1 /*
2 * Copyright 2008-2015 Freescale Semiconductor Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 * * Redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer.
8 * * Redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution.
11 * * Neither the name of Freescale Semiconductor nor the
12 * names of its contributors may be used to endorse or promote products
13 * derived from this software without specific prior written permission.
14 *
15 *
16 * ALTERNATIVELY, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL") as published by the Free Software
18 * Foundation, either version 2 of that License or (at your option) any
19 * later version.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
22 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
24 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
25 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
28 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/fsl/guts.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38 #include <linux/module.h>
39 #include <linux/of_platform.h>
40 #include <linux/clk.h>
41 #include <linux/of_address.h>
42 #include <linux/of_irq.h>
43 #include <linux/interrupt.h>
44 #include <linux/libfdt_env.h>
45
46 #include "fman.h"
47 #include "fman_muram.h"
48 #include "fman_keygen.h"
49
50 /* General defines */
51 #define FMAN_LIODN_TBL 64 /* size of LIODN table */
52 #define MAX_NUM_OF_MACS 10
53 #define FM_NUM_OF_FMAN_CTRL_EVENT_REGS 4
54 #define BASE_RX_PORTID 0x08
55 #define BASE_TX_PORTID 0x28
56
57 /* Modules registers offsets */
58 #define BMI_OFFSET 0x00080000
59 #define QMI_OFFSET 0x00080400
60 #define KG_OFFSET 0x000C1000
61 #define DMA_OFFSET 0x000C2000
62 #define FPM_OFFSET 0x000C3000
63 #define IMEM_OFFSET 0x000C4000
64 #define HWP_OFFSET 0x000C7000
65 #define CGP_OFFSET 0x000DB000
66
67 /* Exceptions bit map */
68 #define EX_DMA_BUS_ERROR 0x80000000
69 #define EX_DMA_READ_ECC 0x40000000
70 #define EX_DMA_SYSTEM_WRITE_ECC 0x20000000
71 #define EX_DMA_FM_WRITE_ECC 0x10000000
72 #define EX_FPM_STALL_ON_TASKS 0x08000000
73 #define EX_FPM_SINGLE_ECC 0x04000000
74 #define EX_FPM_DOUBLE_ECC 0x02000000
75 #define EX_QMI_SINGLE_ECC 0x01000000
76 #define EX_QMI_DEQ_FROM_UNKNOWN_PORTID 0x00800000
77 #define EX_QMI_DOUBLE_ECC 0x00400000
78 #define EX_BMI_LIST_RAM_ECC 0x00200000
79 #define EX_BMI_STORAGE_PROFILE_ECC 0x00100000
80 #define EX_BMI_STATISTICS_RAM_ECC 0x00080000
81 #define EX_IRAM_ECC 0x00040000
82 #define EX_MURAM_ECC 0x00020000
83 #define EX_BMI_DISPATCH_RAM_ECC 0x00010000
84 #define EX_DMA_SINGLE_PORT_ECC 0x00008000
85
86 /* DMA defines */
87 /* masks */
88 #define DMA_MODE_BER 0x00200000
89 #define DMA_MODE_ECC 0x00000020
90 #define DMA_MODE_SECURE_PROT 0x00000800
91 #define DMA_MODE_AXI_DBG_MASK 0x0F000000
92
93 #define DMA_TRANSFER_PORTID_MASK 0xFF000000
94 #define DMA_TRANSFER_TNUM_MASK 0x00FF0000
95 #define DMA_TRANSFER_LIODN_MASK 0x00000FFF
96
97 #define DMA_STATUS_BUS_ERR 0x08000000
98 #define DMA_STATUS_READ_ECC 0x04000000
99 #define DMA_STATUS_SYSTEM_WRITE_ECC 0x02000000
100 #define DMA_STATUS_FM_WRITE_ECC 0x01000000
101 #define DMA_STATUS_FM_SPDAT_ECC 0x00080000
102
103 #define DMA_MODE_CACHE_OR_SHIFT 30
104 #define DMA_MODE_AXI_DBG_SHIFT 24
105 #define DMA_MODE_CEN_SHIFT 13
106 #define DMA_MODE_CEN_MASK 0x00000007
107 #define DMA_MODE_DBG_SHIFT 7
108 #define DMA_MODE_AID_MODE_SHIFT 4
109
110 #define DMA_THRESH_COMMQ_SHIFT 24
111 #define DMA_THRESH_READ_INT_BUF_SHIFT 16
112 #define DMA_THRESH_READ_INT_BUF_MASK 0x0000003f
113 #define DMA_THRESH_WRITE_INT_BUF_MASK 0x0000003f
114
115 #define DMA_TRANSFER_PORTID_SHIFT 24
116 #define DMA_TRANSFER_TNUM_SHIFT 16
117
118 #define DMA_CAM_SIZEOF_ENTRY 0x40
119 #define DMA_CAM_UNITS 8
120
121 #define DMA_LIODN_SHIFT 16
122 #define DMA_LIODN_BASE_MASK 0x00000FFF
123
124 /* FPM defines */
125 #define FPM_EV_MASK_DOUBLE_ECC 0x80000000
126 #define FPM_EV_MASK_STALL 0x40000000
127 #define FPM_EV_MASK_SINGLE_ECC 0x20000000
128 #define FPM_EV_MASK_RELEASE_FM 0x00010000
129 #define FPM_EV_MASK_DOUBLE_ECC_EN 0x00008000
130 #define FPM_EV_MASK_STALL_EN 0x00004000
131 #define FPM_EV_MASK_SINGLE_ECC_EN 0x00002000
132 #define FPM_EV_MASK_EXTERNAL_HALT 0x00000008
133 #define FPM_EV_MASK_ECC_ERR_HALT 0x00000004
134
135 #define FPM_RAM_MURAM_ECC 0x00008000
136 #define FPM_RAM_IRAM_ECC 0x00004000
137 #define FPM_IRAM_ECC_ERR_EX_EN 0x00020000
138 #define FPM_MURAM_ECC_ERR_EX_EN 0x00040000
139 #define FPM_RAM_IRAM_ECC_EN 0x40000000
140 #define FPM_RAM_RAMS_ECC_EN 0x80000000
141 #define FPM_RAM_RAMS_ECC_EN_SRC_SEL 0x08000000
142
143 #define FPM_REV1_MAJOR_MASK 0x0000FF00
144 #define FPM_REV1_MINOR_MASK 0x000000FF
145
146 #define FPM_DISP_LIMIT_SHIFT 24
147
148 #define FPM_PRT_FM_CTL1 0x00000001
149 #define FPM_PRT_FM_CTL2 0x00000002
150 #define FPM_PORT_FM_CTL_PORTID_SHIFT 24
151 #define FPM_PRC_ORA_FM_CTL_SEL_SHIFT 16
152
153 #define FPM_THR1_PRS_SHIFT 24
154 #define FPM_THR1_KG_SHIFT 16
155 #define FPM_THR1_PLCR_SHIFT 8
156 #define FPM_THR1_BMI_SHIFT 0
157
158 #define FPM_THR2_QMI_ENQ_SHIFT 24
159 #define FPM_THR2_QMI_DEQ_SHIFT 0
160 #define FPM_THR2_FM_CTL1_SHIFT 16
161 #define FPM_THR2_FM_CTL2_SHIFT 8
162
163 #define FPM_EV_MASK_CAT_ERR_SHIFT 1
164 #define FPM_EV_MASK_DMA_ERR_SHIFT 0
165
166 #define FPM_REV1_MAJOR_SHIFT 8
167
168 #define FPM_RSTC_FM_RESET 0x80000000
169 #define FPM_RSTC_MAC0_RESET 0x40000000
170 #define FPM_RSTC_MAC1_RESET 0x20000000
171 #define FPM_RSTC_MAC2_RESET 0x10000000
172 #define FPM_RSTC_MAC3_RESET 0x08000000
173 #define FPM_RSTC_MAC8_RESET 0x04000000
174 #define FPM_RSTC_MAC4_RESET 0x02000000
175 #define FPM_RSTC_MAC5_RESET 0x01000000
176 #define FPM_RSTC_MAC6_RESET 0x00800000
177 #define FPM_RSTC_MAC7_RESET 0x00400000
178 #define FPM_RSTC_MAC9_RESET 0x00200000
179
180 #define FPM_TS_INT_SHIFT 16
181 #define FPM_TS_CTL_EN 0x80000000
182
183 /* BMI defines */
184 #define BMI_INIT_START 0x80000000
185 #define BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC 0x80000000
186 #define BMI_ERR_INTR_EN_LIST_RAM_ECC 0x40000000
187 #define BMI_ERR_INTR_EN_STATISTICS_RAM_ECC 0x20000000
188 #define BMI_ERR_INTR_EN_DISPATCH_RAM_ECC 0x10000000
189 #define BMI_NUM_OF_TASKS_MASK 0x3F000000
190 #define BMI_NUM_OF_EXTRA_TASKS_MASK 0x000F0000
191 #define BMI_NUM_OF_DMAS_MASK 0x00000F00
192 #define BMI_NUM_OF_EXTRA_DMAS_MASK 0x0000000F
193 #define BMI_FIFO_SIZE_MASK 0x000003FF
194 #define BMI_EXTRA_FIFO_SIZE_MASK 0x03FF0000
195 #define BMI_CFG2_DMAS_MASK 0x0000003F
196 #define BMI_CFG2_TASKS_MASK 0x0000003F
197
198 #define BMI_CFG2_TASKS_SHIFT 16
199 #define BMI_CFG2_DMAS_SHIFT 0
200 #define BMI_CFG1_FIFO_SIZE_SHIFT 16
201 #define BMI_NUM_OF_TASKS_SHIFT 24
202 #define BMI_EXTRA_NUM_OF_TASKS_SHIFT 16
203 #define BMI_NUM_OF_DMAS_SHIFT 8
204 #define BMI_EXTRA_NUM_OF_DMAS_SHIFT 0
205
206 #define BMI_FIFO_ALIGN 0x100
207
208 #define BMI_EXTRA_FIFO_SIZE_SHIFT 16
209
210 /* QMI defines */
211 #define QMI_CFG_ENQ_EN 0x80000000
212 #define QMI_CFG_DEQ_EN 0x40000000
213 #define QMI_CFG_EN_COUNTERS 0x10000000
214 #define QMI_CFG_DEQ_MASK 0x0000003F
215 #define QMI_CFG_ENQ_MASK 0x00003F00
216 #define QMI_CFG_ENQ_SHIFT 8
217
218 #define QMI_ERR_INTR_EN_DOUBLE_ECC 0x80000000
219 #define QMI_ERR_INTR_EN_DEQ_FROM_DEF 0x40000000
220 #define QMI_INTR_EN_SINGLE_ECC 0x80000000
221
222 #define QMI_GS_HALT_NOT_BUSY 0x00000002
223
224 /* HWP defines */
225 #define HWP_RPIMAC_PEN 0x00000001
226
227 /* IRAM defines */
228 #define IRAM_IADD_AIE 0x80000000
229 #define IRAM_READY 0x80000000
230
231 /* Default values */
232 #define DEFAULT_CATASTROPHIC_ERR 0
233 #define DEFAULT_DMA_ERR 0
234 #define DEFAULT_AID_MODE FMAN_DMA_AID_OUT_TNUM
235 #define DEFAULT_DMA_COMM_Q_LOW 0x2A
236 #define DEFAULT_DMA_COMM_Q_HIGH 0x3F
237 #define DEFAULT_CACHE_OVERRIDE 0
238 #define DEFAULT_DMA_CAM_NUM_OF_ENTRIES 64
239 #define DEFAULT_DMA_DBG_CNT_MODE 0
240 #define DEFAULT_DMA_SOS_EMERGENCY 0
241 #define DEFAULT_DMA_WATCHDOG 0
242 #define DEFAULT_DISP_LIMIT 0
243 #define DEFAULT_PRS_DISP_TH 16
244 #define DEFAULT_PLCR_DISP_TH 16
245 #define DEFAULT_KG_DISP_TH 16
246 #define DEFAULT_BMI_DISP_TH 16
247 #define DEFAULT_QMI_ENQ_DISP_TH 16
248 #define DEFAULT_QMI_DEQ_DISP_TH 16
249 #define DEFAULT_FM_CTL1_DISP_TH 16
250 #define DEFAULT_FM_CTL2_DISP_TH 16
251
252 #define DFLT_AXI_DBG_NUM_OF_BEATS 1
253
254 #define DFLT_DMA_READ_INT_BUF_LOW(dma_thresh_max_buf) \
255 ((dma_thresh_max_buf + 1) / 2)
256 #define DFLT_DMA_READ_INT_BUF_HIGH(dma_thresh_max_buf) \
257 ((dma_thresh_max_buf + 1) * 3 / 4)
258 #define DFLT_DMA_WRITE_INT_BUF_LOW(dma_thresh_max_buf) \
259 ((dma_thresh_max_buf + 1) / 2)
260 #define DFLT_DMA_WRITE_INT_BUF_HIGH(dma_thresh_max_buf)\
261 ((dma_thresh_max_buf + 1) * 3 / 4)
262
263 #define DMA_COMM_Q_LOW_FMAN_V3 0x2A
264 #define DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq) \
265 ((dma_thresh_max_commq + 1) / 2)
266 #define DFLT_DMA_COMM_Q_LOW(major, dma_thresh_max_commq) \
267 ((major == 6) ? DMA_COMM_Q_LOW_FMAN_V3 : \
268 DMA_COMM_Q_LOW_FMAN_V2(dma_thresh_max_commq))
269
270 #define DMA_COMM_Q_HIGH_FMAN_V3 0x3f
271 #define DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq) \
272 ((dma_thresh_max_commq + 1) * 3 / 4)
273 #define DFLT_DMA_COMM_Q_HIGH(major, dma_thresh_max_commq) \
274 ((major == 6) ? DMA_COMM_Q_HIGH_FMAN_V3 : \
275 DMA_COMM_Q_HIGH_FMAN_V2(dma_thresh_max_commq))
276
277 #define TOTAL_NUM_OF_TASKS_FMAN_V3L 59
278 #define TOTAL_NUM_OF_TASKS_FMAN_V3H 124
279 #define DFLT_TOTAL_NUM_OF_TASKS(major, minor, bmi_max_num_of_tasks) \
280 ((major == 6) ? ((minor == 1 || minor == 4) ? \
281 TOTAL_NUM_OF_TASKS_FMAN_V3L : TOTAL_NUM_OF_TASKS_FMAN_V3H) : \
282 bmi_max_num_of_tasks)
283
284 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 64
285 #define DMA_CAM_NUM_OF_ENTRIES_FMAN_V2 32
286 #define DFLT_DMA_CAM_NUM_OF_ENTRIES(major) \
287 (major == 6 ? DMA_CAM_NUM_OF_ENTRIES_FMAN_V3 : \
288 DMA_CAM_NUM_OF_ENTRIES_FMAN_V2)
289
290 #define FM_TIMESTAMP_1_USEC_BIT 8
291
292 /* Defines used for enabling/disabling FMan interrupts */
293 #define ERR_INTR_EN_DMA 0x00010000
294 #define ERR_INTR_EN_FPM 0x80000000
295 #define ERR_INTR_EN_BMI 0x00800000
296 #define ERR_INTR_EN_QMI 0x00400000
297 #define ERR_INTR_EN_MURAM 0x00040000
298 #define ERR_INTR_EN_MAC0 0x00004000
299 #define ERR_INTR_EN_MAC1 0x00002000
300 #define ERR_INTR_EN_MAC2 0x00001000
301 #define ERR_INTR_EN_MAC3 0x00000800
302 #define ERR_INTR_EN_MAC4 0x00000400
303 #define ERR_INTR_EN_MAC5 0x00000200
304 #define ERR_INTR_EN_MAC6 0x00000100
305 #define ERR_INTR_EN_MAC7 0x00000080
306 #define ERR_INTR_EN_MAC8 0x00008000
307 #define ERR_INTR_EN_MAC9 0x00000040
308
309 #define INTR_EN_QMI 0x40000000
310 #define INTR_EN_MAC0 0x00080000
311 #define INTR_EN_MAC1 0x00040000
312 #define INTR_EN_MAC2 0x00020000
313 #define INTR_EN_MAC3 0x00010000
314 #define INTR_EN_MAC4 0x00000040
315 #define INTR_EN_MAC5 0x00000020
316 #define INTR_EN_MAC6 0x00000008
317 #define INTR_EN_MAC7 0x00000002
318 #define INTR_EN_MAC8 0x00200000
319 #define INTR_EN_MAC9 0x00100000
320 #define INTR_EN_REV0 0x00008000
321 #define INTR_EN_REV1 0x00004000
322 #define INTR_EN_REV2 0x00002000
323 #define INTR_EN_REV3 0x00001000
324 #define INTR_EN_TMR 0x01000000
325
326 enum fman_dma_aid_mode {
327 FMAN_DMA_AID_OUT_PORT_ID = 0, /* 4 LSB of PORT_ID */
328 FMAN_DMA_AID_OUT_TNUM /* 4 LSB of TNUM */
329 };
330
331 struct fman_iram_regs {
332 u32 iadd; /* FM IRAM instruction address register */
333 u32 idata; /* FM IRAM instruction data register */
334 u32 itcfg; /* FM IRAM timing config register */
335 u32 iready; /* FM IRAM ready register */
336 };
337
338 struct fman_fpm_regs {
339 u32 fmfp_tnc; /* FPM TNUM Control 0x00 */
340 u32 fmfp_prc; /* FPM Port_ID FmCtl Association 0x04 */
341 u32 fmfp_brkc; /* FPM Breakpoint Control 0x08 */
342 u32 fmfp_mxd; /* FPM Flush Control 0x0c */
343 u32 fmfp_dist1; /* FPM Dispatch Thresholds1 0x10 */
344 u32 fmfp_dist2; /* FPM Dispatch Thresholds2 0x14 */
345 u32 fm_epi; /* FM Error Pending Interrupts 0x18 */
346 u32 fm_rie; /* FM Error Interrupt Enable 0x1c */
347 u32 fmfp_fcev[4]; /* FPM FMan-Controller Event 1-4 0x20-0x2f */
348 u32 res0030[4]; /* res 0x30 - 0x3f */
349 u32 fmfp_cee[4]; /* PM FMan-Controller Event 1-4 0x40-0x4f */
350 u32 res0050[4]; /* res 0x50-0x5f */
351 u32 fmfp_tsc1; /* FPM TimeStamp Control1 0x60 */
352 u32 fmfp_tsc2; /* FPM TimeStamp Control2 0x64 */
353 u32 fmfp_tsp; /* FPM Time Stamp 0x68 */
354 u32 fmfp_tsf; /* FPM Time Stamp Fraction 0x6c */
355 u32 fm_rcr; /* FM Rams Control 0x70 */
356 u32 fmfp_extc; /* FPM External Requests Control 0x74 */
357 u32 fmfp_ext1; /* FPM External Requests Config1 0x78 */
358 u32 fmfp_ext2; /* FPM External Requests Config2 0x7c */
359 u32 fmfp_drd[16]; /* FPM Data_Ram Data 0-15 0x80 - 0xbf */
360 u32 fmfp_dra; /* FPM Data Ram Access 0xc0 */
361 u32 fm_ip_rev_1; /* FM IP Block Revision 1 0xc4 */
362 u32 fm_ip_rev_2; /* FM IP Block Revision 2 0xc8 */
363 u32 fm_rstc; /* FM Reset Command 0xcc */
364 u32 fm_cld; /* FM Classifier Debug 0xd0 */
365 u32 fm_npi; /* FM Normal Pending Interrupts 0xd4 */
366 u32 fmfp_exte; /* FPM External Requests Enable 0xd8 */
367 u32 fmfp_ee; /* FPM Event&Mask 0xdc */
368 u32 fmfp_cev[4]; /* FPM CPU Event 1-4 0xe0-0xef */
369 u32 res00f0[4]; /* res 0xf0-0xff */
370 u32 fmfp_ps[50]; /* FPM Port Status 0x100-0x1c7 */
371 u32 res01c8[14]; /* res 0x1c8-0x1ff */
372 u32 fmfp_clfabc; /* FPM CLFABC 0x200 */
373 u32 fmfp_clfcc; /* FPM CLFCC 0x204 */
374 u32 fmfp_clfaval; /* FPM CLFAVAL 0x208 */
375 u32 fmfp_clfbval; /* FPM CLFBVAL 0x20c */
376 u32 fmfp_clfcval; /* FPM CLFCVAL 0x210 */
377 u32 fmfp_clfamsk; /* FPM CLFAMSK 0x214 */
378 u32 fmfp_clfbmsk; /* FPM CLFBMSK 0x218 */
379 u32 fmfp_clfcmsk; /* FPM CLFCMSK 0x21c */
380 u32 fmfp_clfamc; /* FPM CLFAMC 0x220 */
381 u32 fmfp_clfbmc; /* FPM CLFBMC 0x224 */
382 u32 fmfp_clfcmc; /* FPM CLFCMC 0x228 */
383 u32 fmfp_decceh; /* FPM DECCEH 0x22c */
384 u32 res0230[116]; /* res 0x230 - 0x3ff */
385 u32 fmfp_ts[128]; /* 0x400: FPM Task Status 0x400 - 0x5ff */
386 u32 res0600[0x400 - 384];
387 };
388
389 struct fman_bmi_regs {
390 u32 fmbm_init; /* BMI Initialization 0x00 */
391 u32 fmbm_cfg1; /* BMI Configuration 1 0x04 */
392 u32 fmbm_cfg2; /* BMI Configuration 2 0x08 */
393 u32 res000c[5]; /* 0x0c - 0x1f */
394 u32 fmbm_ievr; /* Interrupt Event Register 0x20 */
395 u32 fmbm_ier; /* Interrupt Enable Register 0x24 */
396 u32 fmbm_ifr; /* Interrupt Force Register 0x28 */
397 u32 res002c[5]; /* 0x2c - 0x3f */
398 u32 fmbm_arb[8]; /* BMI Arbitration 0x40 - 0x5f */
399 u32 res0060[12]; /* 0x60 - 0x8f */
400 u32 fmbm_dtc[3]; /* Debug Trap Counter 0x90 - 0x9b */
401 u32 res009c; /* 0x9c */
402 u32 fmbm_dcv[3][4]; /* Debug Compare val 0xa0-0xcf */
403 u32 fmbm_dcm[3][4]; /* Debug Compare Mask 0xd0-0xff */
404 u32 fmbm_gde; /* BMI Global Debug Enable 0x100 */
405 u32 fmbm_pp[63]; /* BMI Port Parameters 0x104 - 0x1ff */
406 u32 res0200; /* 0x200 */
407 u32 fmbm_pfs[63]; /* BMI Port FIFO Size 0x204 - 0x2ff */
408 u32 res0300; /* 0x300 */
409 u32 fmbm_spliodn[63]; /* Port Partition ID 0x304 - 0x3ff */
410 };
411
412 struct fman_qmi_regs {
413 u32 fmqm_gc; /* General Configuration Register 0x00 */
414 u32 res0004; /* 0x04 */
415 u32 fmqm_eie; /* Error Interrupt Event Register 0x08 */
416 u32 fmqm_eien; /* Error Interrupt Enable Register 0x0c */
417 u32 fmqm_eif; /* Error Interrupt Force Register 0x10 */
418 u32 fmqm_ie; /* Interrupt Event Register 0x14 */
419 u32 fmqm_ien; /* Interrupt Enable Register 0x18 */
420 u32 fmqm_if; /* Interrupt Force Register 0x1c */
421 u32 fmqm_gs; /* Global Status Register 0x20 */
422 u32 fmqm_ts; /* Task Status Register 0x24 */
423 u32 fmqm_etfc; /* Enqueue Total Frame Counter 0x28 */
424 u32 fmqm_dtfc; /* Dequeue Total Frame Counter 0x2c */
425 u32 fmqm_dc0; /* Dequeue Counter 0 0x30 */
426 u32 fmqm_dc1; /* Dequeue Counter 1 0x34 */
427 u32 fmqm_dc2; /* Dequeue Counter 2 0x38 */
428 u32 fmqm_dc3; /* Dequeue Counter 3 0x3c */
429 u32 fmqm_dfdc; /* Dequeue FQID from Default Counter 0x40 */
430 u32 fmqm_dfcc; /* Dequeue FQID from Context Counter 0x44 */
431 u32 fmqm_dffc; /* Dequeue FQID from FD Counter 0x48 */
432 u32 fmqm_dcc; /* Dequeue Confirm Counter 0x4c */
433 u32 res0050[7]; /* 0x50 - 0x6b */
434 u32 fmqm_tapc; /* Tnum Aging Period Control 0x6c */
435 u32 fmqm_dmcvc; /* Dequeue MAC Command Valid Counter 0x70 */
436 u32 fmqm_difdcc; /* Dequeue Invalid FD Command Counter 0x74 */
437 u32 fmqm_da1v; /* Dequeue A1 Valid Counter 0x78 */
438 u32 res007c; /* 0x7c */
439 u32 fmqm_dtc; /* 0x80 Debug Trap Counter 0x80 */
440 u32 fmqm_efddd; /* 0x84 Enqueue Frame desc Dynamic dbg 0x84 */
441 u32 res0088[2]; /* 0x88 - 0x8f */
442 struct {
443 u32 fmqm_dtcfg1; /* 0x90 dbg trap cfg 1 Register 0x00 */
444 u32 fmqm_dtval1; /* Debug Trap Value 1 Register 0x04 */
445 u32 fmqm_dtm1; /* Debug Trap Mask 1 Register 0x08 */
446 u32 fmqm_dtc1; /* Debug Trap Counter 1 Register 0x0c */
447 u32 fmqm_dtcfg2; /* dbg Trap cfg 2 Register 0x10 */
448 u32 fmqm_dtval2; /* Debug Trap Value 2 Register 0x14 */
449 u32 fmqm_dtm2; /* Debug Trap Mask 2 Register 0x18 */
450 u32 res001c; /* 0x1c */
451 } dbg_traps[3]; /* 0x90 - 0xef */
452 u8 res00f0[0x400 - 0xf0]; /* 0xf0 - 0x3ff */
453 };
454
455 struct fman_dma_regs {
456 u32 fmdmsr; /* FM DMA status register 0x00 */
457 u32 fmdmmr; /* FM DMA mode register 0x04 */
458 u32 fmdmtr; /* FM DMA bus threshold register 0x08 */
459 u32 fmdmhy; /* FM DMA bus hysteresis register 0x0c */
460 u32 fmdmsetr; /* FM DMA SOS emergency Threshold Register 0x10 */
461 u32 fmdmtah; /* FM DMA transfer bus address high reg 0x14 */
462 u32 fmdmtal; /* FM DMA transfer bus address low reg 0x18 */
463 u32 fmdmtcid; /* FM DMA transfer bus communication ID reg 0x1c */
464 u32 fmdmra; /* FM DMA bus internal ram address register 0x20 */
465 u32 fmdmrd; /* FM DMA bus internal ram data register 0x24 */
466 u32 fmdmwcr; /* FM DMA CAM watchdog counter value 0x28 */
467 u32 fmdmebcr; /* FM DMA CAM base in MURAM register 0x2c */
468 u32 fmdmccqdr; /* FM DMA CAM and CMD Queue Debug reg 0x30 */
469 u32 fmdmccqvr1; /* FM DMA CAM and CMD Queue Value reg #1 0x34 */
470 u32 fmdmccqvr2; /* FM DMA CAM and CMD Queue Value reg #2 0x38 */
471 u32 fmdmcqvr3; /* FM DMA CMD Queue Value register #3 0x3c */
472 u32 fmdmcqvr4; /* FM DMA CMD Queue Value register #4 0x40 */
473 u32 fmdmcqvr5; /* FM DMA CMD Queue Value register #5 0x44 */
474 u32 fmdmsefrc; /* FM DMA Semaphore Entry Full Reject Cntr 0x48 */
475 u32 fmdmsqfrc; /* FM DMA Semaphore Queue Full Reject Cntr 0x4c */
476 u32 fmdmssrc; /* FM DMA Semaphore SYNC Reject Counter 0x50 */
477 u32 fmdmdcr; /* FM DMA Debug Counter 0x54 */
478 u32 fmdmemsr; /* FM DMA Emergency Smoother Register 0x58 */
479 u32 res005c; /* 0x5c */
480 u32 fmdmplr[FMAN_LIODN_TBL / 2]; /* DMA LIODN regs 0x60-0xdf */
481 u32 res00e0[0x400 - 56];
482 };
483
484 struct fman_hwp_regs {
485 u32 res0000[0x844 / 4]; /* 0x000..0x843 */
486 u32 fmprrpimac; /* FM Parser Internal memory access control */
487 u32 res[(0x1000 - 0x848) / 4]; /* 0x848..0xFFF */
488 };
489
490 /* Structure that holds current FMan state.
491 * Used for saving run time information.
492 */
493 struct fman_state_struct {
494 u8 fm_id;
495 u16 fm_clk_freq;
496 struct fman_rev_info rev_info;
497 bool enabled_time_stamp;
498 u8 count1_micro_bit;
499 u8 total_num_of_tasks;
500 u8 accumulated_num_of_tasks;
501 u32 accumulated_fifo_size;
502 u8 accumulated_num_of_open_dmas;
503 u8 accumulated_num_of_deq_tnums;
504 u32 exceptions;
505 u32 extra_fifo_pool_size;
506 u8 extra_tasks_pool_size;
507 u8 extra_open_dmas_pool_size;
508 u16 port_mfl[MAX_NUM_OF_MACS];
509 u16 mac_mfl[MAX_NUM_OF_MACS];
510
511 /* SOC specific */
512 u32 fm_iram_size;
513 /* DMA */
514 u32 dma_thresh_max_commq;
515 u32 dma_thresh_max_buf;
516 u32 max_num_of_open_dmas;
517 /* QMI */
518 u32 qmi_max_num_of_tnums;
519 u32 qmi_def_tnums_thresh;
520 /* BMI */
521 u32 bmi_max_num_of_tasks;
522 u32 bmi_max_fifo_size;
523 /* General */
524 u32 fm_port_num_of_cg;
525 u32 num_of_rx_ports;
526 u32 total_fifo_size;
527
528 u32 qman_channel_base;
529 u32 num_of_qman_channels;
530
531 struct resource *res;
532 };
533
534 /* Structure that holds FMan initial configuration */
535 struct fman_cfg {
536 u8 disp_limit_tsh;
537 u8 prs_disp_tsh;
538 u8 plcr_disp_tsh;
539 u8 kg_disp_tsh;
540 u8 bmi_disp_tsh;
541 u8 qmi_enq_disp_tsh;
542 u8 qmi_deq_disp_tsh;
543 u8 fm_ctl1_disp_tsh;
544 u8 fm_ctl2_disp_tsh;
545 int dma_cache_override;
546 enum fman_dma_aid_mode dma_aid_mode;
547 u32 dma_axi_dbg_num_of_beats;
548 u32 dma_cam_num_of_entries;
549 u32 dma_watchdog;
550 u8 dma_comm_qtsh_asrt_emer;
551 u32 dma_write_buf_tsh_asrt_emer;
552 u32 dma_read_buf_tsh_asrt_emer;
553 u8 dma_comm_qtsh_clr_emer;
554 u32 dma_write_buf_tsh_clr_emer;
555 u32 dma_read_buf_tsh_clr_emer;
556 u32 dma_sos_emergency;
557 int dma_dbg_cnt_mode;
558 int catastrophic_err;
559 int dma_err;
560 u32 exceptions;
561 u16 clk_freq;
562 u32 cam_base_addr;
563 u32 fifo_base_addr;
564 u32 total_fifo_size;
565 u32 total_num_of_tasks;
566 u32 qmi_def_tnums_thresh;
567 };
568
fman_exceptions(struct fman * fman,enum fman_exceptions exception)569 static irqreturn_t fman_exceptions(struct fman *fman,
570 enum fman_exceptions exception)
571 {
572 dev_dbg(fman->dev, "%s: FMan[%d] exception %d\n",
573 __func__, fman->state->fm_id, exception);
574
575 return IRQ_HANDLED;
576 }
577
fman_bus_error(struct fman * fman,u8 __maybe_unused port_id,u64 __maybe_unused addr,u8 __maybe_unused tnum,u16 __maybe_unused liodn)578 static irqreturn_t fman_bus_error(struct fman *fman, u8 __maybe_unused port_id,
579 u64 __maybe_unused addr,
580 u8 __maybe_unused tnum,
581 u16 __maybe_unused liodn)
582 {
583 dev_dbg(fman->dev, "%s: FMan[%d] bus error: port_id[%d]\n",
584 __func__, fman->state->fm_id, port_id);
585
586 return IRQ_HANDLED;
587 }
588
call_mac_isr(struct fman * fman,u8 id)589 static inline irqreturn_t call_mac_isr(struct fman *fman, u8 id)
590 {
591 if (fman->intr_mng[id].isr_cb) {
592 fman->intr_mng[id].isr_cb(fman->intr_mng[id].src_handle);
593
594 return IRQ_HANDLED;
595 }
596
597 return IRQ_NONE;
598 }
599
hw_port_id_to_sw_port_id(u8 major,u8 hw_port_id)600 static inline u8 hw_port_id_to_sw_port_id(u8 major, u8 hw_port_id)
601 {
602 u8 sw_port_id = 0;
603
604 if (hw_port_id >= BASE_TX_PORTID)
605 sw_port_id = hw_port_id - BASE_TX_PORTID;
606 else if (hw_port_id >= BASE_RX_PORTID)
607 sw_port_id = hw_port_id - BASE_RX_PORTID;
608 else
609 sw_port_id = 0;
610
611 return sw_port_id;
612 }
613
set_port_order_restoration(struct fman_fpm_regs __iomem * fpm_rg,u8 port_id)614 static void set_port_order_restoration(struct fman_fpm_regs __iomem *fpm_rg,
615 u8 port_id)
616 {
617 u32 tmp = 0;
618
619 tmp = port_id << FPM_PORT_FM_CTL_PORTID_SHIFT;
620
621 tmp |= FPM_PRT_FM_CTL2 | FPM_PRT_FM_CTL1;
622
623 /* order restoration */
624 if (port_id % 2)
625 tmp |= FPM_PRT_FM_CTL1 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
626 else
627 tmp |= FPM_PRT_FM_CTL2 << FPM_PRC_ORA_FM_CTL_SEL_SHIFT;
628
629 iowrite32be(tmp, &fpm_rg->fmfp_prc);
630 }
631
set_port_liodn(struct fman * fman,u8 port_id,u32 liodn_base,u32 liodn_ofst)632 static void set_port_liodn(struct fman *fman, u8 port_id,
633 u32 liodn_base, u32 liodn_ofst)
634 {
635 u32 tmp;
636
637 /* set LIODN base for this port */
638 tmp = ioread32be(&fman->dma_regs->fmdmplr[port_id / 2]);
639 if (port_id % 2) {
640 tmp &= ~DMA_LIODN_BASE_MASK;
641 tmp |= liodn_base;
642 } else {
643 tmp &= ~(DMA_LIODN_BASE_MASK << DMA_LIODN_SHIFT);
644 tmp |= liodn_base << DMA_LIODN_SHIFT;
645 }
646 iowrite32be(tmp, &fman->dma_regs->fmdmplr[port_id / 2]);
647 iowrite32be(liodn_ofst, &fman->bmi_regs->fmbm_spliodn[port_id - 1]);
648 }
649
enable_rams_ecc(struct fman_fpm_regs __iomem * fpm_rg)650 static void enable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
651 {
652 u32 tmp;
653
654 tmp = ioread32be(&fpm_rg->fm_rcr);
655 if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
656 iowrite32be(tmp | FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
657 else
658 iowrite32be(tmp | FPM_RAM_RAMS_ECC_EN |
659 FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
660 }
661
disable_rams_ecc(struct fman_fpm_regs __iomem * fpm_rg)662 static void disable_rams_ecc(struct fman_fpm_regs __iomem *fpm_rg)
663 {
664 u32 tmp;
665
666 tmp = ioread32be(&fpm_rg->fm_rcr);
667 if (tmp & FPM_RAM_RAMS_ECC_EN_SRC_SEL)
668 iowrite32be(tmp & ~FPM_RAM_IRAM_ECC_EN, &fpm_rg->fm_rcr);
669 else
670 iowrite32be(tmp & ~(FPM_RAM_RAMS_ECC_EN | FPM_RAM_IRAM_ECC_EN),
671 &fpm_rg->fm_rcr);
672 }
673
fman_defconfig(struct fman_cfg * cfg)674 static void fman_defconfig(struct fman_cfg *cfg)
675 {
676 memset(cfg, 0, sizeof(struct fman_cfg));
677
678 cfg->catastrophic_err = DEFAULT_CATASTROPHIC_ERR;
679 cfg->dma_err = DEFAULT_DMA_ERR;
680 cfg->dma_aid_mode = DEFAULT_AID_MODE;
681 cfg->dma_comm_qtsh_clr_emer = DEFAULT_DMA_COMM_Q_LOW;
682 cfg->dma_comm_qtsh_asrt_emer = DEFAULT_DMA_COMM_Q_HIGH;
683 cfg->dma_cache_override = DEFAULT_CACHE_OVERRIDE;
684 cfg->dma_cam_num_of_entries = DEFAULT_DMA_CAM_NUM_OF_ENTRIES;
685 cfg->dma_dbg_cnt_mode = DEFAULT_DMA_DBG_CNT_MODE;
686 cfg->dma_sos_emergency = DEFAULT_DMA_SOS_EMERGENCY;
687 cfg->dma_watchdog = DEFAULT_DMA_WATCHDOG;
688 cfg->disp_limit_tsh = DEFAULT_DISP_LIMIT;
689 cfg->prs_disp_tsh = DEFAULT_PRS_DISP_TH;
690 cfg->plcr_disp_tsh = DEFAULT_PLCR_DISP_TH;
691 cfg->kg_disp_tsh = DEFAULT_KG_DISP_TH;
692 cfg->bmi_disp_tsh = DEFAULT_BMI_DISP_TH;
693 cfg->qmi_enq_disp_tsh = DEFAULT_QMI_ENQ_DISP_TH;
694 cfg->qmi_deq_disp_tsh = DEFAULT_QMI_DEQ_DISP_TH;
695 cfg->fm_ctl1_disp_tsh = DEFAULT_FM_CTL1_DISP_TH;
696 cfg->fm_ctl2_disp_tsh = DEFAULT_FM_CTL2_DISP_TH;
697 }
698
dma_init(struct fman * fman)699 static int dma_init(struct fman *fman)
700 {
701 struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
702 struct fman_cfg *cfg = fman->cfg;
703 u32 tmp_reg;
704
705 /* Init DMA Registers */
706
707 /* clear status reg events */
708 tmp_reg = (DMA_STATUS_BUS_ERR | DMA_STATUS_READ_ECC |
709 DMA_STATUS_SYSTEM_WRITE_ECC | DMA_STATUS_FM_WRITE_ECC);
710 iowrite32be(ioread32be(&dma_rg->fmdmsr) | tmp_reg, &dma_rg->fmdmsr);
711
712 /* configure mode register */
713 tmp_reg = 0;
714 tmp_reg |= cfg->dma_cache_override << DMA_MODE_CACHE_OR_SHIFT;
715 if (cfg->exceptions & EX_DMA_BUS_ERROR)
716 tmp_reg |= DMA_MODE_BER;
717 if ((cfg->exceptions & EX_DMA_SYSTEM_WRITE_ECC) |
718 (cfg->exceptions & EX_DMA_READ_ECC) |
719 (cfg->exceptions & EX_DMA_FM_WRITE_ECC))
720 tmp_reg |= DMA_MODE_ECC;
721 if (cfg->dma_axi_dbg_num_of_beats)
722 tmp_reg |= (DMA_MODE_AXI_DBG_MASK &
723 ((cfg->dma_axi_dbg_num_of_beats - 1)
724 << DMA_MODE_AXI_DBG_SHIFT));
725
726 tmp_reg |= (((cfg->dma_cam_num_of_entries / DMA_CAM_UNITS) - 1) &
727 DMA_MODE_CEN_MASK) << DMA_MODE_CEN_SHIFT;
728 tmp_reg |= DMA_MODE_SECURE_PROT;
729 tmp_reg |= cfg->dma_dbg_cnt_mode << DMA_MODE_DBG_SHIFT;
730 tmp_reg |= cfg->dma_aid_mode << DMA_MODE_AID_MODE_SHIFT;
731
732 iowrite32be(tmp_reg, &dma_rg->fmdmmr);
733
734 /* configure thresholds register */
735 tmp_reg = ((u32)cfg->dma_comm_qtsh_asrt_emer <<
736 DMA_THRESH_COMMQ_SHIFT);
737 tmp_reg |= (cfg->dma_read_buf_tsh_asrt_emer &
738 DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
739 tmp_reg |= cfg->dma_write_buf_tsh_asrt_emer &
740 DMA_THRESH_WRITE_INT_BUF_MASK;
741
742 iowrite32be(tmp_reg, &dma_rg->fmdmtr);
743
744 /* configure hysteresis register */
745 tmp_reg = ((u32)cfg->dma_comm_qtsh_clr_emer <<
746 DMA_THRESH_COMMQ_SHIFT);
747 tmp_reg |= (cfg->dma_read_buf_tsh_clr_emer &
748 DMA_THRESH_READ_INT_BUF_MASK) << DMA_THRESH_READ_INT_BUF_SHIFT;
749 tmp_reg |= cfg->dma_write_buf_tsh_clr_emer &
750 DMA_THRESH_WRITE_INT_BUF_MASK;
751
752 iowrite32be(tmp_reg, &dma_rg->fmdmhy);
753
754 /* configure emergency threshold */
755 iowrite32be(cfg->dma_sos_emergency, &dma_rg->fmdmsetr);
756
757 /* configure Watchdog */
758 iowrite32be((cfg->dma_watchdog * cfg->clk_freq), &dma_rg->fmdmwcr);
759
760 iowrite32be(cfg->cam_base_addr, &dma_rg->fmdmebcr);
761
762 /* Allocate MURAM for CAM */
763 fman->cam_size =
764 (u32)(fman->cfg->dma_cam_num_of_entries * DMA_CAM_SIZEOF_ENTRY);
765 fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size);
766 if (IS_ERR_VALUE(fman->cam_offset)) {
767 dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
768 __func__);
769 return -ENOMEM;
770 }
771
772 if (fman->state->rev_info.major == 2) {
773 u32 __iomem *cam_base_addr;
774
775 fman_muram_free_mem(fman->muram, fman->cam_offset,
776 fman->cam_size);
777
778 fman->cam_size = fman->cfg->dma_cam_num_of_entries * 72 + 128;
779 fman->cam_offset = fman_muram_alloc(fman->muram,
780 fman->cam_size);
781 if (IS_ERR_VALUE(fman->cam_offset)) {
782 dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
783 __func__);
784 return -ENOMEM;
785 }
786
787 if (fman->cfg->dma_cam_num_of_entries % 8 ||
788 fman->cfg->dma_cam_num_of_entries > 32) {
789 dev_err(fman->dev, "%s: wrong dma_cam_num_of_entries\n",
790 __func__);
791 return -EINVAL;
792 }
793
794 cam_base_addr = (u32 __iomem *)
795 fman_muram_offset_to_vbase(fman->muram,
796 fman->cam_offset);
797 iowrite32be(~((1 <<
798 (32 - fman->cfg->dma_cam_num_of_entries)) - 1),
799 cam_base_addr);
800 }
801
802 fman->cfg->cam_base_addr = fman->cam_offset;
803
804 return 0;
805 }
806
fpm_init(struct fman_fpm_regs __iomem * fpm_rg,struct fman_cfg * cfg)807 static void fpm_init(struct fman_fpm_regs __iomem *fpm_rg, struct fman_cfg *cfg)
808 {
809 u32 tmp_reg;
810 int i;
811
812 /* Init FPM Registers */
813
814 tmp_reg = (u32)(cfg->disp_limit_tsh << FPM_DISP_LIMIT_SHIFT);
815 iowrite32be(tmp_reg, &fpm_rg->fmfp_mxd);
816
817 tmp_reg = (((u32)cfg->prs_disp_tsh << FPM_THR1_PRS_SHIFT) |
818 ((u32)cfg->kg_disp_tsh << FPM_THR1_KG_SHIFT) |
819 ((u32)cfg->plcr_disp_tsh << FPM_THR1_PLCR_SHIFT) |
820 ((u32)cfg->bmi_disp_tsh << FPM_THR1_BMI_SHIFT));
821 iowrite32be(tmp_reg, &fpm_rg->fmfp_dist1);
822
823 tmp_reg =
824 (((u32)cfg->qmi_enq_disp_tsh << FPM_THR2_QMI_ENQ_SHIFT) |
825 ((u32)cfg->qmi_deq_disp_tsh << FPM_THR2_QMI_DEQ_SHIFT) |
826 ((u32)cfg->fm_ctl1_disp_tsh << FPM_THR2_FM_CTL1_SHIFT) |
827 ((u32)cfg->fm_ctl2_disp_tsh << FPM_THR2_FM_CTL2_SHIFT));
828 iowrite32be(tmp_reg, &fpm_rg->fmfp_dist2);
829
830 /* define exceptions and error behavior */
831 tmp_reg = 0;
832 /* Clear events */
833 tmp_reg |= (FPM_EV_MASK_STALL | FPM_EV_MASK_DOUBLE_ECC |
834 FPM_EV_MASK_SINGLE_ECC);
835 /* enable interrupts */
836 if (cfg->exceptions & EX_FPM_STALL_ON_TASKS)
837 tmp_reg |= FPM_EV_MASK_STALL_EN;
838 if (cfg->exceptions & EX_FPM_SINGLE_ECC)
839 tmp_reg |= FPM_EV_MASK_SINGLE_ECC_EN;
840 if (cfg->exceptions & EX_FPM_DOUBLE_ECC)
841 tmp_reg |= FPM_EV_MASK_DOUBLE_ECC_EN;
842 tmp_reg |= (cfg->catastrophic_err << FPM_EV_MASK_CAT_ERR_SHIFT);
843 tmp_reg |= (cfg->dma_err << FPM_EV_MASK_DMA_ERR_SHIFT);
844 /* FMan is not halted upon external halt activation */
845 tmp_reg |= FPM_EV_MASK_EXTERNAL_HALT;
846 /* Man is not halted upon Unrecoverable ECC error behavior */
847 tmp_reg |= FPM_EV_MASK_ECC_ERR_HALT;
848 iowrite32be(tmp_reg, &fpm_rg->fmfp_ee);
849
850 /* clear all fmCtls event registers */
851 for (i = 0; i < FM_NUM_OF_FMAN_CTRL_EVENT_REGS; i++)
852 iowrite32be(0xFFFFFFFF, &fpm_rg->fmfp_cev[i]);
853
854 /* RAM ECC - enable and clear events */
855 /* first we need to clear all parser memory,
856 * as it is uninitialized and may cause ECC errors
857 */
858 /* event bits */
859 tmp_reg = (FPM_RAM_MURAM_ECC | FPM_RAM_IRAM_ECC);
860
861 iowrite32be(tmp_reg, &fpm_rg->fm_rcr);
862
863 tmp_reg = 0;
864 if (cfg->exceptions & EX_IRAM_ECC) {
865 tmp_reg |= FPM_IRAM_ECC_ERR_EX_EN;
866 enable_rams_ecc(fpm_rg);
867 }
868 if (cfg->exceptions & EX_MURAM_ECC) {
869 tmp_reg |= FPM_MURAM_ECC_ERR_EX_EN;
870 enable_rams_ecc(fpm_rg);
871 }
872 iowrite32be(tmp_reg, &fpm_rg->fm_rie);
873 }
874
bmi_init(struct fman_bmi_regs __iomem * bmi_rg,struct fman_cfg * cfg)875 static void bmi_init(struct fman_bmi_regs __iomem *bmi_rg,
876 struct fman_cfg *cfg)
877 {
878 u32 tmp_reg;
879
880 /* Init BMI Registers */
881
882 /* define common resources */
883 tmp_reg = cfg->fifo_base_addr;
884 tmp_reg = tmp_reg / BMI_FIFO_ALIGN;
885
886 tmp_reg |= ((cfg->total_fifo_size / FMAN_BMI_FIFO_UNITS - 1) <<
887 BMI_CFG1_FIFO_SIZE_SHIFT);
888 iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg1);
889
890 tmp_reg = ((cfg->total_num_of_tasks - 1) & BMI_CFG2_TASKS_MASK) <<
891 BMI_CFG2_TASKS_SHIFT;
892 /* num of DMA's will be dynamically updated when each port is set */
893 iowrite32be(tmp_reg, &bmi_rg->fmbm_cfg2);
894
895 /* define unmaskable exceptions, enable and clear events */
896 tmp_reg = 0;
897 iowrite32be(BMI_ERR_INTR_EN_LIST_RAM_ECC |
898 BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC |
899 BMI_ERR_INTR_EN_STATISTICS_RAM_ECC |
900 BMI_ERR_INTR_EN_DISPATCH_RAM_ECC, &bmi_rg->fmbm_ievr);
901
902 if (cfg->exceptions & EX_BMI_LIST_RAM_ECC)
903 tmp_reg |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
904 if (cfg->exceptions & EX_BMI_STORAGE_PROFILE_ECC)
905 tmp_reg |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
906 if (cfg->exceptions & EX_BMI_STATISTICS_RAM_ECC)
907 tmp_reg |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
908 if (cfg->exceptions & EX_BMI_DISPATCH_RAM_ECC)
909 tmp_reg |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
910 iowrite32be(tmp_reg, &bmi_rg->fmbm_ier);
911 }
912
qmi_init(struct fman_qmi_regs __iomem * qmi_rg,struct fman_cfg * cfg)913 static void qmi_init(struct fman_qmi_regs __iomem *qmi_rg,
914 struct fman_cfg *cfg)
915 {
916 u32 tmp_reg;
917
918 /* Init QMI Registers */
919
920 /* Clear error interrupt events */
921
922 iowrite32be(QMI_ERR_INTR_EN_DOUBLE_ECC | QMI_ERR_INTR_EN_DEQ_FROM_DEF,
923 &qmi_rg->fmqm_eie);
924 tmp_reg = 0;
925 if (cfg->exceptions & EX_QMI_DEQ_FROM_UNKNOWN_PORTID)
926 tmp_reg |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
927 if (cfg->exceptions & EX_QMI_DOUBLE_ECC)
928 tmp_reg |= QMI_ERR_INTR_EN_DOUBLE_ECC;
929 /* enable events */
930 iowrite32be(tmp_reg, &qmi_rg->fmqm_eien);
931
932 tmp_reg = 0;
933 /* Clear interrupt events */
934 iowrite32be(QMI_INTR_EN_SINGLE_ECC, &qmi_rg->fmqm_ie);
935 if (cfg->exceptions & EX_QMI_SINGLE_ECC)
936 tmp_reg |= QMI_INTR_EN_SINGLE_ECC;
937 /* enable events */
938 iowrite32be(tmp_reg, &qmi_rg->fmqm_ien);
939 }
940
hwp_init(struct fman_hwp_regs __iomem * hwp_rg)941 static void hwp_init(struct fman_hwp_regs __iomem *hwp_rg)
942 {
943 /* enable HW Parser */
944 iowrite32be(HWP_RPIMAC_PEN, &hwp_rg->fmprrpimac);
945 }
946
enable(struct fman * fman,struct fman_cfg * cfg)947 static int enable(struct fman *fman, struct fman_cfg *cfg)
948 {
949 u32 cfg_reg = 0;
950
951 /* Enable all modules */
952
953 /* clear&enable global counters - calculate reg and save for later,
954 * because it's the same reg for QMI enable
955 */
956 cfg_reg = QMI_CFG_EN_COUNTERS;
957
958 /* Set enqueue and dequeue thresholds */
959 cfg_reg |= (cfg->qmi_def_tnums_thresh << 8) | cfg->qmi_def_tnums_thresh;
960
961 iowrite32be(BMI_INIT_START, &fman->bmi_regs->fmbm_init);
962 iowrite32be(cfg_reg | QMI_CFG_ENQ_EN | QMI_CFG_DEQ_EN,
963 &fman->qmi_regs->fmqm_gc);
964
965 return 0;
966 }
967
set_exception(struct fman * fman,enum fman_exceptions exception,bool enable)968 static int set_exception(struct fman *fman,
969 enum fman_exceptions exception, bool enable)
970 {
971 u32 tmp;
972
973 switch (exception) {
974 case FMAN_EX_DMA_BUS_ERROR:
975 tmp = ioread32be(&fman->dma_regs->fmdmmr);
976 if (enable)
977 tmp |= DMA_MODE_BER;
978 else
979 tmp &= ~DMA_MODE_BER;
980 /* disable bus error */
981 iowrite32be(tmp, &fman->dma_regs->fmdmmr);
982 break;
983 case FMAN_EX_DMA_READ_ECC:
984 case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
985 case FMAN_EX_DMA_FM_WRITE_ECC:
986 tmp = ioread32be(&fman->dma_regs->fmdmmr);
987 if (enable)
988 tmp |= DMA_MODE_ECC;
989 else
990 tmp &= ~DMA_MODE_ECC;
991 iowrite32be(tmp, &fman->dma_regs->fmdmmr);
992 break;
993 case FMAN_EX_FPM_STALL_ON_TASKS:
994 tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
995 if (enable)
996 tmp |= FPM_EV_MASK_STALL_EN;
997 else
998 tmp &= ~FPM_EV_MASK_STALL_EN;
999 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1000 break;
1001 case FMAN_EX_FPM_SINGLE_ECC:
1002 tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1003 if (enable)
1004 tmp |= FPM_EV_MASK_SINGLE_ECC_EN;
1005 else
1006 tmp &= ~FPM_EV_MASK_SINGLE_ECC_EN;
1007 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1008 break;
1009 case FMAN_EX_FPM_DOUBLE_ECC:
1010 tmp = ioread32be(&fman->fpm_regs->fmfp_ee);
1011 if (enable)
1012 tmp |= FPM_EV_MASK_DOUBLE_ECC_EN;
1013 else
1014 tmp &= ~FPM_EV_MASK_DOUBLE_ECC_EN;
1015 iowrite32be(tmp, &fman->fpm_regs->fmfp_ee);
1016 break;
1017 case FMAN_EX_QMI_SINGLE_ECC:
1018 tmp = ioread32be(&fman->qmi_regs->fmqm_ien);
1019 if (enable)
1020 tmp |= QMI_INTR_EN_SINGLE_ECC;
1021 else
1022 tmp &= ~QMI_INTR_EN_SINGLE_ECC;
1023 iowrite32be(tmp, &fman->qmi_regs->fmqm_ien);
1024 break;
1025 case FMAN_EX_QMI_DOUBLE_ECC:
1026 tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1027 if (enable)
1028 tmp |= QMI_ERR_INTR_EN_DOUBLE_ECC;
1029 else
1030 tmp &= ~QMI_ERR_INTR_EN_DOUBLE_ECC;
1031 iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1032 break;
1033 case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1034 tmp = ioread32be(&fman->qmi_regs->fmqm_eien);
1035 if (enable)
1036 tmp |= QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1037 else
1038 tmp &= ~QMI_ERR_INTR_EN_DEQ_FROM_DEF;
1039 iowrite32be(tmp, &fman->qmi_regs->fmqm_eien);
1040 break;
1041 case FMAN_EX_BMI_LIST_RAM_ECC:
1042 tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1043 if (enable)
1044 tmp |= BMI_ERR_INTR_EN_LIST_RAM_ECC;
1045 else
1046 tmp &= ~BMI_ERR_INTR_EN_LIST_RAM_ECC;
1047 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1048 break;
1049 case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1050 tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1051 if (enable)
1052 tmp |= BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1053 else
1054 tmp &= ~BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC;
1055 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1056 break;
1057 case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1058 tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1059 if (enable)
1060 tmp |= BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1061 else
1062 tmp &= ~BMI_ERR_INTR_EN_STATISTICS_RAM_ECC;
1063 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1064 break;
1065 case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1066 tmp = ioread32be(&fman->bmi_regs->fmbm_ier);
1067 if (enable)
1068 tmp |= BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1069 else
1070 tmp &= ~BMI_ERR_INTR_EN_DISPATCH_RAM_ECC;
1071 iowrite32be(tmp, &fman->bmi_regs->fmbm_ier);
1072 break;
1073 case FMAN_EX_IRAM_ECC:
1074 tmp = ioread32be(&fman->fpm_regs->fm_rie);
1075 if (enable) {
1076 /* enable ECC if not enabled */
1077 enable_rams_ecc(fman->fpm_regs);
1078 /* enable ECC interrupts */
1079 tmp |= FPM_IRAM_ECC_ERR_EX_EN;
1080 } else {
1081 /* ECC mechanism may be disabled,
1082 * depending on driver status
1083 */
1084 disable_rams_ecc(fman->fpm_regs);
1085 tmp &= ~FPM_IRAM_ECC_ERR_EX_EN;
1086 }
1087 iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1088 break;
1089 case FMAN_EX_MURAM_ECC:
1090 tmp = ioread32be(&fman->fpm_regs->fm_rie);
1091 if (enable) {
1092 /* enable ECC if not enabled */
1093 enable_rams_ecc(fman->fpm_regs);
1094 /* enable ECC interrupts */
1095 tmp |= FPM_MURAM_ECC_ERR_EX_EN;
1096 } else {
1097 /* ECC mechanism may be disabled,
1098 * depending on driver status
1099 */
1100 disable_rams_ecc(fman->fpm_regs);
1101 tmp &= ~FPM_MURAM_ECC_ERR_EX_EN;
1102 }
1103 iowrite32be(tmp, &fman->fpm_regs->fm_rie);
1104 break;
1105 default:
1106 return -EINVAL;
1107 }
1108 return 0;
1109 }
1110
resume(struct fman_fpm_regs __iomem * fpm_rg)1111 static void resume(struct fman_fpm_regs __iomem *fpm_rg)
1112 {
1113 u32 tmp;
1114
1115 tmp = ioread32be(&fpm_rg->fmfp_ee);
1116 /* clear tmp_reg event bits in order not to clear standing events */
1117 tmp &= ~(FPM_EV_MASK_DOUBLE_ECC |
1118 FPM_EV_MASK_STALL | FPM_EV_MASK_SINGLE_ECC);
1119 tmp |= FPM_EV_MASK_RELEASE_FM;
1120
1121 iowrite32be(tmp, &fpm_rg->fmfp_ee);
1122 }
1123
fill_soc_specific_params(struct fman_state_struct * state)1124 static int fill_soc_specific_params(struct fman_state_struct *state)
1125 {
1126 u8 minor = state->rev_info.minor;
1127 /* P4080 - Major 2
1128 * P2041/P3041/P5020/P5040 - Major 3
1129 * Tx/Bx - Major 6
1130 */
1131 switch (state->rev_info.major) {
1132 case 3:
1133 state->bmi_max_fifo_size = 160 * 1024;
1134 state->fm_iram_size = 64 * 1024;
1135 state->dma_thresh_max_commq = 31;
1136 state->dma_thresh_max_buf = 127;
1137 state->qmi_max_num_of_tnums = 64;
1138 state->qmi_def_tnums_thresh = 48;
1139 state->bmi_max_num_of_tasks = 128;
1140 state->max_num_of_open_dmas = 32;
1141 state->fm_port_num_of_cg = 256;
1142 state->num_of_rx_ports = 6;
1143 state->total_fifo_size = 136 * 1024;
1144 break;
1145
1146 case 2:
1147 state->bmi_max_fifo_size = 160 * 1024;
1148 state->fm_iram_size = 64 * 1024;
1149 state->dma_thresh_max_commq = 31;
1150 state->dma_thresh_max_buf = 127;
1151 state->qmi_max_num_of_tnums = 64;
1152 state->qmi_def_tnums_thresh = 48;
1153 state->bmi_max_num_of_tasks = 128;
1154 state->max_num_of_open_dmas = 32;
1155 state->fm_port_num_of_cg = 256;
1156 state->num_of_rx_ports = 5;
1157 state->total_fifo_size = 100 * 1024;
1158 break;
1159
1160 case 6:
1161 state->dma_thresh_max_commq = 83;
1162 state->dma_thresh_max_buf = 127;
1163 state->qmi_max_num_of_tnums = 64;
1164 state->qmi_def_tnums_thresh = 32;
1165 state->fm_port_num_of_cg = 256;
1166
1167 /* FManV3L */
1168 if (minor == 1 || minor == 4) {
1169 state->bmi_max_fifo_size = 192 * 1024;
1170 state->bmi_max_num_of_tasks = 64;
1171 state->max_num_of_open_dmas = 32;
1172 state->num_of_rx_ports = 5;
1173 if (minor == 1)
1174 state->fm_iram_size = 32 * 1024;
1175 else
1176 state->fm_iram_size = 64 * 1024;
1177 state->total_fifo_size = 156 * 1024;
1178 }
1179 /* FManV3H */
1180 else if (minor == 0 || minor == 2 || minor == 3) {
1181 state->bmi_max_fifo_size = 384 * 1024;
1182 state->fm_iram_size = 64 * 1024;
1183 state->bmi_max_num_of_tasks = 128;
1184 state->max_num_of_open_dmas = 84;
1185 state->num_of_rx_ports = 8;
1186 state->total_fifo_size = 295 * 1024;
1187 } else {
1188 pr_err("Unsupported FManv3 version\n");
1189 return -EINVAL;
1190 }
1191
1192 break;
1193 default:
1194 pr_err("Unsupported FMan version\n");
1195 return -EINVAL;
1196 }
1197
1198 return 0;
1199 }
1200
is_init_done(struct fman_cfg * cfg)1201 static bool is_init_done(struct fman_cfg *cfg)
1202 {
1203 /* Checks if FMan driver parameters were initialized */
1204 if (!cfg)
1205 return true;
1206
1207 return false;
1208 }
1209
free_init_resources(struct fman * fman)1210 static void free_init_resources(struct fman *fman)
1211 {
1212 if (fman->cam_offset)
1213 fman_muram_free_mem(fman->muram, fman->cam_offset,
1214 fman->cam_size);
1215 if (fman->fifo_offset)
1216 fman_muram_free_mem(fman->muram, fman->fifo_offset,
1217 fman->fifo_size);
1218 }
1219
bmi_err_event(struct fman * fman)1220 static irqreturn_t bmi_err_event(struct fman *fman)
1221 {
1222 u32 event, mask, force;
1223 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1224 irqreturn_t ret = IRQ_NONE;
1225
1226 event = ioread32be(&bmi_rg->fmbm_ievr);
1227 mask = ioread32be(&bmi_rg->fmbm_ier);
1228 event &= mask;
1229 /* clear the forced events */
1230 force = ioread32be(&bmi_rg->fmbm_ifr);
1231 if (force & event)
1232 iowrite32be(force & ~event, &bmi_rg->fmbm_ifr);
1233 /* clear the acknowledged events */
1234 iowrite32be(event, &bmi_rg->fmbm_ievr);
1235
1236 if (event & BMI_ERR_INTR_EN_STORAGE_PROFILE_ECC)
1237 ret = fman->exception_cb(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC);
1238 if (event & BMI_ERR_INTR_EN_LIST_RAM_ECC)
1239 ret = fman->exception_cb(fman, FMAN_EX_BMI_LIST_RAM_ECC);
1240 if (event & BMI_ERR_INTR_EN_STATISTICS_RAM_ECC)
1241 ret = fman->exception_cb(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC);
1242 if (event & BMI_ERR_INTR_EN_DISPATCH_RAM_ECC)
1243 ret = fman->exception_cb(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC);
1244
1245 return ret;
1246 }
1247
qmi_err_event(struct fman * fman)1248 static irqreturn_t qmi_err_event(struct fman *fman)
1249 {
1250 u32 event, mask, force;
1251 struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1252 irqreturn_t ret = IRQ_NONE;
1253
1254 event = ioread32be(&qmi_rg->fmqm_eie);
1255 mask = ioread32be(&qmi_rg->fmqm_eien);
1256 event &= mask;
1257
1258 /* clear the forced events */
1259 force = ioread32be(&qmi_rg->fmqm_eif);
1260 if (force & event)
1261 iowrite32be(force & ~event, &qmi_rg->fmqm_eif);
1262 /* clear the acknowledged events */
1263 iowrite32be(event, &qmi_rg->fmqm_eie);
1264
1265 if (event & QMI_ERR_INTR_EN_DOUBLE_ECC)
1266 ret = fman->exception_cb(fman, FMAN_EX_QMI_DOUBLE_ECC);
1267 if (event & QMI_ERR_INTR_EN_DEQ_FROM_DEF)
1268 ret = fman->exception_cb(fman,
1269 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID);
1270
1271 return ret;
1272 }
1273
dma_err_event(struct fman * fman)1274 static irqreturn_t dma_err_event(struct fman *fman)
1275 {
1276 u32 status, mask, com_id;
1277 u8 tnum, port_id, relative_port_id;
1278 u16 liodn;
1279 struct fman_dma_regs __iomem *dma_rg = fman->dma_regs;
1280 irqreturn_t ret = IRQ_NONE;
1281
1282 status = ioread32be(&dma_rg->fmdmsr);
1283 mask = ioread32be(&dma_rg->fmdmmr);
1284
1285 /* clear DMA_STATUS_BUS_ERR if mask has no DMA_MODE_BER */
1286 if ((mask & DMA_MODE_BER) != DMA_MODE_BER)
1287 status &= ~DMA_STATUS_BUS_ERR;
1288
1289 /* clear relevant bits if mask has no DMA_MODE_ECC */
1290 if ((mask & DMA_MODE_ECC) != DMA_MODE_ECC)
1291 status &= ~(DMA_STATUS_FM_SPDAT_ECC |
1292 DMA_STATUS_READ_ECC |
1293 DMA_STATUS_SYSTEM_WRITE_ECC |
1294 DMA_STATUS_FM_WRITE_ECC);
1295
1296 /* clear set events */
1297 iowrite32be(status, &dma_rg->fmdmsr);
1298
1299 if (status & DMA_STATUS_BUS_ERR) {
1300 u64 addr;
1301
1302 addr = (u64)ioread32be(&dma_rg->fmdmtal);
1303 addr |= ((u64)(ioread32be(&dma_rg->fmdmtah)) << 32);
1304
1305 com_id = ioread32be(&dma_rg->fmdmtcid);
1306 port_id = (u8)(((com_id & DMA_TRANSFER_PORTID_MASK) >>
1307 DMA_TRANSFER_PORTID_SHIFT));
1308 relative_port_id =
1309 hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
1310 tnum = (u8)((com_id & DMA_TRANSFER_TNUM_MASK) >>
1311 DMA_TRANSFER_TNUM_SHIFT);
1312 liodn = (u16)(com_id & DMA_TRANSFER_LIODN_MASK);
1313 ret = fman->bus_error_cb(fman, relative_port_id, addr, tnum,
1314 liodn);
1315 }
1316 if (status & DMA_STATUS_FM_SPDAT_ECC)
1317 ret = fman->exception_cb(fman, FMAN_EX_DMA_SINGLE_PORT_ECC);
1318 if (status & DMA_STATUS_READ_ECC)
1319 ret = fman->exception_cb(fman, FMAN_EX_DMA_READ_ECC);
1320 if (status & DMA_STATUS_SYSTEM_WRITE_ECC)
1321 ret = fman->exception_cb(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC);
1322 if (status & DMA_STATUS_FM_WRITE_ECC)
1323 ret = fman->exception_cb(fman, FMAN_EX_DMA_FM_WRITE_ECC);
1324
1325 return ret;
1326 }
1327
fpm_err_event(struct fman * fman)1328 static irqreturn_t fpm_err_event(struct fman *fman)
1329 {
1330 u32 event;
1331 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1332 irqreturn_t ret = IRQ_NONE;
1333
1334 event = ioread32be(&fpm_rg->fmfp_ee);
1335 /* clear the all occurred events */
1336 iowrite32be(event, &fpm_rg->fmfp_ee);
1337
1338 if ((event & FPM_EV_MASK_DOUBLE_ECC) &&
1339 (event & FPM_EV_MASK_DOUBLE_ECC_EN))
1340 ret = fman->exception_cb(fman, FMAN_EX_FPM_DOUBLE_ECC);
1341 if ((event & FPM_EV_MASK_STALL) && (event & FPM_EV_MASK_STALL_EN))
1342 ret = fman->exception_cb(fman, FMAN_EX_FPM_STALL_ON_TASKS);
1343 if ((event & FPM_EV_MASK_SINGLE_ECC) &&
1344 (event & FPM_EV_MASK_SINGLE_ECC_EN))
1345 ret = fman->exception_cb(fman, FMAN_EX_FPM_SINGLE_ECC);
1346
1347 return ret;
1348 }
1349
muram_err_intr(struct fman * fman)1350 static irqreturn_t muram_err_intr(struct fman *fman)
1351 {
1352 u32 event, mask;
1353 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1354 irqreturn_t ret = IRQ_NONE;
1355
1356 event = ioread32be(&fpm_rg->fm_rcr);
1357 mask = ioread32be(&fpm_rg->fm_rie);
1358
1359 /* clear MURAM event bit (do not clear IRAM event) */
1360 iowrite32be(event & ~FPM_RAM_IRAM_ECC, &fpm_rg->fm_rcr);
1361
1362 if ((mask & FPM_MURAM_ECC_ERR_EX_EN) && (event & FPM_RAM_MURAM_ECC))
1363 ret = fman->exception_cb(fman, FMAN_EX_MURAM_ECC);
1364
1365 return ret;
1366 }
1367
qmi_event(struct fman * fman)1368 static irqreturn_t qmi_event(struct fman *fman)
1369 {
1370 u32 event, mask, force;
1371 struct fman_qmi_regs __iomem *qmi_rg = fman->qmi_regs;
1372 irqreturn_t ret = IRQ_NONE;
1373
1374 event = ioread32be(&qmi_rg->fmqm_ie);
1375 mask = ioread32be(&qmi_rg->fmqm_ien);
1376 event &= mask;
1377 /* clear the forced events */
1378 force = ioread32be(&qmi_rg->fmqm_if);
1379 if (force & event)
1380 iowrite32be(force & ~event, &qmi_rg->fmqm_if);
1381 /* clear the acknowledged events */
1382 iowrite32be(event, &qmi_rg->fmqm_ie);
1383
1384 if (event & QMI_INTR_EN_SINGLE_ECC)
1385 ret = fman->exception_cb(fman, FMAN_EX_QMI_SINGLE_ECC);
1386
1387 return ret;
1388 }
1389
enable_time_stamp(struct fman * fman)1390 static void enable_time_stamp(struct fman *fman)
1391 {
1392 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
1393 u16 fm_clk_freq = fman->state->fm_clk_freq;
1394 u32 tmp, intgr, ts_freq;
1395 u64 frac;
1396
1397 ts_freq = (u32)(1 << fman->state->count1_micro_bit);
1398 /* configure timestamp so that bit 8 will count 1 microsecond
1399 * Find effective count rate at TIMESTAMP least significant bits:
1400 * Effective_Count_Rate = 1MHz x 2^8 = 256MHz
1401 * Find frequency ratio between effective count rate and the clock:
1402 * Effective_Count_Rate / CLK e.g. for 600 MHz clock:
1403 * 256/600 = 0.4266666...
1404 */
1405
1406 intgr = ts_freq / fm_clk_freq;
1407 /* we multiply by 2^16 to keep the fraction of the division
1408 * we do not div back, since we write this value as a fraction
1409 * see spec
1410 */
1411
1412 frac = ((ts_freq << 16) - (intgr << 16) * fm_clk_freq) / fm_clk_freq;
1413 /* we check remainder of the division in order to round up if not int */
1414 if (((ts_freq << 16) - (intgr << 16) * fm_clk_freq) % fm_clk_freq)
1415 frac++;
1416
1417 tmp = (intgr << FPM_TS_INT_SHIFT) | (u16)frac;
1418 iowrite32be(tmp, &fpm_rg->fmfp_tsc2);
1419
1420 /* enable timestamp with original clock */
1421 iowrite32be(FPM_TS_CTL_EN, &fpm_rg->fmfp_tsc1);
1422 fman->state->enabled_time_stamp = true;
1423 }
1424
clear_iram(struct fman * fman)1425 static int clear_iram(struct fman *fman)
1426 {
1427 struct fman_iram_regs __iomem *iram;
1428 int i, count;
1429
1430 iram = fman->base_addr + IMEM_OFFSET;
1431
1432 /* Enable the auto-increment */
1433 iowrite32be(IRAM_IADD_AIE, &iram->iadd);
1434 count = 100;
1435 do {
1436 udelay(1);
1437 } while ((ioread32be(&iram->iadd) != IRAM_IADD_AIE) && --count);
1438 if (count == 0)
1439 return -EBUSY;
1440
1441 for (i = 0; i < (fman->state->fm_iram_size / 4); i++)
1442 iowrite32be(0xffffffff, &iram->idata);
1443
1444 iowrite32be(fman->state->fm_iram_size - 4, &iram->iadd);
1445 count = 100;
1446 do {
1447 udelay(1);
1448 } while ((ioread32be(&iram->idata) != 0xffffffff) && --count);
1449 if (count == 0)
1450 return -EBUSY;
1451
1452 return 0;
1453 }
1454
get_exception_flag(enum fman_exceptions exception)1455 static u32 get_exception_flag(enum fman_exceptions exception)
1456 {
1457 u32 bit_mask;
1458
1459 switch (exception) {
1460 case FMAN_EX_DMA_BUS_ERROR:
1461 bit_mask = EX_DMA_BUS_ERROR;
1462 break;
1463 case FMAN_EX_DMA_SINGLE_PORT_ECC:
1464 bit_mask = EX_DMA_SINGLE_PORT_ECC;
1465 break;
1466 case FMAN_EX_DMA_READ_ECC:
1467 bit_mask = EX_DMA_READ_ECC;
1468 break;
1469 case FMAN_EX_DMA_SYSTEM_WRITE_ECC:
1470 bit_mask = EX_DMA_SYSTEM_WRITE_ECC;
1471 break;
1472 case FMAN_EX_DMA_FM_WRITE_ECC:
1473 bit_mask = EX_DMA_FM_WRITE_ECC;
1474 break;
1475 case FMAN_EX_FPM_STALL_ON_TASKS:
1476 bit_mask = EX_FPM_STALL_ON_TASKS;
1477 break;
1478 case FMAN_EX_FPM_SINGLE_ECC:
1479 bit_mask = EX_FPM_SINGLE_ECC;
1480 break;
1481 case FMAN_EX_FPM_DOUBLE_ECC:
1482 bit_mask = EX_FPM_DOUBLE_ECC;
1483 break;
1484 case FMAN_EX_QMI_SINGLE_ECC:
1485 bit_mask = EX_QMI_SINGLE_ECC;
1486 break;
1487 case FMAN_EX_QMI_DOUBLE_ECC:
1488 bit_mask = EX_QMI_DOUBLE_ECC;
1489 break;
1490 case FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID:
1491 bit_mask = EX_QMI_DEQ_FROM_UNKNOWN_PORTID;
1492 break;
1493 case FMAN_EX_BMI_LIST_RAM_ECC:
1494 bit_mask = EX_BMI_LIST_RAM_ECC;
1495 break;
1496 case FMAN_EX_BMI_STORAGE_PROFILE_ECC:
1497 bit_mask = EX_BMI_STORAGE_PROFILE_ECC;
1498 break;
1499 case FMAN_EX_BMI_STATISTICS_RAM_ECC:
1500 bit_mask = EX_BMI_STATISTICS_RAM_ECC;
1501 break;
1502 case FMAN_EX_BMI_DISPATCH_RAM_ECC:
1503 bit_mask = EX_BMI_DISPATCH_RAM_ECC;
1504 break;
1505 case FMAN_EX_MURAM_ECC:
1506 bit_mask = EX_MURAM_ECC;
1507 break;
1508 default:
1509 bit_mask = 0;
1510 break;
1511 }
1512
1513 return bit_mask;
1514 }
1515
get_module_event(enum fman_event_modules module,u8 mod_id,enum fman_intr_type intr_type)1516 static int get_module_event(enum fman_event_modules module, u8 mod_id,
1517 enum fman_intr_type intr_type)
1518 {
1519 int event;
1520
1521 switch (module) {
1522 case FMAN_MOD_MAC:
1523 if (intr_type == FMAN_INTR_TYPE_ERR)
1524 event = FMAN_EV_ERR_MAC0 + mod_id;
1525 else
1526 event = FMAN_EV_MAC0 + mod_id;
1527 break;
1528 case FMAN_MOD_FMAN_CTRL:
1529 if (intr_type == FMAN_INTR_TYPE_ERR)
1530 event = FMAN_EV_CNT;
1531 else
1532 event = (FMAN_EV_FMAN_CTRL_0 + mod_id);
1533 break;
1534 case FMAN_MOD_DUMMY_LAST:
1535 event = FMAN_EV_CNT;
1536 break;
1537 default:
1538 event = FMAN_EV_CNT;
1539 break;
1540 }
1541
1542 return event;
1543 }
1544
set_size_of_fifo(struct fman * fman,u8 port_id,u32 * size_of_fifo,u32 * extra_size_of_fifo)1545 static int set_size_of_fifo(struct fman *fman, u8 port_id, u32 *size_of_fifo,
1546 u32 *extra_size_of_fifo)
1547 {
1548 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1549 u32 fifo = *size_of_fifo;
1550 u32 extra_fifo = *extra_size_of_fifo;
1551 u32 tmp;
1552
1553 /* if this is the first time a port requires extra_fifo_pool_size,
1554 * the total extra_fifo_pool_size must be initialized to 1 buffer per
1555 * port
1556 */
1557 if (extra_fifo && !fman->state->extra_fifo_pool_size)
1558 fman->state->extra_fifo_pool_size =
1559 fman->state->num_of_rx_ports * FMAN_BMI_FIFO_UNITS;
1560
1561 fman->state->extra_fifo_pool_size =
1562 max(fman->state->extra_fifo_pool_size, extra_fifo);
1563
1564 /* check that there are enough uncommitted fifo size */
1565 if ((fman->state->accumulated_fifo_size + fifo) >
1566 (fman->state->total_fifo_size -
1567 fman->state->extra_fifo_pool_size)) {
1568 dev_err(fman->dev, "%s: Requested fifo size and extra size exceed total FIFO size.\n",
1569 __func__);
1570 return -EAGAIN;
1571 }
1572
1573 /* Read, modify and write to HW */
1574 tmp = (fifo / FMAN_BMI_FIFO_UNITS - 1) |
1575 ((extra_fifo / FMAN_BMI_FIFO_UNITS) <<
1576 BMI_EXTRA_FIFO_SIZE_SHIFT);
1577 iowrite32be(tmp, &bmi_rg->fmbm_pfs[port_id - 1]);
1578
1579 /* update accumulated */
1580 fman->state->accumulated_fifo_size += fifo;
1581
1582 return 0;
1583 }
1584
set_num_of_tasks(struct fman * fman,u8 port_id,u8 * num_of_tasks,u8 * num_of_extra_tasks)1585 static int set_num_of_tasks(struct fman *fman, u8 port_id, u8 *num_of_tasks,
1586 u8 *num_of_extra_tasks)
1587 {
1588 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1589 u8 tasks = *num_of_tasks;
1590 u8 extra_tasks = *num_of_extra_tasks;
1591 u32 tmp;
1592
1593 if (extra_tasks)
1594 fman->state->extra_tasks_pool_size =
1595 max(fman->state->extra_tasks_pool_size, extra_tasks);
1596
1597 /* check that there are enough uncommitted tasks */
1598 if ((fman->state->accumulated_num_of_tasks + tasks) >
1599 (fman->state->total_num_of_tasks -
1600 fman->state->extra_tasks_pool_size)) {
1601 dev_err(fman->dev, "%s: Requested num_of_tasks and extra tasks pool for fm%d exceed total num_of_tasks.\n",
1602 __func__, fman->state->fm_id);
1603 return -EAGAIN;
1604 }
1605 /* update accumulated */
1606 fman->state->accumulated_num_of_tasks += tasks;
1607
1608 /* Write to HW */
1609 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1610 ~(BMI_NUM_OF_TASKS_MASK | BMI_NUM_OF_EXTRA_TASKS_MASK);
1611 tmp |= ((u32)((tasks - 1) << BMI_NUM_OF_TASKS_SHIFT) |
1612 (u32)(extra_tasks << BMI_EXTRA_NUM_OF_TASKS_SHIFT));
1613 iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1614
1615 return 0;
1616 }
1617
set_num_of_open_dmas(struct fman * fman,u8 port_id,u8 * num_of_open_dmas,u8 * num_of_extra_open_dmas)1618 static int set_num_of_open_dmas(struct fman *fman, u8 port_id,
1619 u8 *num_of_open_dmas,
1620 u8 *num_of_extra_open_dmas)
1621 {
1622 struct fman_bmi_regs __iomem *bmi_rg = fman->bmi_regs;
1623 u8 open_dmas = *num_of_open_dmas;
1624 u8 extra_open_dmas = *num_of_extra_open_dmas;
1625 u8 total_num_dmas = 0, current_val = 0, current_extra_val = 0;
1626 u32 tmp;
1627
1628 if (!open_dmas) {
1629 /* Configuration according to values in the HW.
1630 * read the current number of open Dma's
1631 */
1632 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1633 current_extra_val = (u8)((tmp & BMI_NUM_OF_EXTRA_DMAS_MASK) >>
1634 BMI_EXTRA_NUM_OF_DMAS_SHIFT);
1635
1636 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]);
1637 current_val = (u8)(((tmp & BMI_NUM_OF_DMAS_MASK) >>
1638 BMI_NUM_OF_DMAS_SHIFT) + 1);
1639
1640 /* This is the first configuration and user did not
1641 * specify value (!open_dmas), reset values will be used
1642 * and we just save these values for resource management
1643 */
1644 fman->state->extra_open_dmas_pool_size =
1645 (u8)max(fman->state->extra_open_dmas_pool_size,
1646 current_extra_val);
1647 fman->state->accumulated_num_of_open_dmas += current_val;
1648 *num_of_open_dmas = current_val;
1649 *num_of_extra_open_dmas = current_extra_val;
1650 return 0;
1651 }
1652
1653 if (extra_open_dmas > current_extra_val)
1654 fman->state->extra_open_dmas_pool_size =
1655 (u8)max(fman->state->extra_open_dmas_pool_size,
1656 extra_open_dmas);
1657
1658 if ((fman->state->rev_info.major < 6) &&
1659 (fman->state->accumulated_num_of_open_dmas - current_val +
1660 open_dmas > fman->state->max_num_of_open_dmas)) {
1661 dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds total num_of_open_dmas.\n",
1662 __func__, fman->state->fm_id);
1663 return -EAGAIN;
1664 } else if ((fman->state->rev_info.major >= 6) &&
1665 !((fman->state->rev_info.major == 6) &&
1666 (fman->state->rev_info.minor == 0)) &&
1667 (fman->state->accumulated_num_of_open_dmas -
1668 current_val + open_dmas >
1669 fman->state->dma_thresh_max_commq + 1)) {
1670 dev_err(fman->dev, "%s: Requested num_of_open_dmas for fm%d exceeds DMA Command queue (%d)\n",
1671 __func__, fman->state->fm_id,
1672 fman->state->dma_thresh_max_commq + 1);
1673 return -EAGAIN;
1674 }
1675
1676 WARN_ON(fman->state->accumulated_num_of_open_dmas < current_val);
1677 /* update acummulated */
1678 fman->state->accumulated_num_of_open_dmas -= current_val;
1679 fman->state->accumulated_num_of_open_dmas += open_dmas;
1680
1681 if (fman->state->rev_info.major < 6)
1682 total_num_dmas =
1683 (u8)(fman->state->accumulated_num_of_open_dmas +
1684 fman->state->extra_open_dmas_pool_size);
1685
1686 /* calculate reg */
1687 tmp = ioread32be(&bmi_rg->fmbm_pp[port_id - 1]) &
1688 ~(BMI_NUM_OF_DMAS_MASK | BMI_NUM_OF_EXTRA_DMAS_MASK);
1689 tmp |= (u32)(((open_dmas - 1) << BMI_NUM_OF_DMAS_SHIFT) |
1690 (extra_open_dmas << BMI_EXTRA_NUM_OF_DMAS_SHIFT));
1691 iowrite32be(tmp, &bmi_rg->fmbm_pp[port_id - 1]);
1692
1693 /* update total num of DMA's with committed number of open DMAS,
1694 * and max uncommitted pool.
1695 */
1696 if (total_num_dmas) {
1697 tmp = ioread32be(&bmi_rg->fmbm_cfg2) & ~BMI_CFG2_DMAS_MASK;
1698 tmp |= (u32)(total_num_dmas - 1) << BMI_CFG2_DMAS_SHIFT;
1699 iowrite32be(tmp, &bmi_rg->fmbm_cfg2);
1700 }
1701
1702 return 0;
1703 }
1704
fman_config(struct fman * fman)1705 static int fman_config(struct fman *fman)
1706 {
1707 void __iomem *base_addr;
1708 int err;
1709
1710 base_addr = fman->dts_params.base_addr;
1711
1712 fman->state = kzalloc(sizeof(*fman->state), GFP_KERNEL);
1713 if (!fman->state)
1714 goto err_fm_state;
1715
1716 /* Allocate the FM driver's parameters structure */
1717 fman->cfg = kzalloc(sizeof(*fman->cfg), GFP_KERNEL);
1718 if (!fman->cfg)
1719 goto err_fm_drv;
1720
1721 /* Initialize MURAM block */
1722 fman->muram =
1723 fman_muram_init(fman->dts_params.muram_res.start,
1724 resource_size(&fman->dts_params.muram_res));
1725 if (!fman->muram)
1726 goto err_fm_soc_specific;
1727
1728 /* Initialize FM parameters which will be kept by the driver */
1729 fman->state->fm_id = fman->dts_params.id;
1730 fman->state->fm_clk_freq = fman->dts_params.clk_freq;
1731 fman->state->qman_channel_base = fman->dts_params.qman_channel_base;
1732 fman->state->num_of_qman_channels =
1733 fman->dts_params.num_of_qman_channels;
1734 fman->state->res = fman->dts_params.res;
1735 fman->exception_cb = fman_exceptions;
1736 fman->bus_error_cb = fman_bus_error;
1737 fman->fpm_regs = base_addr + FPM_OFFSET;
1738 fman->bmi_regs = base_addr + BMI_OFFSET;
1739 fman->qmi_regs = base_addr + QMI_OFFSET;
1740 fman->dma_regs = base_addr + DMA_OFFSET;
1741 fman->hwp_regs = base_addr + HWP_OFFSET;
1742 fman->kg_regs = base_addr + KG_OFFSET;
1743 fman->base_addr = base_addr;
1744
1745 spin_lock_init(&fman->spinlock);
1746 fman_defconfig(fman->cfg);
1747
1748 fman->state->extra_fifo_pool_size = 0;
1749 fman->state->exceptions = (EX_DMA_BUS_ERROR |
1750 EX_DMA_READ_ECC |
1751 EX_DMA_SYSTEM_WRITE_ECC |
1752 EX_DMA_FM_WRITE_ECC |
1753 EX_FPM_STALL_ON_TASKS |
1754 EX_FPM_SINGLE_ECC |
1755 EX_FPM_DOUBLE_ECC |
1756 EX_QMI_DEQ_FROM_UNKNOWN_PORTID |
1757 EX_BMI_LIST_RAM_ECC |
1758 EX_BMI_STORAGE_PROFILE_ECC |
1759 EX_BMI_STATISTICS_RAM_ECC |
1760 EX_MURAM_ECC |
1761 EX_BMI_DISPATCH_RAM_ECC |
1762 EX_QMI_DOUBLE_ECC |
1763 EX_QMI_SINGLE_ECC);
1764
1765 /* Read FMan revision for future use*/
1766 fman_get_revision(fman, &fman->state->rev_info);
1767
1768 err = fill_soc_specific_params(fman->state);
1769 if (err)
1770 goto err_fm_soc_specific;
1771
1772 /* FM_AID_MODE_NO_TNUM_SW005 Errata workaround */
1773 if (fman->state->rev_info.major >= 6)
1774 fman->cfg->dma_aid_mode = FMAN_DMA_AID_OUT_PORT_ID;
1775
1776 fman->cfg->qmi_def_tnums_thresh = fman->state->qmi_def_tnums_thresh;
1777
1778 fman->state->total_num_of_tasks =
1779 (u8)DFLT_TOTAL_NUM_OF_TASKS(fman->state->rev_info.major,
1780 fman->state->rev_info.minor,
1781 fman->state->bmi_max_num_of_tasks);
1782
1783 if (fman->state->rev_info.major < 6) {
1784 fman->cfg->dma_comm_qtsh_clr_emer =
1785 (u8)DFLT_DMA_COMM_Q_LOW(fman->state->rev_info.major,
1786 fman->state->dma_thresh_max_commq);
1787
1788 fman->cfg->dma_comm_qtsh_asrt_emer =
1789 (u8)DFLT_DMA_COMM_Q_HIGH(fman->state->rev_info.major,
1790 fman->state->dma_thresh_max_commq);
1791
1792 fman->cfg->dma_cam_num_of_entries =
1793 DFLT_DMA_CAM_NUM_OF_ENTRIES(fman->state->rev_info.major);
1794
1795 fman->cfg->dma_read_buf_tsh_clr_emer =
1796 DFLT_DMA_READ_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1797
1798 fman->cfg->dma_read_buf_tsh_asrt_emer =
1799 DFLT_DMA_READ_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1800
1801 fman->cfg->dma_write_buf_tsh_clr_emer =
1802 DFLT_DMA_WRITE_INT_BUF_LOW(fman->state->dma_thresh_max_buf);
1803
1804 fman->cfg->dma_write_buf_tsh_asrt_emer =
1805 DFLT_DMA_WRITE_INT_BUF_HIGH(fman->state->dma_thresh_max_buf);
1806
1807 fman->cfg->dma_axi_dbg_num_of_beats =
1808 DFLT_AXI_DBG_NUM_OF_BEATS;
1809 }
1810
1811 return 0;
1812
1813 err_fm_soc_specific:
1814 kfree(fman->cfg);
1815 err_fm_drv:
1816 kfree(fman->state);
1817 err_fm_state:
1818 kfree(fman);
1819 return -EINVAL;
1820 }
1821
fman_reset(struct fman * fman)1822 static int fman_reset(struct fman *fman)
1823 {
1824 u32 count;
1825 int err = 0;
1826
1827 if (fman->state->rev_info.major < 6) {
1828 iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc);
1829 /* Wait for reset completion */
1830 count = 100;
1831 do {
1832 udelay(1);
1833 } while (((ioread32be(&fman->fpm_regs->fm_rstc)) &
1834 FPM_RSTC_FM_RESET) && --count);
1835 if (count == 0)
1836 err = -EBUSY;
1837
1838 goto _return;
1839 } else {
1840 #ifdef CONFIG_PPC
1841 struct device_node *guts_node;
1842 struct ccsr_guts __iomem *guts_regs;
1843 u32 devdisr2, reg;
1844
1845 /* Errata A007273 */
1846 guts_node =
1847 of_find_compatible_node(NULL, NULL,
1848 "fsl,qoriq-device-config-2.0");
1849 if (!guts_node) {
1850 dev_err(fman->dev, "%s: Couldn't find guts node\n",
1851 __func__);
1852 goto guts_node;
1853 }
1854
1855 guts_regs = of_iomap(guts_node, 0);
1856 if (!guts_regs) {
1857 dev_err(fman->dev, "%s: Couldn't map %pOF regs\n",
1858 __func__, guts_node);
1859 goto guts_regs;
1860 }
1861 #define FMAN1_ALL_MACS_MASK 0xFCC00000
1862 #define FMAN2_ALL_MACS_MASK 0x000FCC00
1863 /* Read current state */
1864 devdisr2 = ioread32be(&guts_regs->devdisr2);
1865 if (fman->dts_params.id == 0)
1866 reg = devdisr2 & ~FMAN1_ALL_MACS_MASK;
1867 else
1868 reg = devdisr2 & ~FMAN2_ALL_MACS_MASK;
1869
1870 /* Enable all MACs */
1871 iowrite32be(reg, &guts_regs->devdisr2);
1872 #endif
1873
1874 /* Perform FMan reset */
1875 iowrite32be(FPM_RSTC_FM_RESET, &fman->fpm_regs->fm_rstc);
1876
1877 /* Wait for reset completion */
1878 count = 100;
1879 do {
1880 udelay(1);
1881 } while (((ioread32be(&fman->fpm_regs->fm_rstc)) &
1882 FPM_RSTC_FM_RESET) && --count);
1883 if (count == 0) {
1884 #ifdef CONFIG_PPC
1885 iounmap(guts_regs);
1886 of_node_put(guts_node);
1887 #endif
1888 err = -EBUSY;
1889 goto _return;
1890 }
1891 #ifdef CONFIG_PPC
1892
1893 /* Restore devdisr2 value */
1894 iowrite32be(devdisr2, &guts_regs->devdisr2);
1895
1896 iounmap(guts_regs);
1897 of_node_put(guts_node);
1898 #endif
1899
1900 goto _return;
1901
1902 #ifdef CONFIG_PPC
1903 guts_regs:
1904 of_node_put(guts_node);
1905 guts_node:
1906 dev_dbg(fman->dev, "%s: Didn't perform FManV3 reset due to Errata A007273!\n",
1907 __func__);
1908 #endif
1909 }
1910 _return:
1911 return err;
1912 }
1913
fman_init(struct fman * fman)1914 static int fman_init(struct fman *fman)
1915 {
1916 struct fman_cfg *cfg = NULL;
1917 int err = 0, i, count;
1918
1919 if (is_init_done(fman->cfg))
1920 return -EINVAL;
1921
1922 fman->state->count1_micro_bit = FM_TIMESTAMP_1_USEC_BIT;
1923
1924 cfg = fman->cfg;
1925
1926 /* clear revision-dependent non existing exception */
1927 if (fman->state->rev_info.major < 6)
1928 fman->state->exceptions &= ~FMAN_EX_BMI_DISPATCH_RAM_ECC;
1929
1930 if (fman->state->rev_info.major >= 6)
1931 fman->state->exceptions &= ~FMAN_EX_QMI_SINGLE_ECC;
1932
1933 /* clear CPG */
1934 memset_io((void __iomem *)(fman->base_addr + CGP_OFFSET), 0,
1935 fman->state->fm_port_num_of_cg);
1936
1937 /* Save LIODN info before FMan reset
1938 * Skipping non-existent port 0 (i = 1)
1939 */
1940 for (i = 1; i < FMAN_LIODN_TBL; i++) {
1941 u32 liodn_base;
1942
1943 fman->liodn_offset[i] =
1944 ioread32be(&fman->bmi_regs->fmbm_spliodn[i - 1]);
1945 liodn_base = ioread32be(&fman->dma_regs->fmdmplr[i / 2]);
1946 if (i % 2) {
1947 /* FMDM_PLR LSB holds LIODN base for odd ports */
1948 liodn_base &= DMA_LIODN_BASE_MASK;
1949 } else {
1950 /* FMDM_PLR MSB holds LIODN base for even ports */
1951 liodn_base >>= DMA_LIODN_SHIFT;
1952 liodn_base &= DMA_LIODN_BASE_MASK;
1953 }
1954 fman->liodn_base[i] = liodn_base;
1955 }
1956
1957 err = fman_reset(fman);
1958 if (err)
1959 return err;
1960
1961 if (ioread32be(&fman->qmi_regs->fmqm_gs) & QMI_GS_HALT_NOT_BUSY) {
1962 resume(fman->fpm_regs);
1963 /* Wait until QMI is not in halt not busy state */
1964 count = 100;
1965 do {
1966 udelay(1);
1967 } while (((ioread32be(&fman->qmi_regs->fmqm_gs)) &
1968 QMI_GS_HALT_NOT_BUSY) && --count);
1969 if (count == 0)
1970 dev_warn(fman->dev, "%s: QMI is in halt not busy state\n",
1971 __func__);
1972 }
1973
1974 if (clear_iram(fman) != 0)
1975 return -EINVAL;
1976
1977 cfg->exceptions = fman->state->exceptions;
1978
1979 /* Init DMA Registers */
1980
1981 err = dma_init(fman);
1982 if (err != 0) {
1983 free_init_resources(fman);
1984 return err;
1985 }
1986
1987 /* Init FPM Registers */
1988 fpm_init(fman->fpm_regs, fman->cfg);
1989
1990 /* define common resources */
1991 /* allocate MURAM for FIFO according to total size */
1992 fman->fifo_offset = fman_muram_alloc(fman->muram,
1993 fman->state->total_fifo_size);
1994 if (IS_ERR_VALUE(fman->fifo_offset)) {
1995 free_init_resources(fman);
1996 dev_err(fman->dev, "%s: MURAM alloc for BMI FIFO failed\n",
1997 __func__);
1998 return -ENOMEM;
1999 }
2000
2001 cfg->fifo_base_addr = fman->fifo_offset;
2002 cfg->total_fifo_size = fman->state->total_fifo_size;
2003 cfg->total_num_of_tasks = fman->state->total_num_of_tasks;
2004 cfg->clk_freq = fman->state->fm_clk_freq;
2005
2006 /* Init BMI Registers */
2007 bmi_init(fman->bmi_regs, fman->cfg);
2008
2009 /* Init QMI Registers */
2010 qmi_init(fman->qmi_regs, fman->cfg);
2011
2012 /* Init HW Parser */
2013 hwp_init(fman->hwp_regs);
2014
2015 /* Init KeyGen */
2016 fman->keygen = keygen_init(fman->kg_regs);
2017 if (!fman->keygen)
2018 return -EINVAL;
2019
2020 err = enable(fman, cfg);
2021 if (err != 0)
2022 return err;
2023
2024 enable_time_stamp(fman);
2025
2026 kfree(fman->cfg);
2027 fman->cfg = NULL;
2028
2029 return 0;
2030 }
2031
fman_set_exception(struct fman * fman,enum fman_exceptions exception,bool enable)2032 static int fman_set_exception(struct fman *fman,
2033 enum fman_exceptions exception, bool enable)
2034 {
2035 u32 bit_mask = 0;
2036
2037 if (!is_init_done(fman->cfg))
2038 return -EINVAL;
2039
2040 bit_mask = get_exception_flag(exception);
2041 if (bit_mask) {
2042 if (enable)
2043 fman->state->exceptions |= bit_mask;
2044 else
2045 fman->state->exceptions &= ~bit_mask;
2046 } else {
2047 dev_err(fman->dev, "%s: Undefined exception (%d)\n",
2048 __func__, exception);
2049 return -EINVAL;
2050 }
2051
2052 return set_exception(fman, exception, enable);
2053 }
2054
2055 /**
2056 * fman_register_intr
2057 * @fman: A Pointer to FMan device
2058 * @mod: Calling module
2059 * @mod_id: Module id (if more than 1 exists, '0' if not)
2060 * @intr_type: Interrupt type (error/normal) selection.
2061 * @f_isr: The interrupt service routine.
2062 * @h_src_arg: Argument to be passed to f_isr.
2063 *
2064 * Used to register an event handler to be processed by FMan
2065 *
2066 * Return: 0 on success; Error code otherwise.
2067 */
fman_register_intr(struct fman * fman,enum fman_event_modules module,u8 mod_id,enum fman_intr_type intr_type,void (* isr_cb)(void * src_arg),void * src_arg)2068 void fman_register_intr(struct fman *fman, enum fman_event_modules module,
2069 u8 mod_id, enum fman_intr_type intr_type,
2070 void (*isr_cb)(void *src_arg), void *src_arg)
2071 {
2072 int event = 0;
2073
2074 event = get_module_event(module, mod_id, intr_type);
2075 WARN_ON(event >= FMAN_EV_CNT);
2076
2077 /* register in local FM structure */
2078 fman->intr_mng[event].isr_cb = isr_cb;
2079 fman->intr_mng[event].src_handle = src_arg;
2080 }
2081 EXPORT_SYMBOL(fman_register_intr);
2082
2083 /**
2084 * fman_unregister_intr
2085 * @fman: A Pointer to FMan device
2086 * @mod: Calling module
2087 * @mod_id: Module id (if more than 1 exists, '0' if not)
2088 * @intr_type: Interrupt type (error/normal) selection.
2089 *
2090 * Used to unregister an event handler to be processed by FMan
2091 *
2092 * Return: 0 on success; Error code otherwise.
2093 */
fman_unregister_intr(struct fman * fman,enum fman_event_modules module,u8 mod_id,enum fman_intr_type intr_type)2094 void fman_unregister_intr(struct fman *fman, enum fman_event_modules module,
2095 u8 mod_id, enum fman_intr_type intr_type)
2096 {
2097 int event = 0;
2098
2099 event = get_module_event(module, mod_id, intr_type);
2100 WARN_ON(event >= FMAN_EV_CNT);
2101
2102 fman->intr_mng[event].isr_cb = NULL;
2103 fman->intr_mng[event].src_handle = NULL;
2104 }
2105 EXPORT_SYMBOL(fman_unregister_intr);
2106
2107 /**
2108 * fman_set_port_params
2109 * @fman: A Pointer to FMan device
2110 * @port_params: Port parameters
2111 *
2112 * Used by FMan Port to pass parameters to the FMan
2113 *
2114 * Return: 0 on success; Error code otherwise.
2115 */
fman_set_port_params(struct fman * fman,struct fman_port_init_params * port_params)2116 int fman_set_port_params(struct fman *fman,
2117 struct fman_port_init_params *port_params)
2118 {
2119 int err;
2120 unsigned long flags;
2121 u8 port_id = port_params->port_id, mac_id;
2122
2123 spin_lock_irqsave(&fman->spinlock, flags);
2124
2125 err = set_num_of_tasks(fman, port_params->port_id,
2126 &port_params->num_of_tasks,
2127 &port_params->num_of_extra_tasks);
2128 if (err)
2129 goto return_err;
2130
2131 /* TX Ports */
2132 if (port_params->port_type != FMAN_PORT_TYPE_RX) {
2133 u32 enq_th, deq_th, reg;
2134
2135 /* update qmi ENQ/DEQ threshold */
2136 fman->state->accumulated_num_of_deq_tnums +=
2137 port_params->deq_pipeline_depth;
2138 enq_th = (ioread32be(&fman->qmi_regs->fmqm_gc) &
2139 QMI_CFG_ENQ_MASK) >> QMI_CFG_ENQ_SHIFT;
2140 /* if enq_th is too big, we reduce it to the max value
2141 * that is still 0
2142 */
2143 if (enq_th >= (fman->state->qmi_max_num_of_tnums -
2144 fman->state->accumulated_num_of_deq_tnums)) {
2145 enq_th =
2146 fman->state->qmi_max_num_of_tnums -
2147 fman->state->accumulated_num_of_deq_tnums - 1;
2148
2149 reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2150 reg &= ~QMI_CFG_ENQ_MASK;
2151 reg |= (enq_th << QMI_CFG_ENQ_SHIFT);
2152 iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2153 }
2154
2155 deq_th = ioread32be(&fman->qmi_regs->fmqm_gc) &
2156 QMI_CFG_DEQ_MASK;
2157 /* if deq_th is too small, we enlarge it to the min
2158 * value that is still 0.
2159 * depTh may not be larger than 63
2160 * (fman->state->qmi_max_num_of_tnums-1).
2161 */
2162 if ((deq_th <= fman->state->accumulated_num_of_deq_tnums) &&
2163 (deq_th < fman->state->qmi_max_num_of_tnums - 1)) {
2164 deq_th = fman->state->accumulated_num_of_deq_tnums + 1;
2165 reg = ioread32be(&fman->qmi_regs->fmqm_gc);
2166 reg &= ~QMI_CFG_DEQ_MASK;
2167 reg |= deq_th;
2168 iowrite32be(reg, &fman->qmi_regs->fmqm_gc);
2169 }
2170 }
2171
2172 err = set_size_of_fifo(fman, port_params->port_id,
2173 &port_params->size_of_fifo,
2174 &port_params->extra_size_of_fifo);
2175 if (err)
2176 goto return_err;
2177
2178 err = set_num_of_open_dmas(fman, port_params->port_id,
2179 &port_params->num_of_open_dmas,
2180 &port_params->num_of_extra_open_dmas);
2181 if (err)
2182 goto return_err;
2183
2184 set_port_liodn(fman, port_id, fman->liodn_base[port_id],
2185 fman->liodn_offset[port_id]);
2186
2187 if (fman->state->rev_info.major < 6)
2188 set_port_order_restoration(fman->fpm_regs, port_id);
2189
2190 mac_id = hw_port_id_to_sw_port_id(fman->state->rev_info.major, port_id);
2191
2192 if (port_params->max_frame_length >= fman->state->mac_mfl[mac_id]) {
2193 fman->state->port_mfl[mac_id] = port_params->max_frame_length;
2194 } else {
2195 dev_warn(fman->dev, "%s: Port (%d) max_frame_length is smaller than MAC (%d) current MTU\n",
2196 __func__, port_id, mac_id);
2197 err = -EINVAL;
2198 goto return_err;
2199 }
2200
2201 spin_unlock_irqrestore(&fman->spinlock, flags);
2202
2203 return 0;
2204
2205 return_err:
2206 spin_unlock_irqrestore(&fman->spinlock, flags);
2207 return err;
2208 }
2209 EXPORT_SYMBOL(fman_set_port_params);
2210
2211 /**
2212 * fman_reset_mac
2213 * @fman: A Pointer to FMan device
2214 * @mac_id: MAC id to be reset
2215 *
2216 * Reset a specific MAC
2217 *
2218 * Return: 0 on success; Error code otherwise.
2219 */
fman_reset_mac(struct fman * fman,u8 mac_id)2220 int fman_reset_mac(struct fman *fman, u8 mac_id)
2221 {
2222 struct fman_fpm_regs __iomem *fpm_rg = fman->fpm_regs;
2223 u32 msk, timeout = 100;
2224
2225 if (fman->state->rev_info.major >= 6) {
2226 dev_err(fman->dev, "%s: FMan MAC reset no available for FMan V3!\n",
2227 __func__);
2228 return -EINVAL;
2229 }
2230
2231 /* Get the relevant bit mask */
2232 switch (mac_id) {
2233 case 0:
2234 msk = FPM_RSTC_MAC0_RESET;
2235 break;
2236 case 1:
2237 msk = FPM_RSTC_MAC1_RESET;
2238 break;
2239 case 2:
2240 msk = FPM_RSTC_MAC2_RESET;
2241 break;
2242 case 3:
2243 msk = FPM_RSTC_MAC3_RESET;
2244 break;
2245 case 4:
2246 msk = FPM_RSTC_MAC4_RESET;
2247 break;
2248 case 5:
2249 msk = FPM_RSTC_MAC5_RESET;
2250 break;
2251 case 6:
2252 msk = FPM_RSTC_MAC6_RESET;
2253 break;
2254 case 7:
2255 msk = FPM_RSTC_MAC7_RESET;
2256 break;
2257 case 8:
2258 msk = FPM_RSTC_MAC8_RESET;
2259 break;
2260 case 9:
2261 msk = FPM_RSTC_MAC9_RESET;
2262 break;
2263 default:
2264 dev_warn(fman->dev, "%s: Illegal MAC Id [%d]\n",
2265 __func__, mac_id);
2266 return -EINVAL;
2267 }
2268
2269 /* reset */
2270 iowrite32be(msk, &fpm_rg->fm_rstc);
2271 while ((ioread32be(&fpm_rg->fm_rstc) & msk) && --timeout)
2272 udelay(10);
2273
2274 if (!timeout)
2275 return -EIO;
2276
2277 return 0;
2278 }
2279 EXPORT_SYMBOL(fman_reset_mac);
2280
2281 /**
2282 * fman_set_mac_max_frame
2283 * @fman: A Pointer to FMan device
2284 * @mac_id: MAC id
2285 * @mfl: Maximum frame length
2286 *
2287 * Set maximum frame length of specific MAC in FMan driver
2288 *
2289 * Return: 0 on success; Error code otherwise.
2290 */
fman_set_mac_max_frame(struct fman * fman,u8 mac_id,u16 mfl)2291 int fman_set_mac_max_frame(struct fman *fman, u8 mac_id, u16 mfl)
2292 {
2293 /* if port is already initialized, check that MaxFrameLength is smaller
2294 * or equal to the port's max
2295 */
2296 if ((!fman->state->port_mfl[mac_id]) ||
2297 (mfl <= fman->state->port_mfl[mac_id])) {
2298 fman->state->mac_mfl[mac_id] = mfl;
2299 } else {
2300 dev_warn(fman->dev, "%s: MAC max_frame_length is larger than Port max_frame_length\n",
2301 __func__);
2302 return -EINVAL;
2303 }
2304 return 0;
2305 }
2306 EXPORT_SYMBOL(fman_set_mac_max_frame);
2307
2308 /**
2309 * fman_get_clock_freq
2310 * @fman: A Pointer to FMan device
2311 *
2312 * Get FMan clock frequency
2313 *
2314 * Return: FMan clock frequency
2315 */
fman_get_clock_freq(struct fman * fman)2316 u16 fman_get_clock_freq(struct fman *fman)
2317 {
2318 return fman->state->fm_clk_freq;
2319 }
2320
2321 /**
2322 * fman_get_bmi_max_fifo_size
2323 * @fman: A Pointer to FMan device
2324 *
2325 * Get FMan maximum FIFO size
2326 *
2327 * Return: FMan Maximum FIFO size
2328 */
fman_get_bmi_max_fifo_size(struct fman * fman)2329 u32 fman_get_bmi_max_fifo_size(struct fman *fman)
2330 {
2331 return fman->state->bmi_max_fifo_size;
2332 }
2333 EXPORT_SYMBOL(fman_get_bmi_max_fifo_size);
2334
2335 /**
2336 * fman_get_revision
2337 * @fman - Pointer to the FMan module
2338 * @rev_info - A structure of revision information parameters.
2339 *
2340 * Returns the FM revision
2341 *
2342 * Allowed only following fman_init().
2343 *
2344 * Return: 0 on success; Error code otherwise.
2345 */
fman_get_revision(struct fman * fman,struct fman_rev_info * rev_info)2346 void fman_get_revision(struct fman *fman, struct fman_rev_info *rev_info)
2347 {
2348 u32 tmp;
2349
2350 tmp = ioread32be(&fman->fpm_regs->fm_ip_rev_1);
2351 rev_info->major = (u8)((tmp & FPM_REV1_MAJOR_MASK) >>
2352 FPM_REV1_MAJOR_SHIFT);
2353 rev_info->minor = tmp & FPM_REV1_MINOR_MASK;
2354 }
2355 EXPORT_SYMBOL(fman_get_revision);
2356
2357 /**
2358 * fman_get_qman_channel_id
2359 * @fman: A Pointer to FMan device
2360 * @port_id: Port id
2361 *
2362 * Get QMan channel ID associated to the Port id
2363 *
2364 * Return: QMan channel ID
2365 */
fman_get_qman_channel_id(struct fman * fman,u32 port_id)2366 u32 fman_get_qman_channel_id(struct fman *fman, u32 port_id)
2367 {
2368 int i;
2369
2370 if (fman->state->rev_info.major >= 6) {
2371 static const u32 port_ids[] = {
2372 0x30, 0x31, 0x28, 0x29, 0x2a, 0x2b,
2373 0x2c, 0x2d, 0x2, 0x3, 0x4, 0x5, 0x7, 0x7
2374 };
2375
2376 for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2377 if (port_ids[i] == port_id)
2378 break;
2379 }
2380 } else {
2381 static const u32 port_ids[] = {
2382 0x30, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x1,
2383 0x2, 0x3, 0x4, 0x5, 0x7, 0x7
2384 };
2385
2386 for (i = 0; i < fman->state->num_of_qman_channels; i++) {
2387 if (port_ids[i] == port_id)
2388 break;
2389 }
2390 }
2391
2392 if (i == fman->state->num_of_qman_channels)
2393 return 0;
2394
2395 return fman->state->qman_channel_base + i;
2396 }
2397 EXPORT_SYMBOL(fman_get_qman_channel_id);
2398
2399 /**
2400 * fman_get_mem_region
2401 * @fman: A Pointer to FMan device
2402 *
2403 * Get FMan memory region
2404 *
2405 * Return: A structure with FMan memory region information
2406 */
fman_get_mem_region(struct fman * fman)2407 struct resource *fman_get_mem_region(struct fman *fman)
2408 {
2409 return fman->state->res;
2410 }
2411 EXPORT_SYMBOL(fman_get_mem_region);
2412
2413 /* Bootargs defines */
2414 /* Extra headroom for RX buffers - Default, min and max */
2415 #define FSL_FM_RX_EXTRA_HEADROOM 64
2416 #define FSL_FM_RX_EXTRA_HEADROOM_MIN 16
2417 #define FSL_FM_RX_EXTRA_HEADROOM_MAX 384
2418
2419 /* Maximum frame length */
2420 #define FSL_FM_MAX_FRAME_SIZE 1522
2421 #define FSL_FM_MAX_POSSIBLE_FRAME_SIZE 9600
2422 #define FSL_FM_MIN_POSSIBLE_FRAME_SIZE 64
2423
2424 /* Extra headroom for Rx buffers.
2425 * FMan is instructed to allocate, on the Rx path, this amount of
2426 * space at the beginning of a data buffer, beside the DPA private
2427 * data area and the IC fields.
2428 * Does not impact Tx buffer layout.
2429 * Configurable from bootargs. 64 by default, it's needed on
2430 * particular forwarding scenarios that add extra headers to the
2431 * forwarded frame.
2432 */
2433 static int fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2434 module_param(fsl_fm_rx_extra_headroom, int, 0);
2435 MODULE_PARM_DESC(fsl_fm_rx_extra_headroom, "Extra headroom for Rx buffers");
2436
2437 /* Max frame size, across all interfaces.
2438 * Configurable from bootargs, to avoid allocating oversized (socket)
2439 * buffers when not using jumbo frames.
2440 * Must be large enough to accommodate the network MTU, but small enough
2441 * to avoid wasting skb memory.
2442 */
2443 static int fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2444 module_param(fsl_fm_max_frm, int, 0);
2445 MODULE_PARM_DESC(fsl_fm_max_frm, "Maximum frame size, across all interfaces");
2446
2447 /**
2448 * fman_get_max_frm
2449 *
2450 * Return: Max frame length configured in the FM driver
2451 */
fman_get_max_frm(void)2452 u16 fman_get_max_frm(void)
2453 {
2454 static bool fm_check_mfl;
2455
2456 if (!fm_check_mfl) {
2457 if (fsl_fm_max_frm > FSL_FM_MAX_POSSIBLE_FRAME_SIZE ||
2458 fsl_fm_max_frm < FSL_FM_MIN_POSSIBLE_FRAME_SIZE) {
2459 pr_warn("Invalid fsl_fm_max_frm value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2460 fsl_fm_max_frm,
2461 FSL_FM_MIN_POSSIBLE_FRAME_SIZE,
2462 FSL_FM_MAX_POSSIBLE_FRAME_SIZE,
2463 FSL_FM_MAX_FRAME_SIZE);
2464 fsl_fm_max_frm = FSL_FM_MAX_FRAME_SIZE;
2465 }
2466 fm_check_mfl = true;
2467 }
2468
2469 return fsl_fm_max_frm;
2470 }
2471 EXPORT_SYMBOL(fman_get_max_frm);
2472
2473 /**
2474 * fman_get_rx_extra_headroom
2475 *
2476 * Return: Extra headroom size configured in the FM driver
2477 */
fman_get_rx_extra_headroom(void)2478 int fman_get_rx_extra_headroom(void)
2479 {
2480 static bool fm_check_rx_extra_headroom;
2481
2482 if (!fm_check_rx_extra_headroom) {
2483 if (fsl_fm_rx_extra_headroom > FSL_FM_RX_EXTRA_HEADROOM_MAX ||
2484 fsl_fm_rx_extra_headroom < FSL_FM_RX_EXTRA_HEADROOM_MIN) {
2485 pr_warn("Invalid fsl_fm_rx_extra_headroom value (%d) in bootargs, valid range is %d-%d. Falling back to the default (%d)\n",
2486 fsl_fm_rx_extra_headroom,
2487 FSL_FM_RX_EXTRA_HEADROOM_MIN,
2488 FSL_FM_RX_EXTRA_HEADROOM_MAX,
2489 FSL_FM_RX_EXTRA_HEADROOM);
2490 fsl_fm_rx_extra_headroom = FSL_FM_RX_EXTRA_HEADROOM;
2491 }
2492
2493 fm_check_rx_extra_headroom = true;
2494 fsl_fm_rx_extra_headroom = ALIGN(fsl_fm_rx_extra_headroom, 16);
2495 }
2496
2497 return fsl_fm_rx_extra_headroom;
2498 }
2499 EXPORT_SYMBOL(fman_get_rx_extra_headroom);
2500
2501 /**
2502 * fman_bind
2503 * @dev: FMan OF device pointer
2504 *
2505 * Bind to a specific FMan device.
2506 *
2507 * Allowed only after the port was created.
2508 *
2509 * Return: A pointer to the FMan device
2510 */
fman_bind(struct device * fm_dev)2511 struct fman *fman_bind(struct device *fm_dev)
2512 {
2513 return (struct fman *)(dev_get_drvdata(get_device(fm_dev)));
2514 }
2515 EXPORT_SYMBOL(fman_bind);
2516
fman_err_irq(int irq,void * handle)2517 static irqreturn_t fman_err_irq(int irq, void *handle)
2518 {
2519 struct fman *fman = (struct fman *)handle;
2520 u32 pending;
2521 struct fman_fpm_regs __iomem *fpm_rg;
2522 irqreturn_t single_ret, ret = IRQ_NONE;
2523
2524 if (!is_init_done(fman->cfg))
2525 return IRQ_NONE;
2526
2527 fpm_rg = fman->fpm_regs;
2528
2529 /* error interrupts */
2530 pending = ioread32be(&fpm_rg->fm_epi);
2531 if (!pending)
2532 return IRQ_NONE;
2533
2534 if (pending & ERR_INTR_EN_BMI) {
2535 single_ret = bmi_err_event(fman);
2536 if (single_ret == IRQ_HANDLED)
2537 ret = IRQ_HANDLED;
2538 }
2539 if (pending & ERR_INTR_EN_QMI) {
2540 single_ret = qmi_err_event(fman);
2541 if (single_ret == IRQ_HANDLED)
2542 ret = IRQ_HANDLED;
2543 }
2544 if (pending & ERR_INTR_EN_FPM) {
2545 single_ret = fpm_err_event(fman);
2546 if (single_ret == IRQ_HANDLED)
2547 ret = IRQ_HANDLED;
2548 }
2549 if (pending & ERR_INTR_EN_DMA) {
2550 single_ret = dma_err_event(fman);
2551 if (single_ret == IRQ_HANDLED)
2552 ret = IRQ_HANDLED;
2553 }
2554 if (pending & ERR_INTR_EN_MURAM) {
2555 single_ret = muram_err_intr(fman);
2556 if (single_ret == IRQ_HANDLED)
2557 ret = IRQ_HANDLED;
2558 }
2559
2560 /* MAC error interrupts */
2561 if (pending & ERR_INTR_EN_MAC0) {
2562 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 0);
2563 if (single_ret == IRQ_HANDLED)
2564 ret = IRQ_HANDLED;
2565 }
2566 if (pending & ERR_INTR_EN_MAC1) {
2567 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 1);
2568 if (single_ret == IRQ_HANDLED)
2569 ret = IRQ_HANDLED;
2570 }
2571 if (pending & ERR_INTR_EN_MAC2) {
2572 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 2);
2573 if (single_ret == IRQ_HANDLED)
2574 ret = IRQ_HANDLED;
2575 }
2576 if (pending & ERR_INTR_EN_MAC3) {
2577 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 3);
2578 if (single_ret == IRQ_HANDLED)
2579 ret = IRQ_HANDLED;
2580 }
2581 if (pending & ERR_INTR_EN_MAC4) {
2582 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 4);
2583 if (single_ret == IRQ_HANDLED)
2584 ret = IRQ_HANDLED;
2585 }
2586 if (pending & ERR_INTR_EN_MAC5) {
2587 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 5);
2588 if (single_ret == IRQ_HANDLED)
2589 ret = IRQ_HANDLED;
2590 }
2591 if (pending & ERR_INTR_EN_MAC6) {
2592 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 6);
2593 if (single_ret == IRQ_HANDLED)
2594 ret = IRQ_HANDLED;
2595 }
2596 if (pending & ERR_INTR_EN_MAC7) {
2597 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 7);
2598 if (single_ret == IRQ_HANDLED)
2599 ret = IRQ_HANDLED;
2600 }
2601 if (pending & ERR_INTR_EN_MAC8) {
2602 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 8);
2603 if (single_ret == IRQ_HANDLED)
2604 ret = IRQ_HANDLED;
2605 }
2606 if (pending & ERR_INTR_EN_MAC9) {
2607 single_ret = call_mac_isr(fman, FMAN_EV_ERR_MAC0 + 9);
2608 if (single_ret == IRQ_HANDLED)
2609 ret = IRQ_HANDLED;
2610 }
2611
2612 return ret;
2613 }
2614
fman_irq(int irq,void * handle)2615 static irqreturn_t fman_irq(int irq, void *handle)
2616 {
2617 struct fman *fman = (struct fman *)handle;
2618 u32 pending;
2619 struct fman_fpm_regs __iomem *fpm_rg;
2620 irqreturn_t single_ret, ret = IRQ_NONE;
2621
2622 if (!is_init_done(fman->cfg))
2623 return IRQ_NONE;
2624
2625 fpm_rg = fman->fpm_regs;
2626
2627 /* normal interrupts */
2628 pending = ioread32be(&fpm_rg->fm_npi);
2629 if (!pending)
2630 return IRQ_NONE;
2631
2632 if (pending & INTR_EN_QMI) {
2633 single_ret = qmi_event(fman);
2634 if (single_ret == IRQ_HANDLED)
2635 ret = IRQ_HANDLED;
2636 }
2637
2638 /* MAC interrupts */
2639 if (pending & INTR_EN_MAC0) {
2640 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 0);
2641 if (single_ret == IRQ_HANDLED)
2642 ret = IRQ_HANDLED;
2643 }
2644 if (pending & INTR_EN_MAC1) {
2645 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 1);
2646 if (single_ret == IRQ_HANDLED)
2647 ret = IRQ_HANDLED;
2648 }
2649 if (pending & INTR_EN_MAC2) {
2650 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 2);
2651 if (single_ret == IRQ_HANDLED)
2652 ret = IRQ_HANDLED;
2653 }
2654 if (pending & INTR_EN_MAC3) {
2655 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 3);
2656 if (single_ret == IRQ_HANDLED)
2657 ret = IRQ_HANDLED;
2658 }
2659 if (pending & INTR_EN_MAC4) {
2660 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 4);
2661 if (single_ret == IRQ_HANDLED)
2662 ret = IRQ_HANDLED;
2663 }
2664 if (pending & INTR_EN_MAC5) {
2665 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 5);
2666 if (single_ret == IRQ_HANDLED)
2667 ret = IRQ_HANDLED;
2668 }
2669 if (pending & INTR_EN_MAC6) {
2670 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 6);
2671 if (single_ret == IRQ_HANDLED)
2672 ret = IRQ_HANDLED;
2673 }
2674 if (pending & INTR_EN_MAC7) {
2675 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 7);
2676 if (single_ret == IRQ_HANDLED)
2677 ret = IRQ_HANDLED;
2678 }
2679 if (pending & INTR_EN_MAC8) {
2680 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 8);
2681 if (single_ret == IRQ_HANDLED)
2682 ret = IRQ_HANDLED;
2683 }
2684 if (pending & INTR_EN_MAC9) {
2685 single_ret = call_mac_isr(fman, FMAN_EV_MAC0 + 9);
2686 if (single_ret == IRQ_HANDLED)
2687 ret = IRQ_HANDLED;
2688 }
2689
2690 return ret;
2691 }
2692
2693 static const struct of_device_id fman_muram_match[] = {
2694 {
2695 .compatible = "fsl,fman-muram"},
2696 {}
2697 };
2698 MODULE_DEVICE_TABLE(of, fman_muram_match);
2699
read_dts_node(struct platform_device * of_dev)2700 static struct fman *read_dts_node(struct platform_device *of_dev)
2701 {
2702 struct fman *fman;
2703 struct device_node *fm_node, *muram_node;
2704 struct resource *res;
2705 u32 val, range[2];
2706 int err, irq;
2707 struct clk *clk;
2708 u32 clk_rate;
2709 phys_addr_t phys_base_addr;
2710 resource_size_t mem_size;
2711
2712 fman = kzalloc(sizeof(*fman), GFP_KERNEL);
2713 if (!fman)
2714 return NULL;
2715
2716 fm_node = of_node_get(of_dev->dev.of_node);
2717
2718 err = of_property_read_u32(fm_node, "cell-index", &val);
2719 if (err) {
2720 dev_err(&of_dev->dev, "%s: failed to read cell-index for %pOF\n",
2721 __func__, fm_node);
2722 goto fman_node_put;
2723 }
2724 fman->dts_params.id = (u8)val;
2725
2726 /* Get the FM interrupt */
2727 res = platform_get_resource(of_dev, IORESOURCE_IRQ, 0);
2728 if (!res) {
2729 dev_err(&of_dev->dev, "%s: Can't get FMan IRQ resource\n",
2730 __func__);
2731 goto fman_node_put;
2732 }
2733 irq = res->start;
2734
2735 /* Get the FM error interrupt */
2736 res = platform_get_resource(of_dev, IORESOURCE_IRQ, 1);
2737 if (!res) {
2738 dev_err(&of_dev->dev, "%s: Can't get FMan Error IRQ resource\n",
2739 __func__);
2740 goto fman_node_put;
2741 }
2742 fman->dts_params.err_irq = res->start;
2743
2744 /* Get the FM address */
2745 res = platform_get_resource(of_dev, IORESOURCE_MEM, 0);
2746 if (!res) {
2747 dev_err(&of_dev->dev, "%s: Can't get FMan memory resource\n",
2748 __func__);
2749 goto fman_node_put;
2750 }
2751
2752 phys_base_addr = res->start;
2753 mem_size = resource_size(res);
2754
2755 clk = of_clk_get(fm_node, 0);
2756 if (IS_ERR(clk)) {
2757 dev_err(&of_dev->dev, "%s: Failed to get FM%d clock structure\n",
2758 __func__, fman->dts_params.id);
2759 goto fman_node_put;
2760 }
2761
2762 clk_rate = clk_get_rate(clk);
2763 if (!clk_rate) {
2764 dev_err(&of_dev->dev, "%s: Failed to determine FM%d clock rate\n",
2765 __func__, fman->dts_params.id);
2766 goto fman_node_put;
2767 }
2768 /* Rounding to MHz */
2769 fman->dts_params.clk_freq = DIV_ROUND_UP(clk_rate, 1000000);
2770
2771 err = of_property_read_u32_array(fm_node, "fsl,qman-channel-range",
2772 &range[0], 2);
2773 if (err) {
2774 dev_err(&of_dev->dev, "%s: failed to read fsl,qman-channel-range for %pOF\n",
2775 __func__, fm_node);
2776 goto fman_node_put;
2777 }
2778 fman->dts_params.qman_channel_base = range[0];
2779 fman->dts_params.num_of_qman_channels = range[1];
2780
2781 /* Get the MURAM base address and size */
2782 muram_node = of_find_matching_node(fm_node, fman_muram_match);
2783 if (!muram_node) {
2784 dev_err(&of_dev->dev, "%s: could not find MURAM node\n",
2785 __func__);
2786 goto fman_free;
2787 }
2788
2789 err = of_address_to_resource(muram_node, 0,
2790 &fman->dts_params.muram_res);
2791 if (err) {
2792 of_node_put(muram_node);
2793 dev_err(&of_dev->dev, "%s: of_address_to_resource() = %d\n",
2794 __func__, err);
2795 goto fman_free;
2796 }
2797
2798 of_node_put(muram_node);
2799
2800 err = devm_request_irq(&of_dev->dev, irq, fman_irq, IRQF_SHARED,
2801 "fman", fman);
2802 if (err < 0) {
2803 dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2804 __func__, irq, err);
2805 goto fman_free;
2806 }
2807
2808 if (fman->dts_params.err_irq != 0) {
2809 err = devm_request_irq(&of_dev->dev, fman->dts_params.err_irq,
2810 fman_err_irq, IRQF_SHARED,
2811 "fman-err", fman);
2812 if (err < 0) {
2813 dev_err(&of_dev->dev, "%s: irq %d allocation failed (error = %d)\n",
2814 __func__, fman->dts_params.err_irq, err);
2815 goto fman_free;
2816 }
2817 }
2818
2819 fman->dts_params.res =
2820 devm_request_mem_region(&of_dev->dev, phys_base_addr,
2821 mem_size, "fman");
2822 if (!fman->dts_params.res) {
2823 dev_err(&of_dev->dev, "%s: request_mem_region() failed\n",
2824 __func__);
2825 goto fman_free;
2826 }
2827
2828 fman->dts_params.base_addr =
2829 devm_ioremap(&of_dev->dev, phys_base_addr, mem_size);
2830 if (!fman->dts_params.base_addr) {
2831 dev_err(&of_dev->dev, "%s: devm_ioremap() failed\n", __func__);
2832 goto fman_free;
2833 }
2834
2835 fman->dev = &of_dev->dev;
2836
2837 err = of_platform_populate(fm_node, NULL, NULL, &of_dev->dev);
2838 if (err) {
2839 dev_err(&of_dev->dev, "%s: of_platform_populate() failed\n",
2840 __func__);
2841 goto fman_free;
2842 }
2843
2844 return fman;
2845
2846 fman_node_put:
2847 of_node_put(fm_node);
2848 fman_free:
2849 kfree(fman);
2850 return NULL;
2851 }
2852
fman_probe(struct platform_device * of_dev)2853 static int fman_probe(struct platform_device *of_dev)
2854 {
2855 struct fman *fman;
2856 struct device *dev;
2857 int err;
2858
2859 dev = &of_dev->dev;
2860
2861 fman = read_dts_node(of_dev);
2862 if (!fman)
2863 return -EIO;
2864
2865 err = fman_config(fman);
2866 if (err) {
2867 dev_err(dev, "%s: FMan config failed\n", __func__);
2868 return -EINVAL;
2869 }
2870
2871 if (fman_init(fman) != 0) {
2872 dev_err(dev, "%s: FMan init failed\n", __func__);
2873 return -EINVAL;
2874 }
2875
2876 if (fman->dts_params.err_irq == 0) {
2877 fman_set_exception(fman, FMAN_EX_DMA_BUS_ERROR, false);
2878 fman_set_exception(fman, FMAN_EX_DMA_READ_ECC, false);
2879 fman_set_exception(fman, FMAN_EX_DMA_SYSTEM_WRITE_ECC, false);
2880 fman_set_exception(fman, FMAN_EX_DMA_FM_WRITE_ECC, false);
2881 fman_set_exception(fman, FMAN_EX_DMA_SINGLE_PORT_ECC, false);
2882 fman_set_exception(fman, FMAN_EX_FPM_STALL_ON_TASKS, false);
2883 fman_set_exception(fman, FMAN_EX_FPM_SINGLE_ECC, false);
2884 fman_set_exception(fman, FMAN_EX_FPM_DOUBLE_ECC, false);
2885 fman_set_exception(fman, FMAN_EX_QMI_SINGLE_ECC, false);
2886 fman_set_exception(fman, FMAN_EX_QMI_DOUBLE_ECC, false);
2887 fman_set_exception(fman,
2888 FMAN_EX_QMI_DEQ_FROM_UNKNOWN_PORTID, false);
2889 fman_set_exception(fman, FMAN_EX_BMI_LIST_RAM_ECC, false);
2890 fman_set_exception(fman, FMAN_EX_BMI_STORAGE_PROFILE_ECC,
2891 false);
2892 fman_set_exception(fman, FMAN_EX_BMI_STATISTICS_RAM_ECC, false);
2893 fman_set_exception(fman, FMAN_EX_BMI_DISPATCH_RAM_ECC, false);
2894 }
2895
2896 dev_set_drvdata(dev, fman);
2897
2898 dev_dbg(dev, "FMan%d probed\n", fman->dts_params.id);
2899
2900 return 0;
2901 }
2902
2903 static const struct of_device_id fman_match[] = {
2904 {
2905 .compatible = "fsl,fman"},
2906 {}
2907 };
2908
2909 MODULE_DEVICE_TABLE(of, fman_match);
2910
2911 static struct platform_driver fman_driver = {
2912 .driver = {
2913 .name = "fsl-fman",
2914 .of_match_table = fman_match,
2915 },
2916 .probe = fman_probe,
2917 };
2918
fman_load(void)2919 static int __init fman_load(void)
2920 {
2921 int err;
2922
2923 pr_debug("FSL DPAA FMan driver\n");
2924
2925 err = platform_driver_register(&fman_driver);
2926 if (err < 0)
2927 pr_err("Error, platform_driver_register() = %d\n", err);
2928
2929 return err;
2930 }
2931 module_init(fman_load);
2932
fman_unload(void)2933 static void __exit fman_unload(void)
2934 {
2935 platform_driver_unregister(&fman_driver);
2936 }
2937 module_exit(fman_unload);
2938
2939 MODULE_LICENSE("Dual BSD/GPL");
2940 MODULE_DESCRIPTION("Freescale DPAA Frame Manager driver");
2941