1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15 
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/compat.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/gfp.h>
40 #include <linux/pfn_t.h>
41 #include <linux/memremap.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/balloon_compaction.h>
44 #include <linux/page_idle.h>
45 #include <linux/page_owner.h>
46 #include <linux/sched/mm.h>
47 #include <linux/ptrace.h>
48 #include <linux/oom.h>
49 #include <linux/memory.h>
50 #include <linux/random.h>
51 #include <linux/sched/sysctl.h>
52 #include <linux/memory-tiers.h>
53 
54 #include <asm/tlbflush.h>
55 
56 #include <trace/events/migrate.h>
57 
58 #include "internal.h"
59 
isolate_movable_page(struct page * page,isolate_mode_t mode)60 bool isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 	struct folio *folio = folio_get_nontail_page(page);
63 	const struct movable_operations *mops;
64 
65 	/*
66 	 * Avoid burning cycles with pages that are yet under __free_pages(),
67 	 * or just got freed under us.
68 	 *
69 	 * In case we 'win' a race for a movable page being freed under us and
70 	 * raise its refcount preventing __free_pages() from doing its job
71 	 * the put_page() at the end of this block will take care of
72 	 * release this page, thus avoiding a nasty leakage.
73 	 */
74 	if (!folio)
75 		goto out;
76 
77 	if (unlikely(folio_test_slab(folio)))
78 		goto out_putfolio;
79 	/* Pairs with smp_wmb() in slab freeing, e.g. SLUB's __free_slab() */
80 	smp_rmb();
81 	/*
82 	 * Check movable flag before taking the page lock because
83 	 * we use non-atomic bitops on newly allocated page flags so
84 	 * unconditionally grabbing the lock ruins page's owner side.
85 	 */
86 	if (unlikely(!__folio_test_movable(folio)))
87 		goto out_putfolio;
88 	/* Pairs with smp_wmb() in slab allocation, e.g. SLUB's alloc_slab_page() */
89 	smp_rmb();
90 	if (unlikely(folio_test_slab(folio)))
91 		goto out_putfolio;
92 
93 	/*
94 	 * As movable pages are not isolated from LRU lists, concurrent
95 	 * compaction threads can race against page migration functions
96 	 * as well as race against the releasing a page.
97 	 *
98 	 * In order to avoid having an already isolated movable page
99 	 * being (wrongly) re-isolated while it is under migration,
100 	 * or to avoid attempting to isolate pages being released,
101 	 * lets be sure we have the page lock
102 	 * before proceeding with the movable page isolation steps.
103 	 */
104 	if (unlikely(!folio_trylock(folio)))
105 		goto out_putfolio;
106 
107 	if (!folio_test_movable(folio) || folio_test_isolated(folio))
108 		goto out_no_isolated;
109 
110 	mops = folio_movable_ops(folio);
111 	VM_BUG_ON_FOLIO(!mops, folio);
112 
113 	if (!mops->isolate_page(&folio->page, mode))
114 		goto out_no_isolated;
115 
116 	/* Driver shouldn't use PG_isolated bit of page->flags */
117 	WARN_ON_ONCE(folio_test_isolated(folio));
118 	folio_set_isolated(folio);
119 	folio_unlock(folio);
120 
121 	return true;
122 
123 out_no_isolated:
124 	folio_unlock(folio);
125 out_putfolio:
126 	folio_put(folio);
127 out:
128 	return false;
129 }
130 
putback_movable_folio(struct folio * folio)131 static void putback_movable_folio(struct folio *folio)
132 {
133 	const struct movable_operations *mops = folio_movable_ops(folio);
134 
135 	mops->putback_page(&folio->page);
136 	folio_clear_isolated(folio);
137 }
138 
139 /*
140  * Put previously isolated pages back onto the appropriate lists
141  * from where they were once taken off for compaction/migration.
142  *
143  * This function shall be used whenever the isolated pageset has been
144  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
145  * and isolate_hugetlb().
146  */
putback_movable_pages(struct list_head * l)147 void putback_movable_pages(struct list_head *l)
148 {
149 	struct folio *folio;
150 	struct folio *folio2;
151 
152 	list_for_each_entry_safe(folio, folio2, l, lru) {
153 		if (unlikely(folio_test_hugetlb(folio))) {
154 			folio_putback_active_hugetlb(folio);
155 			continue;
156 		}
157 		list_del(&folio->lru);
158 		/*
159 		 * We isolated non-lru movable folio so here we can use
160 		 * __PageMovable because LRU folio's mapping cannot have
161 		 * PAGE_MAPPING_MOVABLE.
162 		 */
163 		if (unlikely(__folio_test_movable(folio))) {
164 			VM_BUG_ON_FOLIO(!folio_test_isolated(folio), folio);
165 			folio_lock(folio);
166 			if (folio_test_movable(folio))
167 				putback_movable_folio(folio);
168 			else
169 				folio_clear_isolated(folio);
170 			folio_unlock(folio);
171 			folio_put(folio);
172 		} else {
173 			node_stat_mod_folio(folio, NR_ISOLATED_ANON +
174 					folio_is_file_lru(folio), -folio_nr_pages(folio));
175 			folio_putback_lru(folio);
176 		}
177 	}
178 }
179 
180 /*
181  * Restore a potential migration pte to a working pte entry
182  */
remove_migration_pte(struct folio * folio,struct vm_area_struct * vma,unsigned long addr,void * old)183 static bool remove_migration_pte(struct folio *folio,
184 		struct vm_area_struct *vma, unsigned long addr, void *old)
185 {
186 	DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
187 
188 	while (page_vma_mapped_walk(&pvmw)) {
189 		rmap_t rmap_flags = RMAP_NONE;
190 		pte_t old_pte;
191 		pte_t pte;
192 		swp_entry_t entry;
193 		struct page *new;
194 		unsigned long idx = 0;
195 
196 		/* pgoff is invalid for ksm pages, but they are never large */
197 		if (folio_test_large(folio) && !folio_test_hugetlb(folio))
198 			idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
199 		new = folio_page(folio, idx);
200 
201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
202 		/* PMD-mapped THP migration entry */
203 		if (!pvmw.pte) {
204 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
205 					!folio_test_pmd_mappable(folio), folio);
206 			remove_migration_pmd(&pvmw, new);
207 			continue;
208 		}
209 #endif
210 
211 		folio_get(folio);
212 		pte = mk_pte(new, READ_ONCE(vma->vm_page_prot));
213 		old_pte = ptep_get(pvmw.pte);
214 		if (pte_swp_soft_dirty(old_pte))
215 			pte = pte_mksoft_dirty(pte);
216 
217 		entry = pte_to_swp_entry(old_pte);
218 		if (!is_migration_entry_young(entry))
219 			pte = pte_mkold(pte);
220 		if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
221 			pte = pte_mkdirty(pte);
222 		if (is_writable_migration_entry(entry))
223 			pte = pte_mkwrite(pte, vma);
224 		else if (pte_swp_uffd_wp(old_pte))
225 			pte = pte_mkuffd_wp(pte);
226 
227 		if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
228 			rmap_flags |= RMAP_EXCLUSIVE;
229 
230 		if (unlikely(is_device_private_page(new))) {
231 			if (pte_write(pte))
232 				entry = make_writable_device_private_entry(
233 							page_to_pfn(new));
234 			else
235 				entry = make_readable_device_private_entry(
236 							page_to_pfn(new));
237 			pte = swp_entry_to_pte(entry);
238 			if (pte_swp_soft_dirty(old_pte))
239 				pte = pte_swp_mksoft_dirty(pte);
240 			if (pte_swp_uffd_wp(old_pte))
241 				pte = pte_swp_mkuffd_wp(pte);
242 		}
243 
244 #ifdef CONFIG_HUGETLB_PAGE
245 		if (folio_test_hugetlb(folio)) {
246 			struct hstate *h = hstate_vma(vma);
247 			unsigned int shift = huge_page_shift(h);
248 			unsigned long psize = huge_page_size(h);
249 
250 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
251 			if (folio_test_anon(folio))
252 				hugepage_add_anon_rmap(new, vma, pvmw.address,
253 						       rmap_flags);
254 			else
255 				page_dup_file_rmap(new, true);
256 			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte,
257 					psize);
258 		} else
259 #endif
260 		{
261 			if (folio_test_anon(folio))
262 				page_add_anon_rmap(new, vma, pvmw.address,
263 						   rmap_flags);
264 			else
265 				page_add_file_rmap(new, vma, false);
266 			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267 		}
268 		if (vma->vm_flags & VM_LOCKED)
269 			mlock_drain_local();
270 
271 		trace_remove_migration_pte(pvmw.address, pte_val(pte),
272 					   compound_order(new));
273 
274 		/* No need to invalidate - it was non-present before */
275 		update_mmu_cache(vma, pvmw.address, pvmw.pte);
276 	}
277 
278 	return true;
279 }
280 
281 /*
282  * Get rid of all migration entries and replace them by
283  * references to the indicated page.
284  */
remove_migration_ptes(struct folio * src,struct folio * dst,bool locked)285 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
286 {
287 	struct rmap_walk_control rwc = {
288 		.rmap_one = remove_migration_pte,
289 		.arg = src,
290 	};
291 
292 	if (locked)
293 		rmap_walk_locked(dst, &rwc);
294 	else
295 		rmap_walk(dst, &rwc);
296 }
297 
298 /*
299  * Something used the pte of a page under migration. We need to
300  * get to the page and wait until migration is finished.
301  * When we return from this function the fault will be retried.
302  */
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)303 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
304 			  unsigned long address)
305 {
306 	spinlock_t *ptl;
307 	pte_t *ptep;
308 	pte_t pte;
309 	swp_entry_t entry;
310 
311 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
312 	if (!ptep)
313 		return;
314 
315 	pte = ptep_get(ptep);
316 	pte_unmap(ptep);
317 
318 	if (!is_swap_pte(pte))
319 		goto out;
320 
321 	entry = pte_to_swp_entry(pte);
322 	if (!is_migration_entry(entry))
323 		goto out;
324 
325 	migration_entry_wait_on_locked(entry, ptl);
326 	return;
327 out:
328 	spin_unlock(ptl);
329 }
330 
331 #ifdef CONFIG_HUGETLB_PAGE
332 /*
333  * The vma read lock must be held upon entry. Holding that lock prevents either
334  * the pte or the ptl from being freed.
335  *
336  * This function will release the vma lock before returning.
337  */
migration_entry_wait_huge(struct vm_area_struct * vma,pte_t * ptep)338 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *ptep)
339 {
340 	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, ptep);
341 	pte_t pte;
342 
343 	hugetlb_vma_assert_locked(vma);
344 	spin_lock(ptl);
345 	pte = huge_ptep_get(ptep);
346 
347 	if (unlikely(!is_hugetlb_entry_migration(pte))) {
348 		spin_unlock(ptl);
349 		hugetlb_vma_unlock_read(vma);
350 	} else {
351 		/*
352 		 * If migration entry existed, safe to release vma lock
353 		 * here because the pgtable page won't be freed without the
354 		 * pgtable lock released.  See comment right above pgtable
355 		 * lock release in migration_entry_wait_on_locked().
356 		 */
357 		hugetlb_vma_unlock_read(vma);
358 		migration_entry_wait_on_locked(pte_to_swp_entry(pte), ptl);
359 	}
360 }
361 #endif
362 
363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_migration_entry_wait(struct mm_struct * mm,pmd_t * pmd)364 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
365 {
366 	spinlock_t *ptl;
367 
368 	ptl = pmd_lock(mm, pmd);
369 	if (!is_pmd_migration_entry(*pmd))
370 		goto unlock;
371 	migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), ptl);
372 	return;
373 unlock:
374 	spin_unlock(ptl);
375 }
376 #endif
377 
folio_expected_refs(struct address_space * mapping,struct folio * folio)378 static int folio_expected_refs(struct address_space *mapping,
379 		struct folio *folio)
380 {
381 	int refs = 1;
382 	if (!mapping)
383 		return refs;
384 
385 	refs += folio_nr_pages(folio);
386 	if (folio_test_private(folio))
387 		refs++;
388 
389 	return refs;
390 }
391 
392 /*
393  * Replace the page in the mapping.
394  *
395  * The number of remaining references must be:
396  * 1 for anonymous pages without a mapping
397  * 2 for pages with a mapping
398  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
399  */
folio_migrate_mapping(struct address_space * mapping,struct folio * newfolio,struct folio * folio,int extra_count)400 int folio_migrate_mapping(struct address_space *mapping,
401 		struct folio *newfolio, struct folio *folio, int extra_count)
402 {
403 	XA_STATE(xas, &mapping->i_pages, folio_index(folio));
404 	struct zone *oldzone, *newzone;
405 	int dirty;
406 	int expected_count = folio_expected_refs(mapping, folio) + extra_count;
407 	long nr = folio_nr_pages(folio);
408 
409 	if (!mapping) {
410 		/* Anonymous page without mapping */
411 		if (folio_ref_count(folio) != expected_count)
412 			return -EAGAIN;
413 
414 		/* No turning back from here */
415 		newfolio->index = folio->index;
416 		newfolio->mapping = folio->mapping;
417 		if (folio_test_swapbacked(folio))
418 			__folio_set_swapbacked(newfolio);
419 
420 		return MIGRATEPAGE_SUCCESS;
421 	}
422 
423 	oldzone = folio_zone(folio);
424 	newzone = folio_zone(newfolio);
425 
426 	xas_lock_irq(&xas);
427 	if (!folio_ref_freeze(folio, expected_count)) {
428 		xas_unlock_irq(&xas);
429 		return -EAGAIN;
430 	}
431 
432 	/*
433 	 * Now we know that no one else is looking at the folio:
434 	 * no turning back from here.
435 	 */
436 	newfolio->index = folio->index;
437 	newfolio->mapping = folio->mapping;
438 	folio_ref_add(newfolio, nr); /* add cache reference */
439 	if (folio_test_swapbacked(folio)) {
440 		__folio_set_swapbacked(newfolio);
441 		if (folio_test_swapcache(folio)) {
442 			folio_set_swapcache(newfolio);
443 			newfolio->private = folio_get_private(folio);
444 		}
445 	} else {
446 		VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
447 	}
448 
449 	/* Move dirty while page refs frozen and newpage not yet exposed */
450 	dirty = folio_test_dirty(folio);
451 	if (dirty) {
452 		folio_clear_dirty(folio);
453 		folio_set_dirty(newfolio);
454 	}
455 
456 	xas_store(&xas, newfolio);
457 
458 	/*
459 	 * Drop cache reference from old page by unfreezing
460 	 * to one less reference.
461 	 * We know this isn't the last reference.
462 	 */
463 	folio_ref_unfreeze(folio, expected_count - nr);
464 
465 	xas_unlock(&xas);
466 	/* Leave irq disabled to prevent preemption while updating stats */
467 
468 	/*
469 	 * If moved to a different zone then also account
470 	 * the page for that zone. Other VM counters will be
471 	 * taken care of when we establish references to the
472 	 * new page and drop references to the old page.
473 	 *
474 	 * Note that anonymous pages are accounted for
475 	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
476 	 * are mapped to swap space.
477 	 */
478 	if (newzone != oldzone) {
479 		struct lruvec *old_lruvec, *new_lruvec;
480 		struct mem_cgroup *memcg;
481 
482 		memcg = folio_memcg(folio);
483 		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
484 		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
485 
486 		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
487 		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
488 		if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
489 			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
490 			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
491 
492 			if (folio_test_pmd_mappable(folio)) {
493 				__mod_lruvec_state(old_lruvec, NR_SHMEM_THPS, -nr);
494 				__mod_lruvec_state(new_lruvec, NR_SHMEM_THPS, nr);
495 			}
496 		}
497 #ifdef CONFIG_SWAP
498 		if (folio_test_swapcache(folio)) {
499 			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
500 			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
501 		}
502 #endif
503 		if (dirty && mapping_can_writeback(mapping)) {
504 			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
505 			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
506 			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
507 			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
508 		}
509 	}
510 	local_irq_enable();
511 
512 	return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL(folio_migrate_mapping);
515 
516 /*
517  * The expected number of remaining references is the same as that
518  * of folio_migrate_mapping().
519  */
migrate_huge_page_move_mapping(struct address_space * mapping,struct folio * dst,struct folio * src)520 int migrate_huge_page_move_mapping(struct address_space *mapping,
521 				   struct folio *dst, struct folio *src)
522 {
523 	XA_STATE(xas, &mapping->i_pages, folio_index(src));
524 	int expected_count;
525 
526 	xas_lock_irq(&xas);
527 	expected_count = 2 + folio_has_private(src);
528 	if (!folio_ref_freeze(src, expected_count)) {
529 		xas_unlock_irq(&xas);
530 		return -EAGAIN;
531 	}
532 
533 	dst->index = src->index;
534 	dst->mapping = src->mapping;
535 
536 	folio_get(dst);
537 
538 	xas_store(&xas, dst);
539 
540 	folio_ref_unfreeze(src, expected_count - 1);
541 
542 	xas_unlock_irq(&xas);
543 
544 	return MIGRATEPAGE_SUCCESS;
545 }
546 
547 /*
548  * Copy the flags and some other ancillary information
549  */
folio_migrate_flags(struct folio * newfolio,struct folio * folio)550 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
551 {
552 	int cpupid;
553 
554 	if (folio_test_error(folio))
555 		folio_set_error(newfolio);
556 	if (folio_test_referenced(folio))
557 		folio_set_referenced(newfolio);
558 	if (folio_test_uptodate(folio))
559 		folio_mark_uptodate(newfolio);
560 	if (folio_test_clear_active(folio)) {
561 		VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
562 		folio_set_active(newfolio);
563 	} else if (folio_test_clear_unevictable(folio))
564 		folio_set_unevictable(newfolio);
565 	if (folio_test_workingset(folio))
566 		folio_set_workingset(newfolio);
567 	if (folio_test_checked(folio))
568 		folio_set_checked(newfolio);
569 	/*
570 	 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
571 	 * migration entries. We can still have PG_anon_exclusive set on an
572 	 * effectively unmapped and unreferenced first sub-pages of an
573 	 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
574 	 */
575 	if (folio_test_mappedtodisk(folio))
576 		folio_set_mappedtodisk(newfolio);
577 
578 	/* Move dirty on pages not done by folio_migrate_mapping() */
579 	if (folio_test_dirty(folio))
580 		folio_set_dirty(newfolio);
581 
582 	if (folio_test_young(folio))
583 		folio_set_young(newfolio);
584 	if (folio_test_idle(folio))
585 		folio_set_idle(newfolio);
586 
587 	/*
588 	 * Copy NUMA information to the new page, to prevent over-eager
589 	 * future migrations of this same page.
590 	 */
591 	cpupid = page_cpupid_xchg_last(&folio->page, -1);
592 	/*
593 	 * For memory tiering mode, when migrate between slow and fast
594 	 * memory node, reset cpupid, because that is used to record
595 	 * page access time in slow memory node.
596 	 */
597 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) {
598 		bool f_toptier = node_is_toptier(page_to_nid(&folio->page));
599 		bool t_toptier = node_is_toptier(page_to_nid(&newfolio->page));
600 
601 		if (f_toptier != t_toptier)
602 			cpupid = -1;
603 	}
604 	page_cpupid_xchg_last(&newfolio->page, cpupid);
605 
606 	folio_migrate_ksm(newfolio, folio);
607 	/*
608 	 * Please do not reorder this without considering how mm/ksm.c's
609 	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
610 	 */
611 	if (folio_test_swapcache(folio))
612 		folio_clear_swapcache(folio);
613 	folio_clear_private(folio);
614 
615 	/* page->private contains hugetlb specific flags */
616 	if (!folio_test_hugetlb(folio))
617 		folio->private = NULL;
618 
619 	/*
620 	 * If any waiters have accumulated on the new page then
621 	 * wake them up.
622 	 */
623 	if (folio_test_writeback(newfolio))
624 		folio_end_writeback(newfolio);
625 
626 	/*
627 	 * PG_readahead shares the same bit with PG_reclaim.  The above
628 	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
629 	 * bit after that.
630 	 */
631 	if (folio_test_readahead(folio))
632 		folio_set_readahead(newfolio);
633 
634 	folio_copy_owner(newfolio, folio);
635 
636 	if (!folio_test_hugetlb(folio))
637 		mem_cgroup_migrate(folio, newfolio);
638 }
639 EXPORT_SYMBOL(folio_migrate_flags);
640 
folio_migrate_copy(struct folio * newfolio,struct folio * folio)641 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
642 {
643 	folio_copy(newfolio, folio);
644 	folio_migrate_flags(newfolio, folio);
645 }
646 EXPORT_SYMBOL(folio_migrate_copy);
647 
648 /************************************************************
649  *                    Migration functions
650  ***********************************************************/
651 
migrate_folio_extra(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,int extra_count)652 int migrate_folio_extra(struct address_space *mapping, struct folio *dst,
653 		struct folio *src, enum migrate_mode mode, int extra_count)
654 {
655 	int rc;
656 
657 	BUG_ON(folio_test_writeback(src));	/* Writeback must be complete */
658 
659 	rc = folio_migrate_mapping(mapping, dst, src, extra_count);
660 
661 	if (rc != MIGRATEPAGE_SUCCESS)
662 		return rc;
663 
664 	if (mode != MIGRATE_SYNC_NO_COPY)
665 		folio_migrate_copy(dst, src);
666 	else
667 		folio_migrate_flags(dst, src);
668 	return MIGRATEPAGE_SUCCESS;
669 }
670 
671 /**
672  * migrate_folio() - Simple folio migration.
673  * @mapping: The address_space containing the folio.
674  * @dst: The folio to migrate the data to.
675  * @src: The folio containing the current data.
676  * @mode: How to migrate the page.
677  *
678  * Common logic to directly migrate a single LRU folio suitable for
679  * folios that do not use PagePrivate/PagePrivate2.
680  *
681  * Folios are locked upon entry and exit.
682  */
migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)683 int migrate_folio(struct address_space *mapping, struct folio *dst,
684 		struct folio *src, enum migrate_mode mode)
685 {
686 	return migrate_folio_extra(mapping, dst, src, mode, 0);
687 }
688 EXPORT_SYMBOL(migrate_folio);
689 
690 #ifdef CONFIG_BUFFER_HEAD
691 /* Returns true if all buffers are successfully locked */
buffer_migrate_lock_buffers(struct buffer_head * head,enum migrate_mode mode)692 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
693 							enum migrate_mode mode)
694 {
695 	struct buffer_head *bh = head;
696 	struct buffer_head *failed_bh;
697 
698 	do {
699 		if (!trylock_buffer(bh)) {
700 			if (mode == MIGRATE_ASYNC)
701 				goto unlock;
702 			if (mode == MIGRATE_SYNC_LIGHT && !buffer_uptodate(bh))
703 				goto unlock;
704 			lock_buffer(bh);
705 		}
706 
707 		bh = bh->b_this_page;
708 	} while (bh != head);
709 
710 	return true;
711 
712 unlock:
713 	/* We failed to lock the buffer and cannot stall. */
714 	failed_bh = bh;
715 	bh = head;
716 	while (bh != failed_bh) {
717 		unlock_buffer(bh);
718 		bh = bh->b_this_page;
719 	}
720 
721 	return false;
722 }
723 
__buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode,bool check_refs)724 static int __buffer_migrate_folio(struct address_space *mapping,
725 		struct folio *dst, struct folio *src, enum migrate_mode mode,
726 		bool check_refs)
727 {
728 	struct buffer_head *bh, *head;
729 	int rc;
730 	int expected_count;
731 
732 	head = folio_buffers(src);
733 	if (!head)
734 		return migrate_folio(mapping, dst, src, mode);
735 
736 	/* Check whether page does not have extra refs before we do more work */
737 	expected_count = folio_expected_refs(mapping, src);
738 	if (folio_ref_count(src) != expected_count)
739 		return -EAGAIN;
740 
741 	if (!buffer_migrate_lock_buffers(head, mode))
742 		return -EAGAIN;
743 
744 	if (check_refs) {
745 		bool busy;
746 		bool invalidated = false;
747 
748 recheck_buffers:
749 		busy = false;
750 		spin_lock(&mapping->private_lock);
751 		bh = head;
752 		do {
753 			if (atomic_read(&bh->b_count)) {
754 				busy = true;
755 				break;
756 			}
757 			bh = bh->b_this_page;
758 		} while (bh != head);
759 		if (busy) {
760 			if (invalidated) {
761 				rc = -EAGAIN;
762 				goto unlock_buffers;
763 			}
764 			spin_unlock(&mapping->private_lock);
765 			invalidate_bh_lrus();
766 			invalidated = true;
767 			goto recheck_buffers;
768 		}
769 	}
770 
771 	rc = folio_migrate_mapping(mapping, dst, src, 0);
772 	if (rc != MIGRATEPAGE_SUCCESS)
773 		goto unlock_buffers;
774 
775 	folio_attach_private(dst, folio_detach_private(src));
776 
777 	bh = head;
778 	do {
779 		folio_set_bh(bh, dst, bh_offset(bh));
780 		bh = bh->b_this_page;
781 	} while (bh != head);
782 
783 	if (mode != MIGRATE_SYNC_NO_COPY)
784 		folio_migrate_copy(dst, src);
785 	else
786 		folio_migrate_flags(dst, src);
787 
788 	rc = MIGRATEPAGE_SUCCESS;
789 unlock_buffers:
790 	if (check_refs)
791 		spin_unlock(&mapping->private_lock);
792 	bh = head;
793 	do {
794 		unlock_buffer(bh);
795 		bh = bh->b_this_page;
796 	} while (bh != head);
797 
798 	return rc;
799 }
800 
801 /**
802  * buffer_migrate_folio() - Migration function for folios with buffers.
803  * @mapping: The address space containing @src.
804  * @dst: The folio to migrate to.
805  * @src: The folio to migrate from.
806  * @mode: How to migrate the folio.
807  *
808  * This function can only be used if the underlying filesystem guarantees
809  * that no other references to @src exist. For example attached buffer
810  * heads are accessed only under the folio lock.  If your filesystem cannot
811  * provide this guarantee, buffer_migrate_folio_norefs() may be more
812  * appropriate.
813  *
814  * Return: 0 on success or a negative errno on failure.
815  */
buffer_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)816 int buffer_migrate_folio(struct address_space *mapping,
817 		struct folio *dst, struct folio *src, enum migrate_mode mode)
818 {
819 	return __buffer_migrate_folio(mapping, dst, src, mode, false);
820 }
821 EXPORT_SYMBOL(buffer_migrate_folio);
822 
823 /**
824  * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
825  * @mapping: The address space containing @src.
826  * @dst: The folio to migrate to.
827  * @src: The folio to migrate from.
828  * @mode: How to migrate the folio.
829  *
830  * Like buffer_migrate_folio() except that this variant is more careful
831  * and checks that there are also no buffer head references. This function
832  * is the right one for mappings where buffer heads are directly looked
833  * up and referenced (such as block device mappings).
834  *
835  * Return: 0 on success or a negative errno on failure.
836  */
buffer_migrate_folio_norefs(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)837 int buffer_migrate_folio_norefs(struct address_space *mapping,
838 		struct folio *dst, struct folio *src, enum migrate_mode mode)
839 {
840 	return __buffer_migrate_folio(mapping, dst, src, mode, true);
841 }
842 EXPORT_SYMBOL_GPL(buffer_migrate_folio_norefs);
843 #endif /* CONFIG_BUFFER_HEAD */
844 
filemap_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)845 int filemap_migrate_folio(struct address_space *mapping,
846 		struct folio *dst, struct folio *src, enum migrate_mode mode)
847 {
848 	int ret;
849 
850 	ret = folio_migrate_mapping(mapping, dst, src, 0);
851 	if (ret != MIGRATEPAGE_SUCCESS)
852 		return ret;
853 
854 	if (folio_get_private(src))
855 		folio_attach_private(dst, folio_detach_private(src));
856 
857 	if (mode != MIGRATE_SYNC_NO_COPY)
858 		folio_migrate_copy(dst, src);
859 	else
860 		folio_migrate_flags(dst, src);
861 	return MIGRATEPAGE_SUCCESS;
862 }
863 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
864 
865 /*
866  * Writeback a folio to clean the dirty state
867  */
writeout(struct address_space * mapping,struct folio * folio)868 static int writeout(struct address_space *mapping, struct folio *folio)
869 {
870 	struct writeback_control wbc = {
871 		.sync_mode = WB_SYNC_NONE,
872 		.nr_to_write = 1,
873 		.range_start = 0,
874 		.range_end = LLONG_MAX,
875 		.for_reclaim = 1
876 	};
877 	int rc;
878 
879 	if (!mapping->a_ops->writepage)
880 		/* No write method for the address space */
881 		return -EINVAL;
882 
883 	if (!folio_clear_dirty_for_io(folio))
884 		/* Someone else already triggered a write */
885 		return -EAGAIN;
886 
887 	/*
888 	 * A dirty folio may imply that the underlying filesystem has
889 	 * the folio on some queue. So the folio must be clean for
890 	 * migration. Writeout may mean we lose the lock and the
891 	 * folio state is no longer what we checked for earlier.
892 	 * At this point we know that the migration attempt cannot
893 	 * be successful.
894 	 */
895 	remove_migration_ptes(folio, folio, false);
896 
897 	rc = mapping->a_ops->writepage(&folio->page, &wbc);
898 
899 	if (rc != AOP_WRITEPAGE_ACTIVATE)
900 		/* unlocked. Relock */
901 		folio_lock(folio);
902 
903 	return (rc < 0) ? -EIO : -EAGAIN;
904 }
905 
906 /*
907  * Default handling if a filesystem does not provide a migration function.
908  */
fallback_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)909 static int fallback_migrate_folio(struct address_space *mapping,
910 		struct folio *dst, struct folio *src, enum migrate_mode mode)
911 {
912 	if (folio_test_dirty(src)) {
913 		/* Only writeback folios in full synchronous migration */
914 		switch (mode) {
915 		case MIGRATE_SYNC:
916 		case MIGRATE_SYNC_NO_COPY:
917 			break;
918 		default:
919 			return -EBUSY;
920 		}
921 		return writeout(mapping, src);
922 	}
923 
924 	/*
925 	 * Buffers may be managed in a filesystem specific way.
926 	 * We must have no buffers or drop them.
927 	 */
928 	if (!filemap_release_folio(src, GFP_KERNEL))
929 		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
930 
931 	return migrate_folio(mapping, dst, src, mode);
932 }
933 
934 /*
935  * Move a page to a newly allocated page
936  * The page is locked and all ptes have been successfully removed.
937  *
938  * The new page will have replaced the old page if this function
939  * is successful.
940  *
941  * Return value:
942  *   < 0 - error code
943  *  MIGRATEPAGE_SUCCESS - success
944  */
move_to_new_folio(struct folio * dst,struct folio * src,enum migrate_mode mode)945 static int move_to_new_folio(struct folio *dst, struct folio *src,
946 				enum migrate_mode mode)
947 {
948 	int rc = -EAGAIN;
949 	bool is_lru = !__PageMovable(&src->page);
950 
951 	VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
952 	VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
953 
954 	if (likely(is_lru)) {
955 		struct address_space *mapping = folio_mapping(src);
956 
957 		if (!mapping)
958 			rc = migrate_folio(mapping, dst, src, mode);
959 		else if (mapping->a_ops->migrate_folio)
960 			/*
961 			 * Most folios have a mapping and most filesystems
962 			 * provide a migrate_folio callback. Anonymous folios
963 			 * are part of swap space which also has its own
964 			 * migrate_folio callback. This is the most common path
965 			 * for page migration.
966 			 */
967 			rc = mapping->a_ops->migrate_folio(mapping, dst, src,
968 								mode);
969 		else
970 			rc = fallback_migrate_folio(mapping, dst, src, mode);
971 	} else {
972 		const struct movable_operations *mops;
973 
974 		/*
975 		 * In case of non-lru page, it could be released after
976 		 * isolation step. In that case, we shouldn't try migration.
977 		 */
978 		VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
979 		if (!folio_test_movable(src)) {
980 			rc = MIGRATEPAGE_SUCCESS;
981 			folio_clear_isolated(src);
982 			goto out;
983 		}
984 
985 		mops = folio_movable_ops(src);
986 		rc = mops->migrate_page(&dst->page, &src->page, mode);
987 		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
988 				!folio_test_isolated(src));
989 	}
990 
991 	/*
992 	 * When successful, old pagecache src->mapping must be cleared before
993 	 * src is freed; but stats require that PageAnon be left as PageAnon.
994 	 */
995 	if (rc == MIGRATEPAGE_SUCCESS) {
996 		if (__PageMovable(&src->page)) {
997 			VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
998 
999 			/*
1000 			 * We clear PG_movable under page_lock so any compactor
1001 			 * cannot try to migrate this page.
1002 			 */
1003 			folio_clear_isolated(src);
1004 		}
1005 
1006 		/*
1007 		 * Anonymous and movable src->mapping will be cleared by
1008 		 * free_pages_prepare so don't reset it here for keeping
1009 		 * the type to work PageAnon, for example.
1010 		 */
1011 		if (!folio_mapping_flags(src))
1012 			src->mapping = NULL;
1013 
1014 		if (likely(!folio_is_zone_device(dst)))
1015 			flush_dcache_folio(dst);
1016 	}
1017 out:
1018 	return rc;
1019 }
1020 
1021 /*
1022  * To record some information during migration, we use some unused
1023  * fields (mapping and private) of struct folio of the newly allocated
1024  * destination folio.  This is safe because nobody is using them
1025  * except us.
1026  */
1027 union migration_ptr {
1028 	struct anon_vma *anon_vma;
1029 	struct address_space *mapping;
1030 };
__migrate_folio_record(struct folio * dst,unsigned long page_was_mapped,struct anon_vma * anon_vma)1031 static void __migrate_folio_record(struct folio *dst,
1032 				   unsigned long page_was_mapped,
1033 				   struct anon_vma *anon_vma)
1034 {
1035 	union migration_ptr ptr = { .anon_vma = anon_vma };
1036 	dst->mapping = ptr.mapping;
1037 	dst->private = (void *)page_was_mapped;
1038 }
1039 
__migrate_folio_extract(struct folio * dst,int * page_was_mappedp,struct anon_vma ** anon_vmap)1040 static void __migrate_folio_extract(struct folio *dst,
1041 				   int *page_was_mappedp,
1042 				   struct anon_vma **anon_vmap)
1043 {
1044 	union migration_ptr ptr = { .mapping = dst->mapping };
1045 	*anon_vmap = ptr.anon_vma;
1046 	*page_was_mappedp = (unsigned long)dst->private;
1047 	dst->mapping = NULL;
1048 	dst->private = NULL;
1049 }
1050 
1051 /* Restore the source folio to the original state upon failure */
migrate_folio_undo_src(struct folio * src,int page_was_mapped,struct anon_vma * anon_vma,bool locked,struct list_head * ret)1052 static void migrate_folio_undo_src(struct folio *src,
1053 				   int page_was_mapped,
1054 				   struct anon_vma *anon_vma,
1055 				   bool locked,
1056 				   struct list_head *ret)
1057 {
1058 	if (page_was_mapped)
1059 		remove_migration_ptes(src, src, false);
1060 	/* Drop an anon_vma reference if we took one */
1061 	if (anon_vma)
1062 		put_anon_vma(anon_vma);
1063 	if (locked)
1064 		folio_unlock(src);
1065 	if (ret)
1066 		list_move_tail(&src->lru, ret);
1067 }
1068 
1069 /* Restore the destination folio to the original state upon failure */
migrate_folio_undo_dst(struct folio * dst,bool locked,free_folio_t put_new_folio,unsigned long private)1070 static void migrate_folio_undo_dst(struct folio *dst, bool locked,
1071 		free_folio_t put_new_folio, unsigned long private)
1072 {
1073 	if (locked)
1074 		folio_unlock(dst);
1075 	if (put_new_folio)
1076 		put_new_folio(dst, private);
1077 	else
1078 		folio_put(dst);
1079 }
1080 
1081 /* Cleanup src folio upon migration success */
migrate_folio_done(struct folio * src,enum migrate_reason reason)1082 static void migrate_folio_done(struct folio *src,
1083 			       enum migrate_reason reason)
1084 {
1085 	/*
1086 	 * Compaction can migrate also non-LRU pages which are
1087 	 * not accounted to NR_ISOLATED_*. They can be recognized
1088 	 * as __PageMovable
1089 	 */
1090 	if (likely(!__folio_test_movable(src)))
1091 		mod_node_page_state(folio_pgdat(src), NR_ISOLATED_ANON +
1092 				    folio_is_file_lru(src), -folio_nr_pages(src));
1093 
1094 	if (reason != MR_MEMORY_FAILURE)
1095 		/* We release the page in page_handle_poison. */
1096 		folio_put(src);
1097 }
1098 
1099 /* Obtain the lock on page, remove all ptes. */
migrate_folio_unmap(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio ** dstp,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1100 static int migrate_folio_unmap(new_folio_t get_new_folio,
1101 		free_folio_t put_new_folio, unsigned long private,
1102 		struct folio *src, struct folio **dstp, enum migrate_mode mode,
1103 		enum migrate_reason reason, struct list_head *ret)
1104 {
1105 	struct folio *dst;
1106 	int rc = -EAGAIN;
1107 	int page_was_mapped = 0;
1108 	struct anon_vma *anon_vma = NULL;
1109 	bool is_lru = !__PageMovable(&src->page);
1110 	bool locked = false;
1111 	bool dst_locked = false;
1112 
1113 	if (folio_ref_count(src) == 1) {
1114 		/* Folio was freed from under us. So we are done. */
1115 		folio_clear_active(src);
1116 		folio_clear_unevictable(src);
1117 		/* free_pages_prepare() will clear PG_isolated. */
1118 		list_del(&src->lru);
1119 		migrate_folio_done(src, reason);
1120 		return MIGRATEPAGE_SUCCESS;
1121 	}
1122 
1123 	dst = get_new_folio(src, private);
1124 	if (!dst)
1125 		return -ENOMEM;
1126 	*dstp = dst;
1127 
1128 	dst->private = NULL;
1129 
1130 	if (!folio_trylock(src)) {
1131 		if (mode == MIGRATE_ASYNC)
1132 			goto out;
1133 
1134 		/*
1135 		 * It's not safe for direct compaction to call lock_page.
1136 		 * For example, during page readahead pages are added locked
1137 		 * to the LRU. Later, when the IO completes the pages are
1138 		 * marked uptodate and unlocked. However, the queueing
1139 		 * could be merging multiple pages for one bio (e.g.
1140 		 * mpage_readahead). If an allocation happens for the
1141 		 * second or third page, the process can end up locking
1142 		 * the same page twice and deadlocking. Rather than
1143 		 * trying to be clever about what pages can be locked,
1144 		 * avoid the use of lock_page for direct compaction
1145 		 * altogether.
1146 		 */
1147 		if (current->flags & PF_MEMALLOC)
1148 			goto out;
1149 
1150 		/*
1151 		 * In "light" mode, we can wait for transient locks (eg
1152 		 * inserting a page into the page table), but it's not
1153 		 * worth waiting for I/O.
1154 		 */
1155 		if (mode == MIGRATE_SYNC_LIGHT && !folio_test_uptodate(src))
1156 			goto out;
1157 
1158 		folio_lock(src);
1159 	}
1160 	locked = true;
1161 
1162 	if (folio_test_writeback(src)) {
1163 		/*
1164 		 * Only in the case of a full synchronous migration is it
1165 		 * necessary to wait for PageWriteback. In the async case,
1166 		 * the retry loop is too short and in the sync-light case,
1167 		 * the overhead of stalling is too much
1168 		 */
1169 		switch (mode) {
1170 		case MIGRATE_SYNC:
1171 		case MIGRATE_SYNC_NO_COPY:
1172 			break;
1173 		default:
1174 			rc = -EBUSY;
1175 			goto out;
1176 		}
1177 		folio_wait_writeback(src);
1178 	}
1179 
1180 	/*
1181 	 * By try_to_migrate(), src->mapcount goes down to 0 here. In this case,
1182 	 * we cannot notice that anon_vma is freed while we migrate a page.
1183 	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1184 	 * of migration. File cache pages are no problem because of page_lock()
1185 	 * File Caches may use write_page() or lock_page() in migration, then,
1186 	 * just care Anon page here.
1187 	 *
1188 	 * Only folio_get_anon_vma() understands the subtleties of
1189 	 * getting a hold on an anon_vma from outside one of its mms.
1190 	 * But if we cannot get anon_vma, then we won't need it anyway,
1191 	 * because that implies that the anon page is no longer mapped
1192 	 * (and cannot be remapped so long as we hold the page lock).
1193 	 */
1194 	if (folio_test_anon(src) && !folio_test_ksm(src))
1195 		anon_vma = folio_get_anon_vma(src);
1196 
1197 	/*
1198 	 * Block others from accessing the new page when we get around to
1199 	 * establishing additional references. We are usually the only one
1200 	 * holding a reference to dst at this point. We used to have a BUG
1201 	 * here if folio_trylock(dst) fails, but would like to allow for
1202 	 * cases where there might be a race with the previous use of dst.
1203 	 * This is much like races on refcount of oldpage: just don't BUG().
1204 	 */
1205 	if (unlikely(!folio_trylock(dst)))
1206 		goto out;
1207 	dst_locked = true;
1208 
1209 	if (unlikely(!is_lru)) {
1210 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1211 		return MIGRATEPAGE_UNMAP;
1212 	}
1213 
1214 	/*
1215 	 * Corner case handling:
1216 	 * 1. When a new swap-cache page is read into, it is added to the LRU
1217 	 * and treated as swapcache but it has no rmap yet.
1218 	 * Calling try_to_unmap() against a src->mapping==NULL page will
1219 	 * trigger a BUG.  So handle it here.
1220 	 * 2. An orphaned page (see truncate_cleanup_page) might have
1221 	 * fs-private metadata. The page can be picked up due to memory
1222 	 * offlining.  Everywhere else except page reclaim, the page is
1223 	 * invisible to the vm, so the page can not be migrated.  So try to
1224 	 * free the metadata, so the page can be freed.
1225 	 */
1226 	if (!src->mapping) {
1227 		if (folio_test_private(src)) {
1228 			try_to_free_buffers(src);
1229 			goto out;
1230 		}
1231 	} else if (folio_mapped(src)) {
1232 		/* Establish migration ptes */
1233 		VM_BUG_ON_FOLIO(folio_test_anon(src) &&
1234 			       !folio_test_ksm(src) && !anon_vma, src);
1235 		try_to_migrate(src, mode == MIGRATE_ASYNC ? TTU_BATCH_FLUSH : 0);
1236 		page_was_mapped = 1;
1237 	}
1238 
1239 	if (!folio_mapped(src)) {
1240 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1241 		return MIGRATEPAGE_UNMAP;
1242 	}
1243 
1244 out:
1245 	/*
1246 	 * A folio that has not been unmapped will be restored to
1247 	 * right list unless we want to retry.
1248 	 */
1249 	if (rc == -EAGAIN)
1250 		ret = NULL;
1251 
1252 	migrate_folio_undo_src(src, page_was_mapped, anon_vma, locked, ret);
1253 	migrate_folio_undo_dst(dst, dst_locked, put_new_folio, private);
1254 
1255 	return rc;
1256 }
1257 
1258 /* Migrate the folio to the newly allocated folio in dst. */
migrate_folio_move(free_folio_t put_new_folio,unsigned long private,struct folio * src,struct folio * dst,enum migrate_mode mode,enum migrate_reason reason,struct list_head * ret)1259 static int migrate_folio_move(free_folio_t put_new_folio, unsigned long private,
1260 			      struct folio *src, struct folio *dst,
1261 			      enum migrate_mode mode, enum migrate_reason reason,
1262 			      struct list_head *ret)
1263 {
1264 	int rc;
1265 	int page_was_mapped = 0;
1266 	struct anon_vma *anon_vma = NULL;
1267 	bool is_lru = !__PageMovable(&src->page);
1268 	struct list_head *prev;
1269 
1270 	__migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1271 	prev = dst->lru.prev;
1272 	list_del(&dst->lru);
1273 
1274 	rc = move_to_new_folio(dst, src, mode);
1275 	if (rc)
1276 		goto out;
1277 
1278 	if (unlikely(!is_lru))
1279 		goto out_unlock_both;
1280 
1281 	/*
1282 	 * When successful, push dst to LRU immediately: so that if it
1283 	 * turns out to be an mlocked page, remove_migration_ptes() will
1284 	 * automatically build up the correct dst->mlock_count for it.
1285 	 *
1286 	 * We would like to do something similar for the old page, when
1287 	 * unsuccessful, and other cases when a page has been temporarily
1288 	 * isolated from the unevictable LRU: but this case is the easiest.
1289 	 */
1290 	folio_add_lru(dst);
1291 	if (page_was_mapped)
1292 		lru_add_drain();
1293 
1294 	if (page_was_mapped)
1295 		remove_migration_ptes(src, dst, false);
1296 
1297 out_unlock_both:
1298 	folio_unlock(dst);
1299 	set_page_owner_migrate_reason(&dst->page, reason);
1300 	/*
1301 	 * If migration is successful, decrease refcount of dst,
1302 	 * which will not free the page because new page owner increased
1303 	 * refcounter.
1304 	 */
1305 	folio_put(dst);
1306 
1307 	/*
1308 	 * A folio that has been migrated has all references removed
1309 	 * and will be freed.
1310 	 */
1311 	list_del(&src->lru);
1312 	/* Drop an anon_vma reference if we took one */
1313 	if (anon_vma)
1314 		put_anon_vma(anon_vma);
1315 	folio_unlock(src);
1316 	migrate_folio_done(src, reason);
1317 
1318 	return rc;
1319 out:
1320 	/*
1321 	 * A folio that has not been migrated will be restored to
1322 	 * right list unless we want to retry.
1323 	 */
1324 	if (rc == -EAGAIN) {
1325 		list_add(&dst->lru, prev);
1326 		__migrate_folio_record(dst, page_was_mapped, anon_vma);
1327 		return rc;
1328 	}
1329 
1330 	migrate_folio_undo_src(src, page_was_mapped, anon_vma, true, ret);
1331 	migrate_folio_undo_dst(dst, true, put_new_folio, private);
1332 
1333 	return rc;
1334 }
1335 
1336 /*
1337  * Counterpart of unmap_and_move_page() for hugepage migration.
1338  *
1339  * This function doesn't wait the completion of hugepage I/O
1340  * because there is no race between I/O and migration for hugepage.
1341  * Note that currently hugepage I/O occurs only in direct I/O
1342  * where no lock is held and PG_writeback is irrelevant,
1343  * and writeback status of all subpages are counted in the reference
1344  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1345  * under direct I/O, the reference of the head page is 512 and a bit more.)
1346  * This means that when we try to migrate hugepage whose subpages are
1347  * doing direct I/O, some references remain after try_to_unmap() and
1348  * hugepage migration fails without data corruption.
1349  *
1350  * There is also no race when direct I/O is issued on the page under migration,
1351  * because then pte is replaced with migration swap entry and direct I/O code
1352  * will wait in the page fault for migration to complete.
1353  */
unmap_and_move_huge_page(new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,struct folio * src,int force,enum migrate_mode mode,int reason,struct list_head * ret)1354 static int unmap_and_move_huge_page(new_folio_t get_new_folio,
1355 		free_folio_t put_new_folio, unsigned long private,
1356 		struct folio *src, int force, enum migrate_mode mode,
1357 		int reason, struct list_head *ret)
1358 {
1359 	struct folio *dst;
1360 	int rc = -EAGAIN;
1361 	int page_was_mapped = 0;
1362 	struct anon_vma *anon_vma = NULL;
1363 	struct address_space *mapping = NULL;
1364 
1365 	if (folio_ref_count(src) == 1) {
1366 		/* page was freed from under us. So we are done. */
1367 		folio_putback_active_hugetlb(src);
1368 		return MIGRATEPAGE_SUCCESS;
1369 	}
1370 
1371 	dst = get_new_folio(src, private);
1372 	if (!dst)
1373 		return -ENOMEM;
1374 
1375 	if (!folio_trylock(src)) {
1376 		if (!force)
1377 			goto out;
1378 		switch (mode) {
1379 		case MIGRATE_SYNC:
1380 		case MIGRATE_SYNC_NO_COPY:
1381 			break;
1382 		default:
1383 			goto out;
1384 		}
1385 		folio_lock(src);
1386 	}
1387 
1388 	/*
1389 	 * Check for pages which are in the process of being freed.  Without
1390 	 * folio_mapping() set, hugetlbfs specific move page routine will not
1391 	 * be called and we could leak usage counts for subpools.
1392 	 */
1393 	if (hugetlb_folio_subpool(src) && !folio_mapping(src)) {
1394 		rc = -EBUSY;
1395 		goto out_unlock;
1396 	}
1397 
1398 	if (folio_test_anon(src))
1399 		anon_vma = folio_get_anon_vma(src);
1400 
1401 	if (unlikely(!folio_trylock(dst)))
1402 		goto put_anon;
1403 
1404 	if (folio_mapped(src)) {
1405 		enum ttu_flags ttu = 0;
1406 
1407 		if (!folio_test_anon(src)) {
1408 			/*
1409 			 * In shared mappings, try_to_unmap could potentially
1410 			 * call huge_pmd_unshare.  Because of this, take
1411 			 * semaphore in write mode here and set TTU_RMAP_LOCKED
1412 			 * to let lower levels know we have taken the lock.
1413 			 */
1414 			mapping = hugetlb_page_mapping_lock_write(&src->page);
1415 			if (unlikely(!mapping))
1416 				goto unlock_put_anon;
1417 
1418 			ttu = TTU_RMAP_LOCKED;
1419 		}
1420 
1421 		try_to_migrate(src, ttu);
1422 		page_was_mapped = 1;
1423 
1424 		if (ttu & TTU_RMAP_LOCKED)
1425 			i_mmap_unlock_write(mapping);
1426 	}
1427 
1428 	if (!folio_mapped(src))
1429 		rc = move_to_new_folio(dst, src, mode);
1430 
1431 	if (page_was_mapped)
1432 		remove_migration_ptes(src,
1433 			rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1434 
1435 unlock_put_anon:
1436 	folio_unlock(dst);
1437 
1438 put_anon:
1439 	if (anon_vma)
1440 		put_anon_vma(anon_vma);
1441 
1442 	if (rc == MIGRATEPAGE_SUCCESS) {
1443 		move_hugetlb_state(src, dst, reason);
1444 		put_new_folio = NULL;
1445 	}
1446 
1447 out_unlock:
1448 	folio_unlock(src);
1449 out:
1450 	if (rc == MIGRATEPAGE_SUCCESS)
1451 		folio_putback_active_hugetlb(src);
1452 	else if (rc != -EAGAIN)
1453 		list_move_tail(&src->lru, ret);
1454 
1455 	/*
1456 	 * If migration was not successful and there's a freeing callback, use
1457 	 * it.  Otherwise, put_page() will drop the reference grabbed during
1458 	 * isolation.
1459 	 */
1460 	if (put_new_folio)
1461 		put_new_folio(dst, private);
1462 	else
1463 		folio_putback_active_hugetlb(dst);
1464 
1465 	return rc;
1466 }
1467 
try_split_folio(struct folio * folio,struct list_head * split_folios)1468 static inline int try_split_folio(struct folio *folio, struct list_head *split_folios)
1469 {
1470 	int rc;
1471 
1472 	folio_lock(folio);
1473 	rc = split_folio_to_list(folio, split_folios);
1474 	folio_unlock(folio);
1475 	if (!rc)
1476 		list_move_tail(&folio->lru, split_folios);
1477 
1478 	return rc;
1479 }
1480 
1481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482 #define NR_MAX_BATCHED_MIGRATION	HPAGE_PMD_NR
1483 #else
1484 #define NR_MAX_BATCHED_MIGRATION	512
1485 #endif
1486 #define NR_MAX_MIGRATE_PAGES_RETRY	10
1487 #define NR_MAX_MIGRATE_ASYNC_RETRY	3
1488 #define NR_MAX_MIGRATE_SYNC_RETRY					\
1489 	(NR_MAX_MIGRATE_PAGES_RETRY - NR_MAX_MIGRATE_ASYNC_RETRY)
1490 
1491 struct migrate_pages_stats {
1492 	int nr_succeeded;	/* Normal and large folios migrated successfully, in
1493 				   units of base pages */
1494 	int nr_failed_pages;	/* Normal and large folios failed to be migrated, in
1495 				   units of base pages.  Untried folios aren't counted */
1496 	int nr_thp_succeeded;	/* THP migrated successfully */
1497 	int nr_thp_failed;	/* THP failed to be migrated */
1498 	int nr_thp_split;	/* THP split before migrating */
1499 };
1500 
1501 /*
1502  * Returns the number of hugetlb folios that were not migrated, or an error code
1503  * after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no hugetlb folios are movable
1504  * any more because the list has become empty or no retryable hugetlb folios
1505  * exist any more. It is caller's responsibility to call putback_movable_pages()
1506  * only if ret != 0.
1507  */
migrate_hugetlbs(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct migrate_pages_stats * stats,struct list_head * ret_folios)1508 static int migrate_hugetlbs(struct list_head *from, new_folio_t get_new_folio,
1509 			    free_folio_t put_new_folio, unsigned long private,
1510 			    enum migrate_mode mode, int reason,
1511 			    struct migrate_pages_stats *stats,
1512 			    struct list_head *ret_folios)
1513 {
1514 	int retry = 1;
1515 	int nr_failed = 0;
1516 	int nr_retry_pages = 0;
1517 	int pass = 0;
1518 	struct folio *folio, *folio2;
1519 	int rc, nr_pages;
1520 
1521 	for (pass = 0; pass < NR_MAX_MIGRATE_PAGES_RETRY && retry; pass++) {
1522 		retry = 0;
1523 		nr_retry_pages = 0;
1524 
1525 		list_for_each_entry_safe(folio, folio2, from, lru) {
1526 			if (!folio_test_hugetlb(folio))
1527 				continue;
1528 
1529 			nr_pages = folio_nr_pages(folio);
1530 
1531 			cond_resched();
1532 
1533 			/*
1534 			 * Migratability of hugepages depends on architectures and
1535 			 * their size.  This check is necessary because some callers
1536 			 * of hugepage migration like soft offline and memory
1537 			 * hotremove don't walk through page tables or check whether
1538 			 * the hugepage is pmd-based or not before kicking migration.
1539 			 */
1540 			if (!hugepage_migration_supported(folio_hstate(folio))) {
1541 				nr_failed++;
1542 				stats->nr_failed_pages += nr_pages;
1543 				list_move_tail(&folio->lru, ret_folios);
1544 				continue;
1545 			}
1546 
1547 			rc = unmap_and_move_huge_page(get_new_folio,
1548 						      put_new_folio, private,
1549 						      folio, pass > 2, mode,
1550 						      reason, ret_folios);
1551 			/*
1552 			 * The rules are:
1553 			 *	Success: hugetlb folio will be put back
1554 			 *	-EAGAIN: stay on the from list
1555 			 *	-ENOMEM: stay on the from list
1556 			 *	Other errno: put on ret_folios list
1557 			 */
1558 			switch(rc) {
1559 			case -ENOMEM:
1560 				/*
1561 				 * When memory is low, don't bother to try to migrate
1562 				 * other folios, just exit.
1563 				 */
1564 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1565 				return -ENOMEM;
1566 			case -EAGAIN:
1567 				retry++;
1568 				nr_retry_pages += nr_pages;
1569 				break;
1570 			case MIGRATEPAGE_SUCCESS:
1571 				stats->nr_succeeded += nr_pages;
1572 				break;
1573 			default:
1574 				/*
1575 				 * Permanent failure (-EBUSY, etc.):
1576 				 * unlike -EAGAIN case, the failed folio is
1577 				 * removed from migration folio list and not
1578 				 * retried in the next outer loop.
1579 				 */
1580 				nr_failed++;
1581 				stats->nr_failed_pages += nr_pages;
1582 				break;
1583 			}
1584 		}
1585 	}
1586 	/*
1587 	 * nr_failed is number of hugetlb folios failed to be migrated.  After
1588 	 * NR_MAX_MIGRATE_PAGES_RETRY attempts, give up and count retried hugetlb
1589 	 * folios as failed.
1590 	 */
1591 	nr_failed += retry;
1592 	stats->nr_failed_pages += nr_retry_pages;
1593 
1594 	return nr_failed;
1595 }
1596 
1597 /*
1598  * migrate_pages_batch() first unmaps folios in the from list as many as
1599  * possible, then move the unmapped folios.
1600  *
1601  * We only batch migration if mode == MIGRATE_ASYNC to avoid to wait a
1602  * lock or bit when we have locked more than one folio.  Which may cause
1603  * deadlock (e.g., for loop device).  So, if mode != MIGRATE_ASYNC, the
1604  * length of the from list must be <= 1.
1605  */
migrate_pages_batch(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats,int nr_pass)1606 static int migrate_pages_batch(struct list_head *from,
1607 		new_folio_t get_new_folio, free_folio_t put_new_folio,
1608 		unsigned long private, enum migrate_mode mode, int reason,
1609 		struct list_head *ret_folios, struct list_head *split_folios,
1610 		struct migrate_pages_stats *stats, int nr_pass)
1611 {
1612 	int retry = 1;
1613 	int thp_retry = 1;
1614 	int nr_failed = 0;
1615 	int nr_retry_pages = 0;
1616 	int pass = 0;
1617 	bool is_thp = false;
1618 	struct folio *folio, *folio2, *dst = NULL, *dst2;
1619 	int rc, rc_saved = 0, nr_pages;
1620 	LIST_HEAD(unmap_folios);
1621 	LIST_HEAD(dst_folios);
1622 	bool nosplit = (reason == MR_NUMA_MISPLACED);
1623 
1624 	VM_WARN_ON_ONCE(mode != MIGRATE_ASYNC &&
1625 			!list_empty(from) && !list_is_singular(from));
1626 
1627 	for (pass = 0; pass < nr_pass && retry; pass++) {
1628 		retry = 0;
1629 		thp_retry = 0;
1630 		nr_retry_pages = 0;
1631 
1632 		list_for_each_entry_safe(folio, folio2, from, lru) {
1633 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1634 			nr_pages = folio_nr_pages(folio);
1635 
1636 			cond_resched();
1637 
1638 			/*
1639 			 * Large folio migration might be unsupported or
1640 			 * the allocation might be failed so we should retry
1641 			 * on the same folio with the large folio split
1642 			 * to normal folios.
1643 			 *
1644 			 * Split folios are put in split_folios, and
1645 			 * we will migrate them after the rest of the
1646 			 * list is processed.
1647 			 */
1648 			if (!thp_migration_supported() && is_thp) {
1649 				nr_failed++;
1650 				stats->nr_thp_failed++;
1651 				if (!try_split_folio(folio, split_folios)) {
1652 					stats->nr_thp_split++;
1653 					continue;
1654 				}
1655 				stats->nr_failed_pages += nr_pages;
1656 				list_move_tail(&folio->lru, ret_folios);
1657 				continue;
1658 			}
1659 
1660 			rc = migrate_folio_unmap(get_new_folio, put_new_folio,
1661 					private, folio, &dst, mode, reason,
1662 					ret_folios);
1663 			/*
1664 			 * The rules are:
1665 			 *	Success: folio will be freed
1666 			 *	Unmap: folio will be put on unmap_folios list,
1667 			 *	       dst folio put on dst_folios list
1668 			 *	-EAGAIN: stay on the from list
1669 			 *	-ENOMEM: stay on the from list
1670 			 *	Other errno: put on ret_folios list
1671 			 */
1672 			switch(rc) {
1673 			case -ENOMEM:
1674 				/*
1675 				 * When memory is low, don't bother to try to migrate
1676 				 * other folios, move unmapped folios, then exit.
1677 				 */
1678 				nr_failed++;
1679 				stats->nr_thp_failed += is_thp;
1680 				/* Large folio NUMA faulting doesn't split to retry. */
1681 				if (folio_test_large(folio) && !nosplit) {
1682 					int ret = try_split_folio(folio, split_folios);
1683 
1684 					if (!ret) {
1685 						stats->nr_thp_split += is_thp;
1686 						break;
1687 					} else if (reason == MR_LONGTERM_PIN &&
1688 						   ret == -EAGAIN) {
1689 						/*
1690 						 * Try again to split large folio to
1691 						 * mitigate the failure of longterm pinning.
1692 						 */
1693 						retry++;
1694 						thp_retry += is_thp;
1695 						nr_retry_pages += nr_pages;
1696 						/* Undo duplicated failure counting. */
1697 						nr_failed--;
1698 						stats->nr_thp_failed -= is_thp;
1699 						break;
1700 					}
1701 				}
1702 
1703 				stats->nr_failed_pages += nr_pages + nr_retry_pages;
1704 				/* nr_failed isn't updated for not used */
1705 				stats->nr_thp_failed += thp_retry;
1706 				rc_saved = rc;
1707 				if (list_empty(&unmap_folios))
1708 					goto out;
1709 				else
1710 					goto move;
1711 			case -EAGAIN:
1712 				retry++;
1713 				thp_retry += is_thp;
1714 				nr_retry_pages += nr_pages;
1715 				break;
1716 			case MIGRATEPAGE_SUCCESS:
1717 				stats->nr_succeeded += nr_pages;
1718 				stats->nr_thp_succeeded += is_thp;
1719 				break;
1720 			case MIGRATEPAGE_UNMAP:
1721 				list_move_tail(&folio->lru, &unmap_folios);
1722 				list_add_tail(&dst->lru, &dst_folios);
1723 				break;
1724 			default:
1725 				/*
1726 				 * Permanent failure (-EBUSY, etc.):
1727 				 * unlike -EAGAIN case, the failed folio is
1728 				 * removed from migration folio list and not
1729 				 * retried in the next outer loop.
1730 				 */
1731 				nr_failed++;
1732 				stats->nr_thp_failed += is_thp;
1733 				stats->nr_failed_pages += nr_pages;
1734 				break;
1735 			}
1736 		}
1737 	}
1738 	nr_failed += retry;
1739 	stats->nr_thp_failed += thp_retry;
1740 	stats->nr_failed_pages += nr_retry_pages;
1741 move:
1742 	/* Flush TLBs for all unmapped folios */
1743 	try_to_unmap_flush();
1744 
1745 	retry = 1;
1746 	for (pass = 0; pass < nr_pass && retry; pass++) {
1747 		retry = 0;
1748 		thp_retry = 0;
1749 		nr_retry_pages = 0;
1750 
1751 		dst = list_first_entry(&dst_folios, struct folio, lru);
1752 		dst2 = list_next_entry(dst, lru);
1753 		list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1754 			is_thp = folio_test_large(folio) && folio_test_pmd_mappable(folio);
1755 			nr_pages = folio_nr_pages(folio);
1756 
1757 			cond_resched();
1758 
1759 			rc = migrate_folio_move(put_new_folio, private,
1760 						folio, dst, mode,
1761 						reason, ret_folios);
1762 			/*
1763 			 * The rules are:
1764 			 *	Success: folio will be freed
1765 			 *	-EAGAIN: stay on the unmap_folios list
1766 			 *	Other errno: put on ret_folios list
1767 			 */
1768 			switch(rc) {
1769 			case -EAGAIN:
1770 				retry++;
1771 				thp_retry += is_thp;
1772 				nr_retry_pages += nr_pages;
1773 				break;
1774 			case MIGRATEPAGE_SUCCESS:
1775 				stats->nr_succeeded += nr_pages;
1776 				stats->nr_thp_succeeded += is_thp;
1777 				break;
1778 			default:
1779 				nr_failed++;
1780 				stats->nr_thp_failed += is_thp;
1781 				stats->nr_failed_pages += nr_pages;
1782 				break;
1783 			}
1784 			dst = dst2;
1785 			dst2 = list_next_entry(dst, lru);
1786 		}
1787 	}
1788 	nr_failed += retry;
1789 	stats->nr_thp_failed += thp_retry;
1790 	stats->nr_failed_pages += nr_retry_pages;
1791 
1792 	rc = rc_saved ? : nr_failed;
1793 out:
1794 	/* Cleanup remaining folios */
1795 	dst = list_first_entry(&dst_folios, struct folio, lru);
1796 	dst2 = list_next_entry(dst, lru);
1797 	list_for_each_entry_safe(folio, folio2, &unmap_folios, lru) {
1798 		int page_was_mapped = 0;
1799 		struct anon_vma *anon_vma = NULL;
1800 
1801 		__migrate_folio_extract(dst, &page_was_mapped, &anon_vma);
1802 		migrate_folio_undo_src(folio, page_was_mapped, anon_vma,
1803 				       true, ret_folios);
1804 		list_del(&dst->lru);
1805 		migrate_folio_undo_dst(dst, true, put_new_folio, private);
1806 		dst = dst2;
1807 		dst2 = list_next_entry(dst, lru);
1808 	}
1809 
1810 	return rc;
1811 }
1812 
migrate_pages_sync(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,struct list_head * ret_folios,struct list_head * split_folios,struct migrate_pages_stats * stats)1813 static int migrate_pages_sync(struct list_head *from, new_folio_t get_new_folio,
1814 		free_folio_t put_new_folio, unsigned long private,
1815 		enum migrate_mode mode, int reason,
1816 		struct list_head *ret_folios, struct list_head *split_folios,
1817 		struct migrate_pages_stats *stats)
1818 {
1819 	int rc, nr_failed = 0;
1820 	LIST_HEAD(folios);
1821 	struct migrate_pages_stats astats;
1822 
1823 	memset(&astats, 0, sizeof(astats));
1824 	/* Try to migrate in batch with MIGRATE_ASYNC mode firstly */
1825 	rc = migrate_pages_batch(from, get_new_folio, put_new_folio, private, MIGRATE_ASYNC,
1826 				 reason, &folios, split_folios, &astats,
1827 				 NR_MAX_MIGRATE_ASYNC_RETRY);
1828 	stats->nr_succeeded += astats.nr_succeeded;
1829 	stats->nr_thp_succeeded += astats.nr_thp_succeeded;
1830 	stats->nr_thp_split += astats.nr_thp_split;
1831 	if (rc < 0) {
1832 		stats->nr_failed_pages += astats.nr_failed_pages;
1833 		stats->nr_thp_failed += astats.nr_thp_failed;
1834 		list_splice_tail(&folios, ret_folios);
1835 		return rc;
1836 	}
1837 	stats->nr_thp_failed += astats.nr_thp_split;
1838 	nr_failed += astats.nr_thp_split;
1839 	/*
1840 	 * Fall back to migrate all failed folios one by one synchronously. All
1841 	 * failed folios except split THPs will be retried, so their failure
1842 	 * isn't counted
1843 	 */
1844 	list_splice_tail_init(&folios, from);
1845 	while (!list_empty(from)) {
1846 		list_move(from->next, &folios);
1847 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1848 					 private, mode, reason, ret_folios,
1849 					 split_folios, stats, NR_MAX_MIGRATE_SYNC_RETRY);
1850 		list_splice_tail_init(&folios, ret_folios);
1851 		if (rc < 0)
1852 			return rc;
1853 		nr_failed += rc;
1854 	}
1855 
1856 	return nr_failed;
1857 }
1858 
1859 /*
1860  * migrate_pages - migrate the folios specified in a list, to the free folios
1861  *		   supplied as the target for the page migration
1862  *
1863  * @from:		The list of folios to be migrated.
1864  * @get_new_folio:	The function used to allocate free folios to be used
1865  *			as the target of the folio migration.
1866  * @put_new_folio:	The function used to free target folios if migration
1867  *			fails, or NULL if no special handling is necessary.
1868  * @private:		Private data to be passed on to get_new_folio()
1869  * @mode:		The migration mode that specifies the constraints for
1870  *			folio migration, if any.
1871  * @reason:		The reason for folio migration.
1872  * @ret_succeeded:	Set to the number of folios migrated successfully if
1873  *			the caller passes a non-NULL pointer.
1874  *
1875  * The function returns after NR_MAX_MIGRATE_PAGES_RETRY attempts or if no folios
1876  * are movable any more because the list has become empty or no retryable folios
1877  * exist any more. It is caller's responsibility to call putback_movable_pages()
1878  * only if ret != 0.
1879  *
1880  * Returns the number of {normal folio, large folio, hugetlb} that were not
1881  * migrated, or an error code. The number of large folio splits will be
1882  * considered as the number of non-migrated large folio, no matter how many
1883  * split folios of the large folio are migrated successfully.
1884  */
migrate_pages(struct list_head * from,new_folio_t get_new_folio,free_folio_t put_new_folio,unsigned long private,enum migrate_mode mode,int reason,unsigned int * ret_succeeded)1885 int migrate_pages(struct list_head *from, new_folio_t get_new_folio,
1886 		free_folio_t put_new_folio, unsigned long private,
1887 		enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1888 {
1889 	int rc, rc_gather;
1890 	int nr_pages;
1891 	struct folio *folio, *folio2;
1892 	LIST_HEAD(folios);
1893 	LIST_HEAD(ret_folios);
1894 	LIST_HEAD(split_folios);
1895 	struct migrate_pages_stats stats;
1896 
1897 	trace_mm_migrate_pages_start(mode, reason);
1898 
1899 	memset(&stats, 0, sizeof(stats));
1900 
1901 	rc_gather = migrate_hugetlbs(from, get_new_folio, put_new_folio, private,
1902 				     mode, reason, &stats, &ret_folios);
1903 	if (rc_gather < 0)
1904 		goto out;
1905 
1906 again:
1907 	nr_pages = 0;
1908 	list_for_each_entry_safe(folio, folio2, from, lru) {
1909 		/* Retried hugetlb folios will be kept in list  */
1910 		if (folio_test_hugetlb(folio)) {
1911 			list_move_tail(&folio->lru, &ret_folios);
1912 			continue;
1913 		}
1914 
1915 		nr_pages += folio_nr_pages(folio);
1916 		if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1917 			break;
1918 	}
1919 	if (nr_pages >= NR_MAX_BATCHED_MIGRATION)
1920 		list_cut_before(&folios, from, &folio2->lru);
1921 	else
1922 		list_splice_init(from, &folios);
1923 	if (mode == MIGRATE_ASYNC)
1924 		rc = migrate_pages_batch(&folios, get_new_folio, put_new_folio,
1925 				private, mode, reason, &ret_folios,
1926 				&split_folios, &stats,
1927 				NR_MAX_MIGRATE_PAGES_RETRY);
1928 	else
1929 		rc = migrate_pages_sync(&folios, get_new_folio, put_new_folio,
1930 				private, mode, reason, &ret_folios,
1931 				&split_folios, &stats);
1932 	list_splice_tail_init(&folios, &ret_folios);
1933 	if (rc < 0) {
1934 		rc_gather = rc;
1935 		list_splice_tail(&split_folios, &ret_folios);
1936 		goto out;
1937 	}
1938 	if (!list_empty(&split_folios)) {
1939 		/*
1940 		 * Failure isn't counted since all split folios of a large folio
1941 		 * is counted as 1 failure already.  And, we only try to migrate
1942 		 * with minimal effort, force MIGRATE_ASYNC mode and retry once.
1943 		 */
1944 		migrate_pages_batch(&split_folios, get_new_folio,
1945 				put_new_folio, private, MIGRATE_ASYNC, reason,
1946 				&ret_folios, NULL, &stats, 1);
1947 		list_splice_tail_init(&split_folios, &ret_folios);
1948 	}
1949 	rc_gather += rc;
1950 	if (!list_empty(from))
1951 		goto again;
1952 out:
1953 	/*
1954 	 * Put the permanent failure folio back to migration list, they
1955 	 * will be put back to the right list by the caller.
1956 	 */
1957 	list_splice(&ret_folios, from);
1958 
1959 	/*
1960 	 * Return 0 in case all split folios of fail-to-migrate large folios
1961 	 * are migrated successfully.
1962 	 */
1963 	if (list_empty(from))
1964 		rc_gather = 0;
1965 
1966 	count_vm_events(PGMIGRATE_SUCCESS, stats.nr_succeeded);
1967 	count_vm_events(PGMIGRATE_FAIL, stats.nr_failed_pages);
1968 	count_vm_events(THP_MIGRATION_SUCCESS, stats.nr_thp_succeeded);
1969 	count_vm_events(THP_MIGRATION_FAIL, stats.nr_thp_failed);
1970 	count_vm_events(THP_MIGRATION_SPLIT, stats.nr_thp_split);
1971 	trace_mm_migrate_pages(stats.nr_succeeded, stats.nr_failed_pages,
1972 			       stats.nr_thp_succeeded, stats.nr_thp_failed,
1973 			       stats.nr_thp_split, mode, reason);
1974 
1975 	if (ret_succeeded)
1976 		*ret_succeeded = stats.nr_succeeded;
1977 
1978 	return rc_gather;
1979 }
1980 
alloc_migration_target(struct folio * src,unsigned long private)1981 struct folio *alloc_migration_target(struct folio *src, unsigned long private)
1982 {
1983 	struct migration_target_control *mtc;
1984 	gfp_t gfp_mask;
1985 	unsigned int order = 0;
1986 	int nid;
1987 	int zidx;
1988 
1989 	mtc = (struct migration_target_control *)private;
1990 	gfp_mask = mtc->gfp_mask;
1991 	nid = mtc->nid;
1992 	if (nid == NUMA_NO_NODE)
1993 		nid = folio_nid(src);
1994 
1995 	if (folio_test_hugetlb(src)) {
1996 		struct hstate *h = folio_hstate(src);
1997 
1998 		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1999 		return alloc_hugetlb_folio_nodemask(h, nid,
2000 						mtc->nmask, gfp_mask);
2001 	}
2002 
2003 	if (folio_test_large(src)) {
2004 		/*
2005 		 * clear __GFP_RECLAIM to make the migration callback
2006 		 * consistent with regular THP allocations.
2007 		 */
2008 		gfp_mask &= ~__GFP_RECLAIM;
2009 		gfp_mask |= GFP_TRANSHUGE;
2010 		order = folio_order(src);
2011 	}
2012 	zidx = zone_idx(folio_zone(src));
2013 	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
2014 		gfp_mask |= __GFP_HIGHMEM;
2015 
2016 	return __folio_alloc(gfp_mask, order, nid, mtc->nmask);
2017 }
2018 
2019 #ifdef CONFIG_NUMA
2020 
store_status(int __user * status,int start,int value,int nr)2021 static int store_status(int __user *status, int start, int value, int nr)
2022 {
2023 	while (nr-- > 0) {
2024 		if (put_user(value, status + start))
2025 			return -EFAULT;
2026 		start++;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
do_move_pages_to_node(struct mm_struct * mm,struct list_head * pagelist,int node)2032 static int do_move_pages_to_node(struct mm_struct *mm,
2033 		struct list_head *pagelist, int node)
2034 {
2035 	int err;
2036 	struct migration_target_control mtc = {
2037 		.nid = node,
2038 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
2039 	};
2040 
2041 	err = migrate_pages(pagelist, alloc_migration_target, NULL,
2042 		(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
2043 	if (err)
2044 		putback_movable_pages(pagelist);
2045 	return err;
2046 }
2047 
2048 /*
2049  * Resolves the given address to a struct page, isolates it from the LRU and
2050  * puts it to the given pagelist.
2051  * Returns:
2052  *     errno - if the page cannot be found/isolated
2053  *     0 - when it doesn't have to be migrated because it is already on the
2054  *         target node
2055  *     1 - when it has been queued
2056  */
add_page_for_migration(struct mm_struct * mm,const void __user * p,int node,struct list_head * pagelist,bool migrate_all)2057 static int add_page_for_migration(struct mm_struct *mm, const void __user *p,
2058 		int node, struct list_head *pagelist, bool migrate_all)
2059 {
2060 	struct vm_area_struct *vma;
2061 	unsigned long addr;
2062 	struct page *page;
2063 	int err;
2064 	bool isolated;
2065 
2066 	mmap_read_lock(mm);
2067 	addr = (unsigned long)untagged_addr_remote(mm, p);
2068 
2069 	err = -EFAULT;
2070 	vma = vma_lookup(mm, addr);
2071 	if (!vma || !vma_migratable(vma))
2072 		goto out;
2073 
2074 	/* FOLL_DUMP to ignore special (like zero) pages */
2075 	page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2076 
2077 	err = PTR_ERR(page);
2078 	if (IS_ERR(page))
2079 		goto out;
2080 
2081 	err = -ENOENT;
2082 	if (!page)
2083 		goto out;
2084 
2085 	if (is_zone_device_page(page))
2086 		goto out_putpage;
2087 
2088 	err = 0;
2089 	if (page_to_nid(page) == node)
2090 		goto out_putpage;
2091 
2092 	err = -EACCES;
2093 	if (page_mapcount(page) > 1 && !migrate_all)
2094 		goto out_putpage;
2095 
2096 	if (PageHuge(page)) {
2097 		if (PageHead(page)) {
2098 			isolated = isolate_hugetlb(page_folio(page), pagelist);
2099 			err = isolated ? 1 : -EBUSY;
2100 		}
2101 	} else {
2102 		struct page *head;
2103 
2104 		head = compound_head(page);
2105 		isolated = isolate_lru_page(head);
2106 		if (!isolated) {
2107 			err = -EBUSY;
2108 			goto out_putpage;
2109 		}
2110 
2111 		err = 1;
2112 		list_add_tail(&head->lru, pagelist);
2113 		mod_node_page_state(page_pgdat(head),
2114 			NR_ISOLATED_ANON + page_is_file_lru(head),
2115 			thp_nr_pages(head));
2116 	}
2117 out_putpage:
2118 	/*
2119 	 * Either remove the duplicate refcount from
2120 	 * isolate_lru_page() or drop the page ref if it was
2121 	 * not isolated.
2122 	 */
2123 	put_page(page);
2124 out:
2125 	mmap_read_unlock(mm);
2126 	return err;
2127 }
2128 
move_pages_and_store_status(struct mm_struct * mm,int node,struct list_head * pagelist,int __user * status,int start,int i,unsigned long nr_pages)2129 static int move_pages_and_store_status(struct mm_struct *mm, int node,
2130 		struct list_head *pagelist, int __user *status,
2131 		int start, int i, unsigned long nr_pages)
2132 {
2133 	int err;
2134 
2135 	if (list_empty(pagelist))
2136 		return 0;
2137 
2138 	err = do_move_pages_to_node(mm, pagelist, node);
2139 	if (err) {
2140 		/*
2141 		 * Positive err means the number of failed
2142 		 * pages to migrate.  Since we are going to
2143 		 * abort and return the number of non-migrated
2144 		 * pages, so need to include the rest of the
2145 		 * nr_pages that have not been attempted as
2146 		 * well.
2147 		 */
2148 		if (err > 0)
2149 			err += nr_pages - i;
2150 		return err;
2151 	}
2152 	return store_status(status, start, node, i - start);
2153 }
2154 
2155 /*
2156  * Migrate an array of page address onto an array of nodes and fill
2157  * the corresponding array of status.
2158  */
do_pages_move(struct mm_struct * mm,nodemask_t task_nodes,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2159 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
2160 			 unsigned long nr_pages,
2161 			 const void __user * __user *pages,
2162 			 const int __user *nodes,
2163 			 int __user *status, int flags)
2164 {
2165 	compat_uptr_t __user *compat_pages = (void __user *)pages;
2166 	int current_node = NUMA_NO_NODE;
2167 	LIST_HEAD(pagelist);
2168 	int start, i;
2169 	int err = 0, err1;
2170 
2171 	lru_cache_disable();
2172 
2173 	for (i = start = 0; i < nr_pages; i++) {
2174 		const void __user *p;
2175 		int node;
2176 
2177 		err = -EFAULT;
2178 		if (in_compat_syscall()) {
2179 			compat_uptr_t cp;
2180 
2181 			if (get_user(cp, compat_pages + i))
2182 				goto out_flush;
2183 
2184 			p = compat_ptr(cp);
2185 		} else {
2186 			if (get_user(p, pages + i))
2187 				goto out_flush;
2188 		}
2189 		if (get_user(node, nodes + i))
2190 			goto out_flush;
2191 
2192 		err = -ENODEV;
2193 		if (node < 0 || node >= MAX_NUMNODES)
2194 			goto out_flush;
2195 		if (!node_state(node, N_MEMORY))
2196 			goto out_flush;
2197 
2198 		err = -EACCES;
2199 		if (!node_isset(node, task_nodes))
2200 			goto out_flush;
2201 
2202 		if (current_node == NUMA_NO_NODE) {
2203 			current_node = node;
2204 			start = i;
2205 		} else if (node != current_node) {
2206 			err = move_pages_and_store_status(mm, current_node,
2207 					&pagelist, status, start, i, nr_pages);
2208 			if (err)
2209 				goto out;
2210 			start = i;
2211 			current_node = node;
2212 		}
2213 
2214 		/*
2215 		 * Errors in the page lookup or isolation are not fatal and we simply
2216 		 * report them via status
2217 		 */
2218 		err = add_page_for_migration(mm, p, current_node, &pagelist,
2219 					     flags & MPOL_MF_MOVE_ALL);
2220 
2221 		if (err > 0) {
2222 			/* The page is successfully queued for migration */
2223 			continue;
2224 		}
2225 
2226 		/*
2227 		 * The move_pages() man page does not have an -EEXIST choice, so
2228 		 * use -EFAULT instead.
2229 		 */
2230 		if (err == -EEXIST)
2231 			err = -EFAULT;
2232 
2233 		/*
2234 		 * If the page is already on the target node (!err), store the
2235 		 * node, otherwise, store the err.
2236 		 */
2237 		err = store_status(status, i, err ? : current_node, 1);
2238 		if (err)
2239 			goto out_flush;
2240 
2241 		err = move_pages_and_store_status(mm, current_node, &pagelist,
2242 				status, start, i, nr_pages);
2243 		if (err) {
2244 			/* We have accounted for page i */
2245 			if (err > 0)
2246 				err--;
2247 			goto out;
2248 		}
2249 		current_node = NUMA_NO_NODE;
2250 	}
2251 out_flush:
2252 	/* Make sure we do not overwrite the existing error */
2253 	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
2254 				status, start, i, nr_pages);
2255 	if (err >= 0)
2256 		err = err1;
2257 out:
2258 	lru_cache_enable();
2259 	return err;
2260 }
2261 
2262 /*
2263  * Determine the nodes of an array of pages and store it in an array of status.
2264  */
do_pages_stat_array(struct mm_struct * mm,unsigned long nr_pages,const void __user ** pages,int * status)2265 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
2266 				const void __user **pages, int *status)
2267 {
2268 	unsigned long i;
2269 
2270 	mmap_read_lock(mm);
2271 
2272 	for (i = 0; i < nr_pages; i++) {
2273 		unsigned long addr = (unsigned long)(*pages);
2274 		struct vm_area_struct *vma;
2275 		struct page *page;
2276 		int err = -EFAULT;
2277 
2278 		vma = vma_lookup(mm, addr);
2279 		if (!vma)
2280 			goto set_status;
2281 
2282 		/* FOLL_DUMP to ignore special (like zero) pages */
2283 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2284 
2285 		err = PTR_ERR(page);
2286 		if (IS_ERR(page))
2287 			goto set_status;
2288 
2289 		err = -ENOENT;
2290 		if (!page)
2291 			goto set_status;
2292 
2293 		if (!is_zone_device_page(page))
2294 			err = page_to_nid(page);
2295 
2296 		put_page(page);
2297 set_status:
2298 		*status = err;
2299 
2300 		pages++;
2301 		status++;
2302 	}
2303 
2304 	mmap_read_unlock(mm);
2305 }
2306 
get_compat_pages_array(const void __user * chunk_pages[],const void __user * __user * pages,unsigned long chunk_nr)2307 static int get_compat_pages_array(const void __user *chunk_pages[],
2308 				  const void __user * __user *pages,
2309 				  unsigned long chunk_nr)
2310 {
2311 	compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
2312 	compat_uptr_t p;
2313 	int i;
2314 
2315 	for (i = 0; i < chunk_nr; i++) {
2316 		if (get_user(p, pages32 + i))
2317 			return -EFAULT;
2318 		chunk_pages[i] = compat_ptr(p);
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 /*
2325  * Determine the nodes of a user array of pages and store it in
2326  * a user array of status.
2327  */
do_pages_stat(struct mm_struct * mm,unsigned long nr_pages,const void __user * __user * pages,int __user * status)2328 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
2329 			 const void __user * __user *pages,
2330 			 int __user *status)
2331 {
2332 #define DO_PAGES_STAT_CHUNK_NR 16UL
2333 	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
2334 	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
2335 
2336 	while (nr_pages) {
2337 		unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
2338 
2339 		if (in_compat_syscall()) {
2340 			if (get_compat_pages_array(chunk_pages, pages,
2341 						   chunk_nr))
2342 				break;
2343 		} else {
2344 			if (copy_from_user(chunk_pages, pages,
2345 				      chunk_nr * sizeof(*chunk_pages)))
2346 				break;
2347 		}
2348 
2349 		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
2350 
2351 		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
2352 			break;
2353 
2354 		pages += chunk_nr;
2355 		status += chunk_nr;
2356 		nr_pages -= chunk_nr;
2357 	}
2358 	return nr_pages ? -EFAULT : 0;
2359 }
2360 
find_mm_struct(pid_t pid,nodemask_t * mem_nodes)2361 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
2362 {
2363 	struct task_struct *task;
2364 	struct mm_struct *mm;
2365 
2366 	/*
2367 	 * There is no need to check if current process has the right to modify
2368 	 * the specified process when they are same.
2369 	 */
2370 	if (!pid) {
2371 		mmget(current->mm);
2372 		*mem_nodes = cpuset_mems_allowed(current);
2373 		return current->mm;
2374 	}
2375 
2376 	/* Find the mm_struct */
2377 	rcu_read_lock();
2378 	task = find_task_by_vpid(pid);
2379 	if (!task) {
2380 		rcu_read_unlock();
2381 		return ERR_PTR(-ESRCH);
2382 	}
2383 	get_task_struct(task);
2384 
2385 	/*
2386 	 * Check if this process has the right to modify the specified
2387 	 * process. Use the regular "ptrace_may_access()" checks.
2388 	 */
2389 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
2390 		rcu_read_unlock();
2391 		mm = ERR_PTR(-EPERM);
2392 		goto out;
2393 	}
2394 	rcu_read_unlock();
2395 
2396 	mm = ERR_PTR(security_task_movememory(task));
2397 	if (IS_ERR(mm))
2398 		goto out;
2399 	*mem_nodes = cpuset_mems_allowed(task);
2400 	mm = get_task_mm(task);
2401 out:
2402 	put_task_struct(task);
2403 	if (!mm)
2404 		mm = ERR_PTR(-EINVAL);
2405 	return mm;
2406 }
2407 
2408 /*
2409  * Move a list of pages in the address space of the currently executing
2410  * process.
2411  */
kernel_move_pages(pid_t pid,unsigned long nr_pages,const void __user * __user * pages,const int __user * nodes,int __user * status,int flags)2412 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2413 			     const void __user * __user *pages,
2414 			     const int __user *nodes,
2415 			     int __user *status, int flags)
2416 {
2417 	struct mm_struct *mm;
2418 	int err;
2419 	nodemask_t task_nodes;
2420 
2421 	/* Check flags */
2422 	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2423 		return -EINVAL;
2424 
2425 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2426 		return -EPERM;
2427 
2428 	mm = find_mm_struct(pid, &task_nodes);
2429 	if (IS_ERR(mm))
2430 		return PTR_ERR(mm);
2431 
2432 	if (nodes)
2433 		err = do_pages_move(mm, task_nodes, nr_pages, pages,
2434 				    nodes, status, flags);
2435 	else
2436 		err = do_pages_stat(mm, nr_pages, pages, status);
2437 
2438 	mmput(mm);
2439 	return err;
2440 }
2441 
SYSCALL_DEFINE6(move_pages,pid_t,pid,unsigned long,nr_pages,const void __user * __user *,pages,const int __user *,nodes,int __user *,status,int,flags)2442 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2443 		const void __user * __user *, pages,
2444 		const int __user *, nodes,
2445 		int __user *, status, int, flags)
2446 {
2447 	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2448 }
2449 
2450 #ifdef CONFIG_NUMA_BALANCING
2451 /*
2452  * Returns true if this is a safe migration target node for misplaced NUMA
2453  * pages. Currently it only checks the watermarks which is crude.
2454  */
migrate_balanced_pgdat(struct pglist_data * pgdat,unsigned long nr_migrate_pages)2455 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2456 				   unsigned long nr_migrate_pages)
2457 {
2458 	int z;
2459 
2460 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2461 		struct zone *zone = pgdat->node_zones + z;
2462 
2463 		if (!managed_zone(zone))
2464 			continue;
2465 
2466 		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
2467 		if (!zone_watermark_ok(zone, 0,
2468 				       high_wmark_pages(zone) +
2469 				       nr_migrate_pages,
2470 				       ZONE_MOVABLE, 0))
2471 			continue;
2472 		return true;
2473 	}
2474 	return false;
2475 }
2476 
alloc_misplaced_dst_folio(struct folio * src,unsigned long data)2477 static struct folio *alloc_misplaced_dst_folio(struct folio *src,
2478 					   unsigned long data)
2479 {
2480 	int nid = (int) data;
2481 	int order = folio_order(src);
2482 	gfp_t gfp = __GFP_THISNODE;
2483 
2484 	if (order > 0)
2485 		gfp |= GFP_TRANSHUGE_LIGHT;
2486 	else {
2487 		gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2488 			__GFP_NOWARN;
2489 		gfp &= ~__GFP_RECLAIM;
2490 	}
2491 	return __folio_alloc_node(gfp, order, nid);
2492 }
2493 
numamigrate_isolate_page(pg_data_t * pgdat,struct page * page)2494 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2495 {
2496 	int nr_pages = thp_nr_pages(page);
2497 	int order = compound_order(page);
2498 
2499 	VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2500 
2501 	/* Do not migrate THP mapped by multiple processes */
2502 	if (PageTransHuge(page) && total_mapcount(page) > 1)
2503 		return 0;
2504 
2505 	/* Avoid migrating to a node that is nearly full */
2506 	if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2507 		int z;
2508 
2509 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2510 			return 0;
2511 		for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2512 			if (managed_zone(pgdat->node_zones + z))
2513 				break;
2514 		}
2515 		wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2516 		return 0;
2517 	}
2518 
2519 	if (!isolate_lru_page(page))
2520 		return 0;
2521 
2522 	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2523 			    nr_pages);
2524 
2525 	/*
2526 	 * Isolating the page has taken another reference, so the
2527 	 * caller's reference can be safely dropped without the page
2528 	 * disappearing underneath us during migration.
2529 	 */
2530 	put_page(page);
2531 	return 1;
2532 }
2533 
2534 /*
2535  * Attempt to migrate a misplaced page to the specified destination
2536  * node. Caller is expected to have an elevated reference count on
2537  * the page that will be dropped by this function before returning.
2538  */
migrate_misplaced_page(struct page * page,struct vm_area_struct * vma,int node)2539 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2540 			   int node)
2541 {
2542 	pg_data_t *pgdat = NODE_DATA(node);
2543 	int isolated;
2544 	int nr_remaining;
2545 	unsigned int nr_succeeded;
2546 	LIST_HEAD(migratepages);
2547 	int nr_pages = thp_nr_pages(page);
2548 
2549 	/*
2550 	 * Don't migrate file pages that are mapped in multiple processes
2551 	 * with execute permissions as they are probably shared libraries.
2552 	 */
2553 	if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2554 	    (vma->vm_flags & VM_EXEC))
2555 		goto out;
2556 
2557 	/*
2558 	 * Also do not migrate dirty pages as not all filesystems can move
2559 	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2560 	 */
2561 	if (page_is_file_lru(page) && PageDirty(page))
2562 		goto out;
2563 
2564 	isolated = numamigrate_isolate_page(pgdat, page);
2565 	if (!isolated)
2566 		goto out;
2567 
2568 	list_add(&page->lru, &migratepages);
2569 	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_folio,
2570 				     NULL, node, MIGRATE_ASYNC,
2571 				     MR_NUMA_MISPLACED, &nr_succeeded);
2572 	if (nr_remaining) {
2573 		if (!list_empty(&migratepages)) {
2574 			list_del(&page->lru);
2575 			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2576 					page_is_file_lru(page), -nr_pages);
2577 			putback_lru_page(page);
2578 		}
2579 		isolated = 0;
2580 	}
2581 	if (nr_succeeded) {
2582 		count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2583 		if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2584 			mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2585 					    nr_succeeded);
2586 	}
2587 	BUG_ON(!list_empty(&migratepages));
2588 	return isolated;
2589 
2590 out:
2591 	put_page(page);
2592 	return 0;
2593 }
2594 #endif /* CONFIG_NUMA_BALANCING */
2595 #endif /* CONFIG_NUMA */
2596