1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4 #include "fm10k.h"
5 #include <linux/vmalloc.h>
6 #include <net/udp_tunnel.h>
7 #include <linux/if_macvlan.h>
8
9 /**
10 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
11 * @tx_ring: tx descriptor ring (for a specific queue) to setup
12 *
13 * Return 0 on success, negative on failure
14 **/
fm10k_setup_tx_resources(struct fm10k_ring * tx_ring)15 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
16 {
17 struct device *dev = tx_ring->dev;
18 int size;
19
20 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
21
22 tx_ring->tx_buffer = vzalloc(size);
23 if (!tx_ring->tx_buffer)
24 goto err;
25
26 u64_stats_init(&tx_ring->syncp);
27
28 /* round up to nearest 4K */
29 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
30 tx_ring->size = ALIGN(tx_ring->size, 4096);
31
32 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
33 &tx_ring->dma, GFP_KERNEL);
34 if (!tx_ring->desc)
35 goto err;
36
37 return 0;
38
39 err:
40 vfree(tx_ring->tx_buffer);
41 tx_ring->tx_buffer = NULL;
42 return -ENOMEM;
43 }
44
45 /**
46 * fm10k_setup_all_tx_resources - allocate all queues Tx resources
47 * @interface: board private structure
48 *
49 * If this function returns with an error, then it's possible one or
50 * more of the rings is populated (while the rest are not). It is the
51 * callers duty to clean those orphaned rings.
52 *
53 * Return 0 on success, negative on failure
54 **/
fm10k_setup_all_tx_resources(struct fm10k_intfc * interface)55 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
56 {
57 int i, err;
58
59 for (i = 0; i < interface->num_tx_queues; i++) {
60 err = fm10k_setup_tx_resources(interface->tx_ring[i]);
61 if (!err)
62 continue;
63
64 netif_err(interface, probe, interface->netdev,
65 "Allocation for Tx Queue %u failed\n", i);
66 goto err_setup_tx;
67 }
68
69 return 0;
70 err_setup_tx:
71 /* rewind the index freeing the rings as we go */
72 while (i--)
73 fm10k_free_tx_resources(interface->tx_ring[i]);
74 return err;
75 }
76
77 /**
78 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
79 * @rx_ring: rx descriptor ring (for a specific queue) to setup
80 *
81 * Returns 0 on success, negative on failure
82 **/
fm10k_setup_rx_resources(struct fm10k_ring * rx_ring)83 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
84 {
85 struct device *dev = rx_ring->dev;
86 int size;
87
88 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
89
90 rx_ring->rx_buffer = vzalloc(size);
91 if (!rx_ring->rx_buffer)
92 goto err;
93
94 u64_stats_init(&rx_ring->syncp);
95
96 /* Round up to nearest 4K */
97 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
98 rx_ring->size = ALIGN(rx_ring->size, 4096);
99
100 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
101 &rx_ring->dma, GFP_KERNEL);
102 if (!rx_ring->desc)
103 goto err;
104
105 return 0;
106 err:
107 vfree(rx_ring->rx_buffer);
108 rx_ring->rx_buffer = NULL;
109 return -ENOMEM;
110 }
111
112 /**
113 * fm10k_setup_all_rx_resources - allocate all queues Rx resources
114 * @interface: board private structure
115 *
116 * If this function returns with an error, then it's possible one or
117 * more of the rings is populated (while the rest are not). It is the
118 * callers duty to clean those orphaned rings.
119 *
120 * Return 0 on success, negative on failure
121 **/
fm10k_setup_all_rx_resources(struct fm10k_intfc * interface)122 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
123 {
124 int i, err;
125
126 for (i = 0; i < interface->num_rx_queues; i++) {
127 err = fm10k_setup_rx_resources(interface->rx_ring[i]);
128 if (!err)
129 continue;
130
131 netif_err(interface, probe, interface->netdev,
132 "Allocation for Rx Queue %u failed\n", i);
133 goto err_setup_rx;
134 }
135
136 return 0;
137 err_setup_rx:
138 /* rewind the index freeing the rings as we go */
139 while (i--)
140 fm10k_free_rx_resources(interface->rx_ring[i]);
141 return err;
142 }
143
fm10k_unmap_and_free_tx_resource(struct fm10k_ring * ring,struct fm10k_tx_buffer * tx_buffer)144 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
145 struct fm10k_tx_buffer *tx_buffer)
146 {
147 if (tx_buffer->skb) {
148 dev_kfree_skb_any(tx_buffer->skb);
149 if (dma_unmap_len(tx_buffer, len))
150 dma_unmap_single(ring->dev,
151 dma_unmap_addr(tx_buffer, dma),
152 dma_unmap_len(tx_buffer, len),
153 DMA_TO_DEVICE);
154 } else if (dma_unmap_len(tx_buffer, len)) {
155 dma_unmap_page(ring->dev,
156 dma_unmap_addr(tx_buffer, dma),
157 dma_unmap_len(tx_buffer, len),
158 DMA_TO_DEVICE);
159 }
160 tx_buffer->next_to_watch = NULL;
161 tx_buffer->skb = NULL;
162 dma_unmap_len_set(tx_buffer, len, 0);
163 /* tx_buffer must be completely set up in the transmit path */
164 }
165
166 /**
167 * fm10k_clean_tx_ring - Free Tx Buffers
168 * @tx_ring: ring to be cleaned
169 **/
fm10k_clean_tx_ring(struct fm10k_ring * tx_ring)170 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
171 {
172 unsigned long size;
173 u16 i;
174
175 /* ring already cleared, nothing to do */
176 if (!tx_ring->tx_buffer)
177 return;
178
179 /* Free all the Tx ring sk_buffs */
180 for (i = 0; i < tx_ring->count; i++) {
181 struct fm10k_tx_buffer *tx_buffer = &tx_ring->tx_buffer[i];
182
183 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
184 }
185
186 /* reset BQL values */
187 netdev_tx_reset_queue(txring_txq(tx_ring));
188
189 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
190 memset(tx_ring->tx_buffer, 0, size);
191
192 /* Zero out the descriptor ring */
193 memset(tx_ring->desc, 0, tx_ring->size);
194 }
195
196 /**
197 * fm10k_free_tx_resources - Free Tx Resources per Queue
198 * @tx_ring: Tx descriptor ring for a specific queue
199 *
200 * Free all transmit software resources
201 **/
fm10k_free_tx_resources(struct fm10k_ring * tx_ring)202 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
203 {
204 fm10k_clean_tx_ring(tx_ring);
205
206 vfree(tx_ring->tx_buffer);
207 tx_ring->tx_buffer = NULL;
208
209 /* if not set, then don't free */
210 if (!tx_ring->desc)
211 return;
212
213 dma_free_coherent(tx_ring->dev, tx_ring->size,
214 tx_ring->desc, tx_ring->dma);
215 tx_ring->desc = NULL;
216 }
217
218 /**
219 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
220 * @interface: board private structure
221 **/
fm10k_clean_all_tx_rings(struct fm10k_intfc * interface)222 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
223 {
224 int i;
225
226 for (i = 0; i < interface->num_tx_queues; i++)
227 fm10k_clean_tx_ring(interface->tx_ring[i]);
228 }
229
230 /**
231 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
232 * @interface: board private structure
233 *
234 * Free all transmit software resources
235 **/
fm10k_free_all_tx_resources(struct fm10k_intfc * interface)236 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
237 {
238 int i = interface->num_tx_queues;
239
240 while (i--)
241 fm10k_free_tx_resources(interface->tx_ring[i]);
242 }
243
244 /**
245 * fm10k_clean_rx_ring - Free Rx Buffers per Queue
246 * @rx_ring: ring to free buffers from
247 **/
fm10k_clean_rx_ring(struct fm10k_ring * rx_ring)248 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
249 {
250 unsigned long size;
251 u16 i;
252
253 if (!rx_ring->rx_buffer)
254 return;
255
256 dev_kfree_skb(rx_ring->skb);
257 rx_ring->skb = NULL;
258
259 /* Free all the Rx ring sk_buffs */
260 for (i = 0; i < rx_ring->count; i++) {
261 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
262 /* clean-up will only set page pointer to NULL */
263 if (!buffer->page)
264 continue;
265
266 dma_unmap_page(rx_ring->dev, buffer->dma,
267 PAGE_SIZE, DMA_FROM_DEVICE);
268 __free_page(buffer->page);
269
270 buffer->page = NULL;
271 }
272
273 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
274 memset(rx_ring->rx_buffer, 0, size);
275
276 /* Zero out the descriptor ring */
277 memset(rx_ring->desc, 0, rx_ring->size);
278
279 rx_ring->next_to_alloc = 0;
280 rx_ring->next_to_clean = 0;
281 rx_ring->next_to_use = 0;
282 }
283
284 /**
285 * fm10k_free_rx_resources - Free Rx Resources
286 * @rx_ring: ring to clean the resources from
287 *
288 * Free all receive software resources
289 **/
fm10k_free_rx_resources(struct fm10k_ring * rx_ring)290 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
291 {
292 fm10k_clean_rx_ring(rx_ring);
293
294 vfree(rx_ring->rx_buffer);
295 rx_ring->rx_buffer = NULL;
296
297 /* if not set, then don't free */
298 if (!rx_ring->desc)
299 return;
300
301 dma_free_coherent(rx_ring->dev, rx_ring->size,
302 rx_ring->desc, rx_ring->dma);
303
304 rx_ring->desc = NULL;
305 }
306
307 /**
308 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
309 * @interface: board private structure
310 **/
fm10k_clean_all_rx_rings(struct fm10k_intfc * interface)311 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
312 {
313 int i;
314
315 for (i = 0; i < interface->num_rx_queues; i++)
316 fm10k_clean_rx_ring(interface->rx_ring[i]);
317 }
318
319 /**
320 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
321 * @interface: board private structure
322 *
323 * Free all receive software resources
324 **/
fm10k_free_all_rx_resources(struct fm10k_intfc * interface)325 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
326 {
327 int i = interface->num_rx_queues;
328
329 while (i--)
330 fm10k_free_rx_resources(interface->rx_ring[i]);
331 }
332
333 /**
334 * fm10k_request_glort_range - Request GLORTs for use in configuring rules
335 * @interface: board private structure
336 *
337 * This function allocates a range of glorts for this interface to use.
338 **/
fm10k_request_glort_range(struct fm10k_intfc * interface)339 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
340 {
341 struct fm10k_hw *hw = &interface->hw;
342 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
343
344 /* establish GLORT base */
345 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
346 interface->glort_count = 0;
347
348 /* nothing we can do until mask is allocated */
349 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
350 return;
351
352 /* we support 3 possible GLORT configurations.
353 * 1: VFs consume all but the last 1
354 * 2: VFs and PF split glorts with possible gap between
355 * 3: VFs allocated first 64, all others belong to PF
356 */
357 if (mask <= hw->iov.total_vfs) {
358 interface->glort_count = 1;
359 interface->glort += mask;
360 } else if (mask < 64) {
361 interface->glort_count = (mask + 1) / 2;
362 interface->glort += interface->glort_count;
363 } else {
364 interface->glort_count = mask - 63;
365 interface->glort += 64;
366 }
367 }
368
369 /**
370 * fm10k_free_udp_port_info
371 * @interface: board private structure
372 *
373 * This function frees both geneve_port and vxlan_port structures
374 **/
fm10k_free_udp_port_info(struct fm10k_intfc * interface)375 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface)
376 {
377 struct fm10k_udp_port *port;
378
379 /* flush all entries from vxlan list */
380 port = list_first_entry_or_null(&interface->vxlan_port,
381 struct fm10k_udp_port, list);
382 while (port) {
383 list_del(&port->list);
384 kfree(port);
385 port = list_first_entry_or_null(&interface->vxlan_port,
386 struct fm10k_udp_port,
387 list);
388 }
389
390 /* flush all entries from geneve list */
391 port = list_first_entry_or_null(&interface->geneve_port,
392 struct fm10k_udp_port, list);
393 while (port) {
394 list_del(&port->list);
395 kfree(port);
396 port = list_first_entry_or_null(&interface->vxlan_port,
397 struct fm10k_udp_port,
398 list);
399 }
400 }
401
402 /**
403 * fm10k_restore_udp_port_info
404 * @interface: board private structure
405 *
406 * This function restores the value in the tunnel_cfg register(s) after reset
407 **/
fm10k_restore_udp_port_info(struct fm10k_intfc * interface)408 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
409 {
410 struct fm10k_hw *hw = &interface->hw;
411 struct fm10k_udp_port *port;
412
413 /* only the PF supports configuring tunnels */
414 if (hw->mac.type != fm10k_mac_pf)
415 return;
416
417 port = list_first_entry_or_null(&interface->vxlan_port,
418 struct fm10k_udp_port, list);
419
420 /* restore tunnel configuration register */
421 fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
422 (port ? ntohs(port->port) : 0) |
423 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
424
425 port = list_first_entry_or_null(&interface->geneve_port,
426 struct fm10k_udp_port, list);
427
428 /* restore Geneve tunnel configuration register */
429 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
430 (port ? ntohs(port->port) : 0));
431 }
432
433 static struct fm10k_udp_port *
fm10k_remove_tunnel_port(struct list_head * ports,struct udp_tunnel_info * ti)434 fm10k_remove_tunnel_port(struct list_head *ports,
435 struct udp_tunnel_info *ti)
436 {
437 struct fm10k_udp_port *port;
438
439 list_for_each_entry(port, ports, list) {
440 if ((port->port == ti->port) &&
441 (port->sa_family == ti->sa_family)) {
442 list_del(&port->list);
443 return port;
444 }
445 }
446
447 return NULL;
448 }
449
fm10k_insert_tunnel_port(struct list_head * ports,struct udp_tunnel_info * ti)450 static void fm10k_insert_tunnel_port(struct list_head *ports,
451 struct udp_tunnel_info *ti)
452 {
453 struct fm10k_udp_port *port;
454
455 /* remove existing port entry from the list so that the newest items
456 * are always at the tail of the list.
457 */
458 port = fm10k_remove_tunnel_port(ports, ti);
459 if (!port) {
460 port = kmalloc(sizeof(*port), GFP_ATOMIC);
461 if (!port)
462 return;
463 port->port = ti->port;
464 port->sa_family = ti->sa_family;
465 }
466
467 list_add_tail(&port->list, ports);
468 }
469
470 /**
471 * fm10k_udp_tunnel_add
472 * @dev: network interface device structure
473 * @ti: Tunnel endpoint information
474 *
475 * This function is called when a new UDP tunnel port has been added.
476 * Due to hardware restrictions, only one port per type can be offloaded at
477 * once.
478 **/
fm10k_udp_tunnel_add(struct net_device * dev,struct udp_tunnel_info * ti)479 static void fm10k_udp_tunnel_add(struct net_device *dev,
480 struct udp_tunnel_info *ti)
481 {
482 struct fm10k_intfc *interface = netdev_priv(dev);
483
484 /* only the PF supports configuring tunnels */
485 if (interface->hw.mac.type != fm10k_mac_pf)
486 return;
487
488 switch (ti->type) {
489 case UDP_TUNNEL_TYPE_VXLAN:
490 fm10k_insert_tunnel_port(&interface->vxlan_port, ti);
491 break;
492 case UDP_TUNNEL_TYPE_GENEVE:
493 fm10k_insert_tunnel_port(&interface->geneve_port, ti);
494 break;
495 default:
496 return;
497 }
498
499 fm10k_restore_udp_port_info(interface);
500 }
501
502 /**
503 * fm10k_udp_tunnel_del
504 * @dev: network interface device structure
505 * @ti: Tunnel end point information
506 *
507 * This function is called when a new UDP tunnel port is deleted. The freed
508 * port will be removed from the list, then we reprogram the offloaded port
509 * based on the head of the list.
510 **/
fm10k_udp_tunnel_del(struct net_device * dev,struct udp_tunnel_info * ti)511 static void fm10k_udp_tunnel_del(struct net_device *dev,
512 struct udp_tunnel_info *ti)
513 {
514 struct fm10k_intfc *interface = netdev_priv(dev);
515 struct fm10k_udp_port *port = NULL;
516
517 if (interface->hw.mac.type != fm10k_mac_pf)
518 return;
519
520 switch (ti->type) {
521 case UDP_TUNNEL_TYPE_VXLAN:
522 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti);
523 break;
524 case UDP_TUNNEL_TYPE_GENEVE:
525 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti);
526 break;
527 default:
528 return;
529 }
530
531 /* if we did remove a port we need to free its memory */
532 kfree(port);
533
534 fm10k_restore_udp_port_info(interface);
535 }
536
537 /**
538 * fm10k_open - Called when a network interface is made active
539 * @netdev: network interface device structure
540 *
541 * Returns 0 on success, negative value on failure
542 *
543 * The open entry point is called when a network interface is made
544 * active by the system (IFF_UP). At this point all resources needed
545 * for transmit and receive operations are allocated, the interrupt
546 * handler is registered with the OS, the watchdog timer is started,
547 * and the stack is notified that the interface is ready.
548 **/
fm10k_open(struct net_device * netdev)549 int fm10k_open(struct net_device *netdev)
550 {
551 struct fm10k_intfc *interface = netdev_priv(netdev);
552 int err;
553
554 /* allocate transmit descriptors */
555 err = fm10k_setup_all_tx_resources(interface);
556 if (err)
557 goto err_setup_tx;
558
559 /* allocate receive descriptors */
560 err = fm10k_setup_all_rx_resources(interface);
561 if (err)
562 goto err_setup_rx;
563
564 /* allocate interrupt resources */
565 err = fm10k_qv_request_irq(interface);
566 if (err)
567 goto err_req_irq;
568
569 /* setup GLORT assignment for this port */
570 fm10k_request_glort_range(interface);
571
572 /* Notify the stack of the actual queue counts */
573 err = netif_set_real_num_tx_queues(netdev,
574 interface->num_tx_queues);
575 if (err)
576 goto err_set_queues;
577
578 err = netif_set_real_num_rx_queues(netdev,
579 interface->num_rx_queues);
580 if (err)
581 goto err_set_queues;
582
583 udp_tunnel_get_rx_info(netdev);
584
585 fm10k_up(interface);
586
587 return 0;
588
589 err_set_queues:
590 fm10k_qv_free_irq(interface);
591 err_req_irq:
592 fm10k_free_all_rx_resources(interface);
593 err_setup_rx:
594 fm10k_free_all_tx_resources(interface);
595 err_setup_tx:
596 return err;
597 }
598
599 /**
600 * fm10k_close - Disables a network interface
601 * @netdev: network interface device structure
602 *
603 * Returns 0, this is not allowed to fail
604 *
605 * The close entry point is called when an interface is de-activated
606 * by the OS. The hardware is still under the drivers control, but
607 * needs to be disabled. A global MAC reset is issued to stop the
608 * hardware, and all transmit and receive resources are freed.
609 **/
fm10k_close(struct net_device * netdev)610 int fm10k_close(struct net_device *netdev)
611 {
612 struct fm10k_intfc *interface = netdev_priv(netdev);
613
614 fm10k_down(interface);
615
616 fm10k_qv_free_irq(interface);
617
618 fm10k_free_udp_port_info(interface);
619
620 fm10k_free_all_tx_resources(interface);
621 fm10k_free_all_rx_resources(interface);
622
623 return 0;
624 }
625
fm10k_xmit_frame(struct sk_buff * skb,struct net_device * dev)626 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
627 {
628 struct fm10k_intfc *interface = netdev_priv(dev);
629 int num_tx_queues = READ_ONCE(interface->num_tx_queues);
630 unsigned int r_idx = skb->queue_mapping;
631 int err;
632
633 if (!num_tx_queues)
634 return NETDEV_TX_BUSY;
635
636 if ((skb->protocol == htons(ETH_P_8021Q)) &&
637 !skb_vlan_tag_present(skb)) {
638 /* FM10K only supports hardware tagging, any tags in frame
639 * are considered 2nd level or "outer" tags
640 */
641 struct vlan_hdr *vhdr;
642 __be16 proto;
643
644 /* make sure skb is not shared */
645 skb = skb_share_check(skb, GFP_ATOMIC);
646 if (!skb)
647 return NETDEV_TX_OK;
648
649 /* make sure there is enough room to move the ethernet header */
650 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
651 return NETDEV_TX_OK;
652
653 /* verify the skb head is not shared */
654 err = skb_cow_head(skb, 0);
655 if (err) {
656 dev_kfree_skb(skb);
657 return NETDEV_TX_OK;
658 }
659
660 /* locate VLAN header */
661 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
662
663 /* pull the 2 key pieces of data out of it */
664 __vlan_hwaccel_put_tag(skb,
665 htons(ETH_P_8021Q),
666 ntohs(vhdr->h_vlan_TCI));
667 proto = vhdr->h_vlan_encapsulated_proto;
668 skb->protocol = (ntohs(proto) >= 1536) ? proto :
669 htons(ETH_P_802_2);
670
671 /* squash it by moving the ethernet addresses up 4 bytes */
672 memmove(skb->data + VLAN_HLEN, skb->data, 12);
673 __skb_pull(skb, VLAN_HLEN);
674 skb_reset_mac_header(skb);
675 }
676
677 /* The minimum packet size for a single buffer is 17B so pad the skb
678 * in order to meet this minimum size requirement.
679 */
680 if (unlikely(skb->len < 17)) {
681 int pad_len = 17 - skb->len;
682
683 if (skb_pad(skb, pad_len))
684 return NETDEV_TX_OK;
685 __skb_put(skb, pad_len);
686 }
687
688 if (r_idx >= num_tx_queues)
689 r_idx %= num_tx_queues;
690
691 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
692
693 return err;
694 }
695
696 /**
697 * fm10k_tx_timeout - Respond to a Tx Hang
698 * @netdev: network interface device structure
699 **/
fm10k_tx_timeout(struct net_device * netdev)700 static void fm10k_tx_timeout(struct net_device *netdev)
701 {
702 struct fm10k_intfc *interface = netdev_priv(netdev);
703 bool real_tx_hang = false;
704 int i;
705
706 #define TX_TIMEO_LIMIT 16000
707 for (i = 0; i < interface->num_tx_queues; i++) {
708 struct fm10k_ring *tx_ring = interface->tx_ring[i];
709
710 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
711 real_tx_hang = true;
712 }
713
714 if (real_tx_hang) {
715 fm10k_tx_timeout_reset(interface);
716 } else {
717 netif_info(interface, drv, netdev,
718 "Fake Tx hang detected with timeout of %d seconds\n",
719 netdev->watchdog_timeo / HZ);
720
721 /* fake Tx hang - increase the kernel timeout */
722 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
723 netdev->watchdog_timeo *= 2;
724 }
725 }
726
727 /**
728 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness
729 * @interface: board private structure
730 *
731 * This function checks if the PF interface's mailbox is ready before queueing
732 * mailbox messages for transmission. This will prevent filling the TX mailbox
733 * queue when the receiver is not ready. VF interfaces are exempt from this
734 * check since it will block all PF-VF mailbox messages from being sent from
735 * the VF to the PF at initialization.
736 **/
fm10k_host_mbx_ready(struct fm10k_intfc * interface)737 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
738 {
739 struct fm10k_hw *hw = &interface->hw;
740
741 return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
742 }
743
744 /**
745 * fm10k_queue_vlan_request - Queue a VLAN update request
746 * @interface: the fm10k interface structure
747 * @vid: the VLAN vid
748 * @vsi: VSI index number
749 * @set: whether to set or clear
750 *
751 * This function queues up a VLAN update. For VFs, this must be sent to the
752 * managing PF over the mailbox. For PFs, we'll use the same handling so that
753 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too
754 * many VLAN updates during reset.
755 */
fm10k_queue_vlan_request(struct fm10k_intfc * interface,u32 vid,u8 vsi,bool set)756 int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
757 u32 vid, u8 vsi, bool set)
758 {
759 struct fm10k_macvlan_request *request;
760 unsigned long flags;
761
762 /* This must be atomic since we may be called while the netdev
763 * addr_list_lock is held
764 */
765 request = kzalloc(sizeof(*request), GFP_ATOMIC);
766 if (!request)
767 return -ENOMEM;
768
769 request->type = FM10K_VLAN_REQUEST;
770 request->vlan.vid = vid;
771 request->vlan.vsi = vsi;
772 request->set = set;
773
774 spin_lock_irqsave(&interface->macvlan_lock, flags);
775 list_add_tail(&request->list, &interface->macvlan_requests);
776 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
777
778 fm10k_macvlan_schedule(interface);
779
780 return 0;
781 }
782
783 /**
784 * fm10k_queue_mac_request - Queue a MAC update request
785 * @interface: the fm10k interface structure
786 * @glort: the target glort for this update
787 * @addr: the address to update
788 * @vid: the vid to update
789 * @set: whether to add or remove
790 *
791 * This function queues up a MAC request for sending to the switch manager.
792 * A separate thread monitors the queue and sends updates to the switch
793 * manager. Return 0 on success, and negative error code on failure.
794 **/
fm10k_queue_mac_request(struct fm10k_intfc * interface,u16 glort,const unsigned char * addr,u16 vid,bool set)795 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
796 const unsigned char *addr, u16 vid, bool set)
797 {
798 struct fm10k_macvlan_request *request;
799 unsigned long flags;
800
801 /* This must be atomic since we may be called while the netdev
802 * addr_list_lock is held
803 */
804 request = kzalloc(sizeof(*request), GFP_ATOMIC);
805 if (!request)
806 return -ENOMEM;
807
808 if (is_multicast_ether_addr(addr))
809 request->type = FM10K_MC_MAC_REQUEST;
810 else
811 request->type = FM10K_UC_MAC_REQUEST;
812
813 ether_addr_copy(request->mac.addr, addr);
814 request->mac.glort = glort;
815 request->mac.vid = vid;
816 request->set = set;
817
818 spin_lock_irqsave(&interface->macvlan_lock, flags);
819 list_add_tail(&request->list, &interface->macvlan_requests);
820 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
821
822 fm10k_macvlan_schedule(interface);
823
824 return 0;
825 }
826
827 /**
828 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
829 * @interface: the fm10k interface structure
830 * @glort: the target glort to clear
831 * @vlans: true to clear VLAN messages, false to ignore them
832 *
833 * Cancel any outstanding MAC/VLAN requests for a given glort. This is
834 * expected to be called when a logical port goes down.
835 **/
fm10k_clear_macvlan_queue(struct fm10k_intfc * interface,u16 glort,bool vlans)836 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
837 u16 glort, bool vlans)
838
839 {
840 struct fm10k_macvlan_request *r, *tmp;
841 unsigned long flags;
842
843 spin_lock_irqsave(&interface->macvlan_lock, flags);
844
845 /* Free any outstanding MAC/VLAN requests for this interface */
846 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
847 switch (r->type) {
848 case FM10K_MC_MAC_REQUEST:
849 case FM10K_UC_MAC_REQUEST:
850 /* Don't free requests for other interfaces */
851 if (r->mac.glort != glort)
852 break;
853 /* fall through */
854 case FM10K_VLAN_REQUEST:
855 if (vlans) {
856 list_del(&r->list);
857 kfree(r);
858 }
859 break;
860 }
861 }
862
863 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
864 }
865
fm10k_uc_vlan_unsync(struct net_device * netdev,const unsigned char * uc_addr)866 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
867 const unsigned char *uc_addr)
868 {
869 struct fm10k_intfc *interface = netdev_priv(netdev);
870 u16 glort = interface->glort;
871 u16 vid = interface->vid;
872 bool set = !!(vid / VLAN_N_VID);
873 int err;
874
875 /* drop any leading bits on the VLAN ID */
876 vid &= VLAN_N_VID - 1;
877
878 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
879 if (err)
880 return err;
881
882 /* return non-zero value as we are only doing a partial sync/unsync */
883 return 1;
884 }
885
fm10k_mc_vlan_unsync(struct net_device * netdev,const unsigned char * mc_addr)886 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
887 const unsigned char *mc_addr)
888 {
889 struct fm10k_intfc *interface = netdev_priv(netdev);
890 u16 glort = interface->glort;
891 u16 vid = interface->vid;
892 bool set = !!(vid / VLAN_N_VID);
893 int err;
894
895 /* drop any leading bits on the VLAN ID */
896 vid &= VLAN_N_VID - 1;
897
898 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
899 if (err)
900 return err;
901
902 /* return non-zero value as we are only doing a partial sync/unsync */
903 return 1;
904 }
905
fm10k_update_vid(struct net_device * netdev,u16 vid,bool set)906 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
907 {
908 struct fm10k_intfc *interface = netdev_priv(netdev);
909 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
910 struct fm10k_hw *hw = &interface->hw;
911 u16 glort;
912 s32 err;
913 int i;
914
915 /* updates do not apply to VLAN 0 */
916 if (!vid)
917 return 0;
918
919 if (vid >= VLAN_N_VID)
920 return -EINVAL;
921
922 /* Verify that we have permission to add VLANs. If this is a request
923 * to remove a VLAN, we still want to allow the user to remove the
924 * VLAN device. In that case, we need to clear the bit in the
925 * active_vlans bitmask.
926 */
927 if (set && hw->mac.vlan_override)
928 return -EACCES;
929
930 /* update active_vlans bitmask */
931 set_bit(vid, interface->active_vlans);
932 if (!set)
933 clear_bit(vid, interface->active_vlans);
934
935 /* disable the default VLAN ID on ring if we have an active VLAN */
936 for (i = 0; i < interface->num_rx_queues; i++) {
937 struct fm10k_ring *rx_ring = interface->rx_ring[i];
938 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
939
940 if (test_bit(rx_vid, interface->active_vlans))
941 rx_ring->vid |= FM10K_VLAN_CLEAR;
942 else
943 rx_ring->vid &= ~FM10K_VLAN_CLEAR;
944 }
945
946 /* If our VLAN has been overridden, there is no reason to send VLAN
947 * removal requests as they will be silently ignored.
948 */
949 if (hw->mac.vlan_override)
950 return 0;
951
952 /* Do not remove default VLAN ID related entries from VLAN and MAC
953 * tables
954 */
955 if (!set && vid == hw->mac.default_vid)
956 return 0;
957
958 /* Do not throw an error if the interface is down. We will sync once
959 * we come up
960 */
961 if (test_bit(__FM10K_DOWN, interface->state))
962 return 0;
963
964 fm10k_mbx_lock(interface);
965
966 /* only need to update the VLAN if not in promiscuous mode */
967 if (!(netdev->flags & IFF_PROMISC)) {
968 err = fm10k_queue_vlan_request(interface, vid, 0, set);
969 if (err)
970 goto err_out;
971 }
972
973 /* Update our base MAC address */
974 err = fm10k_queue_mac_request(interface, interface->glort,
975 hw->mac.addr, vid, set);
976 if (err)
977 goto err_out;
978
979 /* Update L2 accelerated macvlan addresses */
980 if (l2_accel) {
981 for (i = 0; i < l2_accel->size; i++) {
982 struct net_device *sdev = l2_accel->macvlan[i];
983
984 if (!sdev)
985 continue;
986
987 glort = l2_accel->dglort + 1 + i;
988
989 fm10k_queue_mac_request(interface, glort,
990 sdev->dev_addr,
991 vid, set);
992 }
993 }
994
995 /* set VLAN ID prior to syncing/unsyncing the VLAN */
996 interface->vid = vid + (set ? VLAN_N_VID : 0);
997
998 /* Update the unicast and multicast address list to add/drop VLAN */
999 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
1000 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
1001
1002 err_out:
1003 fm10k_mbx_unlock(interface);
1004
1005 return err;
1006 }
1007
fm10k_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)1008 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
1009 __always_unused __be16 proto, u16 vid)
1010 {
1011 /* update VLAN and address table based on changes */
1012 return fm10k_update_vid(netdev, vid, true);
1013 }
1014
fm10k_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)1015 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
1016 __always_unused __be16 proto, u16 vid)
1017 {
1018 /* update VLAN and address table based on changes */
1019 return fm10k_update_vid(netdev, vid, false);
1020 }
1021
fm10k_find_next_vlan(struct fm10k_intfc * interface,u16 vid)1022 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
1023 {
1024 struct fm10k_hw *hw = &interface->hw;
1025 u16 default_vid = hw->mac.default_vid;
1026 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
1027
1028 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
1029
1030 return vid;
1031 }
1032
fm10k_clear_unused_vlans(struct fm10k_intfc * interface)1033 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
1034 {
1035 u32 vid, prev_vid;
1036
1037 /* loop through and find any gaps in the table */
1038 for (vid = 0, prev_vid = 0;
1039 prev_vid < VLAN_N_VID;
1040 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
1041 if (prev_vid == vid)
1042 continue;
1043
1044 /* send request to clear multiple bits at a time */
1045 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
1046 fm10k_queue_vlan_request(interface, prev_vid, 0, false);
1047 }
1048 }
1049
__fm10k_uc_sync(struct net_device * dev,const unsigned char * addr,bool sync)1050 static int __fm10k_uc_sync(struct net_device *dev,
1051 const unsigned char *addr, bool sync)
1052 {
1053 struct fm10k_intfc *interface = netdev_priv(dev);
1054 u16 vid, glort = interface->glort;
1055 s32 err;
1056
1057 if (!is_valid_ether_addr(addr))
1058 return -EADDRNOTAVAIL;
1059
1060 for (vid = fm10k_find_next_vlan(interface, 0);
1061 vid < VLAN_N_VID;
1062 vid = fm10k_find_next_vlan(interface, vid)) {
1063 err = fm10k_queue_mac_request(interface, glort,
1064 addr, vid, sync);
1065 if (err)
1066 return err;
1067 }
1068
1069 return 0;
1070 }
1071
fm10k_uc_sync(struct net_device * dev,const unsigned char * addr)1072 static int fm10k_uc_sync(struct net_device *dev,
1073 const unsigned char *addr)
1074 {
1075 return __fm10k_uc_sync(dev, addr, true);
1076 }
1077
fm10k_uc_unsync(struct net_device * dev,const unsigned char * addr)1078 static int fm10k_uc_unsync(struct net_device *dev,
1079 const unsigned char *addr)
1080 {
1081 return __fm10k_uc_sync(dev, addr, false);
1082 }
1083
fm10k_set_mac(struct net_device * dev,void * p)1084 static int fm10k_set_mac(struct net_device *dev, void *p)
1085 {
1086 struct fm10k_intfc *interface = netdev_priv(dev);
1087 struct fm10k_hw *hw = &interface->hw;
1088 struct sockaddr *addr = p;
1089 s32 err = 0;
1090
1091 if (!is_valid_ether_addr(addr->sa_data))
1092 return -EADDRNOTAVAIL;
1093
1094 if (dev->flags & IFF_UP) {
1095 /* setting MAC address requires mailbox */
1096 fm10k_mbx_lock(interface);
1097
1098 err = fm10k_uc_sync(dev, addr->sa_data);
1099 if (!err)
1100 fm10k_uc_unsync(dev, hw->mac.addr);
1101
1102 fm10k_mbx_unlock(interface);
1103 }
1104
1105 if (!err) {
1106 ether_addr_copy(dev->dev_addr, addr->sa_data);
1107 ether_addr_copy(hw->mac.addr, addr->sa_data);
1108 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
1109 }
1110
1111 /* if we had a mailbox error suggest trying again */
1112 return err ? -EAGAIN : 0;
1113 }
1114
__fm10k_mc_sync(struct net_device * dev,const unsigned char * addr,bool sync)1115 static int __fm10k_mc_sync(struct net_device *dev,
1116 const unsigned char *addr, bool sync)
1117 {
1118 struct fm10k_intfc *interface = netdev_priv(dev);
1119 u16 vid, glort = interface->glort;
1120 s32 err;
1121
1122 if (!is_multicast_ether_addr(addr))
1123 return -EADDRNOTAVAIL;
1124
1125 for (vid = fm10k_find_next_vlan(interface, 0);
1126 vid < VLAN_N_VID;
1127 vid = fm10k_find_next_vlan(interface, vid)) {
1128 err = fm10k_queue_mac_request(interface, glort,
1129 addr, vid, sync);
1130 if (err)
1131 return err;
1132 }
1133
1134 return 0;
1135 }
1136
fm10k_mc_sync(struct net_device * dev,const unsigned char * addr)1137 static int fm10k_mc_sync(struct net_device *dev,
1138 const unsigned char *addr)
1139 {
1140 return __fm10k_mc_sync(dev, addr, true);
1141 }
1142
fm10k_mc_unsync(struct net_device * dev,const unsigned char * addr)1143 static int fm10k_mc_unsync(struct net_device *dev,
1144 const unsigned char *addr)
1145 {
1146 return __fm10k_mc_sync(dev, addr, false);
1147 }
1148
fm10k_set_rx_mode(struct net_device * dev)1149 static void fm10k_set_rx_mode(struct net_device *dev)
1150 {
1151 struct fm10k_intfc *interface = netdev_priv(dev);
1152 struct fm10k_hw *hw = &interface->hw;
1153 int xcast_mode;
1154
1155 /* no need to update the harwdare if we are not running */
1156 if (!(dev->flags & IFF_UP))
1157 return;
1158
1159 /* determine new mode based on flags */
1160 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
1161 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
1162 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1163 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
1164
1165 fm10k_mbx_lock(interface);
1166
1167 /* update xcast mode first, but only if it changed */
1168 if (interface->xcast_mode != xcast_mode) {
1169 /* update VLAN table when entering promiscuous mode */
1170 if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
1171 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
1172 0, true);
1173
1174 /* clear VLAN table when exiting promiscuous mode */
1175 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
1176 fm10k_clear_unused_vlans(interface);
1177
1178 /* update xcast mode if host's mailbox is ready */
1179 if (fm10k_host_mbx_ready(interface))
1180 hw->mac.ops.update_xcast_mode(hw, interface->glort,
1181 xcast_mode);
1182
1183 /* record updated xcast mode state */
1184 interface->xcast_mode = xcast_mode;
1185 }
1186
1187 /* synchronize all of the addresses */
1188 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
1189 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1190
1191 fm10k_mbx_unlock(interface);
1192 }
1193
fm10k_restore_rx_state(struct fm10k_intfc * interface)1194 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1195 {
1196 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1197 struct net_device *netdev = interface->netdev;
1198 struct fm10k_hw *hw = &interface->hw;
1199 int xcast_mode, i;
1200 u16 vid, glort;
1201
1202 /* record glort for this interface */
1203 glort = interface->glort;
1204
1205 /* convert interface flags to xcast mode */
1206 if (netdev->flags & IFF_PROMISC)
1207 xcast_mode = FM10K_XCAST_MODE_PROMISC;
1208 else if (netdev->flags & IFF_ALLMULTI)
1209 xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1210 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1211 xcast_mode = FM10K_XCAST_MODE_MULTI;
1212 else
1213 xcast_mode = FM10K_XCAST_MODE_NONE;
1214
1215 fm10k_mbx_lock(interface);
1216
1217 /* Enable logical port if host's mailbox is ready */
1218 if (fm10k_host_mbx_ready(interface))
1219 hw->mac.ops.update_lport_state(hw, glort,
1220 interface->glort_count, true);
1221
1222 /* update VLAN table */
1223 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
1224 xcast_mode == FM10K_XCAST_MODE_PROMISC);
1225
1226 /* update table with current entries */
1227 for (vid = fm10k_find_next_vlan(interface, 0);
1228 vid < VLAN_N_VID;
1229 vid = fm10k_find_next_vlan(interface, vid)) {
1230 fm10k_queue_vlan_request(interface, vid, 0, true);
1231
1232 fm10k_queue_mac_request(interface, glort,
1233 hw->mac.addr, vid, true);
1234
1235 /* synchronize macvlan addresses */
1236 if (l2_accel) {
1237 for (i = 0; i < l2_accel->size; i++) {
1238 struct net_device *sdev = l2_accel->macvlan[i];
1239
1240 if (!sdev)
1241 continue;
1242
1243 glort = l2_accel->dglort + 1 + i;
1244
1245 fm10k_queue_mac_request(interface, glort,
1246 sdev->dev_addr,
1247 vid, true);
1248 }
1249 }
1250 }
1251
1252 /* update xcast mode before synchronizing addresses if host's mailbox
1253 * is ready
1254 */
1255 if (fm10k_host_mbx_ready(interface))
1256 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1257
1258 /* synchronize all of the addresses */
1259 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1260 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1261
1262 /* synchronize macvlan addresses */
1263 if (l2_accel) {
1264 for (i = 0; i < l2_accel->size; i++) {
1265 struct net_device *sdev = l2_accel->macvlan[i];
1266
1267 if (!sdev)
1268 continue;
1269
1270 glort = l2_accel->dglort + 1 + i;
1271
1272 hw->mac.ops.update_xcast_mode(hw, glort,
1273 FM10K_XCAST_MODE_NONE);
1274 fm10k_queue_mac_request(interface, glort,
1275 sdev->dev_addr,
1276 hw->mac.default_vid, true);
1277 }
1278 }
1279
1280 fm10k_mbx_unlock(interface);
1281
1282 /* record updated xcast mode state */
1283 interface->xcast_mode = xcast_mode;
1284
1285 /* Restore tunnel configuration */
1286 fm10k_restore_udp_port_info(interface);
1287 }
1288
fm10k_reset_rx_state(struct fm10k_intfc * interface)1289 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1290 {
1291 struct net_device *netdev = interface->netdev;
1292 struct fm10k_hw *hw = &interface->hw;
1293
1294 /* Wait for MAC/VLAN work to finish */
1295 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
1296 usleep_range(1000, 2000);
1297
1298 /* Cancel pending MAC/VLAN requests */
1299 fm10k_clear_macvlan_queue(interface, interface->glort, true);
1300
1301 fm10k_mbx_lock(interface);
1302
1303 /* clear the logical port state on lower device if host's mailbox is
1304 * ready
1305 */
1306 if (fm10k_host_mbx_ready(interface))
1307 hw->mac.ops.update_lport_state(hw, interface->glort,
1308 interface->glort_count, false);
1309
1310 fm10k_mbx_unlock(interface);
1311
1312 /* reset flags to default state */
1313 interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1314
1315 /* clear the sync flag since the lport has been dropped */
1316 __dev_uc_unsync(netdev, NULL);
1317 __dev_mc_unsync(netdev, NULL);
1318 }
1319
1320 /**
1321 * fm10k_get_stats64 - Get System Network Statistics
1322 * @netdev: network interface device structure
1323 * @stats: storage space for 64bit statistics
1324 *
1325 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
1326 * architectures.
1327 */
fm10k_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1328 static void fm10k_get_stats64(struct net_device *netdev,
1329 struct rtnl_link_stats64 *stats)
1330 {
1331 struct fm10k_intfc *interface = netdev_priv(netdev);
1332 struct fm10k_ring *ring;
1333 unsigned int start, i;
1334 u64 bytes, packets;
1335
1336 rcu_read_lock();
1337
1338 for (i = 0; i < interface->num_rx_queues; i++) {
1339 ring = READ_ONCE(interface->rx_ring[i]);
1340
1341 if (!ring)
1342 continue;
1343
1344 do {
1345 start = u64_stats_fetch_begin_irq(&ring->syncp);
1346 packets = ring->stats.packets;
1347 bytes = ring->stats.bytes;
1348 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1349
1350 stats->rx_packets += packets;
1351 stats->rx_bytes += bytes;
1352 }
1353
1354 for (i = 0; i < interface->num_tx_queues; i++) {
1355 ring = READ_ONCE(interface->tx_ring[i]);
1356
1357 if (!ring)
1358 continue;
1359
1360 do {
1361 start = u64_stats_fetch_begin_irq(&ring->syncp);
1362 packets = ring->stats.packets;
1363 bytes = ring->stats.bytes;
1364 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1365
1366 stats->tx_packets += packets;
1367 stats->tx_bytes += bytes;
1368 }
1369
1370 rcu_read_unlock();
1371
1372 /* following stats updated by fm10k_service_task() */
1373 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1374 }
1375
fm10k_setup_tc(struct net_device * dev,u8 tc)1376 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1377 {
1378 struct fm10k_intfc *interface = netdev_priv(dev);
1379 int err;
1380
1381 /* Currently only the PF supports priority classes */
1382 if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1383 return -EINVAL;
1384
1385 /* Hardware supports up to 8 traffic classes */
1386 if (tc > 8)
1387 return -EINVAL;
1388
1389 /* Hardware has to reinitialize queues to match packet
1390 * buffer alignment. Unfortunately, the hardware is not
1391 * flexible enough to do this dynamically.
1392 */
1393 if (netif_running(dev))
1394 fm10k_close(dev);
1395
1396 fm10k_mbx_free_irq(interface);
1397
1398 fm10k_clear_queueing_scheme(interface);
1399
1400 /* we expect the prio_tc map to be repopulated later */
1401 netdev_reset_tc(dev);
1402 netdev_set_num_tc(dev, tc);
1403
1404 err = fm10k_init_queueing_scheme(interface);
1405 if (err)
1406 goto err_queueing_scheme;
1407
1408 err = fm10k_mbx_request_irq(interface);
1409 if (err)
1410 goto err_mbx_irq;
1411
1412 err = netif_running(dev) ? fm10k_open(dev) : 0;
1413 if (err)
1414 goto err_open;
1415
1416 /* flag to indicate SWPRI has yet to be updated */
1417 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
1418
1419 return 0;
1420 err_open:
1421 fm10k_mbx_free_irq(interface);
1422 err_mbx_irq:
1423 fm10k_clear_queueing_scheme(interface);
1424 err_queueing_scheme:
1425 netif_device_detach(dev);
1426
1427 return err;
1428 }
1429
__fm10k_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)1430 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
1431 void *type_data)
1432 {
1433 struct tc_mqprio_qopt *mqprio = type_data;
1434
1435 if (type != TC_SETUP_QDISC_MQPRIO)
1436 return -EOPNOTSUPP;
1437
1438 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1439
1440 return fm10k_setup_tc(dev, mqprio->num_tc);
1441 }
1442
fm10k_assign_l2_accel(struct fm10k_intfc * interface,struct fm10k_l2_accel * l2_accel)1443 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1444 struct fm10k_l2_accel *l2_accel)
1445 {
1446 int i;
1447
1448 for (i = 0; i < interface->num_rx_queues; i++) {
1449 struct fm10k_ring *ring = interface->rx_ring[i];
1450
1451 rcu_assign_pointer(ring->l2_accel, l2_accel);
1452 }
1453
1454 interface->l2_accel = l2_accel;
1455 }
1456
fm10k_dfwd_add_station(struct net_device * dev,struct net_device * sdev)1457 static void *fm10k_dfwd_add_station(struct net_device *dev,
1458 struct net_device *sdev)
1459 {
1460 struct fm10k_intfc *interface = netdev_priv(dev);
1461 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1462 struct fm10k_l2_accel *old_l2_accel = NULL;
1463 struct fm10k_dglort_cfg dglort = { 0 };
1464 struct fm10k_hw *hw = &interface->hw;
1465 int size, i;
1466 u16 vid, glort;
1467
1468 /* The hardware supported by fm10k only filters on the destination MAC
1469 * address. In order to avoid issues we only support offloading modes
1470 * where the hardware can actually provide the functionality.
1471 */
1472 if (!macvlan_supports_dest_filter(sdev))
1473 return ERR_PTR(-EMEDIUMTYPE);
1474
1475 /* allocate l2 accel structure if it is not available */
1476 if (!l2_accel) {
1477 /* verify there is enough free GLORTs to support l2_accel */
1478 if (interface->glort_count < 7)
1479 return ERR_PTR(-EBUSY);
1480
1481 size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1482 l2_accel = kzalloc(size, GFP_KERNEL);
1483 if (!l2_accel)
1484 return ERR_PTR(-ENOMEM);
1485
1486 l2_accel->size = 7;
1487 l2_accel->dglort = interface->glort;
1488
1489 /* update pointers */
1490 fm10k_assign_l2_accel(interface, l2_accel);
1491 /* do not expand if we are at our limit */
1492 } else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1493 (l2_accel->count == (interface->glort_count - 1))) {
1494 return ERR_PTR(-EBUSY);
1495 /* expand if we have hit the size limit */
1496 } else if (l2_accel->count == l2_accel->size) {
1497 old_l2_accel = l2_accel;
1498 size = offsetof(struct fm10k_l2_accel,
1499 macvlan[(l2_accel->size * 2) + 1]);
1500 l2_accel = kzalloc(size, GFP_KERNEL);
1501 if (!l2_accel)
1502 return ERR_PTR(-ENOMEM);
1503
1504 memcpy(l2_accel, old_l2_accel,
1505 offsetof(struct fm10k_l2_accel,
1506 macvlan[old_l2_accel->size]));
1507
1508 l2_accel->size = (old_l2_accel->size * 2) + 1;
1509
1510 /* update pointers */
1511 fm10k_assign_l2_accel(interface, l2_accel);
1512 kfree_rcu(old_l2_accel, rcu);
1513 }
1514
1515 /* add macvlan to accel table, and record GLORT for position */
1516 for (i = 0; i < l2_accel->size; i++) {
1517 if (!l2_accel->macvlan[i])
1518 break;
1519 }
1520
1521 /* record station */
1522 l2_accel->macvlan[i] = sdev;
1523 l2_accel->count++;
1524
1525 /* configure default DGLORT mapping for RSS/DCB */
1526 dglort.idx = fm10k_dglort_pf_rss;
1527 dglort.inner_rss = 1;
1528 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1529 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1530 dglort.glort = interface->glort;
1531 dglort.shared_l = fls(l2_accel->size);
1532 hw->mac.ops.configure_dglort_map(hw, &dglort);
1533
1534 /* Add rules for this specific dglort to the switch */
1535 fm10k_mbx_lock(interface);
1536
1537 glort = l2_accel->dglort + 1 + i;
1538
1539 if (fm10k_host_mbx_ready(interface))
1540 hw->mac.ops.update_xcast_mode(hw, glort,
1541 FM10K_XCAST_MODE_NONE);
1542
1543 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1544 hw->mac.default_vid, true);
1545
1546 for (vid = fm10k_find_next_vlan(interface, 0);
1547 vid < VLAN_N_VID;
1548 vid = fm10k_find_next_vlan(interface, vid))
1549 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1550 vid, true);
1551
1552 fm10k_mbx_unlock(interface);
1553
1554 return sdev;
1555 }
1556
fm10k_dfwd_del_station(struct net_device * dev,void * priv)1557 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1558 {
1559 struct fm10k_intfc *interface = netdev_priv(dev);
1560 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
1561 struct fm10k_dglort_cfg dglort = { 0 };
1562 struct fm10k_hw *hw = &interface->hw;
1563 struct net_device *sdev = priv;
1564 u16 vid, glort;
1565 int i;
1566
1567 if (!l2_accel)
1568 return;
1569
1570 /* search table for matching interface */
1571 for (i = 0; i < l2_accel->size; i++) {
1572 if (l2_accel->macvlan[i] == sdev)
1573 break;
1574 }
1575
1576 /* exit if macvlan not found */
1577 if (i == l2_accel->size)
1578 return;
1579
1580 /* Remove any rules specific to this dglort */
1581 fm10k_mbx_lock(interface);
1582
1583 glort = l2_accel->dglort + 1 + i;
1584
1585 if (fm10k_host_mbx_ready(interface))
1586 hw->mac.ops.update_xcast_mode(hw, glort,
1587 FM10K_XCAST_MODE_NONE);
1588
1589 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1590 hw->mac.default_vid, false);
1591
1592 for (vid = fm10k_find_next_vlan(interface, 0);
1593 vid < VLAN_N_VID;
1594 vid = fm10k_find_next_vlan(interface, vid))
1595 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1596 vid, false);
1597
1598 fm10k_mbx_unlock(interface);
1599
1600 /* record removal */
1601 l2_accel->macvlan[i] = NULL;
1602 l2_accel->count--;
1603
1604 /* configure default DGLORT mapping for RSS/DCB */
1605 dglort.idx = fm10k_dglort_pf_rss;
1606 dglort.inner_rss = 1;
1607 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1608 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1609 dglort.glort = interface->glort;
1610 dglort.shared_l = fls(l2_accel->size);
1611 hw->mac.ops.configure_dglort_map(hw, &dglort);
1612
1613 /* If table is empty remove it */
1614 if (l2_accel->count == 0) {
1615 fm10k_assign_l2_accel(interface, NULL);
1616 kfree_rcu(l2_accel, rcu);
1617 }
1618 }
1619
fm10k_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1620 static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1621 struct net_device *dev,
1622 netdev_features_t features)
1623 {
1624 if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1625 return features;
1626
1627 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1628 }
1629
1630 static const struct net_device_ops fm10k_netdev_ops = {
1631 .ndo_open = fm10k_open,
1632 .ndo_stop = fm10k_close,
1633 .ndo_validate_addr = eth_validate_addr,
1634 .ndo_start_xmit = fm10k_xmit_frame,
1635 .ndo_set_mac_address = fm10k_set_mac,
1636 .ndo_tx_timeout = fm10k_tx_timeout,
1637 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid,
1638 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid,
1639 .ndo_set_rx_mode = fm10k_set_rx_mode,
1640 .ndo_get_stats64 = fm10k_get_stats64,
1641 .ndo_setup_tc = __fm10k_setup_tc,
1642 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac,
1643 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan,
1644 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw,
1645 .ndo_get_vf_config = fm10k_ndo_get_vf_config,
1646 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add,
1647 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del,
1648 .ndo_dfwd_add_station = fm10k_dfwd_add_station,
1649 .ndo_dfwd_del_station = fm10k_dfwd_del_station,
1650 .ndo_features_check = fm10k_features_check,
1651 };
1652
1653 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1654
fm10k_alloc_netdev(const struct fm10k_info * info)1655 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1656 {
1657 netdev_features_t hw_features;
1658 struct fm10k_intfc *interface;
1659 struct net_device *dev;
1660
1661 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1662 if (!dev)
1663 return NULL;
1664
1665 /* set net device and ethtool ops */
1666 dev->netdev_ops = &fm10k_netdev_ops;
1667 fm10k_set_ethtool_ops(dev);
1668
1669 /* configure default debug level */
1670 interface = netdev_priv(dev);
1671 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1672
1673 /* configure default features */
1674 dev->features |= NETIF_F_IP_CSUM |
1675 NETIF_F_IPV6_CSUM |
1676 NETIF_F_SG |
1677 NETIF_F_TSO |
1678 NETIF_F_TSO6 |
1679 NETIF_F_TSO_ECN |
1680 NETIF_F_RXHASH |
1681 NETIF_F_RXCSUM;
1682
1683 /* Only the PF can support VXLAN and NVGRE tunnel offloads */
1684 if (info->mac == fm10k_mac_pf) {
1685 dev->hw_enc_features = NETIF_F_IP_CSUM |
1686 NETIF_F_TSO |
1687 NETIF_F_TSO6 |
1688 NETIF_F_TSO_ECN |
1689 NETIF_F_GSO_UDP_TUNNEL |
1690 NETIF_F_IPV6_CSUM |
1691 NETIF_F_SG;
1692
1693 dev->features |= NETIF_F_GSO_UDP_TUNNEL;
1694 }
1695
1696 /* all features defined to this point should be changeable */
1697 hw_features = dev->features;
1698
1699 /* allow user to enable L2 forwarding acceleration */
1700 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1701
1702 /* configure VLAN features */
1703 dev->vlan_features |= dev->features;
1704
1705 /* we want to leave these both on as we cannot disable VLAN tag
1706 * insertion or stripping on the hardware since it is contained
1707 * in the FTAG and not in the frame itself.
1708 */
1709 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1710 NETIF_F_HW_VLAN_CTAG_RX |
1711 NETIF_F_HW_VLAN_CTAG_FILTER;
1712
1713 dev->priv_flags |= IFF_UNICAST_FLT;
1714
1715 dev->hw_features |= hw_features;
1716
1717 /* MTU range: 68 - 15342 */
1718 dev->min_mtu = ETH_MIN_MTU;
1719 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
1720
1721 return dev;
1722 }
1723