1 /*
2 * SMP boot-related support
3 *
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
11 *
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
23 */
24
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
42
43 #include <linux/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/page.h>
52 #include <asm/pgalloc.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55 #include <asm/ptrace.h>
56 #include <asm/sal.h>
57 #include <asm/tlbflush.h>
58 #include <asm/unistd.h>
59 #include <asm/sn/arch.h>
60
61 #define SMP_DEBUG 0
62
63 #if SMP_DEBUG
64 #define Dprintk(x...) printk(x)
65 #else
66 #define Dprintk(x...)
67 #endif
68
69 #ifdef CONFIG_HOTPLUG_CPU
70 #ifdef CONFIG_PERMIT_BSP_REMOVE
71 #define bsp_remove_ok 1
72 #else
73 #define bsp_remove_ok 0
74 #endif
75
76 /*
77 * Global array allocated for NR_CPUS at boot time
78 */
79 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
80
81 /*
82 * start_ap in head.S uses this to store current booting cpu
83 * info.
84 */
85 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
86
87 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
88
89 #else
90 #define set_brendez_area(x)
91 #endif
92
93
94 /*
95 * ITC synchronization related stuff:
96 */
97 #define MASTER (0)
98 #define SLAVE (SMP_CACHE_BYTES/8)
99
100 #define NUM_ROUNDS 64 /* magic value */
101 #define NUM_ITERS 5 /* likewise */
102
103 static DEFINE_SPINLOCK(itc_sync_lock);
104 static volatile unsigned long go[SLAVE + 1];
105
106 #define DEBUG_ITC_SYNC 0
107
108 extern void start_ap (void);
109 extern unsigned long ia64_iobase;
110
111 struct task_struct *task_for_booting_cpu;
112
113 /*
114 * State for each CPU
115 */
116 DEFINE_PER_CPU(int, cpu_state);
117
118 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
119 EXPORT_SYMBOL(cpu_core_map);
120 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
121 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
122
123 int smp_num_siblings = 1;
124
125 /* which logical CPU number maps to which CPU (physical APIC ID) */
126 volatile int ia64_cpu_to_sapicid[NR_CPUS];
127 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
128
129 static cpumask_t cpu_callin_map;
130
131 struct smp_boot_data smp_boot_data __initdata;
132
133 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
134
135 char __initdata no_int_routing;
136
137 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
138
139 #ifdef CONFIG_FORCE_CPEI_RETARGET
140 #define CPEI_OVERRIDE_DEFAULT (1)
141 #else
142 #define CPEI_OVERRIDE_DEFAULT (0)
143 #endif
144
145 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
146
147 static int __init
cmdl_force_cpei(char * str)148 cmdl_force_cpei(char *str)
149 {
150 int value=0;
151
152 get_option (&str, &value);
153 force_cpei_retarget = value;
154
155 return 1;
156 }
157
158 __setup("force_cpei=", cmdl_force_cpei);
159
160 static int __init
nointroute(char * str)161 nointroute (char *str)
162 {
163 no_int_routing = 1;
164 printk ("no_int_routing on\n");
165 return 1;
166 }
167
168 __setup("nointroute", nointroute);
169
fix_b0_for_bsp(void)170 static void fix_b0_for_bsp(void)
171 {
172 #ifdef CONFIG_HOTPLUG_CPU
173 int cpuid;
174 static int fix_bsp_b0 = 1;
175
176 cpuid = smp_processor_id();
177
178 /*
179 * Cache the b0 value on the first AP that comes up
180 */
181 if (!(fix_bsp_b0 && cpuid))
182 return;
183
184 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
185 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
186
187 fix_bsp_b0 = 0;
188 #endif
189 }
190
191 void
sync_master(void * arg)192 sync_master (void *arg)
193 {
194 unsigned long flags, i;
195
196 go[MASTER] = 0;
197
198 local_irq_save(flags);
199 {
200 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
201 while (!go[MASTER])
202 cpu_relax();
203 go[MASTER] = 0;
204 go[SLAVE] = ia64_get_itc();
205 }
206 }
207 local_irq_restore(flags);
208 }
209
210 /*
211 * Return the number of cycles by which our itc differs from the itc on the master
212 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
213 * negative that it is behind.
214 */
215 static inline long
get_delta(long * rt,long * master)216 get_delta (long *rt, long *master)
217 {
218 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
219 unsigned long tcenter, t0, t1, tm;
220 long i;
221
222 for (i = 0; i < NUM_ITERS; ++i) {
223 t0 = ia64_get_itc();
224 go[MASTER] = 1;
225 while (!(tm = go[SLAVE]))
226 cpu_relax();
227 go[SLAVE] = 0;
228 t1 = ia64_get_itc();
229
230 if (t1 - t0 < best_t1 - best_t0)
231 best_t0 = t0, best_t1 = t1, best_tm = tm;
232 }
233
234 *rt = best_t1 - best_t0;
235 *master = best_tm - best_t0;
236
237 /* average best_t0 and best_t1 without overflow: */
238 tcenter = (best_t0/2 + best_t1/2);
239 if (best_t0 % 2 + best_t1 % 2 == 2)
240 ++tcenter;
241 return tcenter - best_tm;
242 }
243
244 /*
245 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
246 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
247 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
248 * step). The basic idea is for the slave to ask the master what itc value it has and to
249 * read its own itc before and after the master responds. Each iteration gives us three
250 * timestamps:
251 *
252 * slave master
253 *
254 * t0 ---\
255 * ---\
256 * --->
257 * tm
258 * /---
259 * /---
260 * t1 <---
261 *
262 *
263 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
264 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
265 * between the slave and the master is symmetric. Even if the interconnect were
266 * asymmetric, we would still know that the synchronization error is smaller than the
267 * roundtrip latency (t0 - t1).
268 *
269 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
270 * within one or two cycles. However, we can only *guarantee* that the synchronization is
271 * accurate to within a round-trip time, which is typically in the range of several
272 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
273 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
274 * than half a micro second or so.
275 */
276 void
ia64_sync_itc(unsigned int master)277 ia64_sync_itc (unsigned int master)
278 {
279 long i, delta, adj, adjust_latency = 0, done = 0;
280 unsigned long flags, rt, master_time_stamp, bound;
281 #if DEBUG_ITC_SYNC
282 struct {
283 long rt; /* roundtrip time */
284 long master; /* master's timestamp */
285 long diff; /* difference between midpoint and master's timestamp */
286 long lat; /* estimate of itc adjustment latency */
287 } t[NUM_ROUNDS];
288 #endif
289
290 /*
291 * Make sure local timer ticks are disabled while we sync. If
292 * they were enabled, we'd have to worry about nasty issues
293 * like setting the ITC ahead of (or a long time before) the
294 * next scheduled tick.
295 */
296 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
297
298 go[MASTER] = 1;
299
300 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
301 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
302 return;
303 }
304
305 while (go[MASTER])
306 cpu_relax(); /* wait for master to be ready */
307
308 spin_lock_irqsave(&itc_sync_lock, flags);
309 {
310 for (i = 0; i < NUM_ROUNDS; ++i) {
311 delta = get_delta(&rt, &master_time_stamp);
312 if (delta == 0) {
313 done = 1; /* let's lock on to this... */
314 bound = rt;
315 }
316
317 if (!done) {
318 if (i > 0) {
319 adjust_latency += -delta;
320 adj = -delta + adjust_latency/4;
321 } else
322 adj = -delta;
323
324 ia64_set_itc(ia64_get_itc() + adj);
325 }
326 #if DEBUG_ITC_SYNC
327 t[i].rt = rt;
328 t[i].master = master_time_stamp;
329 t[i].diff = delta;
330 t[i].lat = adjust_latency/4;
331 #endif
332 }
333 }
334 spin_unlock_irqrestore(&itc_sync_lock, flags);
335
336 #if DEBUG_ITC_SYNC
337 for (i = 0; i < NUM_ROUNDS; ++i)
338 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
339 t[i].rt, t[i].master, t[i].diff, t[i].lat);
340 #endif
341
342 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
343 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
344 }
345
346 /*
347 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
348 */
smp_setup_percpu_timer(void)349 static inline void smp_setup_percpu_timer(void)
350 {
351 }
352
353 static void
smp_callin(void)354 smp_callin (void)
355 {
356 int cpuid, phys_id, itc_master;
357 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
358 extern void ia64_init_itm(void);
359 extern volatile int time_keeper_id;
360
361 #ifdef CONFIG_PERFMON
362 extern void pfm_init_percpu(void);
363 #endif
364
365 cpuid = smp_processor_id();
366 phys_id = hard_smp_processor_id();
367 itc_master = time_keeper_id;
368
369 if (cpu_online(cpuid)) {
370 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
371 phys_id, cpuid);
372 BUG();
373 }
374
375 fix_b0_for_bsp();
376
377 /*
378 * numa_node_id() works after this.
379 */
380 set_numa_node(cpu_to_node_map[cpuid]);
381 set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
382
383 spin_lock(&vector_lock);
384 /* Setup the per cpu irq handling data structures */
385 __setup_vector_irq(cpuid);
386 notify_cpu_starting(cpuid);
387 set_cpu_online(cpuid, true);
388 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
389 spin_unlock(&vector_lock);
390
391 smp_setup_percpu_timer();
392
393 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
394
395 #ifdef CONFIG_PERFMON
396 pfm_init_percpu();
397 #endif
398
399 local_irq_enable();
400
401 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
402 /*
403 * Synchronize the ITC with the BP. Need to do this after irqs are
404 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
405 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
406 * local_bh_enable(), which bugs out if irqs are not enabled...
407 */
408 Dprintk("Going to syncup ITC with ITC Master.\n");
409 ia64_sync_itc(itc_master);
410 }
411
412 /*
413 * Get our bogomips.
414 */
415 ia64_init_itm();
416
417 /*
418 * Delay calibration can be skipped if new processor is identical to the
419 * previous processor.
420 */
421 last_cpuinfo = cpu_data(cpuid - 1);
422 this_cpuinfo = local_cpu_data;
423 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
424 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
425 last_cpuinfo->features != this_cpuinfo->features ||
426 last_cpuinfo->revision != this_cpuinfo->revision ||
427 last_cpuinfo->family != this_cpuinfo->family ||
428 last_cpuinfo->archrev != this_cpuinfo->archrev ||
429 last_cpuinfo->model != this_cpuinfo->model)
430 calibrate_delay();
431 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
432
433 /*
434 * Allow the master to continue.
435 */
436 cpumask_set_cpu(cpuid, &cpu_callin_map);
437 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
438 }
439
440
441 /*
442 * Activate a secondary processor. head.S calls this.
443 */
444 int
start_secondary(void * unused)445 start_secondary (void *unused)
446 {
447 /* Early console may use I/O ports */
448 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449 #ifndef CONFIG_PRINTK_TIME
450 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
451 #endif
452 efi_map_pal_code();
453 cpu_init();
454 preempt_disable();
455 smp_callin();
456
457 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
458 return 0;
459 }
460
461 static int
do_boot_cpu(int sapicid,int cpu,struct task_struct * idle)462 do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
463 {
464 int timeout;
465
466 task_for_booting_cpu = idle;
467 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
468
469 set_brendez_area(cpu);
470 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
471
472 /*
473 * Wait 10s total for the AP to start
474 */
475 Dprintk("Waiting on callin_map ...");
476 for (timeout = 0; timeout < 100000; timeout++) {
477 if (cpumask_test_cpu(cpu, &cpu_callin_map))
478 break; /* It has booted */
479 barrier(); /* Make sure we re-read cpu_callin_map */
480 udelay(100);
481 }
482 Dprintk("\n");
483
484 if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
485 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
486 ia64_cpu_to_sapicid[cpu] = -1;
487 set_cpu_online(cpu, false); /* was set in smp_callin() */
488 return -EINVAL;
489 }
490 return 0;
491 }
492
493 static int __init
decay(char * str)494 decay (char *str)
495 {
496 int ticks;
497 get_option (&str, &ticks);
498 return 1;
499 }
500
501 __setup("decay=", decay);
502
503 /*
504 * Initialize the logical CPU number to SAPICID mapping
505 */
506 void __init
smp_build_cpu_map(void)507 smp_build_cpu_map (void)
508 {
509 int sapicid, cpu, i;
510 int boot_cpu_id = hard_smp_processor_id();
511
512 for (cpu = 0; cpu < NR_CPUS; cpu++) {
513 ia64_cpu_to_sapicid[cpu] = -1;
514 }
515
516 ia64_cpu_to_sapicid[0] = boot_cpu_id;
517 init_cpu_present(cpumask_of(0));
518 set_cpu_possible(0, true);
519 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
520 sapicid = smp_boot_data.cpu_phys_id[i];
521 if (sapicid == boot_cpu_id)
522 continue;
523 set_cpu_present(cpu, true);
524 set_cpu_possible(cpu, true);
525 ia64_cpu_to_sapicid[cpu] = sapicid;
526 cpu++;
527 }
528 }
529
530 /*
531 * Cycle through the APs sending Wakeup IPIs to boot each.
532 */
533 void __init
smp_prepare_cpus(unsigned int max_cpus)534 smp_prepare_cpus (unsigned int max_cpus)
535 {
536 int boot_cpu_id = hard_smp_processor_id();
537
538 /*
539 * Initialize the per-CPU profiling counter/multiplier
540 */
541
542 smp_setup_percpu_timer();
543
544 cpumask_set_cpu(0, &cpu_callin_map);
545
546 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
547 ia64_cpu_to_sapicid[0] = boot_cpu_id;
548
549 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
550
551 current_thread_info()->cpu = 0;
552
553 /*
554 * If SMP should be disabled, then really disable it!
555 */
556 if (!max_cpus) {
557 printk(KERN_INFO "SMP mode deactivated.\n");
558 init_cpu_online(cpumask_of(0));
559 init_cpu_present(cpumask_of(0));
560 init_cpu_possible(cpumask_of(0));
561 return;
562 }
563 }
564
smp_prepare_boot_cpu(void)565 void smp_prepare_boot_cpu(void)
566 {
567 set_cpu_online(smp_processor_id(), true);
568 cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
569 set_numa_node(cpu_to_node_map[smp_processor_id()]);
570 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
571 }
572
573 #ifdef CONFIG_HOTPLUG_CPU
574 static inline void
clear_cpu_sibling_map(int cpu)575 clear_cpu_sibling_map(int cpu)
576 {
577 int i;
578
579 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
580 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
581 for_each_cpu(i, &cpu_core_map[cpu])
582 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
583
584 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
585 }
586
587 static void
remove_siblinginfo(int cpu)588 remove_siblinginfo(int cpu)
589 {
590 int last = 0;
591
592 if (cpu_data(cpu)->threads_per_core == 1 &&
593 cpu_data(cpu)->cores_per_socket == 1) {
594 cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
595 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
596 return;
597 }
598
599 last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
600
601 /* remove it from all sibling map's */
602 clear_cpu_sibling_map(cpu);
603 }
604
605 extern void fixup_irqs(void);
606
migrate_platform_irqs(unsigned int cpu)607 int migrate_platform_irqs(unsigned int cpu)
608 {
609 int new_cpei_cpu;
610 struct irq_data *data = NULL;
611 const struct cpumask *mask;
612 int retval = 0;
613
614 /*
615 * dont permit CPEI target to removed.
616 */
617 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
618 printk ("CPU (%d) is CPEI Target\n", cpu);
619 if (can_cpei_retarget()) {
620 /*
621 * Now re-target the CPEI to a different processor
622 */
623 new_cpei_cpu = cpumask_any(cpu_online_mask);
624 mask = cpumask_of(new_cpei_cpu);
625 set_cpei_target_cpu(new_cpei_cpu);
626 data = irq_get_irq_data(ia64_cpe_irq);
627 /*
628 * Switch for now, immediately, we need to do fake intr
629 * as other interrupts, but need to study CPEI behaviour with
630 * polling before making changes.
631 */
632 if (data && data->chip) {
633 data->chip->irq_disable(data);
634 data->chip->irq_set_affinity(data, mask, false);
635 data->chip->irq_enable(data);
636 printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
637 }
638 }
639 if (!data) {
640 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
641 retval = -EBUSY;
642 }
643 }
644 return retval;
645 }
646
647 /* must be called with cpucontrol mutex held */
__cpu_disable(void)648 int __cpu_disable(void)
649 {
650 int cpu = smp_processor_id();
651
652 /*
653 * dont permit boot processor for now
654 */
655 if (cpu == 0 && !bsp_remove_ok) {
656 printk ("Your platform does not support removal of BSP\n");
657 return (-EBUSY);
658 }
659
660 if (ia64_platform_is("sn2")) {
661 if (!sn_cpu_disable_allowed(cpu))
662 return -EBUSY;
663 }
664
665 set_cpu_online(cpu, false);
666
667 if (migrate_platform_irqs(cpu)) {
668 set_cpu_online(cpu, true);
669 return -EBUSY;
670 }
671
672 remove_siblinginfo(cpu);
673 fixup_irqs();
674 local_flush_tlb_all();
675 cpumask_clear_cpu(cpu, &cpu_callin_map);
676 return 0;
677 }
678
__cpu_die(unsigned int cpu)679 void __cpu_die(unsigned int cpu)
680 {
681 unsigned int i;
682
683 for (i = 0; i < 100; i++) {
684 /* They ack this in play_dead by setting CPU_DEAD */
685 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
686 {
687 printk ("CPU %d is now offline\n", cpu);
688 return;
689 }
690 msleep(100);
691 }
692 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
693 }
694 #endif /* CONFIG_HOTPLUG_CPU */
695
696 void
smp_cpus_done(unsigned int dummy)697 smp_cpus_done (unsigned int dummy)
698 {
699 int cpu;
700 unsigned long bogosum = 0;
701
702 /*
703 * Allow the user to impress friends.
704 */
705
706 for_each_online_cpu(cpu) {
707 bogosum += cpu_data(cpu)->loops_per_jiffy;
708 }
709
710 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
711 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
712 }
713
set_cpu_sibling_map(int cpu)714 static inline void set_cpu_sibling_map(int cpu)
715 {
716 int i;
717
718 for_each_online_cpu(i) {
719 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
720 cpumask_set_cpu(i, &cpu_core_map[cpu]);
721 cpumask_set_cpu(cpu, &cpu_core_map[i]);
722 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
723 cpumask_set_cpu(i,
724 &per_cpu(cpu_sibling_map, cpu));
725 cpumask_set_cpu(cpu,
726 &per_cpu(cpu_sibling_map, i));
727 }
728 }
729 }
730 }
731
732 int
__cpu_up(unsigned int cpu,struct task_struct * tidle)733 __cpu_up(unsigned int cpu, struct task_struct *tidle)
734 {
735 int ret;
736 int sapicid;
737
738 sapicid = ia64_cpu_to_sapicid[cpu];
739 if (sapicid == -1)
740 return -EINVAL;
741
742 /*
743 * Already booted cpu? not valid anymore since we dont
744 * do idle loop tightspin anymore.
745 */
746 if (cpumask_test_cpu(cpu, &cpu_callin_map))
747 return -EINVAL;
748
749 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
750 /* Processor goes to start_secondary(), sets online flag */
751 ret = do_boot_cpu(sapicid, cpu, tidle);
752 if (ret < 0)
753 return ret;
754
755 if (cpu_data(cpu)->threads_per_core == 1 &&
756 cpu_data(cpu)->cores_per_socket == 1) {
757 cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
758 cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
759 return 0;
760 }
761
762 set_cpu_sibling_map(cpu);
763
764 return 0;
765 }
766
767 /*
768 * Assume that CPUs have been discovered by some platform-dependent interface. For
769 * SoftSDV/Lion, that would be ACPI.
770 *
771 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
772 */
773 void __init
init_smp_config(void)774 init_smp_config(void)
775 {
776 struct fptr {
777 unsigned long fp;
778 unsigned long gp;
779 } *ap_startup;
780 long sal_ret;
781
782 /* Tell SAL where to drop the APs. */
783 ap_startup = (struct fptr *) start_ap;
784 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
785 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
786 if (sal_ret < 0)
787 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
788 ia64_sal_strerror(sal_ret));
789 }
790
791 /*
792 * identify_siblings(cpu) gets called from identify_cpu. This populates the
793 * information related to logical execution units in per_cpu_data structure.
794 */
identify_siblings(struct cpuinfo_ia64 * c)795 void identify_siblings(struct cpuinfo_ia64 *c)
796 {
797 long status;
798 u16 pltid;
799 pal_logical_to_physical_t info;
800
801 status = ia64_pal_logical_to_phys(-1, &info);
802 if (status != PAL_STATUS_SUCCESS) {
803 if (status != PAL_STATUS_UNIMPLEMENTED) {
804 printk(KERN_ERR
805 "ia64_pal_logical_to_phys failed with %ld\n",
806 status);
807 return;
808 }
809
810 info.overview_ppid = 0;
811 info.overview_cpp = 1;
812 info.overview_tpc = 1;
813 }
814
815 status = ia64_sal_physical_id_info(&pltid);
816 if (status != PAL_STATUS_SUCCESS) {
817 if (status != PAL_STATUS_UNIMPLEMENTED)
818 printk(KERN_ERR
819 "ia64_sal_pltid failed with %ld\n",
820 status);
821 return;
822 }
823
824 c->socket_id = (pltid << 8) | info.overview_ppid;
825
826 if (info.overview_cpp == 1 && info.overview_tpc == 1)
827 return;
828
829 c->cores_per_socket = info.overview_cpp;
830 c->threads_per_core = info.overview_tpc;
831 c->num_log = info.overview_num_log;
832
833 c->core_id = info.log1_cid;
834 c->thread_id = info.log1_tid;
835 }
836
837 /*
838 * returns non zero, if multi-threading is enabled
839 * on at least one physical package. Due to hotplug cpu
840 * and (maxcpus=), all threads may not necessarily be enabled
841 * even though the processor supports multi-threading.
842 */
is_multithreading_enabled(void)843 int is_multithreading_enabled(void)
844 {
845 int i, j;
846
847 for_each_present_cpu(i) {
848 for_each_present_cpu(j) {
849 if (j == i)
850 continue;
851 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
852 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
853 return 1;
854 }
855 }
856 }
857 return 0;
858 }
859 EXPORT_SYMBOL_GPL(is_multithreading_enabled);
860