mac_addr, entry->ports,
2882 entry->override, entry->valid,
2883 entry->use_fid, entry->fid);
2884 }
2885 }
2886
2887 #define PHY_LINK_SUPPORT \
2888 (PHY_AUTO_NEG_ASYM_PAUSE | \
2889 PHY_AUTO_NEG_SYM_PAUSE | \
2890 PHY_AUTO_NEG_100BT4 | \
2891 PHY_AUTO_NEG_100BTX_FD | \
2892 PHY_AUTO_NEG_100BTX | \
2893 PHY_AUTO_NEG_10BT_FD | \
2894 PHY_AUTO_NEG_10BT)
2895
hw_r_phy_ctrl(struct ksz_hw * hw,int phy,u16 * data)2896 static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2897 {
2898 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2899 }
2900
hw_w_phy_ctrl(struct ksz_hw * hw,int phy,u16 data)2901 static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2902 {
2903 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2904 }
2905
hw_r_phy_link_stat(struct ksz_hw * hw,int phy,u16 * data)2906 static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2907 {
2908 *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2909 }
2910
hw_r_phy_auto_neg(struct ksz_hw * hw,int phy,u16 * data)2911 static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2912 {
2913 *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2914 }
2915
hw_w_phy_auto_neg(struct ksz_hw * hw,int phy,u16 data)2916 static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2917 {
2918 writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2919 }
2920
hw_r_phy_rem_cap(struct ksz_hw * hw,int phy,u16 * data)2921 static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2922 {
2923 *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2924 }
2925
hw_r_phy_crossover(struct ksz_hw * hw,int phy,u16 * data)2926 static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2927 {
2928 *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2929 }
2930
hw_w_phy_crossover(struct ksz_hw * hw,int phy,u16 data)2931 static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2932 {
2933 writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2934 }
2935
hw_r_phy_polarity(struct ksz_hw * hw,int phy,u16 * data)2936 static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2937 {
2938 *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2939 }
2940
hw_w_phy_polarity(struct ksz_hw * hw,int phy,u16 data)2941 static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2942 {
2943 writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2944 }
2945
hw_r_phy_link_md(struct ksz_hw * hw,int phy,u16 * data)2946 static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2947 {
2948 *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2949 }
2950
hw_w_phy_link_md(struct ksz_hw * hw,int phy,u16 data)2951 static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2952 {
2953 writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2954 }
2955
2956 /**
2957 * hw_r_phy - read data from PHY register
2958 * @hw: The hardware instance.
2959 * @port: Port to read.
2960 * @reg: PHY register to read.
2961 * @val: Buffer to store the read data.
2962 *
2963 * This routine reads data from the PHY register.
2964 */
hw_r_phy(struct ksz_hw * hw,int port,u16 reg,u16 * val)2965 static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2966 {
2967 int phy;
2968
2969 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2970 *val = readw(hw->io + phy);
2971 }
2972
2973 /**
2974 * port_w_phy - write data to PHY register
2975 * @hw: The hardware instance.
2976 * @port: Port to write.
2977 * @reg: PHY register to write.
2978 * @val: Word data to write.
2979 *
2980 * This routine writes data to the PHY register.
2981 */
hw_w_phy(struct ksz_hw * hw,int port,u16 reg,u16 val)2982 static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2983 {
2984 int phy;
2985
2986 phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2987 writew(val, hw->io + phy);
2988 }
2989
2990 /*
2991 * EEPROM access functions
2992 */
2993
2994 #define AT93C_CODE 0
2995 #define AT93C_WR_OFF 0x00
2996 #define AT93C_WR_ALL 0x10
2997 #define AT93C_ER_ALL 0x20
2998 #define AT93C_WR_ON 0x30
2999
3000 #define AT93C_WRITE 1
3001 #define AT93C_READ 2
3002 #define AT93C_ERASE 3
3003
3004 #define EEPROM_DELAY 4
3005
drop_gpio(struct ksz_hw * hw,u8 gpio)3006 static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3007 {
3008 u16 data;
3009
3010 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3011 data &= ~gpio;
3012 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013 }
3014
raise_gpio(struct ksz_hw * hw,u8 gpio)3015 static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3016 {
3017 u16 data;
3018
3019 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3020 data |= gpio;
3021 writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022 }
3023
state_gpio(struct ksz_hw * hw,u8 gpio)3024 static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3025 {
3026 u16 data;
3027
3028 data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3029 return (u8)(data & gpio);
3030 }
3031
eeprom_clk(struct ksz_hw * hw)3032 static void eeprom_clk(struct ksz_hw *hw)
3033 {
3034 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3035 udelay(EEPROM_DELAY);
3036 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3037 udelay(EEPROM_DELAY);
3038 }
3039
spi_r(struct ksz_hw * hw)3040 static u16 spi_r(struct ksz_hw *hw)
3041 {
3042 int i;
3043 u16 temp = 0;
3044
3045 for (i = 15; i >= 0; i--) {
3046 raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3047 udelay(EEPROM_DELAY);
3048
3049 temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3050
3051 drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052 udelay(EEPROM_DELAY);
3053 }
3054 return temp;
3055 }
3056
spi_w(struct ksz_hw * hw,u16 data)3057 static void spi_w(struct ksz_hw *hw, u16 data)
3058 {
3059 int i;
3060
3061 for (i = 15; i >= 0; i--) {
3062 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3063 drop_gpio(hw, EEPROM_DATA_OUT);
3064 eeprom_clk(hw);
3065 }
3066 }
3067
spi_reg(struct ksz_hw * hw,u8 data,u8 reg)3068 static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3069 {
3070 int i;
3071
3072 /* Initial start bit */
3073 raise_gpio(hw, EEPROM_DATA_OUT);
3074 eeprom_clk(hw);
3075
3076 /* AT93C operation */
3077 for (i = 1; i >= 0; i--) {
3078 (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3079 drop_gpio(hw, EEPROM_DATA_OUT);
3080 eeprom_clk(hw);
3081 }
3082
3083 /* Address location */
3084 for (i = 5; i >= 0; i--) {
3085 (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3086 drop_gpio(hw, EEPROM_DATA_OUT);
3087 eeprom_clk(hw);
3088 }
3089 }
3090
3091 #define EEPROM_DATA_RESERVED 0
3092 #define EEPROM_DATA_MAC_ADDR_0 1
3093 #define EEPROM_DATA_MAC_ADDR_1 2
3094 #define EEPROM_DATA_MAC_ADDR_2 3
3095 #define EEPROM_DATA_SUBSYS_ID 4
3096 #define EEPROM_DATA_SUBSYS_VEN_ID 5
3097 #define EEPROM_DATA_PM_CAP 6
3098
3099 /* User defined EEPROM data */
3100 #define EEPROM_DATA_OTHER_MAC_ADDR 9
3101
3102 /**
3103 * eeprom_read - read from AT93C46 EEPROM
3104 * @hw: The hardware instance.
3105 * @reg: The register offset.
3106 *
3107 * This function reads a word from the AT93C46 EEPROM.
3108 *
3109 * Return the data value.
3110 */
eeprom_read(struct ksz_hw * hw,u8 reg)3111 static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3112 {
3113 u16 data;
3114
3115 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3116
3117 spi_reg(hw, AT93C_READ, reg);
3118 data = spi_r(hw);
3119
3120 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3121
3122 return data;
3123 }
3124
3125 /**
3126 * eeprom_write - write to AT93C46 EEPROM
3127 * @hw: The hardware instance.
3128 * @reg: The register offset.
3129 * @data: The data value.
3130 *
3131 * This procedure writes a word to the AT93C46 EEPROM.
3132 */
eeprom_write(struct ksz_hw * hw,u8 reg,u16 data)3133 static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3134 {
3135 int timeout;
3136
3137 raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3138
3139 /* Enable write. */
3140 spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3141 drop_gpio(hw, EEPROM_CHIP_SELECT);
3142 udelay(1);
3143
3144 /* Erase the register. */
3145 raise_gpio(hw, EEPROM_CHIP_SELECT);
3146 spi_reg(hw, AT93C_ERASE, reg);
3147 drop_gpio(hw, EEPROM_CHIP_SELECT);
3148 udelay(1);
3149
3150 /* Check operation complete. */
3151 raise_gpio(hw, EEPROM_CHIP_SELECT);
3152 timeout = 8;
3153 mdelay(2);
3154 do {
3155 mdelay(1);
3156 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3157 drop_gpio(hw, EEPROM_CHIP_SELECT);
3158 udelay(1);
3159
3160 /* Write the register. */
3161 raise_gpio(hw, EEPROM_CHIP_SELECT);
3162 spi_reg(hw, AT93C_WRITE, reg);
3163 spi_w(hw, data);
3164 drop_gpio(hw, EEPROM_CHIP_SELECT);
3165 udelay(1);
3166
3167 /* Check operation complete. */
3168 raise_gpio(hw, EEPROM_CHIP_SELECT);
3169 timeout = 8;
3170 mdelay(2);
3171 do {
3172 mdelay(1);
3173 } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3174 drop_gpio(hw, EEPROM_CHIP_SELECT);
3175 udelay(1);
3176
3177 /* Disable write. */
3178 raise_gpio(hw, EEPROM_CHIP_SELECT);
3179 spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3180
3181 drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3182 }
3183
3184 /*
3185 * Link detection routines
3186 */
3187
advertised_flow_ctrl(struct ksz_port * port,u16 ctrl)3188 static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3189 {
3190 ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3191 switch (port->flow_ctrl) {
3192 case PHY_FLOW_CTRL:
3193 ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3194 break;
3195 /* Not supported. */
3196 case PHY_TX_ONLY:
3197 case PHY_RX_ONLY:
3198 default:
3199 break;
3200 }
3201 return ctrl;
3202 }
3203
set_flow_ctrl(struct ksz_hw * hw,int rx,int tx)3204 static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3205 {
3206 u32 rx_cfg;
3207 u32 tx_cfg;
3208
3209 rx_cfg = hw->rx_cfg;
3210 tx_cfg = hw->tx_cfg;
3211 if (rx)
3212 hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3213 else
3214 hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3215 if (tx)
3216 hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3217 else
3218 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3219 if (hw->enabled) {
3220 if (rx_cfg != hw->rx_cfg)
3221 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3222 if (tx_cfg != hw->tx_cfg)
3223 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3224 }
3225 }
3226
determine_flow_ctrl(struct ksz_hw * hw,struct ksz_port * port,u16 local,u16 remote)3227 static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3228 u16 local, u16 remote)
3229 {
3230 int rx;
3231 int tx;
3232
3233 if (hw->overrides & PAUSE_FLOW_CTRL)
3234 return;
3235
3236 rx = tx = 0;
3237 if (port->force_link)
3238 rx = tx = 1;
3239 if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3240 if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3241 rx = tx = 1;
3242 } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3243 (local & PHY_AUTO_NEG_PAUSE) ==
3244 PHY_AUTO_NEG_ASYM_PAUSE) {
3245 tx = 1;
3246 }
3247 } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3248 if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3249 rx = 1;
3250 }
3251 if (!hw->ksz_switch)
3252 set_flow_ctrl(hw, rx, tx);
3253 }
3254
port_cfg_change(struct ksz_hw * hw,struct ksz_port * port,struct ksz_port_info * info,u16 link_status)3255 static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3256 struct ksz_port_info *info, u16 link_status)
3257 {
3258 if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3259 !(hw->overrides & PAUSE_FLOW_CTRL)) {
3260 u32 cfg = hw->tx_cfg;
3261
3262 /* Disable flow control in the half duplex mode. */
3263 if (1 == info->duplex)
3264 hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3265 if (hw->enabled && cfg != hw->tx_cfg)
3266 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3267 }
3268 }
3269
3270 /**
3271 * port_get_link_speed - get current link status
3272 * @port: The port instance.
3273 *
3274 * This routine reads PHY registers to determine the current link status of the
3275 * switch ports.
3276 */
port_get_link_speed(struct ksz_port * port)3277 static void port_get_link_speed(struct ksz_port *port)
3278 {
3279 uint interrupt;
3280 struct ksz_port_info *info;
3281 struct ksz_port_info *linked = NULL;
3282 struct ksz_hw *hw = port->hw;
3283 u16 data;
3284 u16 status;
3285 u8 local;
3286 u8 remote;
3287 int i;
3288 int p;
3289 int change = 0;
3290
3291 interrupt = hw_block_intr(hw);
3292
3293 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3294 info = &hw->port_info[p];
3295 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3296 port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3297
3298 /*
3299 * Link status is changing all the time even when there is no
3300 * cable connection!
3301 */
3302 remote = status & (PORT_AUTO_NEG_COMPLETE |
3303 PORT_STATUS_LINK_GOOD);
3304 local = (u8) data;
3305
3306 /* No change to status. */
3307 if (local == info->advertised && remote == info->partner)
3308 continue;
3309
3310 info->advertised = local;
3311 info->partner = remote;
3312 if (status & PORT_STATUS_LINK_GOOD) {
3313
3314 /* Remember the first linked port. */
3315 if (!linked)
3316 linked = info;
3317
3318 info->tx_rate = 10 * TX_RATE_UNIT;
3319 if (status & PORT_STATUS_SPEED_100MBIT)
3320 info->tx_rate = 100 * TX_RATE_UNIT;
3321
3322 info->duplex = 1;
3323 if (status & PORT_STATUS_FULL_DUPLEX)
3324 info->duplex = 2;
3325
3326 if (media_connected != info->state) {
3327 hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3328 &data);
3329 hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3330 &status);
3331 determine_flow_ctrl(hw, port, data, status);
3332 if (hw->ksz_switch) {
3333 port_cfg_back_pressure(hw, p,
3334 (1 == info->duplex));
3335 }
3336 change |= 1 << i;
3337 port_cfg_change(hw, port, info, status);
3338 }
3339 info->state = media_connected;
3340 } else {
3341 if (media_disconnected != info->state) {
3342 change |= 1 << i;
3343
3344 /* Indicate the link just goes down. */
3345 hw->port_mib[p].link_down = 1;
3346 }
3347 info->state = media_disconnected;
3348 }
3349 hw->port_mib[p].state = (u8) info->state;
3350 }
3351
3352 if (linked && media_disconnected == port->linked->state)
3353 port->linked = linked;
3354
3355 hw_restore_intr(hw, interrupt);
3356 }
3357
3358 #define PHY_RESET_TIMEOUT 10
3359
3360 /**
3361 * port_set_link_speed - set port speed
3362 * @port: The port instance.
3363 *
3364 * This routine sets the link speed of the switch ports.
3365 */
port_set_link_speed(struct ksz_port * port)3366 static void port_set_link_speed(struct ksz_port *port)
3367 {
3368 struct ksz_hw *hw = port->hw;
3369 u16 data;
3370 u16 cfg;
3371 u8 status;
3372 int i;
3373 int p;
3374
3375 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3376 port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3377 port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3378
3379 cfg = 0;
3380 if (status & PORT_STATUS_LINK_GOOD)
3381 cfg = data;
3382
3383 data |= PORT_AUTO_NEG_ENABLE;
3384 data = advertised_flow_ctrl(port, data);
3385
3386 data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3387 PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3388
3389 /* Check if manual configuration is specified by the user. */
3390 if (port->speed || port->duplex) {
3391 if (10 == port->speed)
3392 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3393 PORT_AUTO_NEG_100BTX);
3394 else if (100 == port->speed)
3395 data &= ~(PORT_AUTO_NEG_10BT_FD |
3396 PORT_AUTO_NEG_10BT);
3397 if (1 == port->duplex)
3398 data &= ~(PORT_AUTO_NEG_100BTX_FD |
3399 PORT_AUTO_NEG_10BT_FD);
3400 else if (2 == port->duplex)
3401 data &= ~(PORT_AUTO_NEG_100BTX |
3402 PORT_AUTO_NEG_10BT);
3403 }
3404 if (data != cfg) {
3405 data |= PORT_AUTO_NEG_RESTART;
3406 port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3407 }
3408 }
3409 }
3410
3411 /**
3412 * port_force_link_speed - force port speed
3413 * @port: The port instance.
3414 *
3415 * This routine forces the link speed of the switch ports.
3416 */
port_force_link_speed(struct ksz_port * port)3417 static void port_force_link_speed(struct ksz_port *port)
3418 {
3419 struct ksz_hw *hw = port->hw;
3420 u16 data;
3421 int i;
3422 int phy;
3423 int p;
3424
3425 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3426 phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3427 hw_r_phy_ctrl(hw, phy, &data);
3428
3429 data &= ~PHY_AUTO_NEG_ENABLE;
3430
3431 if (10 == port->speed)
3432 data &= ~PHY_SPEED_100MBIT;
3433 else if (100 == port->speed)
3434 data |= PHY_SPEED_100MBIT;
3435 if (1 == port->duplex)
3436 data &= ~PHY_FULL_DUPLEX;
3437 else if (2 == port->duplex)
3438 data |= PHY_FULL_DUPLEX;
3439 hw_w_phy_ctrl(hw, phy, data);
3440 }
3441 }
3442
port_set_power_saving(struct ksz_port * port,int enable)3443 static void port_set_power_saving(struct ksz_port *port, int enable)
3444 {
3445 struct ksz_hw *hw = port->hw;
3446 int i;
3447 int p;
3448
3449 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3450 port_cfg(hw, p,
3451 KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3452 }
3453
3454 /*
3455 * KSZ8841 power management functions
3456 */
3457
3458 /**
3459 * hw_chk_wol_pme_status - check PMEN pin
3460 * @hw: The hardware instance.
3461 *
3462 * This function is used to check PMEN pin is asserted.
3463 *
3464 * Return 1 if PMEN pin is asserted; otherwise, 0.
3465 */
hw_chk_wol_pme_status(struct ksz_hw * hw)3466 static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3467 {
3468 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3469 struct pci_dev *pdev = hw_priv->pdev;
3470 u16 data;
3471
3472 if (!pdev->pm_cap)
3473 return 0;
3474 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3475 return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3476 }
3477
3478 /**
3479 * hw_clr_wol_pme_status - clear PMEN pin
3480 * @hw: The hardware instance.
3481 *
3482 * This routine is used to clear PME_Status to deassert PMEN pin.
3483 */
hw_clr_wol_pme_status(struct ksz_hw * hw)3484 static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3485 {
3486 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487 struct pci_dev *pdev = hw_priv->pdev;
3488 u16 data;
3489
3490 if (!pdev->pm_cap)
3491 return;
3492
3493 /* Clear PME_Status to deassert PMEN pin. */
3494 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3495 data |= PCI_PM_CTRL_PME_STATUS;
3496 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3497 }
3498
3499 /**
3500 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3501 * @hw: The hardware instance.
3502 * @set: The flag indicating whether to enable or disable.
3503 *
3504 * This routine is used to enable or disable Wake-on-LAN.
3505 */
hw_cfg_wol_pme(struct ksz_hw * hw,int set)3506 static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3507 {
3508 struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3509 struct pci_dev *pdev = hw_priv->pdev;
3510 u16 data;
3511
3512 if (!pdev->pm_cap)
3513 return;
3514 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3515 data &= ~PCI_PM_CTRL_STATE_MASK;
3516 if (set)
3517 data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3518 else
3519 data &= ~PCI_PM_CTRL_PME_ENABLE;
3520 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3521 }
3522
3523 /**
3524 * hw_cfg_wol - configure Wake-on-LAN features
3525 * @hw: The hardware instance.
3526 * @frame: The pattern frame bit.
3527 * @set: The flag indicating whether to enable or disable.
3528 *
3529 * This routine is used to enable or disable certain Wake-on-LAN features.
3530 */
hw_cfg_wol(struct ksz_hw * hw,u16 frame,int set)3531 static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3532 {
3533 u16 data;
3534
3535 data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3536 if (set)
3537 data |= frame;
3538 else
3539 data &= ~frame;
3540 writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3541 }
3542
3543 /**
3544 * hw_set_wol_frame - program Wake-on-LAN pattern
3545 * @hw: The hardware instance.
3546 * @i: The frame index.
3547 * @mask_size: The size of the mask.
3548 * @mask: Mask to ignore certain bytes in the pattern.
3549 * @frame_size: The size of the frame.
3550 * @pattern: The frame data.
3551 *
3552 * This routine is used to program Wake-on-LAN pattern.
3553 */
hw_set_wol_frame(struct ksz_hw * hw,int i,uint mask_size,const u8 * mask,uint frame_size,const u8 * pattern)3554 static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3555 const u8 *mask, uint frame_size, const u8 *pattern)
3556 {
3557 int bits;
3558 int from;
3559 int len;
3560 int to;
3561 u32 crc;
3562 u8 data[64];
3563 u8 val = 0;
3564
3565 if (frame_size > mask_size * 8)
3566 frame_size = mask_size * 8;
3567 if (frame_size > 64)
3568 frame_size = 64;
3569
3570 i *= 0x10;
3571 writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3572 writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3573
3574 bits = len = from = to = 0;
3575 do {
3576 if (bits) {
3577 if ((val & 1))
3578 data[to++] = pattern[from];
3579 val >>= 1;
3580 ++from;
3581 --bits;
3582 } else {
3583 val = mask[len];
3584 writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3585 + len);
3586 ++len;
3587 if (val)
3588 bits = 8;
3589 else
3590 from += 8;
3591 }
3592 } while (from < (int) frame_size);
3593 if (val) {
3594 bits = mask[len - 1];
3595 val <<= (from % 8);
3596 bits &= ~val;
3597 writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3598 1);
3599 }
3600 crc = ether_crc(to, data);
3601 writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3602 }
3603
3604 /**
3605 * hw_add_wol_arp - add ARP pattern
3606 * @hw: The hardware instance.
3607 * @ip_addr: The IPv4 address assigned to the device.
3608 *
3609 * This routine is used to add ARP pattern for waking up the host.
3610 */
hw_add_wol_arp(struct ksz_hw * hw,const u8 * ip_addr)3611 static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3612 {
3613 static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3614 u8 pattern[42] = {
3615 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3616 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3617 0x08, 0x06,
3618 0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3619 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3620 0x00, 0x00, 0x00, 0x00,
3621 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622 0x00, 0x00, 0x00, 0x00 };
3623
3624 memcpy(&pattern[38], ip_addr, 4);
3625 hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3626 }
3627
3628 /**
3629 * hw_add_wol_bcast - add broadcast pattern
3630 * @hw: The hardware instance.
3631 *
3632 * This routine is used to add broadcast pattern for waking up the host.
3633 */
hw_add_wol_bcast(struct ksz_hw * hw)3634 static void hw_add_wol_bcast(struct ksz_hw *hw)
3635 {
3636 static const u8 mask[] = { 0x3F };
3637 static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3638
3639 hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3640 }
3641
3642 /**
3643 * hw_add_wol_mcast - add multicast pattern
3644 * @hw: The hardware instance.
3645 *
3646 * This routine is used to add multicast pattern for waking up the host.
3647 *
3648 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3649 * by IPv6 ping command. Note that multicast packets are filtred through the
3650 * multicast hash table, so not all multicast packets can wake up the host.
3651 */
hw_add_wol_mcast(struct ksz_hw * hw)3652 static void hw_add_wol_mcast(struct ksz_hw *hw)
3653 {
3654 static const u8 mask[] = { 0x3F };
3655 u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3656
3657 memcpy(&pattern[3], &hw->override_addr[3], 3);
3658 hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3659 }
3660
3661 /**
3662 * hw_add_wol_ucast - add unicast pattern
3663 * @hw: The hardware instance.
3664 *
3665 * This routine is used to add unicast pattern to wakeup the host.
3666 *
3667 * It is assumed the unicast packet is directed to the device, as the hardware
3668 * can only receive them in normal case.
3669 */
hw_add_wol_ucast(struct ksz_hw * hw)3670 static void hw_add_wol_ucast(struct ksz_hw *hw)
3671 {
3672 static const u8 mask[] = { 0x3F };
3673
3674 hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3675 }
3676
3677 /**
3678 * hw_enable_wol - enable Wake-on-LAN
3679 * @hw: The hardware instance.
3680 * @wol_enable: The Wake-on-LAN settings.
3681 * @net_addr: The IPv4 address assigned to the device.
3682 *
3683 * This routine is used to enable Wake-on-LAN depending on driver settings.
3684 */
hw_enable_wol(struct ksz_hw * hw,u32 wol_enable,const u8 * net_addr)3685 static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3686 {
3687 hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3688 hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3689 hw_add_wol_ucast(hw);
3690 hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3691 hw_add_wol_mcast(hw);
3692 hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3693 hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3694 hw_add_wol_arp(hw, net_addr);
3695 }
3696
3697 /**
3698 * hw_init - check driver is correct for the hardware
3699 * @hw: The hardware instance.
3700 *
3701 * This function checks the hardware is correct for this driver and sets the
3702 * hardware up for proper initialization.
3703 *
3704 * Return number of ports or 0 if not right.
3705 */
hw_init(struct ksz_hw * hw)3706 static int hw_init(struct ksz_hw *hw)
3707 {
3708 int rc = 0;
3709 u16 data;
3710 u16 revision;
3711
3712 /* Set bus speed to 125MHz. */
3713 writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3714
3715 /* Check KSZ884x chip ID. */
3716 data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3717
3718 revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3719 data &= KS884X_CHIP_ID_MASK_41;
3720 if (REG_CHIP_ID_41 == data)
3721 rc = 1;
3722 else if (REG_CHIP_ID_42 == data)
3723 rc = 2;
3724 else
3725 return 0;
3726
3727 /* Setup hardware features or bug workarounds. */
3728 if (revision <= 1) {
3729 hw->features |= SMALL_PACKET_TX_BUG;
3730 if (1 == rc)
3731 hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3732 }
3733 return rc;
3734 }
3735
3736 /**
3737 * hw_reset - reset the hardware
3738 * @hw: The hardware instance.
3739 *
3740 * This routine resets the hardware.
3741 */
hw_reset(struct ksz_hw * hw)3742 static void hw_reset(struct ksz_hw *hw)
3743 {
3744 writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3745
3746 /* Wait for device to reset. */
3747 mdelay(10);
3748
3749 /* Write 0 to clear device reset. */
3750 writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3751 }
3752
3753 /**
3754 * hw_setup - setup the hardware
3755 * @hw: The hardware instance.
3756 *
3757 * This routine setup the hardware for proper operation.
3758 */
hw_setup(struct ksz_hw * hw)3759 static void hw_setup(struct ksz_hw *hw)
3760 {
3761 #if SET_DEFAULT_LED
3762 u16 data;
3763
3764 /* Change default LED mode. */
3765 data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3766 data &= ~LED_MODE;
3767 data |= SET_DEFAULT_LED;
3768 writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3769 #endif
3770
3771 /* Setup transmit control. */
3772 hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3773 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3774
3775 /* Setup receive control. */
3776 hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3777 (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3778 hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3779
3780 /* Hardware cannot handle UDP packet in IP fragments. */
3781 hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3782
3783 if (hw->all_multi)
3784 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3785 if (hw->promiscuous)
3786 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3787 }
3788
3789 /**
3790 * hw_setup_intr - setup interrupt mask
3791 * @hw: The hardware instance.
3792 *
3793 * This routine setup the interrupt mask for proper operation.
3794 */
hw_setup_intr(struct ksz_hw * hw)3795 static void hw_setup_intr(struct ksz_hw *hw)
3796 {
3797 hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3798 }
3799
ksz_check_desc_num(struct ksz_desc_info * info)3800 static void ksz_check_desc_num(struct ksz_desc_info *info)
3801 {
3802 #define MIN_DESC_SHIFT 2
3803
3804 int alloc = info->alloc;
3805 int shift;
3806
3807 shift = 0;
3808 while (!(alloc & 1)) {
3809 shift++;
3810 alloc >>= 1;
3811 }
3812 if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3813 pr_alert("Hardware descriptor numbers not right!\n");
3814 while (alloc) {
3815 shift++;
3816 alloc >>= 1;
3817 }
3818 if (shift < MIN_DESC_SHIFT)
3819 shift = MIN_DESC_SHIFT;
3820 alloc = 1 << shift;
3821 info->alloc = alloc;
3822 }
3823 info->mask = info->alloc - 1;
3824 }
3825
hw_init_desc(struct ksz_desc_info * desc_info,int transmit)3826 static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3827 {
3828 int i;
3829 u32 phys = desc_info->ring_phys;
3830 struct ksz_hw_desc *desc = desc_info->ring_virt;
3831 struct ksz_desc *cur = desc_info->ring;
3832 struct ksz_desc *previous = NULL;
3833
3834 for (i = 0; i < desc_info->alloc; i++) {
3835 cur->phw = desc++;
3836 phys += desc_info->size;
3837 previous = cur++;
3838 previous->phw->next = cpu_to_le32(phys);
3839 }
3840 previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3841 previous->sw.buf.rx.end_of_ring = 1;
3842 previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3843
3844 desc_info->avail = desc_info->alloc;
3845 desc_info->last = desc_info->next = 0;
3846
3847 desc_info->cur = desc_info->ring;
3848 }
3849
3850 /**
3851 * hw_set_desc_base - set descriptor base addresses
3852 * @hw: The hardware instance.
3853 * @tx_addr: The transmit descriptor base.
3854 * @rx_addr: The receive descriptor base.
3855 *
3856 * This routine programs the descriptor base addresses after reset.
3857 */
hw_set_desc_base(struct ksz_hw * hw,u32 tx_addr,u32 rx_addr)3858 static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3859 {
3860 /* Set base address of Tx/Rx descriptors. */
3861 writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3862 writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3863 }
3864
hw_reset_pkts(struct ksz_desc_info * info)3865 static void hw_reset_pkts(struct ksz_desc_info *info)
3866 {
3867 info->cur = info->ring;
3868 info->avail = info->alloc;
3869 info->last = info->next = 0;
3870 }
3871
hw_resume_rx(struct ksz_hw * hw)3872 static inline void hw_resume_rx(struct ksz_hw *hw)
3873 {
3874 writel(DMA_START, hw->io + KS_DMA_RX_START);
3875 }
3876
3877 /**
3878 * hw_start_rx - start receiving
3879 * @hw: The hardware instance.
3880 *
3881 * This routine starts the receive function of the hardware.
3882 */
hw_start_rx(struct ksz_hw * hw)3883 static void hw_start_rx(struct ksz_hw *hw)
3884 {
3885 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3886
3887 /* Notify when the receive stops. */
3888 hw->intr_mask |= KS884X_INT_RX_STOPPED;
3889
3890 writel(DMA_START, hw->io + KS_DMA_RX_START);
3891 hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3892 hw->rx_stop++;
3893
3894 /* Variable overflows. */
3895 if (0 == hw->rx_stop)
3896 hw->rx_stop = 2;
3897 }
3898
3899 /**
3900 * hw_stop_rx - stop receiving
3901 * @hw: The hardware instance.
3902 *
3903 * This routine stops the receive function of the hardware.
3904 */
hw_stop_rx(struct ksz_hw * hw)3905 static void hw_stop_rx(struct ksz_hw *hw)
3906 {
3907 hw->rx_stop = 0;
3908 hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3909 writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3910 }
3911
3912 /**
3913 * hw_start_tx - start transmitting
3914 * @hw: The hardware instance.
3915 *
3916 * This routine starts the transmit function of the hardware.
3917 */
hw_start_tx(struct ksz_hw * hw)3918 static void hw_start_tx(struct ksz_hw *hw)
3919 {
3920 writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3921 }
3922
3923 /**
3924 * hw_stop_tx - stop transmitting
3925 * @hw: The hardware instance.
3926 *
3927 * This routine stops the transmit function of the hardware.
3928 */
hw_stop_tx(struct ksz_hw * hw)3929 static void hw_stop_tx(struct ksz_hw *hw)
3930 {
3931 writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3932 }
3933
3934 /**
3935 * hw_disable - disable hardware
3936 * @hw: The hardware instance.
3937 *
3938 * This routine disables the hardware.
3939 */
hw_disable(struct ksz_hw * hw)3940 static void hw_disable(struct ksz_hw *hw)
3941 {
3942 hw_stop_rx(hw);
3943 hw_stop_tx(hw);
3944 hw->enabled = 0;
3945 }
3946
3947 /**
3948 * hw_enable - enable hardware
3949 * @hw: The hardware instance.
3950 *
3951 * This routine enables the hardware.
3952 */
hw_enable(struct ksz_hw * hw)3953 static void hw_enable(struct ksz_hw *hw)
3954 {
3955 hw_start_tx(hw);
3956 hw_start_rx(hw);
3957 hw->enabled = 1;
3958 }
3959
3960 /**
3961 * hw_alloc_pkt - allocate enough descriptors for transmission
3962 * @hw: The hardware instance.
3963 * @length: The length of the packet.
3964 * @physical: Number of descriptors required.
3965 *
3966 * This function allocates descriptors for transmission.
3967 *
3968 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3969 */
hw_alloc_pkt(struct ksz_hw * hw,int length,int physical)3970 static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3971 {
3972 /* Always leave one descriptor free. */
3973 if (hw->tx_desc_info.avail <= 1)
3974 return 0;
3975
3976 /* Allocate a descriptor for transmission and mark it current. */
3977 get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3978 hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3979
3980 /* Keep track of number of transmit descriptors used so far. */
3981 ++hw->tx_int_cnt;
3982 hw->tx_size += length;
3983
3984 /* Cannot hold on too much data. */
3985 if (hw->tx_size >= MAX_TX_HELD_SIZE)
3986 hw->tx_int_cnt = hw->tx_int_mask + 1;
3987
3988 if (physical > hw->tx_desc_info.avail)
3989 return 1;
3990
3991 return hw->tx_desc_info.avail;
3992 }
3993
3994 /**
3995 * hw_send_pkt - mark packet for transmission
3996 * @hw: The hardware instance.
3997 *
3998 * This routine marks the packet for transmission in PCI version.
3999 */
hw_send_pkt(struct ksz_hw * hw)4000 static void hw_send_pkt(struct ksz_hw *hw)
4001 {
4002 struct ksz_desc *cur = hw->tx_desc_info.cur;
4003
4004 cur->sw.buf.tx.last_seg = 1;
4005
4006 /* Interrupt only after specified number of descriptors used. */
4007 if (hw->tx_int_cnt > hw->tx_int_mask) {
4008 cur->sw.buf.tx.intr = 1;
4009 hw->tx_int_cnt = 0;
4010 hw->tx_size = 0;
4011 }
4012
4013 /* KSZ8842 supports port directed transmission. */
4014 cur->sw.buf.tx.dest_port = hw->dst_ports;
4015
4016 release_desc(cur);
4017
4018 writel(0, hw->io + KS_DMA_TX_START);
4019 }
4020
empty_addr(u8 * addr)4021 static int empty_addr(u8 *addr)
4022 {
4023 u32 *addr1 = (u32 *) addr;
4024 u16 *addr2 = (u16 *) &addr[4];
4025
4026 return 0 == *addr1 && 0 == *addr2;
4027 }
4028
4029 /**
4030 * hw_set_addr - set MAC address
4031 * @hw: The hardware instance.
4032 *
4033 * This routine programs the MAC address of the hardware when the address is
4034 * overridden.
4035 */
hw_set_addr(struct ksz_hw * hw)4036 static void hw_set_addr(struct ksz_hw *hw)
4037 {
4038 int i;
4039
4040 for (i = 0; i < ETH_ALEN; i++)
4041 writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4042 hw->io + KS884X_ADDR_0_OFFSET + i);
4043
4044 sw_set_addr(hw, hw->override_addr);
4045 }
4046
4047 /**
4048 * hw_read_addr - read MAC address
4049 * @hw: The hardware instance.
4050 *
4051 * This routine retrieves the MAC address of the hardware.
4052 */
hw_read_addr(struct ksz_hw * hw)4053 static void hw_read_addr(struct ksz_hw *hw)
4054 {
4055 int i;
4056
4057 for (i = 0; i < ETH_ALEN; i++)
4058 hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4059 KS884X_ADDR_0_OFFSET + i);
4060
4061 if (!hw->mac_override) {
4062 memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4063 if (empty_addr(hw->override_addr)) {
4064 memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4065 memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4066 ETH_ALEN);
4067 hw->override_addr[5] += hw->id;
4068 hw_set_addr(hw);
4069 }
4070 }
4071 }
4072
hw_ena_add_addr(struct ksz_hw * hw,int index,u8 * mac_addr)4073 static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4074 {
4075 int i;
4076 u32 mac_addr_lo;
4077 u32 mac_addr_hi;
4078
4079 mac_addr_hi = 0;
4080 for (i = 0; i < 2; i++) {
4081 mac_addr_hi <<= 8;
4082 mac_addr_hi |= mac_addr[i];
4083 }
4084 mac_addr_hi |= ADD_ADDR_ENABLE;
4085 mac_addr_lo = 0;
4086 for (i = 2; i < 6; i++) {
4087 mac_addr_lo <<= 8;
4088 mac_addr_lo |= mac_addr[i];
4089 }
4090 index *= ADD_ADDR_INCR;
4091
4092 writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4093 writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4094 }
4095
hw_set_add_addr(struct ksz_hw * hw)4096 static void hw_set_add_addr(struct ksz_hw *hw)
4097 {
4098 int i;
4099
4100 for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4101 if (empty_addr(hw->address[i]))
4102 writel(0, hw->io + ADD_ADDR_INCR * i +
4103 KS_ADD_ADDR_0_HI);
4104 else
4105 hw_ena_add_addr(hw, i, hw->address[i]);
4106 }
4107 }
4108
hw_add_addr(struct ksz_hw * hw,u8 * mac_addr)4109 static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4110 {
4111 int i;
4112 int j = ADDITIONAL_ENTRIES;
4113
4114 if (ether_addr_equal(hw->override_addr, mac_addr))
4115 return 0;
4116 for (i = 0; i < hw->addr_list_size; i++) {
4117 if (ether_addr_equal(hw->address[i], mac_addr))
4118 return 0;
4119 if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4120 j = i;
4121 }
4122 if (j < ADDITIONAL_ENTRIES) {
4123 memcpy(hw->address[j], mac_addr, ETH_ALEN);
4124 hw_ena_add_addr(hw, j, hw->address[j]);
4125 return 0;
4126 }
4127 return -1;
4128 }
4129
hw_del_addr(struct ksz_hw * hw,u8 * mac_addr)4130 static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4131 {
4132 int i;
4133
4134 for (i = 0; i < hw->addr_list_size; i++) {
4135 if (ether_addr_equal(hw->address[i], mac_addr)) {
4136 eth_zero_addr(hw->address[i]);
4137 writel(0, hw->io + ADD_ADDR_INCR * i +
4138 KS_ADD_ADDR_0_HI);
4139 return 0;
4140 }
4141 }
4142 return -1;
4143 }
4144
4145 /**
4146 * hw_clr_multicast - clear multicast addresses
4147 * @hw: The hardware instance.
4148 *
4149 * This routine removes all multicast addresses set in the hardware.
4150 */
hw_clr_multicast(struct ksz_hw * hw)4151 static void hw_clr_multicast(struct ksz_hw *hw)
4152 {
4153 int i;
4154
4155 for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4156 hw->multi_bits[i] = 0;
4157
4158 writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4159 }
4160 }
4161
4162 /**
4163 * hw_set_grp_addr - set multicast addresses
4164 * @hw: The hardware instance.
4165 *
4166 * This routine programs multicast addresses for the hardware to accept those
4167 * addresses.
4168 */
hw_set_grp_addr(struct ksz_hw * hw)4169 static void hw_set_grp_addr(struct ksz_hw *hw)
4170 {
4171 int i;
4172 int index;
4173 int position;
4174 int value;
4175
4176 memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4177
4178 for (i = 0; i < hw->multi_list_size; i++) {
4179 position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4180 index = position >> 3;
4181 value = 1 << (position & 7);
4182 hw->multi_bits[index] |= (u8) value;
4183 }
4184
4185 for (i = 0; i < HW_MULTICAST_SIZE; i++)
4186 writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4187 i);
4188 }
4189
4190 /**
4191 * hw_set_multicast - enable or disable all multicast receiving
4192 * @hw: The hardware instance.
4193 * @multicast: To turn on or off the all multicast feature.
4194 *
4195 * This routine enables/disables the hardware to accept all multicast packets.
4196 */
hw_set_multicast(struct ksz_hw * hw,u8 multicast)4197 static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4198 {
4199 /* Stop receiving for reconfiguration. */
4200 hw_stop_rx(hw);
4201
4202 if (multicast)
4203 hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4204 else
4205 hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4206
4207 if (hw->enabled)
4208 hw_start_rx(hw);
4209 }
4210
4211 /**
4212 * hw_set_promiscuous - enable or disable promiscuous receiving
4213 * @hw: The hardware instance.
4214 * @prom: To turn on or off the promiscuous feature.
4215 *
4216 * This routine enables/disables the hardware to accept all packets.
4217 */
hw_set_promiscuous(struct ksz_hw * hw,u8 prom)4218 static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4219 {
4220 /* Stop receiving for reconfiguration. */
4221 hw_stop_rx(hw);
4222
4223 if (prom)
4224 hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4225 else
4226 hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4227
4228 if (hw->enabled)
4229 hw_start_rx(hw);
4230 }
4231
4232 /**
4233 * sw_enable - enable the switch
4234 * @hw: The hardware instance.
4235 * @enable: The flag to enable or disable the switch
4236 *
4237 * This routine is used to enable/disable the switch in KSZ8842.
4238 */
sw_enable(struct ksz_hw * hw,int enable)4239 static void sw_enable(struct ksz_hw *hw, int enable)
4240 {
4241 int port;
4242
4243 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4244 if (hw->dev_count > 1) {
4245 /* Set port-base vlan membership with host port. */
4246 sw_cfg_port_base_vlan(hw, port,
4247 HOST_MASK | (1 << port));
4248 port_set_stp_state(hw, port, STP_STATE_DISABLED);
4249 } else {
4250 sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4251 port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4252 }
4253 }
4254 if (hw->dev_count > 1)
4255 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4256 else
4257 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4258
4259 if (enable)
4260 enable = KS8842_START;
4261 writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4262 }
4263
4264 /**
4265 * sw_setup - setup the switch
4266 * @hw: The hardware instance.
4267 *
4268 * This routine setup the hardware switch engine for default operation.
4269 */
sw_setup(struct ksz_hw * hw)4270 static void sw_setup(struct ksz_hw *hw)
4271 {
4272 int port;
4273
4274 sw_set_global_ctrl(hw);
4275
4276 /* Enable switch broadcast storm protection at 10% percent rate. */
4277 sw_init_broad_storm(hw);
4278 hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4279 for (port = 0; port < SWITCH_PORT_NUM; port++)
4280 sw_ena_broad_storm(hw, port);
4281
4282 sw_init_prio(hw);
4283
4284 sw_init_mirror(hw);
4285
4286 sw_init_prio_rate(hw);
4287
4288 sw_init_vlan(hw);
4289
4290 if (hw->features & STP_SUPPORT)
4291 sw_init_stp(hw);
4292 if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4293 SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4294 hw->overrides |= PAUSE_FLOW_CTRL;
4295 sw_enable(hw, 1);
4296 }
4297
4298 /**
4299 * ksz_start_timer - start kernel timer
4300 * @info: Kernel timer information.
4301 * @time: The time tick.
4302 *
4303 * This routine starts the kernel timer after the specified time tick.
4304 */
ksz_start_timer(struct ksz_timer_info * info,int time)4305 static void ksz_start_timer(struct ksz_timer_info *info, int time)
4306 {
4307 info->cnt = 0;
4308 info->timer.expires = jiffies + time;
4309 add_timer(&info->timer);
4310
4311 /* infinity */
4312 info->max = -1;
4313 }
4314
4315 /**
4316 * ksz_stop_timer - stop kernel timer
4317 * @info: Kernel timer information.
4318 *
4319 * This routine stops the kernel timer.
4320 */
ksz_stop_timer(struct ksz_timer_info * info)4321 static void ksz_stop_timer(struct ksz_timer_info *info)
4322 {
4323 if (info->max) {
4324 info->max = 0;
4325 del_timer_sync(&info->timer);
4326 }
4327 }
4328
ksz_init_timer(struct ksz_timer_info * info,int period,void (* function)(struct timer_list *))4329 static void ksz_init_timer(struct ksz_timer_info *info, int period,
4330 void (*function)(struct timer_list *))
4331 {
4332 info->max = 0;
4333 info->period = period;
4334 timer_setup(&info->timer, function, 0);
4335 }
4336
ksz_update_timer(struct ksz_timer_info * info)4337 static void ksz_update_timer(struct ksz_timer_info *info)
4338 {
4339 ++info->cnt;
4340 if (info->max > 0) {
4341 if (info->cnt < info->max) {
4342 info->timer.expires = jiffies + info->period;
4343 add_timer(&info->timer);
4344 } else
4345 info->max = 0;
4346 } else if (info->max < 0) {
4347 info->timer.expires = jiffies + info->period;
4348 add_timer(&info->timer);
4349 }
4350 }
4351
4352 /**
4353 * ksz_alloc_soft_desc - allocate software descriptors
4354 * @desc_info: Descriptor information structure.
4355 * @transmit: Indication that descriptors are for transmit.
4356 *
4357 * This local function allocates software descriptors for manipulation in
4358 * memory.
4359 *
4360 * Return 0 if successful.
4361 */
ksz_alloc_soft_desc(struct ksz_desc_info * desc_info,int transmit)4362 static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4363 {
4364 desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4365 GFP_KERNEL);
4366 if (!desc_info->ring)
4367 return 1;
4368 hw_init_desc(desc_info, transmit);
4369 return 0;
4370 }
4371
4372 /**
4373 * ksz_alloc_desc - allocate hardware descriptors
4374 * @adapter: Adapter information structure.
4375 *
4376 * This local function allocates hardware descriptors for receiving and
4377 * transmitting.
4378 *
4379 * Return 0 if successful.
4380 */
ksz_alloc_desc(struct dev_info * adapter)4381 static int ksz_alloc_desc(struct dev_info *adapter)
4382 {
4383 struct ksz_hw *hw = &adapter->hw;
4384 int offset;
4385
4386 /* Allocate memory for RX & TX descriptors. */
4387 adapter->desc_pool.alloc_size =
4388 hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4389 hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4390 DESC_ALIGNMENT;
4391
4392 adapter->desc_pool.alloc_virt =
4393 pci_zalloc_consistent(adapter->pdev,
4394 adapter->desc_pool.alloc_size,
4395 &adapter->desc_pool.dma_addr);
4396 if (adapter->desc_pool.alloc_virt == NULL) {
4397 adapter->desc_pool.alloc_size = 0;
4398 return 1;
4399 }
4400
4401 /* Align to the next cache line boundary. */
4402 offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4403 (DESC_ALIGNMENT -
4404 ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4405 adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4406 adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4407
4408 /* Allocate receive/transmit descriptors. */
4409 hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4410 adapter->desc_pool.virt;
4411 hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4412 offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4413 hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4414 (adapter->desc_pool.virt + offset);
4415 hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4416
4417 if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4418 return 1;
4419 if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4420 return 1;
4421
4422 return 0;
4423 }
4424
4425 /**
4426 * free_dma_buf - release DMA buffer resources
4427 * @adapter: Adapter information structure.
4428 *
4429 * This routine is just a helper function to release the DMA buffer resources.
4430 */
free_dma_buf(struct dev_info * adapter,struct ksz_dma_buf * dma_buf,int direction)4431 static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4432 int direction)
4433 {
4434 pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4435 dev_kfree_skb(dma_buf->skb);
4436 dma_buf->skb = NULL;
4437 dma_buf->dma = 0;
4438 }
4439
4440 /**
4441 * ksz_init_rx_buffers - initialize receive descriptors
4442 * @adapter: Adapter information structure.
4443 *
4444 * This routine initializes DMA buffers for receiving.
4445 */
ksz_init_rx_buffers(struct dev_info * adapter)4446 static void ksz_init_rx_buffers(struct dev_info *adapter)
4447 {
4448 int i;
4449 struct ksz_desc *desc;
4450 struct ksz_dma_buf *dma_buf;
4451 struct ksz_hw *hw = &adapter->hw;
4452 struct ksz_desc_info *info = &hw->rx_desc_info;
4453
4454 for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4455 get_rx_pkt(info, &desc);
4456
4457 dma_buf = DMA_BUFFER(desc);
4458 if (dma_buf->skb && dma_buf->len != adapter->mtu)
4459 free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4460 dma_buf->len = adapter->mtu;
4461 if (!dma_buf->skb)
4462 dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4463 if (dma_buf->skb && !dma_buf->dma)
4464 dma_buf->dma = pci_map_single(
4465 adapter->pdev,
4466 skb_tail_pointer(dma_buf->skb),
4467 dma_buf->len,
4468 PCI_DMA_FROMDEVICE);
4469
4470 /* Set descriptor. */
4471 set_rx_buf(desc, dma_buf->dma);
4472 set_rx_len(desc, dma_buf->len);
4473 release_desc(desc);
4474 }
4475 }
4476
4477 /**
4478 * ksz_alloc_mem - allocate memory for hardware descriptors
4479 * @adapter: Adapter information structure.
4480 *
4481 * This function allocates memory for use by hardware descriptors for receiving
4482 * and transmitting.
4483 *
4484 * Return 0 if successful.
4485 */
ksz_alloc_mem(struct dev_info * adapter)4486 static int ksz_alloc_mem(struct dev_info *adapter)
4487 {
4488 struct ksz_hw *hw = &adapter->hw;
4489
4490 /* Determine the number of receive and transmit descriptors. */
4491 hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4492 hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4493
4494 /* Determine how many descriptors to skip transmit interrupt. */
4495 hw->tx_int_cnt = 0;
4496 hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4497 if (hw->tx_int_mask > 8)
4498 hw->tx_int_mask = 8;
4499 while (hw->tx_int_mask) {
4500 hw->tx_int_cnt++;
4501 hw->tx_int_mask >>= 1;
4502 }
4503 if (hw->tx_int_cnt) {
4504 hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4505 hw->tx_int_cnt = 0;
4506 }
4507
4508 /* Determine the descriptor size. */
4509 hw->rx_desc_info.size =
4510 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4511 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4512 hw->tx_desc_info.size =
4513 (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4514 DESC_ALIGNMENT) * DESC_ALIGNMENT);
4515 if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4516 pr_alert("Hardware descriptor size not right!\n");
4517 ksz_check_desc_num(&hw->rx_desc_info);
4518 ksz_check_desc_num(&hw->tx_desc_info);
4519
4520 /* Allocate descriptors. */
4521 if (ksz_alloc_desc(adapter))
4522 return 1;
4523
4524 return 0;
4525 }
4526
4527 /**
4528 * ksz_free_desc - free software and hardware descriptors
4529 * @adapter: Adapter information structure.
4530 *
4531 * This local routine frees the software and hardware descriptors allocated by
4532 * ksz_alloc_desc().
4533 */
ksz_free_desc(struct dev_info * adapter)4534 static void ksz_free_desc(struct dev_info *adapter)
4535 {
4536 struct ksz_hw *hw = &adapter->hw;
4537
4538 /* Reset descriptor. */
4539 hw->rx_desc_info.ring_virt = NULL;
4540 hw->tx_desc_info.ring_virt = NULL;
4541 hw->rx_desc_info.ring_phys = 0;
4542 hw->tx_desc_info.ring_phys = 0;
4543
4544 /* Free memory. */
4545 if (adapter->desc_pool.alloc_virt)
4546 pci_free_consistent(
4547 adapter->pdev,
4548 adapter->desc_pool.alloc_size,
4549 adapter->desc_pool.alloc_virt,
4550 adapter->desc_pool.dma_addr);
4551
4552 /* Reset resource pool. */
4553 adapter->desc_pool.alloc_size = 0;
4554 adapter->desc_pool.alloc_virt = NULL;
4555
4556 kfree(hw->rx_desc_info.ring);
4557 hw->rx_desc_info.ring = NULL;
4558 kfree(hw->tx_desc_info.ring);
4559 hw->tx_desc_info.ring = NULL;
4560 }
4561
4562 /**
4563 * ksz_free_buffers - free buffers used in the descriptors
4564 * @adapter: Adapter information structure.
4565 * @desc_info: Descriptor information structure.
4566 *
4567 * This local routine frees buffers used in the DMA buffers.
4568 */
ksz_free_buffers(struct dev_info * adapter,struct ksz_desc_info * desc_info,int direction)4569 static void ksz_free_buffers(struct dev_info *adapter,
4570 struct ksz_desc_info *desc_info, int direction)
4571 {
4572 int i;
4573 struct ksz_dma_buf *dma_buf;
4574 struct ksz_desc *desc = desc_info->ring;
4575
4576 for (i = 0; i < desc_info->alloc; i++) {
4577 dma_buf = DMA_BUFFER(desc);
4578 if (dma_buf->skb)
4579 free_dma_buf(adapter, dma_buf, direction);
4580 desc++;
4581 }
4582 }
4583
4584 /**
4585 * ksz_free_mem - free all resources used by descriptors
4586 * @adapter: Adapter information structure.
4587 *
4588 * This local routine frees all the resources allocated by ksz_alloc_mem().
4589 */
ksz_free_mem(struct dev_info * adapter)4590 static void ksz_free_mem(struct dev_info *adapter)
4591 {
4592 /* Free transmit buffers. */
4593 ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4594 PCI_DMA_TODEVICE);
4595
4596 /* Free receive buffers. */
4597 ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4598 PCI_DMA_FROMDEVICE);
4599
4600 /* Free descriptors. */
4601 ksz_free_desc(adapter);
4602 }
4603
get_mib_counters(struct ksz_hw * hw,int first,int cnt,u64 * counter)4604 static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4605 u64 *counter)
4606 {
4607 int i;
4608 int mib;
4609 int port;
4610 struct ksz_port_mib *port_mib;
4611
4612 memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4613 for (i = 0, port = first; i < cnt; i++, port++) {
4614 port_mib = &hw->port_mib[port];
4615 for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4616 counter[mib] += port_mib->counter[mib];
4617 }
4618 }
4619
4620 /**
4621 * send_packet - send packet
4622 * @skb: Socket buffer.
4623 * @dev: Network device.
4624 *
4625 * This routine is used to send a packet out to the network.
4626 */
send_packet(struct sk_buff * skb,struct net_device * dev)4627 static void send_packet(struct sk_buff *skb, struct net_device *dev)
4628 {
4629 struct ksz_desc *desc;
4630 struct ksz_desc *first;
4631 struct dev_priv *priv = netdev_priv(dev);
4632 struct dev_info *hw_priv = priv->adapter;
4633 struct ksz_hw *hw = &hw_priv->hw;
4634 struct ksz_desc_info *info = &hw->tx_desc_info;
4635 struct ksz_dma_buf *dma_buf;
4636 int len;
4637 int last_frag = skb_shinfo(skb)->nr_frags;
4638
4639 /*
4640 * KSZ8842 with multiple device interfaces needs to be told which port
4641 * to send.
4642 */
4643 if (hw->dev_count > 1)
4644 hw->dst_ports = 1 << priv->port.first_port;
4645
4646 /* Hardware will pad the length to 60. */
4647 len = skb->len;
4648
4649 /* Remember the very first descriptor. */
4650 first = info->cur;
4651 desc = first;
4652
4653 dma_buf = DMA_BUFFER(desc);
4654 if (last_frag) {
4655 int frag;
4656 skb_frag_t *this_frag;
4657
4658 dma_buf->len = skb_headlen(skb);
4659
4660 dma_buf->dma = pci_map_single(
4661 hw_priv->pdev, skb->data, dma_buf->len,
4662 PCI_DMA_TODEVICE);
4663 set_tx_buf(desc, dma_buf->dma);
4664 set_tx_len(desc, dma_buf->len);
4665
4666 frag = 0;
4667 do {
4668 this_frag = &skb_shinfo(skb)->frags[frag];
4669
4670 /* Get a new descriptor. */
4671 get_tx_pkt(info, &desc);
4672
4673 /* Keep track of descriptors used so far. */
4674 ++hw->tx_int_cnt;
4675
4676 dma_buf = DMA_BUFFER(desc);
4677 dma_buf->len = skb_frag_size(this_frag);
4678
4679 dma_buf->dma = pci_map_single(
4680 hw_priv->pdev,
4681 skb_frag_address(this_frag),
4682 dma_buf->len,
4683 PCI_DMA_TODEVICE);
4684 set_tx_buf(desc, dma_buf->dma);
4685 set_tx_len(desc, dma_buf->len);
4686
4687 frag++;
4688 if (frag == last_frag)
4689 break;
4690
4691 /* Do not release the last descriptor here. */
4692 release_desc(desc);
4693 } while (1);
4694
4695 /* current points to the last descriptor. */
4696 info->cur = desc;
4697
4698 /* Release the first descriptor. */
4699 release_desc(first);
4700 } else {
4701 dma_buf->len = len;
4702
4703 dma_buf->dma = pci_map_single(
4704 hw_priv->pdev, skb->data, dma_buf->len,
4705 PCI_DMA_TODEVICE);
4706 set_tx_buf(desc, dma_buf->dma);
4707 set_tx_len(desc, dma_buf->len);
4708 }
4709
4710 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4711 (desc)->sw.buf.tx.csum_gen_tcp = 1;
4712 (desc)->sw.buf.tx.csum_gen_udp = 1;
4713 }
4714
4715 /*
4716 * The last descriptor holds the packet so that it can be returned to
4717 * network subsystem after all descriptors are transmitted.
4718 */
4719 dma_buf->skb = skb;
4720
4721 hw_send_pkt(hw);
4722
4723 /* Update transmit statistics. */
4724 dev->stats.tx_packets++;
4725 dev->stats.tx_bytes += len;
4726 }
4727
4728 /**
4729 * transmit_cleanup - clean up transmit descriptors
4730 * @dev: Network device.
4731 *
4732 * This routine is called to clean up the transmitted buffers.
4733 */
transmit_cleanup(struct dev_info * hw_priv,int normal)4734 static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4735 {
4736 int last;
4737 union desc_stat status;
4738 struct ksz_hw *hw = &hw_priv->hw;
4739 struct ksz_desc_info *info = &hw->tx_desc_info;
4740 struct ksz_desc *desc;
4741 struct ksz_dma_buf *dma_buf;
4742 struct net_device *dev = NULL;
4743
4744 spin_lock_irq(&hw_priv->hwlock);
4745 last = info->last;
4746
4747 while (info->avail < info->alloc) {
4748 /* Get next descriptor which is not hardware owned. */
4749 desc = &info->ring[last];
4750 status.data = le32_to_cpu(desc->phw->ctrl.data);
4751 if (status.tx.hw_owned) {
4752 if (normal)
4753 break;
4754 else
4755 reset_desc(desc, status);
4756 }
4757
4758 dma_buf = DMA_BUFFER(desc);
4759 pci_unmap_single(
4760 hw_priv->pdev, dma_buf->dma, dma_buf->len,
4761 PCI_DMA_TODEVICE);
4762
4763 /* This descriptor contains the last buffer in the packet. */
4764 if (dma_buf->skb) {
4765 dev = dma_buf->skb->dev;
4766
4767 /* Release the packet back to network subsystem. */
4768 dev_kfree_skb_irq(dma_buf->skb);
4769 dma_buf->skb = NULL;
4770 }
4771
4772 /* Free the transmitted descriptor. */
4773 last++;
4774 last &= info->mask;
4775 info->avail++;
4776 }
4777 info->last = last;
4778 spin_unlock_irq(&hw_priv->hwlock);
4779
4780 /* Notify the network subsystem that the packet has been sent. */
4781 if (dev)
4782 netif_trans_update(dev);
4783 }
4784
4785 /**
4786 * transmit_done - transmit done processing
4787 * @dev: Network device.
4788 *
4789 * This routine is called when the transmit interrupt is triggered, indicating
4790 * either a packet is sent successfully or there are transmit errors.
4791 */
tx_done(struct dev_info * hw_priv)4792 static void tx_done(struct dev_info *hw_priv)
4793 {
4794 struct ksz_hw *hw = &hw_priv->hw;
4795 int port;
4796
4797 transmit_cleanup(hw_priv, 1);
4798
4799 for (port = 0; port < hw->dev_count; port++) {
4800 struct net_device *dev = hw->port_info[port].pdev;
4801
4802 if (netif_running(dev) && netif_queue_stopped(dev))
4803 netif_wake_queue(dev);
4804 }
4805 }
4806
copy_old_skb(struct sk_buff * old,struct sk_buff * skb)4807 static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4808 {
4809 skb->dev = old->dev;
4810 skb->protocol = old->protocol;
4811 skb->ip_summed = old->ip_summed;
4812 skb->csum = old->csum;
4813 skb_set_network_header(skb, ETH_HLEN);
4814
4815 dev_consume_skb_any(old);
4816 }
4817
4818 /**
4819 * netdev_tx - send out packet
4820 * @skb: Socket buffer.
4821 * @dev: Network device.
4822 *
4823 * This function is used by the upper network layer to send out a packet.
4824 *
4825 * Return 0 if successful; otherwise an error code indicating failure.
4826 */
netdev_tx(struct sk_buff * skb,struct net_device * dev)4827 static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4828 {
4829 struct dev_priv *priv = netdev_priv(dev);
4830 struct dev_info *hw_priv = priv->adapter;
4831 struct ksz_hw *hw = &hw_priv->hw;
4832 int left;
4833 int num = 1;
4834 int rc = 0;
4835
4836 if (hw->features & SMALL_PACKET_TX_BUG) {
4837 struct sk_buff *org_skb = skb;
4838
4839 if (skb->len <= 48) {
4840 if (skb_end_pointer(skb) - skb->data >= 50) {
4841 memset(&skb->data[skb->len], 0, 50 - skb->len);
4842 skb->len = 50;
4843 } else {
4844 skb = netdev_alloc_skb(dev, 50);
4845 if (!skb)
4846 return NETDEV_TX_BUSY;
4847 memcpy(skb->data, org_skb->data, org_skb->len);
4848 memset(&skb->data[org_skb->len], 0,
4849 50 - org_skb->len);
4850 skb->len = 50;
4851 copy_old_skb(org_skb, skb);
4852 }
4853 }
4854 }
4855
4856 spin_lock_irq(&hw_priv->hwlock);
4857
4858 num = skb_shinfo(skb)->nr_frags + 1;
4859 left = hw_alloc_pkt(hw, skb->len, num);
4860 if (left) {
4861 if (left < num ||
4862 (CHECKSUM_PARTIAL == skb->ip_summed &&
4863 skb->protocol == htons(ETH_P_IPV6))) {
4864 struct sk_buff *org_skb = skb;
4865
4866 skb = netdev_alloc_skb(dev, org_skb->len);
4867 if (!skb) {
4868 rc = NETDEV_TX_BUSY;
4869 goto unlock;
4870 }
4871 skb_copy_and_csum_dev(org_skb, skb->data);
4872 org_skb->ip_summed = CHECKSUM_NONE;
4873 skb->len = org_skb->len;
4874 copy_old_skb(org_skb, skb);
4875 }
4876 send_packet(skb, dev);
4877 if (left <= num)
4878 netif_stop_queue(dev);
4879 } else {
4880 /* Stop the transmit queue until packet is allocated. */
4881 netif_stop_queue(dev);
4882 rc = NETDEV_TX_BUSY;
4883 }
4884 unlock:
4885 spin_unlock_irq(&hw_priv->hwlock);
4886
4887 return rc;
4888 }
4889
4890 /**
4891 * netdev_tx_timeout - transmit timeout processing
4892 * @dev: Network device.
4893 *
4894 * This routine is called when the transmit timer expires. That indicates the
4895 * hardware is not running correctly because transmit interrupts are not
4896 * triggered to free up resources so that the transmit routine can continue
4897 * sending out packets. The hardware is reset to correct the problem.
4898 */
netdev_tx_timeout(struct net_device * dev)4899 static void netdev_tx_timeout(struct net_device *dev)
4900 {
4901 static unsigned long last_reset;
4902
4903 struct dev_priv *priv = netdev_priv(dev);
4904 struct dev_info *hw_priv = priv->adapter;
4905 struct ksz_hw *hw = &hw_priv->hw;
4906 int port;
4907
4908 if (hw->dev_count > 1) {
4909 /*
4910 * Only reset the hardware if time between calls is long
4911 * enough.
4912 */
4913 if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4914 hw_priv = NULL;
4915 }
4916
4917 last_reset = jiffies;
4918 if (hw_priv) {
4919 hw_dis_intr(hw);
4920 hw_disable(hw);
4921
4922 transmit_cleanup(hw_priv, 0);
4923 hw_reset_pkts(&hw->rx_desc_info);
4924 hw_reset_pkts(&hw->tx_desc_info);
4925 ksz_init_rx_buffers(hw_priv);
4926
4927 hw_reset(hw);
4928
4929 hw_set_desc_base(hw,
4930 hw->tx_desc_info.ring_phys,
4931 hw->rx_desc_info.ring_phys);
4932 hw_set_addr(hw);
4933 if (hw->all_multi)
4934 hw_set_multicast(hw, hw->all_multi);
4935 else if (hw->multi_list_size)
4936 hw_set_grp_addr(hw);
4937
4938 if (hw->dev_count > 1) {
4939 hw_set_add_addr(hw);
4940 for (port = 0; port < SWITCH_PORT_NUM; port++) {
4941 struct net_device *port_dev;
4942
4943 port_set_stp_state(hw, port,
4944 STP_STATE_DISABLED);
4945
4946 port_dev = hw->port_info[port].pdev;
4947 if (netif_running(port_dev))
4948 port_set_stp_state(hw, port,
4949 STP_STATE_SIMPLE);
4950 }
4951 }
4952
4953 hw_enable(hw);
4954 hw_ena_intr(hw);
4955 }
4956
4957 netif_trans_update(dev);
4958 netif_wake_queue(dev);
4959 }
4960
csum_verified(struct sk_buff * skb)4961 static inline void csum_verified(struct sk_buff *skb)
4962 {
4963 unsigned short protocol;
4964 struct iphdr *iph;
4965
4966 protocol = skb->protocol;
4967 skb_reset_network_header(skb);
4968 iph = (struct iphdr *) skb_network_header(skb);
4969 if (protocol == htons(ETH_P_8021Q)) {
4970 protocol = iph->tot_len;
4971 skb_set_network_header(skb, VLAN_HLEN);
4972 iph = (struct iphdr *) skb_network_header(skb);
4973 }
4974 if (protocol == htons(ETH_P_IP)) {
4975 if (iph->protocol == IPPROTO_TCP)
4976 skb->ip_summed = CHECKSUM_UNNECESSARY;
4977 }
4978 }
4979
rx_proc(struct net_device * dev,struct ksz_hw * hw,struct ksz_desc * desc,union desc_stat status)4980 static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4981 struct ksz_desc *desc, union desc_stat status)
4982 {
4983 int packet_len;
4984 struct dev_priv *priv = netdev_priv(dev);
4985 struct dev_info *hw_priv = priv->adapter;
4986 struct ksz_dma_buf *dma_buf;
4987 struct sk_buff *skb;
4988 int rx_status;
4989
4990 /* Received length includes 4-byte CRC. */
4991 packet_len = status.rx.frame_len - 4;
4992
4993 dma_buf = DMA_BUFFER(desc);
4994 pci_dma_sync_single_for_cpu(
4995 hw_priv->pdev, dma_buf->dma, packet_len + 4,
4996 PCI_DMA_FROMDEVICE);
4997
4998 do {
4999 /* skb->data != skb->head */
5000 skb = netdev_alloc_skb(dev, packet_len + 2);
5001 if (!skb) {
5002 dev->stats.rx_dropped++;
5003 return -ENOMEM;
5004 }
5005
5006 /*
5007 * Align socket buffer in 4-byte boundary for better
5008 * performance.
5009 */
5010 skb_reserve(skb, 2);
5011
5012 skb_put_data(skb, dma_buf->skb->data, packet_len);
5013 } while (0);
5014
5015 skb->protocol = eth_type_trans(skb, dev);
5016
5017 if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5018 csum_verified(skb);
5019
5020 /* Update receive statistics. */
5021 dev->stats.rx_packets++;
5022 dev->stats.rx_bytes += packet_len;
5023
5024 /* Notify upper layer for received packet. */
5025 rx_status = netif_rx(skb);
5026
5027 return 0;
5028 }
5029
dev_rcv_packets(struct dev_info * hw_priv)5030 static int dev_rcv_packets(struct dev_info *hw_priv)
5031 {
5032 int next;
5033 union desc_stat status;
5034 struct ksz_hw *hw = &hw_priv->hw;
5035 struct net_device *dev = hw->port_info[0].pdev;
5036 struct ksz_desc_info *info = &hw->rx_desc_info;
5037 int left = info->alloc;
5038 struct ksz_desc *desc;
5039 int received = 0;
5040
5041 next = info->next;
5042 while (left--) {
5043 /* Get next descriptor which is not hardware owned. */
5044 desc = &info->ring[next];
5045 status.data = le32_to_cpu(desc->phw->ctrl.data);
5046 if (status.rx.hw_owned)
5047 break;
5048
5049 /* Status valid only when last descriptor bit is set. */
5050 if (status.rx.last_desc && status.rx.first_desc) {
5051 if (rx_proc(dev, hw, desc, status))
5052 goto release_packet;
5053 received++;
5054 }
5055
5056 release_packet:
5057 release_desc(desc);
5058 next++;
5059 next &= info->mask;
5060 }
5061 info->next = next;
5062
5063 return received;
5064 }
5065
port_rcv_packets(struct dev_info * hw_priv)5066 static int port_rcv_packets(struct dev_info *hw_priv)
5067 {
5068 int next;
5069 union desc_stat status;
5070 struct ksz_hw *hw = &hw_priv->hw;
5071 struct net_device *dev = hw->port_info[0].pdev;
5072 struct ksz_desc_info *info = &hw->rx_desc_info;
5073 int left = info->alloc;
5074 struct ksz_desc *desc;
5075 int received = 0;
5076
5077 next = info->next;
5078 while (left--) {
5079 /* Get next descriptor which is not hardware owned. */
5080 desc = &info->ring[next];
5081 status.data = le32_to_cpu(desc->phw->ctrl.data);
5082 if (status.rx.hw_owned)
5083 break;
5084
5085 if (hw->dev_count > 1) {
5086 /* Get received port number. */
5087 int p = HW_TO_DEV_PORT(status.rx.src_port);
5088
5089 dev = hw->port_info[p].pdev;
5090 if (!netif_running(dev))
5091 goto release_packet;
5092 }
5093
5094 /* Status valid only when last descriptor bit is set. */
5095 if (status.rx.last_desc && status.rx.first_desc) {
5096 if (rx_proc(dev, hw, desc, status))
5097 goto release_packet;
5098 received++;
5099 }
5100
5101 release_packet:
5102 release_desc(desc);
5103 next++;
5104 next &= info->mask;
5105 }
5106 info->next = next;
5107
5108 return received;
5109 }
5110
dev_rcv_special(struct dev_info * hw_priv)5111 static int dev_rcv_special(struct dev_info *hw_priv)
5112 {
5113 int next;
5114 union desc_stat status;
5115 struct ksz_hw *hw = &hw_priv->hw;
5116 struct net_device *dev = hw->port_info[0].pdev;
5117 struct ksz_desc_info *info = &hw->rx_desc_info;
5118 int left = info->alloc;
5119 struct ksz_desc *desc;
5120 int received = 0;
5121
5122 next = info->next;
5123 while (left--) {
5124 /* Get next descriptor which is not hardware owned. */
5125 desc = &info->ring[next];
5126 status.data = le32_to_cpu(desc->phw->ctrl.data);
5127 if (status.rx.hw_owned)
5128 break;
5129
5130 if (hw->dev_count > 1) {
5131 /* Get received port number. */
5132 int p = HW_TO_DEV_PORT(status.rx.src_port);
5133
5134 dev = hw->port_info[p].pdev;
5135 if (!netif_running(dev))
5136 goto release_packet;
5137 }
5138
5139 /* Status valid only when last descriptor bit is set. */
5140 if (status.rx.last_desc && status.rx.first_desc) {
5141 /*
5142 * Receive without error. With receive errors
5143 * disabled, packets with receive errors will be
5144 * dropped, so no need to check the error bit.
5145 */
5146 if (!status.rx.error || (status.data &
5147 KS_DESC_RX_ERROR_COND) ==
5148 KS_DESC_RX_ERROR_TOO_LONG) {
5149 if (rx_proc(dev, hw, desc, status))
5150 goto release_packet;
5151 received++;
5152 } else {
5153 struct dev_priv *priv = netdev_priv(dev);
5154
5155 /* Update receive error statistics. */
5156 priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5157 }
5158 }
5159
5160 release_packet:
5161 release_desc(desc);
5162 next++;
5163 next &= info->mask;
5164 }
5165 info->next = next;
5166
5167 return received;
5168 }
5169
rx_proc_task(unsigned long data)5170 static void rx_proc_task(unsigned long data)
5171 {
5172 struct dev_info *hw_priv = (struct dev_info *) data;
5173 struct ksz_hw *hw = &hw_priv->hw;
5174
5175 if (!hw->enabled)
5176 return;
5177 if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5178
5179 /* In case receive process is suspended because of overrun. */
5180 hw_resume_rx(hw);
5181
5182 /* tasklets are interruptible. */
5183 spin_lock_irq(&hw_priv->hwlock);
5184 hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5185 spin_unlock_irq(&hw_priv->hwlock);
5186 } else {
5187 hw_ack_intr(hw, KS884X_INT_RX);
5188 tasklet_schedule(&hw_priv->rx_tasklet);
5189 }
5190 }
5191
tx_proc_task(unsigned long data)5192 static void tx_proc_task(unsigned long data)
5193 {
5194 struct dev_info *hw_priv = (struct dev_info *) data;
5195 struct ksz_hw *hw = &hw_priv->hw;
5196
5197 hw_ack_intr(hw, KS884X_INT_TX_MASK);
5198
5199 tx_done(hw_priv);
5200
5201 /* tasklets are interruptible. */
5202 spin_lock_irq(&hw_priv->hwlock);
5203 hw_turn_on_intr(hw, KS884X_INT_TX);
5204 spin_unlock_irq(&hw_priv->hwlock);
5205 }
5206
handle_rx_stop(struct ksz_hw * hw)5207 static inline void handle_rx_stop(struct ksz_hw *hw)
5208 {
5209 /* Receive just has been stopped. */
5210 if (0 == hw->rx_stop)
5211 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5212 else if (hw->rx_stop > 1) {
5213 if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5214 hw_start_rx(hw);
5215 } else {
5216 hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5217 hw->rx_stop = 0;
5218 }
5219 } else
5220 /* Receive just has been started. */
5221 hw->rx_stop++;
5222 }
5223
5224 /**
5225 * netdev_intr - interrupt handling
5226 * @irq: Interrupt number.
5227 * @dev_id: Network device.
5228 *
5229 * This function is called by upper network layer to signal interrupt.
5230 *
5231 * Return IRQ_HANDLED if interrupt is handled.
5232 */
netdev_intr(int irq,void * dev_id)5233 static irqreturn_t netdev_intr(int irq, void *dev_id)
5234 {
5235 uint int_enable = 0;
5236 struct net_device *dev = (struct net_device *) dev_id;
5237 struct dev_priv *priv = netdev_priv(dev);
5238 struct dev_info *hw_priv = priv->adapter;
5239 struct ksz_hw *hw = &hw_priv->hw;
5240
5241 spin_lock(&hw_priv->hwlock);
5242
5243 hw_read_intr(hw, &int_enable);
5244
5245 /* Not our interrupt! */
5246 if (!int_enable) {
5247 spin_unlock(&hw_priv->hwlock);
5248 return IRQ_NONE;
5249 }
5250
5251 do {
5252 hw_ack_intr(hw, int_enable);
5253 int_enable &= hw->intr_mask;
5254
5255 if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5256 hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5257 tasklet_schedule(&hw_priv->tx_tasklet);
5258 }
5259
5260 if (likely(int_enable & KS884X_INT_RX)) {
5261 hw_dis_intr_bit(hw, KS884X_INT_RX);
5262 tasklet_schedule(&hw_priv->rx_tasklet);
5263 }
5264
5265 if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5266 dev->stats.rx_fifo_errors++;
5267 hw_resume_rx(hw);
5268 }
5269
5270 if (unlikely(int_enable & KS884X_INT_PHY)) {
5271 struct ksz_port *port = &priv->port;
5272
5273 hw->features |= LINK_INT_WORKING;
5274 port_get_link_speed(port);
5275 }
5276
5277 if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5278 handle_rx_stop(hw);
5279 break;
5280 }
5281
5282 if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5283 u32 data;
5284
5285 hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5286 pr_info("Tx stopped\n");
5287 data = readl(hw->io + KS_DMA_TX_CTRL);
5288 if (!(data & DMA_TX_ENABLE))
5289 pr_info("Tx disabled\n");
5290 break;
5291 }
5292 } while (0);
5293
5294 hw_ena_intr(hw);
5295
5296 spin_unlock(&hw_priv->hwlock);
5297
5298 return IRQ_HANDLED;
5299 }
5300
5301 /*
5302 * Linux network device functions
5303 */
5304
5305 static unsigned long next_jiffies;
5306
5307 #ifdef CONFIG_NET_POLL_CONTROLLER
netdev_netpoll(struct net_device * dev)5308 static void netdev_netpoll(struct net_device *dev)
5309 {
5310 struct dev_priv *priv = netdev_priv(dev);
5311 struct dev_info *hw_priv = priv->adapter;
5312
5313 hw_dis_intr(&hw_priv->hw);
5314 netdev_intr(dev->irq, dev);
5315 }
5316 #endif
5317
bridge_change(struct ksz_hw * hw)5318 static void bridge_change(struct ksz_hw *hw)
5319 {
5320 int port;
5321 u8 member;
5322 struct ksz_switch *sw = hw->ksz_switch;
5323
5324 /* No ports in forwarding state. */
5325 if (!sw->member) {
5326 port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5327 sw_block_addr(hw);
5328 }
5329 for (port = 0; port < SWITCH_PORT_NUM; port++) {
5330 if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5331 member = HOST_MASK | sw->member;
5332 else
5333 member = HOST_MASK | (1 << port);
5334 if (member != sw->port_cfg[port].member)
5335 sw_cfg_port_base_vlan(hw, port, member);
5336 }
5337 }
5338
5339 /**
5340 * netdev_close - close network device
5341 * @dev: Network device.
5342 *
5343 * This function process the close operation of network device. This is caused
5344 * by the user command "ifconfig ethX down."
5345 *
5346 * Return 0 if successful; otherwise an error code indicating failure.
5347 */
netdev_close(struct net_device * dev)5348 static int netdev_close(struct net_device *dev)
5349 {
5350 struct dev_priv *priv = netdev_priv(dev);
5351 struct dev_info *hw_priv = priv->adapter;
5352 struct ksz_port *port = &priv->port;
5353 struct ksz_hw *hw = &hw_priv->hw;
5354 int pi;
5355
5356 netif_stop_queue(dev);
5357
5358 ksz_stop_timer(&priv->monitor_timer_info);
5359
5360 /* Need to shut the port manually in multiple device interfaces mode. */
5361 if (hw->dev_count > 1) {
5362 port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5363
5364 /* Port is closed. Need to change bridge setting. */
5365 if (hw->features & STP_SUPPORT) {
5366 pi = 1 << port->first_port;
5367 if (hw->ksz_switch->member & pi) {
5368 hw->ksz_switch->member &= ~pi;
5369 bridge_change(hw);
5370 }
5371 }
5372 }
5373 if (port->first_port > 0)
5374 hw_del_addr(hw, dev->dev_addr);
5375 if (!hw_priv->wol_enable)
5376 port_set_power_saving(port, true);
5377
5378 if (priv->multicast)
5379 --hw->all_multi;
5380 if (priv->promiscuous)
5381 --hw->promiscuous;
5382
5383 hw_priv->opened--;
5384 if (!(hw_priv->opened)) {
5385 ksz_stop_timer(&hw_priv->mib_timer_info);
5386 flush_work(&hw_priv->mib_read);
5387
5388 hw_dis_intr(hw);
5389 hw_disable(hw);
5390 hw_clr_multicast(hw);
5391
5392 /* Delay for receive task to stop scheduling itself. */
5393 msleep(2000 / HZ);
5394
5395 tasklet_kill(&hw_priv->rx_tasklet);
5396 tasklet_kill(&hw_priv->tx_tasklet);
5397 free_irq(dev->irq, hw_priv->dev);
5398
5399 transmit_cleanup(hw_priv, 0);
5400 hw_reset_pkts(&hw->rx_desc_info);
5401 hw_reset_pkts(&hw->tx_desc_info);
5402
5403 /* Clean out static MAC table when the switch is shutdown. */
5404 if (hw->features & STP_SUPPORT)
5405 sw_clr_sta_mac_table(hw);
5406 }
5407
5408 return 0;
5409 }
5410
hw_cfg_huge_frame(struct dev_info * hw_priv,struct ksz_hw * hw)5411 static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5412 {
5413 if (hw->ksz_switch) {
5414 u32 data;
5415
5416 data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5417 if (hw->features & RX_HUGE_FRAME)
5418 data |= SWITCH_HUGE_PACKET;
5419 else
5420 data &= ~SWITCH_HUGE_PACKET;
5421 writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5422 }
5423 if (hw->features & RX_HUGE_FRAME) {
5424 hw->rx_cfg |= DMA_RX_ERROR;
5425 hw_priv->dev_rcv = dev_rcv_special;
5426 } else {
5427 hw->rx_cfg &= ~DMA_RX_ERROR;
5428 if (hw->dev_count > 1)
5429 hw_priv->dev_rcv = port_rcv_packets;
5430 else
5431 hw_priv->dev_rcv = dev_rcv_packets;
5432 }
5433 }
5434
prepare_hardware(struct net_device * dev)5435 static int prepare_hardware(struct net_device *dev)
5436 {
5437 struct dev_priv *priv = netdev_priv(dev);
5438 struct dev_info *hw_priv = priv->adapter;
5439 struct ksz_hw *hw = &hw_priv->hw;
5440 int rc = 0;
5441
5442 /* Remember the network device that requests interrupts. */
5443 hw_priv->dev = dev;
5444 rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5445 if (rc)
5446 return rc;
5447 tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5448 (unsigned long) hw_priv);
5449 tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5450 (unsigned long) hw_priv);
5451
5452 hw->promiscuous = 0;
5453 hw->all_multi = 0;
5454 hw->multi_list_size = 0;
5455
5456 hw_reset(hw);
5457
5458 hw_set_desc_base(hw,
5459 hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5460 hw_set_addr(hw);
5461 hw_cfg_huge_frame(hw_priv, hw);
5462 ksz_init_rx_buffers(hw_priv);
5463 return 0;
5464 }
5465
set_media_state(struct net_device * dev,int media_state)5466 static void set_media_state(struct net_device *dev, int media_state)
5467 {
5468 struct dev_priv *priv = netdev_priv(dev);
5469
5470 if (media_state == priv->media_state)
5471 netif_carrier_on(dev);
5472 else
5473 netif_carrier_off(dev);
5474 netif_info(priv, link, dev, "link %s\n",
5475 media_state == priv->media_state ? "on" : "off");
5476 }
5477
5478 /**
5479 * netdev_open - open network device
5480 * @dev: Network device.
5481 *
5482 * This function process the open operation of network device. This is caused
5483 * by the user command "ifconfig ethX up."
5484 *
5485 * Return 0 if successful; otherwise an error code indicating failure.
5486 */
netdev_open(struct net_device * dev)5487 static int netdev_open(struct net_device *dev)
5488 {
5489 struct dev_priv *priv = netdev_priv(dev);
5490 struct dev_info *hw_priv = priv->adapter;
5491 struct ksz_hw *hw = &hw_priv->hw;
5492 struct ksz_port *port = &priv->port;
5493 int i;
5494 int p;
5495 int rc = 0;
5496
5497 priv->multicast = 0;
5498 priv->promiscuous = 0;
5499
5500 /* Reset device statistics. */
5501 memset(&dev->stats, 0, sizeof(struct net_device_stats));
5502 memset((void *) port->counter, 0,
5503 (sizeof(u64) * OID_COUNTER_LAST));
5504
5505 if (!(hw_priv->opened)) {
5506 rc = prepare_hardware(dev);
5507 if (rc)
5508 return rc;
5509 for (i = 0; i < hw->mib_port_cnt; i++) {
5510 if (next_jiffies < jiffies)
5511 next_jiffies = jiffies + HZ * 2;
5512 else
5513 next_jiffies += HZ * 1;
5514 hw_priv->counter[i].time = next_jiffies;
5515 hw->port_mib[i].state = media_disconnected;
5516 port_init_cnt(hw, i);
5517 }
5518 if (hw->ksz_switch)
5519 hw->port_mib[HOST_PORT].state = media_connected;
5520 else {
5521 hw_add_wol_bcast(hw);
5522 hw_cfg_wol_pme(hw, 0);
5523 hw_clr_wol_pme_status(&hw_priv->hw);
5524 }
5525 }
5526 port_set_power_saving(port, false);
5527
5528 for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5529 /*
5530 * Initialize to invalid value so that link detection
5531 * is done.
5532 */
5533 hw->port_info[p].partner = 0xFF;
5534 hw->port_info[p].state = media_disconnected;
5535 }
5536
5537 /* Need to open the port in multiple device interfaces mode. */
5538 if (hw->dev_count > 1) {
5539 port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5540 if (port->first_port > 0)
5541 hw_add_addr(hw, dev->dev_addr);
5542 }
5543
5544 port_get_link_speed(port);
5545 if (port->force_link)
5546 port_force_link_speed(port);
5547 else
5548 port_set_link_speed(port);
5549
5550 if (!(hw_priv->opened)) {
5551 hw_setup_intr(hw);
5552 hw_enable(hw);
5553 hw_ena_intr(hw);
5554
5555 if (hw->mib_port_cnt)
5556 ksz_start_timer(&hw_priv->mib_timer_info,
5557 hw_priv->mib_timer_info.period);
5558 }
5559
5560 hw_priv->opened++;
5561
5562 ksz_start_timer(&priv->monitor_timer_info,
5563 priv->monitor_timer_info.period);
5564
5565 priv->media_state = port->linked->state;
5566
5567 set_media_state(dev, media_connected);
5568 netif_start_queue(dev);
5569
5570 return 0;
5571 }
5572
5573 /* RX errors = rx_errors */
5574 /* RX dropped = rx_dropped */
5575 /* RX overruns = rx_fifo_errors */
5576 /* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5577 /* TX errors = tx_errors */
5578 /* TX dropped = tx_dropped */
5579 /* TX overruns = tx_fifo_errors */
5580 /* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5581 /* collisions = collisions */
5582
5583 /**
5584 * netdev_query_statistics - query network device statistics
5585 * @dev: Network device.
5586 *
5587 * This function returns the statistics of the network device. The device
5588 * needs not be opened.
5589 *
5590 * Return network device statistics.
5591 */
netdev_query_statistics(struct net_device * dev)5592 static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5593 {
5594 struct dev_priv *priv = netdev_priv(dev);
5595 struct ksz_port *port = &priv->port;
5596 struct ksz_hw *hw = &priv->adapter->hw;
5597 struct ksz_port_mib *mib;
5598 int i;
5599 int p;
5600
5601 dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5602 dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5603
5604 /* Reset to zero to add count later. */
5605 dev->stats.multicast = 0;
5606 dev->stats.collisions = 0;
5607 dev->stats.rx_length_errors = 0;
5608 dev->stats.rx_crc_errors = 0;
5609 dev->stats.rx_frame_errors = 0;
5610 dev->stats.tx_window_errors = 0;
5611
5612 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5613 mib = &hw->port_mib[p];
5614
5615 dev->stats.multicast += (unsigned long)
5616 mib->counter[MIB_COUNTER_RX_MULTICAST];
5617
5618 dev->stats.collisions += (unsigned long)
5619 mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5620
5621 dev->stats.rx_length_errors += (unsigned long)(
5622 mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5623 mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5624 mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5625 mib->counter[MIB_COUNTER_RX_JABBER]);
5626 dev->stats.rx_crc_errors += (unsigned long)
5627 mib->counter[MIB_COUNTER_RX_CRC_ERR];
5628 dev->stats.rx_frame_errors += (unsigned long)(
5629 mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5630 mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5631
5632 dev->stats.tx_window_errors += (unsigned long)
5633 mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5634 }
5635
5636 return &dev->stats;
5637 }
5638
5639 /**
5640 * netdev_set_mac_address - set network device MAC address
5641 * @dev: Network device.
5642 * @addr: Buffer of MAC address.
5643 *
5644 * This function is used to set the MAC address of the network device.
5645 *
5646 * Return 0 to indicate success.
5647 */
netdev_set_mac_address(struct net_device * dev,void * addr)5648 static int netdev_set_mac_address(struct net_device *dev, void *addr)
5649 {
5650 struct dev_priv *priv = netdev_priv(dev);
5651 struct dev_info *hw_priv = priv->adapter;
5652 struct ksz_hw *hw = &hw_priv->hw;
5653 struct sockaddr *mac = addr;
5654 uint interrupt;
5655
5656 if (priv->port.first_port > 0)
5657 hw_del_addr(hw, dev->dev_addr);
5658 else {
5659 hw->mac_override = 1;
5660 memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5661 }
5662
5663 memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5664
5665 interrupt = hw_block_intr(hw);
5666
5667 if (priv->port.first_port > 0)
5668 hw_add_addr(hw, dev->dev_addr);
5669 else
5670 hw_set_addr(hw);
5671 hw_restore_intr(hw, interrupt);
5672
5673 return 0;
5674 }
5675
dev_set_promiscuous(struct net_device * dev,struct dev_priv * priv,struct ksz_hw * hw,int promiscuous)5676 static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5677 struct ksz_hw *hw, int promiscuous)
5678 {
5679 if (promiscuous != priv->promiscuous) {
5680 u8 prev_state = hw->promiscuous;
5681
5682 if (promiscuous)
5683 ++hw->promiscuous;
5684 else
5685 --hw->promiscuous;
5686 priv->promiscuous = promiscuous;
5687
5688 /* Turn on/off promiscuous mode. */
5689 if (hw->promiscuous <= 1 && prev_state <= 1)
5690 hw_set_promiscuous(hw, hw->promiscuous);
5691
5692 /*
5693 * Port is not in promiscuous mode, meaning it is released
5694 * from the bridge.
5695 */
5696 if ((hw->features & STP_SUPPORT) && !promiscuous &&
5697 (dev->priv_flags & IFF_BRIDGE_PORT)) {
5698 struct ksz_switch *sw = hw->ksz_switch;
5699 int port = priv->port.first_port;
5700
5701 port_set_stp_state(hw, port, STP_STATE_DISABLED);
5702 port = 1 << port;
5703 if (sw->member & port) {
5704 sw->member &= ~port;
5705 bridge_change(hw);
5706 }
5707 }
5708 }
5709 }
5710
dev_set_multicast(struct dev_priv * priv,struct ksz_hw * hw,int multicast)5711 static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5712 int multicast)
5713 {
5714 if (multicast != priv->multicast) {
5715 u8 all_multi = hw->all_multi;
5716
5717 if (multicast)
5718 ++hw->all_multi;
5719 else
5720 --hw->all_multi;
5721 priv->multicast = multicast;
5722
5723 /* Turn on/off all multicast mode. */
5724 if (hw->all_multi <= 1 && all_multi <= 1)
5725 hw_set_multicast(hw, hw->all_multi);
5726 }
5727 }
5728
5729 /**
5730 * netdev_set_rx_mode
5731 * @dev: Network device.
5732 *
5733 * This routine is used to set multicast addresses or put the network device
5734 * into promiscuous mode.
5735 */
netdev_set_rx_mode(struct net_device * dev)5736 static void netdev_set_rx_mode(struct net_device *dev)
5737 {
5738 struct dev_priv *priv = netdev_priv(dev);
5739 struct dev_info *hw_priv = priv->adapter;
5740 struct ksz_hw *hw = &hw_priv->hw;
5741 struct netdev_hw_addr *ha;
5742 int multicast = (dev->flags & IFF_ALLMULTI);
5743
5744 dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5745
5746 if (hw_priv->hw.dev_count > 1)
5747 multicast |= (dev->flags & IFF_MULTICAST);
5748 dev_set_multicast(priv, hw, multicast);
5749
5750 /* Cannot use different hashes in multiple device interfaces mode. */
5751 if (hw_priv->hw.dev_count > 1)
5752 return;
5753
5754 if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5755 int i = 0;
5756
5757 /* List too big to support so turn on all multicast mode. */
5758 if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5759 if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5760 hw->multi_list_size = MAX_MULTICAST_LIST;
5761 ++hw->all_multi;
5762 hw_set_multicast(hw, hw->all_multi);
5763 }
5764 return;
5765 }
5766
5767 netdev_for_each_mc_addr(ha, dev) {
5768 if (i >= MAX_MULTICAST_LIST)
5769 break;
5770 memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5771 }
5772 hw->multi_list_size = (u8) i;
5773 hw_set_grp_addr(hw);
5774 } else {
5775 if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5776 --hw->all_multi;
5777 hw_set_multicast(hw, hw->all_multi);
5778 }
5779 hw->multi_list_size = 0;
5780 hw_clr_multicast(hw);
5781 }
5782 }
5783
netdev_change_mtu(struct net_device * dev,int new_mtu)5784 static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5785 {
5786 struct dev_priv *priv = netdev_priv(dev);
5787 struct dev_info *hw_priv = priv->adapter;
5788 struct ksz_hw *hw = &hw_priv->hw;
5789 int hw_mtu;
5790
5791 if (netif_running(dev))
5792 return -EBUSY;
5793
5794 /* Cannot use different MTU in multiple device interfaces mode. */
5795 if (hw->dev_count > 1)
5796 if (dev != hw_priv->dev)
5797 return 0;
5798
5799 hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5800 if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5801 hw->features |= RX_HUGE_FRAME;
5802 hw_mtu = MAX_RX_BUF_SIZE;
5803 } else {
5804 hw->features &= ~RX_HUGE_FRAME;
5805 hw_mtu = REGULAR_RX_BUF_SIZE;
5806 }
5807 hw_mtu = (hw_mtu + 3) & ~3;
5808 hw_priv->mtu = hw_mtu;
5809 dev->mtu = new_mtu;
5810
5811 return 0;
5812 }
5813
5814 /**
5815 * netdev_ioctl - I/O control processing
5816 * @dev: Network device.
5817 * @ifr: Interface request structure.
5818 * @cmd: I/O control code.
5819 *
5820 * This function is used to process I/O control calls.
5821 *
5822 * Return 0 to indicate success.
5823 */
netdev_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)5824 static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5825 {
5826 struct dev_priv *priv = netdev_priv(dev);
5827 struct dev_info *hw_priv = priv->adapter;
5828 struct ksz_hw *hw = &hw_priv->hw;
5829 struct ksz_port *port = &priv->port;
5830 int result = 0;
5831 struct mii_ioctl_data *data = if_mii(ifr);
5832
5833 if (down_interruptible(&priv->proc_sem))
5834 return -ERESTARTSYS;
5835
5836 switch (cmd) {
5837 /* Get address of MII PHY in use. */
5838 case SIOCGMIIPHY:
5839 data->phy_id = priv->id;
5840
5841 /* Fallthrough... */
5842
5843 /* Read MII PHY register. */
5844 case SIOCGMIIREG:
5845 if (data->phy_id != priv->id || data->reg_num >= 6)
5846 result = -EIO;
5847 else
5848 hw_r_phy(hw, port->linked->port_id, data->reg_num,
5849 &data->val_out);
5850 break;
5851
5852 /* Write MII PHY register. */
5853 case SIOCSMIIREG:
5854 if (!capable(CAP_NET_ADMIN))
5855 result = -EPERM;
5856 else if (data->phy_id != priv->id || data->reg_num >= 6)
5857 result = -EIO;
5858 else
5859 hw_w_phy(hw, port->linked->port_id, data->reg_num,
5860 data->val_in);
5861 break;
5862
5863 default:
5864 result = -EOPNOTSUPP;
5865 }
5866
5867 up(&priv->proc_sem);
5868
5869 return result;
5870 }
5871
5872 /*
5873 * MII support
5874 */
5875
5876 /**
5877 * mdio_read - read PHY register
5878 * @dev: Network device.
5879 * @phy_id: The PHY id.
5880 * @reg_num: The register number.
5881 *
5882 * This function returns the PHY register value.
5883 *
5884 * Return the register value.
5885 */
mdio_read(struct net_device * dev,int phy_id,int reg_num)5886 static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5887 {
5888 struct dev_priv *priv = netdev_priv(dev);
5889 struct ksz_port *port = &priv->port;
5890 struct ksz_hw *hw = port->hw;
5891 u16 val_out;
5892
5893 hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5894 return val_out;
5895 }
5896
5897 /**
5898 * mdio_write - set PHY register
5899 * @dev: Network device.
5900 * @phy_id: The PHY id.
5901 * @reg_num: The register number.
5902 * @val: The register value.
5903 *
5904 * This procedure sets the PHY register value.
5905 */
mdio_write(struct net_device * dev,int phy_id,int reg_num,int val)5906 static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5907 {
5908 struct dev_priv *priv = netdev_priv(dev);
5909 struct ksz_port *port = &priv->port;
5910 struct ksz_hw *hw = port->hw;
5911 int i;
5912 int pi;
5913
5914 for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5915 hw_w_phy(hw, pi, reg_num << 1, val);
5916 }
5917
5918 /*
5919 * ethtool support
5920 */
5921
5922 #define EEPROM_SIZE 0x40
5923
5924 static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5925
5926 #define ADVERTISED_ALL \
5927 (ADVERTISED_10baseT_Half | \
5928 ADVERTISED_10baseT_Full | \
5929 ADVERTISED_100baseT_Half | \
5930 ADVERTISED_100baseT_Full)
5931
5932 /* These functions use the MII functions in mii.c. */
5933
5934 /**
5935 * netdev_get_link_ksettings - get network device settings
5936 * @dev: Network device.
5937 * @cmd: Ethtool command.
5938 *
5939 * This function queries the PHY and returns its state in the ethtool command.
5940 *
5941 * Return 0 if successful; otherwise an error code.
5942 */
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)5943 static int netdev_get_link_ksettings(struct net_device *dev,
5944 struct ethtool_link_ksettings *cmd)
5945 {
5946 struct dev_priv *priv = netdev_priv(dev);
5947 struct dev_info *hw_priv = priv->adapter;
5948
5949 mutex_lock(&hw_priv->lock);
5950 mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5951 ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5952 mutex_unlock(&hw_priv->lock);
5953
5954 /* Save advertised settings for workaround in next function. */
5955 ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5956 cmd->link_modes.advertising);
5957
5958 return 0;
5959 }
5960
5961 /**
5962 * netdev_set_link_ksettings - set network device settings
5963 * @dev: Network device.
5964 * @cmd: Ethtool command.
5965 *
5966 * This function sets the PHY according to the ethtool command.
5967 *
5968 * Return 0 if successful; otherwise an error code.
5969 */
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)5970 static int netdev_set_link_ksettings(struct net_device *dev,
5971 const struct ethtool_link_ksettings *cmd)
5972 {
5973 struct dev_priv *priv = netdev_priv(dev);
5974 struct dev_info *hw_priv = priv->adapter;
5975 struct ksz_port *port = &priv->port;
5976 struct ethtool_link_ksettings copy_cmd;
5977 u32 speed = cmd->base.speed;
5978 u32 advertising;
5979 int rc;
5980
5981 ethtool_convert_link_mode_to_legacy_u32(&advertising,
5982 cmd->link_modes.advertising);
5983
5984 /*
5985 * ethtool utility does not change advertised setting if auto
5986 * negotiation is not specified explicitly.
5987 */
5988 if (cmd->base.autoneg && priv->advertising == advertising) {
5989 advertising |= ADVERTISED_ALL;
5990 if (10 == speed)
5991 advertising &=
5992 ~(ADVERTISED_100baseT_Full |
5993 ADVERTISED_100baseT_Half);
5994 else if (100 == speed)
5995 advertising &=
5996 ~(ADVERTISED_10baseT_Full |
5997 ADVERTISED_10baseT_Half);
5998 if (0 == cmd->base.duplex)
5999 advertising &=
6000 ~(ADVERTISED_100baseT_Full |
6001 ADVERTISED_10baseT_Full);
6002 else if (1 == cmd->base.duplex)
6003 advertising &=
6004 ~(ADVERTISED_100baseT_Half |
6005 ADVERTISED_10baseT_Half);
6006 }
6007 mutex_lock(&hw_priv->lock);
6008 if (cmd->base.autoneg &&
6009 (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6010 port->duplex = 0;
6011 port->speed = 0;
6012 port->force_link = 0;
6013 } else {
6014 port->duplex = cmd->base.duplex + 1;
6015 if (1000 != speed)
6016 port->speed = speed;
6017 if (cmd->base.autoneg)
6018 port->force_link = 0;
6019 else
6020 port->force_link = 1;
6021 }
6022
6023 memcpy(©_cmd, cmd, sizeof(copy_cmd));
6024 ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6025 advertising);
6026 rc = mii_ethtool_set_link_ksettings(
6027 &priv->mii_if,
6028 (const struct ethtool_link_ksettings *)©_cmd);
6029 mutex_unlock(&hw_priv->lock);
6030 return rc;
6031 }
6032
6033 /**
6034 * netdev_nway_reset - restart auto-negotiation
6035 * @dev: Network device.
6036 *
6037 * This function restarts the PHY for auto-negotiation.
6038 *
6039 * Return 0 if successful; otherwise an error code.
6040 */
netdev_nway_reset(struct net_device * dev)6041 static int netdev_nway_reset(struct net_device *dev)
6042 {
6043 struct dev_priv *priv = netdev_priv(dev);
6044 struct dev_info *hw_priv = priv->adapter;
6045 int rc;
6046
6047 mutex_lock(&hw_priv->lock);
6048 rc = mii_nway_restart(&priv->mii_if);
6049 mutex_unlock(&hw_priv->lock);
6050 return rc;
6051 }
6052
6053 /**
6054 * netdev_get_link - get network device link status
6055 * @dev: Network device.
6056 *
6057 * This function gets the link status from the PHY.
6058 *
6059 * Return true if PHY is linked and false otherwise.
6060 */
netdev_get_link(struct net_device * dev)6061 static u32 netdev_get_link(struct net_device *dev)
6062 {
6063 struct dev_priv *priv = netdev_priv(dev);
6064 int rc;
6065
6066 rc = mii_link_ok(&priv->mii_if);
6067 return rc;
6068 }
6069
6070 /**
6071 * netdev_get_drvinfo - get network driver information
6072 * @dev: Network device.
6073 * @info: Ethtool driver info data structure.
6074 *
6075 * This procedure returns the driver information.
6076 */
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)6077 static void netdev_get_drvinfo(struct net_device *dev,
6078 struct ethtool_drvinfo *info)
6079 {
6080 struct dev_priv *priv = netdev_priv(dev);
6081 struct dev_info *hw_priv = priv->adapter;
6082
6083 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6084 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6085 strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6086 sizeof(info->bus_info));
6087 }
6088
6089 /**
6090 * netdev_get_regs_len - get length of register dump
6091 * @dev: Network device.
6092 *
6093 * This function returns the length of the register dump.
6094 *
6095 * Return length of the register dump.
6096 */
6097 static struct hw_regs {
6098 int start;
6099 int end;
6100 } hw_regs_range[] = {
6101 { KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
6102 { KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
6103 { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6104 { KS884X_SIDER_P, KS8842_SGCR7_P },
6105 { KS8842_MACAR1_P, KS8842_TOSR8_P },
6106 { KS884X_P1MBCR_P, KS8842_P3ERCR_P },
6107 { 0, 0 }
6108 };
6109
netdev_get_regs_len(struct net_device * dev)6110 static int netdev_get_regs_len(struct net_device *dev)
6111 {
6112 struct hw_regs *range = hw_regs_range;
6113 int regs_len = 0x10 * sizeof(u32);
6114
6115 while (range->end > range->start) {
6116 regs_len += (range->end - range->start + 3) / 4 * 4;
6117 range++;
6118 }
6119 return regs_len;
6120 }
6121
6122 /**
6123 * netdev_get_regs - get register dump
6124 * @dev: Network device.
6125 * @regs: Ethtool registers data structure.
6126 * @ptr: Buffer to store the register values.
6127 *
6128 * This procedure dumps the register values in the provided buffer.
6129 */
netdev_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * ptr)6130 static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6131 void *ptr)
6132 {
6133 struct dev_priv *priv = netdev_priv(dev);
6134 struct dev_info *hw_priv = priv->adapter;
6135 struct ksz_hw *hw = &hw_priv->hw;
6136 int *buf = (int *) ptr;
6137 struct hw_regs *range = hw_regs_range;
6138 int len;
6139
6140 mutex_lock(&hw_priv->lock);
6141 regs->version = 0;
6142 for (len = 0; len < 0x40; len += 4) {
6143 pci_read_config_dword(hw_priv->pdev, len, buf);
6144 buf++;
6145 }
6146 while (range->end > range->start) {
6147 for (len = range->start; len < range->end; len += 4) {
6148 *buf = readl(hw->io + len);
6149 buf++;
6150 }
6151 range++;
6152 }
6153 mutex_unlock(&hw_priv->lock);
6154 }
6155
6156 #define WOL_SUPPORT \
6157 (WAKE_PHY | WAKE_MAGIC | \
6158 WAKE_UCAST | WAKE_MCAST | \
6159 WAKE_BCAST | WAKE_ARP)
6160
6161 /**
6162 * netdev_get_wol - get Wake-on-LAN support
6163 * @dev: Network device.
6164 * @wol: Ethtool Wake-on-LAN data structure.
6165 *
6166 * This procedure returns Wake-on-LAN support.
6167 */
netdev_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)6168 static void netdev_get_wol(struct net_device *dev,
6169 struct ethtool_wolinfo *wol)
6170 {
6171 struct dev_priv *priv = netdev_priv(dev);
6172 struct dev_info *hw_priv = priv->adapter;
6173
6174 wol->supported = hw_priv->wol_support;
6175 wol->wolopts = hw_priv->wol_enable;
6176 memset(&wol->sopass, 0, sizeof(wol->sopass));
6177 }
6178
6179 /**
6180 * netdev_set_wol - set Wake-on-LAN support
6181 * @dev: Network device.
6182 * @wol: Ethtool Wake-on-LAN data structure.
6183 *
6184 * This function sets Wake-on-LAN support.
6185 *
6186 * Return 0 if successful; otherwise an error code.
6187 */
netdev_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)6188 static int netdev_set_wol(struct net_device *dev,
6189 struct ethtool_wolinfo *wol)
6190 {
6191 struct dev_priv *priv = netdev_priv(dev);
6192 struct dev_info *hw_priv = priv->adapter;
6193
6194 /* Need to find a way to retrieve the device IP address. */
6195 static const u8 net_addr[] = { 192, 168, 1, 1 };
6196
6197 if (wol->wolopts & ~hw_priv->wol_support)
6198 return -EINVAL;
6199
6200 hw_priv->wol_enable = wol->wolopts;
6201
6202 /* Link wakeup cannot really be disabled. */
6203 if (wol->wolopts)
6204 hw_priv->wol_enable |= WAKE_PHY;
6205 hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6206 return 0;
6207 }
6208
6209 /**
6210 * netdev_get_msglevel - get debug message level
6211 * @dev: Network device.
6212 *
6213 * This function returns current debug message level.
6214 *
6215 * Return current debug message flags.
6216 */
netdev_get_msglevel(struct net_device * dev)6217 static u32 netdev_get_msglevel(struct net_device *dev)
6218 {
6219 struct dev_priv *priv = netdev_priv(dev);
6220
6221 return priv->msg_enable;
6222 }
6223
6224 /**
6225 * netdev_set_msglevel - set debug message level
6226 * @dev: Network device.
6227 * @value: Debug message flags.
6228 *
6229 * This procedure sets debug message level.
6230 */
netdev_set_msglevel(struct net_device * dev,u32 value)6231 static void netdev_set_msglevel(struct net_device *dev, u32 value)
6232 {
6233 struct dev_priv *priv = netdev_priv(dev);
6234
6235 priv->msg_enable = value;
6236 }
6237
6238 /**
6239 * netdev_get_eeprom_len - get EEPROM length
6240 * @dev: Network device.
6241 *
6242 * This function returns the length of the EEPROM.
6243 *
6244 * Return length of the EEPROM.
6245 */
netdev_get_eeprom_len(struct net_device * dev)6246 static int netdev_get_eeprom_len(struct net_device *dev)
6247 {
6248 return EEPROM_SIZE * 2;
6249 }
6250
6251 /**
6252 * netdev_get_eeprom - get EEPROM data
6253 * @dev: Network device.
6254 * @eeprom: Ethtool EEPROM data structure.
6255 * @data: Buffer to store the EEPROM data.
6256 *
6257 * This function dumps the EEPROM data in the provided buffer.
6258 *
6259 * Return 0 if successful; otherwise an error code.
6260 */
6261 #define EEPROM_MAGIC 0x10A18842
6262
netdev_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)6263 static int netdev_get_eeprom(struct net_device *dev,
6264 struct ethtool_eeprom *eeprom, u8 *data)
6265 {
6266 struct dev_priv *priv = netdev_priv(dev);
6267 struct dev_info *hw_priv = priv->adapter;
6268 u8 *eeprom_byte = (u8 *) eeprom_data;
6269 int i;
6270 int len;
6271
6272 len = (eeprom->offset + eeprom->len + 1) / 2;
6273 for (i = eeprom->offset / 2; i < len; i++)
6274 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6275 eeprom->magic = EEPROM_MAGIC;
6276 memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6277
6278 return 0;
6279 }
6280
6281 /**
6282 * netdev_set_eeprom - write EEPROM data
6283 * @dev: Network device.
6284 * @eeprom: Ethtool EEPROM data structure.
6285 * @data: Data buffer.
6286 *
6287 * This function modifies the EEPROM data one byte at a time.
6288 *
6289 * Return 0 if successful; otherwise an error code.
6290 */
netdev_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)6291 static int netdev_set_eeprom(struct net_device *dev,
6292 struct ethtool_eeprom *eeprom, u8 *data)
6293 {
6294 struct dev_priv *priv = netdev_priv(dev);
6295 struct dev_info *hw_priv = priv->adapter;
6296 u16 eeprom_word[EEPROM_SIZE];
6297 u8 *eeprom_byte = (u8 *) eeprom_word;
6298 int i;
6299 int len;
6300
6301 if (eeprom->magic != EEPROM_MAGIC)
6302 return -EINVAL;
6303
6304 len = (eeprom->offset + eeprom->len + 1) / 2;
6305 for (i = eeprom->offset / 2; i < len; i++)
6306 eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6307 memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6308 memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6309 for (i = 0; i < EEPROM_SIZE; i++)
6310 if (eeprom_word[i] != eeprom_data[i]) {
6311 eeprom_data[i] = eeprom_word[i];
6312 eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6313 }
6314
6315 return 0;
6316 }
6317
6318 /**
6319 * netdev_get_pauseparam - get flow control parameters
6320 * @dev: Network device.
6321 * @pause: Ethtool PAUSE settings data structure.
6322 *
6323 * This procedure returns the PAUSE control flow settings.
6324 */
netdev_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)6325 static void netdev_get_pauseparam(struct net_device *dev,
6326 struct ethtool_pauseparam *pause)
6327 {
6328 struct dev_priv *priv = netdev_priv(dev);
6329 struct dev_info *hw_priv = priv->adapter;
6330 struct ksz_hw *hw = &hw_priv->hw;
6331
6332 pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6333 if (!hw->ksz_switch) {
6334 pause->rx_pause =
6335 (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6336 pause->tx_pause =
6337 (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6338 } else {
6339 pause->rx_pause =
6340 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6341 SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6342 pause->tx_pause =
6343 (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6344 SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6345 }
6346 }
6347
6348 /**
6349 * netdev_set_pauseparam - set flow control parameters
6350 * @dev: Network device.
6351 * @pause: Ethtool PAUSE settings data structure.
6352 *
6353 * This function sets the PAUSE control flow settings.
6354 * Not implemented yet.
6355 *
6356 * Return 0 if successful; otherwise an error code.
6357 */
netdev_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * pause)6358 static int netdev_set_pauseparam(struct net_device *dev,
6359 struct ethtool_pauseparam *pause)
6360 {
6361 struct dev_priv *priv = netdev_priv(dev);
6362 struct dev_info *hw_priv = priv->adapter;
6363 struct ksz_hw *hw = &hw_priv->hw;
6364 struct ksz_port *port = &priv->port;
6365
6366 mutex_lock(&hw_priv->lock);
6367 if (pause->autoneg) {
6368 if (!pause->rx_pause && !pause->tx_pause)
6369 port->flow_ctrl = PHY_NO_FLOW_CTRL;
6370 else
6371 port->flow_ctrl = PHY_FLOW_CTRL;
6372 hw->overrides &= ~PAUSE_FLOW_CTRL;
6373 port->force_link = 0;
6374 if (hw->ksz_switch) {
6375 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6376 SWITCH_RX_FLOW_CTRL, 1);
6377 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6378 SWITCH_TX_FLOW_CTRL, 1);
6379 }
6380 port_set_link_speed(port);
6381 } else {
6382 hw->overrides |= PAUSE_FLOW_CTRL;
6383 if (hw->ksz_switch) {
6384 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6385 SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6386 sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387 SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6388 } else
6389 set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6390 }
6391 mutex_unlock(&hw_priv->lock);
6392
6393 return 0;
6394 }
6395
6396 /**
6397 * netdev_get_ringparam - get tx/rx ring parameters
6398 * @dev: Network device.
6399 * @pause: Ethtool RING settings data structure.
6400 *
6401 * This procedure returns the TX/RX ring settings.
6402 */
netdev_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ring)6403 static void netdev_get_ringparam(struct net_device *dev,
6404 struct ethtool_ringparam *ring)
6405 {
6406 struct dev_priv *priv = netdev_priv(dev);
6407 struct dev_info *hw_priv = priv->adapter;
6408 struct ksz_hw *hw = &hw_priv->hw;
6409
6410 ring->tx_max_pending = (1 << 9);
6411 ring->tx_pending = hw->tx_desc_info.alloc;
6412 ring->rx_max_pending = (1 << 9);
6413 ring->rx_pending = hw->rx_desc_info.alloc;
6414 }
6415
6416 #define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
6417
6418 static struct {
6419 char string[ETH_GSTRING_LEN];
6420 } ethtool_stats_keys[STATS_LEN] = {
6421 { "rx_lo_priority_octets" },
6422 { "rx_hi_priority_octets" },
6423 { "rx_undersize_packets" },
6424 { "rx_fragments" },
6425 { "rx_oversize_packets" },
6426 { "rx_jabbers" },
6427 { "rx_symbol_errors" },
6428 { "rx_crc_errors" },
6429 { "rx_align_errors" },
6430 { "rx_mac_ctrl_packets" },
6431 { "rx_pause_packets" },
6432 { "rx_bcast_packets" },
6433 { "rx_mcast_packets" },
6434 { "rx_ucast_packets" },
6435 { "rx_64_or_less_octet_packets" },
6436 { "rx_65_to_127_octet_packets" },
6437 { "rx_128_to_255_octet_packets" },
6438 { "rx_256_to_511_octet_packets" },
6439 { "rx_512_to_1023_octet_packets" },
6440 { "rx_1024_to_1522_octet_packets" },
6441
6442 { "tx_lo_priority_octets" },
6443 { "tx_hi_priority_octets" },
6444 { "tx_late_collisions" },
6445 { "tx_pause_packets" },
6446 { "tx_bcast_packets" },
6447 { "tx_mcast_packets" },
6448 { "tx_ucast_packets" },
6449 { "tx_deferred" },
6450 { "tx_total_collisions" },
6451 { "tx_excessive_collisions" },
6452 { "tx_single_collisions" },
6453 { "tx_mult_collisions" },
6454
6455 { "rx_discards" },
6456 { "tx_discards" },
6457 };
6458
6459 /**
6460 * netdev_get_strings - get statistics identity strings
6461 * @dev: Network device.
6462 * @stringset: String set identifier.
6463 * @buf: Buffer to store the strings.
6464 *
6465 * This procedure returns the strings used to identify the statistics.
6466 */
netdev_get_strings(struct net_device * dev,u32 stringset,u8 * buf)6467 static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6468 {
6469 struct dev_priv *priv = netdev_priv(dev);
6470 struct dev_info *hw_priv = priv->adapter;
6471 struct ksz_hw *hw = &hw_priv->hw;
6472
6473 if (ETH_SS_STATS == stringset)
6474 memcpy(buf, ðtool_stats_keys,
6475 ETH_GSTRING_LEN * hw->mib_cnt);
6476 }
6477
6478 /**
6479 * netdev_get_sset_count - get statistics size
6480 * @dev: Network device.
6481 * @sset: The statistics set number.
6482 *
6483 * This function returns the size of the statistics to be reported.
6484 *
6485 * Return size of the statistics to be reported.
6486 */
netdev_get_sset_count(struct net_device * dev,int sset)6487 static int netdev_get_sset_count(struct net_device *dev, int sset)
6488 {
6489 struct dev_priv *priv = netdev_priv(dev);
6490 struct dev_info *hw_priv = priv->adapter;
6491 struct ksz_hw *hw = &hw_priv->hw;
6492
6493 switch (sset) {
6494 case ETH_SS_STATS:
6495 return hw->mib_cnt;
6496 default:
6497 return -EOPNOTSUPP;
6498 }
6499 }
6500
6501 /**
6502 * netdev_get_ethtool_stats - get network device statistics
6503 * @dev: Network device.
6504 * @stats: Ethtool statistics data structure.
6505 * @data: Buffer to store the statistics.
6506 *
6507 * This procedure returns the statistics.
6508 */
netdev_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)6509 static void netdev_get_ethtool_stats(struct net_device *dev,
6510 struct ethtool_stats *stats, u64 *data)
6511 {
6512 struct dev_priv *priv = netdev_priv(dev);
6513 struct dev_info *hw_priv = priv->adapter;
6514 struct ksz_hw *hw = &hw_priv->hw;
6515 struct ksz_port *port = &priv->port;
6516 int n_stats = stats->n_stats;
6517 int i;
6518 int n;
6519 int p;
6520 int rc;
6521 u64 counter[TOTAL_PORT_COUNTER_NUM];
6522
6523 mutex_lock(&hw_priv->lock);
6524 n = SWITCH_PORT_NUM;
6525 for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6526 if (media_connected == hw->port_mib[p].state) {
6527 hw_priv->counter[p].read = 1;
6528
6529 /* Remember first port that requests read. */
6530 if (n == SWITCH_PORT_NUM)
6531 n = p;
6532 }
6533 }
6534 mutex_unlock(&hw_priv->lock);
6535
6536 if (n < SWITCH_PORT_NUM)
6537 schedule_work(&hw_priv->mib_read);
6538
6539 if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6540 p = n;
6541 rc = wait_event_interruptible_timeout(
6542 hw_priv->counter[p].counter,
6543 2 == hw_priv->counter[p].read,
6544 HZ * 1);
6545 } else
6546 for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6547 if (0 == i) {
6548 rc = wait_event_interruptible_timeout(
6549 hw_priv->counter[p].counter,
6550 2 == hw_priv->counter[p].read,
6551 HZ * 2);
6552 } else if (hw->port_mib[p].cnt_ptr) {
6553 rc = wait_event_interruptible_timeout(
6554 hw_priv->counter[p].counter,
6555 2 == hw_priv->counter[p].read,
6556 HZ * 1);
6557 }
6558 }
6559
6560 get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6561 n = hw->mib_cnt;
6562 if (n > n_stats)
6563 n = n_stats;
6564 n_stats -= n;
6565 for (i = 0; i < n; i++)
6566 *data++ = counter[i];
6567 }
6568
6569 /**
6570 * netdev_set_features - set receive checksum support
6571 * @dev: Network device.
6572 * @features: New device features (offloads).
6573 *
6574 * This function sets receive checksum support setting.
6575 *
6576 * Return 0 if successful; otherwise an error code.
6577 */
netdev_set_features(struct net_device * dev,netdev_features_t features)6578 static int netdev_set_features(struct net_device *dev,
6579 netdev_features_t features)
6580 {
6581 struct dev_priv *priv = netdev_priv(dev);
6582 struct dev_info *hw_priv = priv->adapter;
6583 struct ksz_hw *hw = &hw_priv->hw;
6584
6585 mutex_lock(&hw_priv->lock);
6586
6587 /* see note in hw_setup() */
6588 if (features & NETIF_F_RXCSUM)
6589 hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6590 else
6591 hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6592
6593 if (hw->enabled)
6594 writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6595
6596 mutex_unlock(&hw_priv->lock);
6597
6598 return 0;
6599 }
6600
6601 static const struct ethtool_ops netdev_ethtool_ops = {
6602 .nway_reset = netdev_nway_reset,
6603 .get_link = netdev_get_link,
6604 .get_drvinfo = netdev_get_drvinfo,
6605 .get_regs_len = netdev_get_regs_len,
6606 .get_regs = netdev_get_regs,
6607 .get_wol = netdev_get_wol,
6608 .set_wol = netdev_set_wol,
6609 .get_msglevel = netdev_get_msglevel,
6610 .set_msglevel = netdev_set_msglevel,
6611 .get_eeprom_len = netdev_get_eeprom_len,
6612 .get_eeprom = netdev_get_eeprom,
6613 .set_eeprom = netdev_set_eeprom,
6614 .get_pauseparam = netdev_get_pauseparam,
6615 .set_pauseparam = netdev_set_pauseparam,
6616 .get_ringparam = netdev_get_ringparam,
6617 .get_strings = netdev_get_strings,
6618 .get_sset_count = netdev_get_sset_count,
6619 .get_ethtool_stats = netdev_get_ethtool_stats,
6620 .get_link_ksettings = netdev_get_link_ksettings,
6621 .set_link_ksettings = netdev_set_link_ksettings,
6622 };
6623
6624 /*
6625 * Hardware monitoring
6626 */
6627
update_link(struct net_device * dev,struct dev_priv * priv,struct ksz_port * port)6628 static void update_link(struct net_device *dev, struct dev_priv *priv,
6629 struct ksz_port *port)
6630 {
6631 if (priv->media_state != port->linked->state) {
6632 priv->media_state = port->linked->state;
6633 if (netif_running(dev))
6634 set_media_state(dev, media_connected);
6635 }
6636 }
6637
mib_read_work(struct work_struct * work)6638 static void mib_read_work(struct work_struct *work)
6639 {
6640 struct dev_info *hw_priv =
6641 container_of(work, struct dev_info, mib_read);
6642 struct ksz_hw *hw = &hw_priv->hw;
6643 struct ksz_port_mib *mib;
6644 int i;
6645
6646 next_jiffies = jiffies;
6647 for (i = 0; i < hw->mib_port_cnt; i++) {
6648 mib = &hw->port_mib[i];
6649
6650 /* Reading MIB counters or requested to read. */
6651 if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6652
6653 /* Need to process receive interrupt. */
6654 if (port_r_cnt(hw, i))
6655 break;
6656 hw_priv->counter[i].read = 0;
6657
6658 /* Finish reading counters. */
6659 if (0 == mib->cnt_ptr) {
6660 hw_priv->counter[i].read = 2;
6661 wake_up_interruptible(
6662 &hw_priv->counter[i].counter);
6663 }
6664 } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6665 /* Only read MIB counters when the port is connected. */
6666 if (media_connected == mib->state)
6667 hw_priv->counter[i].read = 1;
6668 next_jiffies += HZ * 1 * hw->mib_port_cnt;
6669 hw_priv->counter[i].time = next_jiffies;
6670
6671 /* Port is just disconnected. */
6672 } else if (mib->link_down) {
6673 mib->link_down = 0;
6674
6675 /* Read counters one last time after link is lost. */
6676 hw_priv->counter[i].read = 1;
6677 }
6678 }
6679 }
6680
mib_monitor(struct timer_list * t)6681 static void mib_monitor(struct timer_list *t)
6682 {
6683 struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6684
6685 mib_read_work(&hw_priv->mib_read);
6686
6687 /* This is used to verify Wake-on-LAN is working. */
6688 if (hw_priv->pme_wait) {
6689 if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6690 hw_clr_wol_pme_status(&hw_priv->hw);
6691 hw_priv->pme_wait = 0;
6692 }
6693 } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6694
6695 /* PME is asserted. Wait 2 seconds to clear it. */
6696 hw_priv->pme_wait = jiffies + HZ * 2;
6697 }
6698
6699 ksz_update_timer(&hw_priv->mib_timer_info);
6700 }
6701
6702 /**
6703 * dev_monitor - periodic monitoring
6704 * @ptr: Network device pointer.
6705 *
6706 * This routine is run in a kernel timer to monitor the network device.
6707 */
dev_monitor(struct timer_list * t)6708 static void dev_monitor(struct timer_list *t)
6709 {
6710 struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6711 struct net_device *dev = priv->mii_if.dev;
6712 struct dev_info *hw_priv = priv->adapter;
6713 struct ksz_hw *hw = &hw_priv->hw;
6714 struct ksz_port *port = &priv->port;
6715
6716 if (!(hw->features & LINK_INT_WORKING))
6717 port_get_link_speed(port);
6718 update_link(dev, priv, port);
6719
6720 ksz_update_timer(&priv->monitor_timer_info);
6721 }
6722
6723 /*
6724 * Linux network device interface functions
6725 */
6726
6727 /* Driver exported variables */
6728
6729 static int msg_enable;
6730
6731 static char *macaddr = ":";
6732 static char *mac1addr = ":";
6733
6734 /*
6735 * This enables multiple network device mode for KSZ8842, which contains a
6736 * switch with two physical ports. Some users like to take control of the
6737 * ports for running Spanning Tree Protocol. The driver will create an
6738 * additional eth? device for the other port.
6739 *
6740 * Some limitations are the network devices cannot have different MTU and
6741 * multicast hash tables.
6742 */
6743 static int multi_dev;
6744
6745 /*
6746 * As most users select multiple network device mode to use Spanning Tree
6747 * Protocol, this enables a feature in which most unicast and multicast packets
6748 * are forwarded inside the switch and not passed to the host. Only packets
6749 * that need the host's attention are passed to it. This prevents the host
6750 * wasting CPU time to examine each and every incoming packets and do the
6751 * forwarding itself.
6752 *
6753 * As the hack requires the private bridge header, the driver cannot compile
6754 * with just the kernel headers.
6755 *
6756 * Enabling STP support also turns on multiple network device mode.
6757 */
6758 static int stp;
6759
6760 /*
6761 * This enables fast aging in the KSZ8842 switch. Not sure what situation
6762 * needs that. However, fast aging is used to flush the dynamic MAC table when
6763 * STP support is enabled.
6764 */
6765 static int fast_aging;
6766
6767 /**
6768 * netdev_init - initialize network device.
6769 * @dev: Network device.
6770 *
6771 * This function initializes the network device.
6772 *
6773 * Return 0 if successful; otherwise an error code indicating failure.
6774 */
netdev_init(struct net_device * dev)6775 static int __init netdev_init(struct net_device *dev)
6776 {
6777 struct dev_priv *priv = netdev_priv(dev);
6778
6779 /* 500 ms timeout */
6780 ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6781 dev_monitor);
6782
6783 /* 500 ms timeout */
6784 dev->watchdog_timeo = HZ / 2;
6785
6786 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6787
6788 /*
6789 * Hardware does not really support IPv6 checksum generation, but
6790 * driver actually runs faster with this on.
6791 */
6792 dev->hw_features |= NETIF_F_IPV6_CSUM;
6793
6794 dev->features |= dev->hw_features;
6795
6796 sema_init(&priv->proc_sem, 1);
6797
6798 priv->mii_if.phy_id_mask = 0x1;
6799 priv->mii_if.reg_num_mask = 0x7;
6800 priv->mii_if.dev = dev;
6801 priv->mii_if.mdio_read = mdio_read;
6802 priv->mii_if.mdio_write = mdio_write;
6803 priv->mii_if.phy_id = priv->port.first_port + 1;
6804
6805 priv->msg_enable = netif_msg_init(msg_enable,
6806 (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6807
6808 return 0;
6809 }
6810
6811 static const struct net_device_ops netdev_ops = {
6812 .ndo_init = netdev_init,
6813 .ndo_open = netdev_open,
6814 .ndo_stop = netdev_close,
6815 .ndo_get_stats = netdev_query_statistics,
6816 .ndo_start_xmit = netdev_tx,
6817 .ndo_tx_timeout = netdev_tx_timeout,
6818 .ndo_change_mtu = netdev_change_mtu,
6819 .ndo_set_features = netdev_set_features,
6820 .ndo_set_mac_address = netdev_set_mac_address,
6821 .ndo_validate_addr = eth_validate_addr,
6822 .ndo_do_ioctl = netdev_ioctl,
6823 .ndo_set_rx_mode = netdev_set_rx_mode,
6824 #ifdef CONFIG_NET_POLL_CONTROLLER
6825 .ndo_poll_controller = netdev_netpoll,
6826 #endif
6827 };
6828
netdev_free(struct net_device * dev)6829 static void netdev_free(struct net_device *dev)
6830 {
6831 if (dev->watchdog_timeo)
6832 unregister_netdev(dev);
6833
6834 free_netdev(dev);
6835 }
6836
6837 struct platform_info {
6838 struct dev_info dev_info;
6839 struct net_device *netdev[SWITCH_PORT_NUM];
6840 };
6841
6842 static int net_device_present;
6843
get_mac_addr(struct dev_info * hw_priv,u8 * macaddr,int port)6844 static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6845 {
6846 int i;
6847 int j;
6848 int got_num;
6849 int num;
6850
6851 i = j = num = got_num = 0;
6852 while (j < ETH_ALEN) {
6853 if (macaddr[i]) {
6854 int digit;
6855
6856 got_num = 1;
6857 digit = hex_to_bin(macaddr[i]);
6858 if (digit >= 0)
6859 num = num * 16 + digit;
6860 else if (':' == macaddr[i])
6861 got_num = 2;
6862 else
6863 break;
6864 } else if (got_num)
6865 got_num = 2;
6866 else
6867 break;
6868 if (2 == got_num) {
6869 if (MAIN_PORT == port) {
6870 hw_priv->hw.override_addr[j++] = (u8) num;
6871 hw_priv->hw.override_addr[5] +=
6872 hw_priv->hw.id;
6873 } else {
6874 hw_priv->hw.ksz_switch->other_addr[j++] =
6875 (u8) num;
6876 hw_priv->hw.ksz_switch->other_addr[5] +=
6877 hw_priv->hw.id;
6878 }
6879 num = got_num = 0;
6880 }
6881 i++;
6882 }
6883 if (ETH_ALEN == j) {
6884 if (MAIN_PORT == port)
6885 hw_priv->hw.mac_override = 1;
6886 }
6887 }
6888
6889 #define KS884X_DMA_MASK (~0x0UL)
6890
read_other_addr(struct ksz_hw * hw)6891 static void read_other_addr(struct ksz_hw *hw)
6892 {
6893 int i;
6894 u16 data[3];
6895 struct ksz_switch *sw = hw->ksz_switch;
6896
6897 for (i = 0; i < 3; i++)
6898 data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6899 if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6900 sw->other_addr[5] = (u8) data[0];
6901 sw->other_addr[4] = (u8)(data[0] >> 8);
6902 sw->other_addr[3] = (u8) data[1];
6903 sw->other_addr[2] = (u8)(data[1] >> 8);
6904 sw->other_addr[1] = (u8) data[2];
6905 sw->other_addr[0] = (u8)(data[2] >> 8);
6906 }
6907 }
6908
6909 #ifndef PCI_VENDOR_ID_MICREL_KS
6910 #define PCI_VENDOR_ID_MICREL_KS 0x16c6
6911 #endif
6912
pcidev_init(struct pci_dev * pdev,const struct pci_device_id * id)6913 static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6914 {
6915 struct net_device *dev;
6916 struct dev_priv *priv;
6917 struct dev_info *hw_priv;
6918 struct ksz_hw *hw;
6919 struct platform_info *info;
6920 struct ksz_port *port;
6921 unsigned long reg_base;
6922 unsigned long reg_len;
6923 int cnt;
6924 int i;
6925 int mib_port_count;
6926 int pi;
6927 int port_count;
6928 int result;
6929 char banner[sizeof(version)];
6930 struct ksz_switch *sw = NULL;
6931
6932 result = pci_enable_device(pdev);
6933 if (result)
6934 return result;
6935
6936 result = -ENODEV;
6937
6938 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6939 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6940 return result;
6941
6942 reg_base = pci_resource_start(pdev, 0);
6943 reg_len = pci_resource_len(pdev, 0);
6944 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6945 return result;
6946
6947 if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6948 return result;
6949 pci_set_master(pdev);
6950
6951 result = -ENOMEM;
6952
6953 info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6954 if (!info)
6955 goto pcidev_init_dev_err;
6956
6957 hw_priv = &info->dev_info;
6958 hw_priv->pdev = pdev;
6959
6960 hw = &hw_priv->hw;
6961
6962 hw->io = ioremap(reg_base, reg_len);
6963 if (!hw->io)
6964 goto pcidev_init_io_err;
6965
6966 cnt = hw_init(hw);
6967 if (!cnt) {
6968 if (msg_enable & NETIF_MSG_PROBE)
6969 pr_alert("chip not detected\n");
6970 result = -ENODEV;
6971 goto pcidev_init_alloc_err;
6972 }
6973
6974 snprintf(banner, sizeof(banner), "%s", version);
6975 banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
6976 dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6977 dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6978
6979 /* Assume device is KSZ8841. */
6980 hw->dev_count = 1;
6981 port_count = 1;
6982 mib_port_count = 1;
6983 hw->addr_list_size = 0;
6984 hw->mib_cnt = PORT_COUNTER_NUM;
6985 hw->mib_port_cnt = 1;
6986
6987 /* KSZ8842 has a switch with multiple ports. */
6988 if (2 == cnt) {
6989 if (fast_aging)
6990 hw->overrides |= FAST_AGING;
6991
6992 hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6993
6994 /* Multiple network device interfaces are required. */
6995 if (multi_dev) {
6996 hw->dev_count = SWITCH_PORT_NUM;
6997 hw->addr_list_size = SWITCH_PORT_NUM - 1;
6998 }
6999
7000 /* Single network device has multiple ports. */
7001 if (1 == hw->dev_count) {
7002 port_count = SWITCH_PORT_NUM;
7003 mib_port_count = SWITCH_PORT_NUM;
7004 }
7005 hw->mib_port_cnt = TOTAL_PORT_NUM;
7006 hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7007 if (!hw->ksz_switch)
7008 goto pcidev_init_alloc_err;
7009
7010 sw = hw->ksz_switch;
7011 }
7012 for (i = 0; i < hw->mib_port_cnt; i++)
7013 hw->port_mib[i].mib_start = 0;
7014
7015 hw->parent = hw_priv;
7016
7017 /* Default MTU is 1500. */
7018 hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7019
7020 if (ksz_alloc_mem(hw_priv))
7021 goto pcidev_init_mem_err;
7022
7023 hw_priv->hw.id = net_device_present;
7024
7025 spin_lock_init(&hw_priv->hwlock);
7026 mutex_init(&hw_priv->lock);
7027
7028 for (i = 0; i < TOTAL_PORT_NUM; i++)
7029 init_waitqueue_head(&hw_priv->counter[i].counter);
7030
7031 if (macaddr[0] != ':')
7032 get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7033
7034 /* Read MAC address and initialize override address if not overridden. */
7035 hw_read_addr(hw);
7036
7037 /* Multiple device interfaces mode requires a second MAC address. */
7038 if (hw->dev_count > 1) {
7039 memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7040 read_other_addr(hw);
7041 if (mac1addr[0] != ':')
7042 get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7043 }
7044
7045 hw_setup(hw);
7046 if (hw->ksz_switch)
7047 sw_setup(hw);
7048 else {
7049 hw_priv->wol_support = WOL_SUPPORT;
7050 hw_priv->wol_enable = 0;
7051 }
7052
7053 INIT_WORK(&hw_priv->mib_read, mib_read_work);
7054
7055 /* 500 ms timeout */
7056 ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7057 mib_monitor);
7058
7059 for (i = 0; i < hw->dev_count; i++) {
7060 dev = alloc_etherdev(sizeof(struct dev_priv));
7061 if (!dev)
7062 goto pcidev_init_reg_err;
7063 SET_NETDEV_DEV(dev, &pdev->dev);
7064 info->netdev[i] = dev;
7065
7066 priv = netdev_priv(dev);
7067 priv->adapter = hw_priv;
7068 priv->id = net_device_present++;
7069
7070 port = &priv->port;
7071 port->port_cnt = port_count;
7072 port->mib_port_cnt = mib_port_count;
7073 port->first_port = i;
7074 port->flow_ctrl = PHY_FLOW_CTRL;
7075
7076 port->hw = hw;
7077 port->linked = &hw->port_info[port->first_port];
7078
7079 for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7080 hw->port_info[pi].port_id = pi;
7081 hw->port_info[pi].pdev = dev;
7082 hw->port_info[pi].state = media_disconnected;
7083 }
7084
7085 dev->mem_start = (unsigned long) hw->io;
7086 dev->mem_end = dev->mem_start + reg_len - 1;
7087 dev->irq = pdev->irq;
7088 if (MAIN_PORT == i)
7089 memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7090 ETH_ALEN);
7091 else {
7092 memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7093 if (ether_addr_equal(sw->other_addr, hw->override_addr))
7094 dev->dev_addr[5] += port->first_port;
7095 }
7096
7097 dev->netdev_ops = &netdev_ops;
7098 dev->ethtool_ops = &netdev_ethtool_ops;
7099
7100 /* MTU range: 60 - 1894 */
7101 dev->min_mtu = ETH_ZLEN;
7102 dev->max_mtu = MAX_RX_BUF_SIZE -
7103 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7104
7105 if (register_netdev(dev))
7106 goto pcidev_init_reg_err;
7107 port_set_power_saving(port, true);
7108 }
7109
7110 pci_dev_get(hw_priv->pdev);
7111 pci_set_drvdata(pdev, info);
7112 return 0;
7113
7114 pcidev_init_reg_err:
7115 for (i = 0; i < hw->dev_count; i++) {
7116 if (info->netdev[i]) {
7117 netdev_free(info->netdev[i]);
7118 info->netdev[i] = NULL;
7119 }
7120 }
7121
7122 pcidev_init_mem_err:
7123 ksz_free_mem(hw_priv);
7124 kfree(hw->ksz_switch);
7125
7126 pcidev_init_alloc_err:
7127 iounmap(hw->io);
7128
7129 pcidev_init_io_err:
7130 kfree(info);
7131
7132 pcidev_init_dev_err:
7133 release_mem_region(reg_base, reg_len);
7134
7135 return result;
7136 }
7137
pcidev_exit(struct pci_dev * pdev)7138 static void pcidev_exit(struct pci_dev *pdev)
7139 {
7140 int i;
7141 struct platform_info *info = pci_get_drvdata(pdev);
7142 struct dev_info *hw_priv = &info->dev_info;
7143
7144 release_mem_region(pci_resource_start(pdev, 0),
7145 pci_resource_len(pdev, 0));
7146 for (i = 0; i < hw_priv->hw.dev_count; i++) {
7147 if (info->netdev[i])
7148 netdev_free(info->netdev[i]);
7149 }
7150 if (hw_priv->hw.io)
7151 iounmap(hw_priv->hw.io);
7152 ksz_free_mem(hw_priv);
7153 kfree(hw_priv->hw.ksz_switch);
7154 pci_dev_put(hw_priv->pdev);
7155 kfree(info);
7156 }
7157
7158 #ifdef CONFIG_PM
pcidev_resume(struct pci_dev * pdev)7159 static int pcidev_resume(struct pci_dev *pdev)
7160 {
7161 int i;
7162 struct platform_info *info = pci_get_drvdata(pdev);
7163 struct dev_info *hw_priv = &info->dev_info;
7164 struct ksz_hw *hw = &hw_priv->hw;
7165
7166 pci_set_power_state(pdev, PCI_D0);
7167 pci_restore_state(pdev);
7168 pci_enable_wake(pdev, PCI_D0, 0);
7169
7170 if (hw_priv->wol_enable)
7171 hw_cfg_wol_pme(hw, 0);
7172 for (i = 0; i < hw->dev_count; i++) {
7173 if (info->netdev[i]) {
7174 struct net_device *dev = info->netdev[i];
7175
7176 if (netif_running(dev)) {
7177 netdev_open(dev);
7178 netif_device_attach(dev);
7179 }
7180 }
7181 }
7182 return 0;
7183 }
7184
pcidev_suspend(struct pci_dev * pdev,pm_message_t state)7185 static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7186 {
7187 int i;
7188 struct platform_info *info = pci_get_drvdata(pdev);
7189 struct dev_info *hw_priv = &info->dev_info;
7190 struct ksz_hw *hw = &hw_priv->hw;
7191
7192 /* Need to find a way to retrieve the device IP address. */
7193 static const u8 net_addr[] = { 192, 168, 1, 1 };
7194
7195 for (i = 0; i < hw->dev_count; i++) {
7196 if (info->netdev[i]) {
7197 struct net_device *dev = info->netdev[i];
7198
7199 if (netif_running(dev)) {
7200 netif_device_detach(dev);
7201 netdev_close(dev);
7202 }
7203 }
7204 }
7205 if (hw_priv->wol_enable) {
7206 hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7207 hw_cfg_wol_pme(hw, 1);
7208 }
7209
7210 pci_save_state(pdev);
7211 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7212 pci_set_power_state(pdev, pci_choose_state(pdev, state));
7213 return 0;
7214 }
7215 #endif
7216
7217 static char pcidev_name[] = "ksz884xp";
7218
7219 static const struct pci_device_id pcidev_table[] = {
7220 { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7221 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7222 { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7223 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7224 { 0 }
7225 };
7226
7227 MODULE_DEVICE_TABLE(pci, pcidev_table);
7228
7229 static struct pci_driver pci_device_driver = {
7230 #ifdef CONFIG_PM
7231 .suspend = pcidev_suspend,
7232 .resume = pcidev_resume,
7233 #endif
7234 .name = pcidev_name,
7235 .id_table = pcidev_table,
7236 .probe = pcidev_init,
7237 .remove = pcidev_exit
7238 };
7239
7240 module_pci_driver(pci_device_driver);
7241
7242 MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7243 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7244 MODULE_LICENSE("GPL");
7245
7246 module_param_named(message, msg_enable, int, 0);
7247 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7248
7249 module_param(macaddr, charp, 0);
7250 module_param(mac1addr, charp, 0);
7251 module_param(fast_aging, int, 0);
7252 module_param(multi_dev, int, 0);
7253 module_param(stp, int, 0);
7254 MODULE_PARM_DESC(macaddr, "MAC address");
7255 MODULE_PARM_DESC(mac1addr, "Second MAC address");
7256 MODULE_PARM_DESC(fast_aging, "Fast aging");
7257 MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7258 MODULE_PARM_DESC(stp, "STP support");
7259