1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "fm10k.h"
5 #include <linux/vmalloc.h>
6 #include <net/udp_tunnel.h>
7 #include <linux/if_macvlan.h>
8
9 /**
10 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
11 * @tx_ring: tx descriptor ring (for a specific queue) to setup
12 *
13 * Return 0 on success, negative on failure
14 **/
fm10k_setup_tx_resources(struct fm10k_ring * tx_ring)15 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
16 {
17 struct device *dev = tx_ring->dev;
18 int size;
19
20 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
21
22 tx_ring->tx_buffer = vzalloc(size);
23 if (!tx_ring->tx_buffer)
24 goto err;
25
26 u64_stats_init(&tx_ring->syncp);
27
28 /* round up to nearest 4K */
29 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
30 tx_ring->size = ALIGN(tx_ring->size, 4096);
31
32 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
33 &tx_ring->dma, GFP_KERNEL);
34 if (!tx_ring->desc)
35 goto err;
36
37 return 0;
38
39 err:
40 vfree(tx_ring->tx_buffer);
41 tx_ring->tx_buffer = NULL;
42 return -ENOMEM;
43 }
44
45 /**
46 * fm10k_setup_all_tx_resources - allocate all queues Tx resources
47 * @interface: board private structure
48 *
49 * If this function returns with an error, then it's possible one or
50 * more of the rings is populated (while the rest are not). It is the
51 * callers duty to clean those orphaned rings.
52 *
53 * Return 0 on success, negative on failure
54 **/
fm10k_setup_all_tx_resources(struct fm10k_intfc * interface)55 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
56 {
57 int i, err = 0;
58
59 for (i = 0; i < interface->num_tx_queues; i++) {
60 err = fm10k_setup_tx_resources(interface->tx_ring[i]);
61 if (!err)
62 continue;
63
64 netif_err(interface, probe, interface->netdev,
65 "Allocation for Tx Queue %u failed\n", i);
66 goto err_setup_tx;
67 }
68
69 return 0;
70 err_setup_tx:
71 /* rewind the index freeing the rings as we go */
72 while (i--)
73 fm10k_free_tx_resources(interface->tx_ring[i]);
74 return err;
75 }
76
77 /**
78 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
79 * @rx_ring: rx descriptor ring (for a specific queue) to setup
80 *
81 * Returns 0 on success, negative on failure
82 **/
fm10k_setup_rx_resources(struct fm10k_ring * rx_ring)83 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
84 {
85 struct device *dev = rx_ring->dev;
86 int size;
87
88 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
89
90 rx_ring->rx_buffer = vzalloc(size);
91 if (!rx_ring->rx_buffer)
92 goto err;
93
94 u64_stats_init(&rx_ring->syncp);
95
96 /* Round up to nearest 4K */
97 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
98 rx_ring->size = ALIGN(rx_ring->size, 4096);
99
100 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
101 &rx_ring->dma, GFP_KERNEL);
102 if (!rx_ring->desc)
103 goto err;
104
105 return 0;
106 err:
107 vfree(rx_ring->rx_buffer);
108 rx_ring->rx_buffer = NULL;
109 return -ENOMEM;
110 }
111
112 /**
113 * fm10k_setup_all_rx_resources - allocate all queues Rx resources
114 * @interface: board private structure
115 *
116 * If this function returns with an error, then it's possible one or
117 * more of the rings is populated (while the rest are not). It is the
118 * callers duty to clean those orphaned rings.
119 *
120 * Return 0 on success, negative on failure
121 **/
fm10k_setup_all_rx_resources(struct fm10k_intfc * interface)122 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
123 {
124 int i, err = 0;
125
126 for (i = 0; i < interface->num_rx_queues; i++) {
127 err = fm10k_setup_rx_resources(interface->rx_ring[i]);
128 if (!err)
129 continue;
130
131 netif_err(interface, probe, interface->netdev,
132 "Allocation for Rx Queue %u failed\n", i);
133 goto err_setup_rx;
134 }
135
136 return 0;
137 err_setup_rx:
138 /* rewind the index freeing the rings as we go */
139 while (i--)
140 fm10k_free_rx_resources(interface->rx_ring[i]);
141 return err;
142 }
143
fm10k_unmap_and_free_tx_resource(struct fm10k_ring * ring,struct fm10k_tx_buffer * tx_buffer)144 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
145 struct fm10k_tx_buffer *tx_buffer)
146 {
147 if (tx_buffer->skb) {
148 dev_kfree_skb_any(tx_buffer->skb);
149 if (dma_unmap_len(tx_buffer, len))
150 dma_unmap_single(ring->dev,
151 dma_unmap_addr(tx_buffer, dma),
152 dma_unmap_len(tx_buffer, len),
153 DMA_TO_DEVICE);
154 } else if (dma_unmap_len(tx_buffer, len)) {
155 dma_unmap_page(ring->dev,
156 dma_unmap_addr(tx_buffer, dma),
157 dma_unmap_len(tx_buffer, len),
158 DMA_TO_DEVICE);
159 }
160 tx_buffer->next_to_watch = NULL;
161 tx_buffer->skb = NULL;
162 dma_unmap_len_set(tx_buffer, len, 0);
163 /* tx_buffer must be completely set up in the transmit path */
164 }
165
166 /**
167 * fm10k_clean_tx_ring - Free Tx Buffers
168 * @tx_ring: ring to be cleaned
169 **/
fm10k_clean_tx_ring(struct fm10k_ring * tx_ring)170 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
171 {
172 struct fm10k_tx_buffer *tx_buffer;
173 unsigned long size;
174 u16 i;
175
176 /* ring already cleared, nothing to do */
177 if (!tx_ring->tx_buffer)
178 return;
179
180 /* Free all the Tx ring sk_buffs */
181 for (i = 0; i < tx_ring->count; i++) {
182 tx_buffer = &tx_ring->tx_buffer[i];
183 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
184 }
185
186 /* reset BQL values */
187 netdev_tx_reset_queue(txring_txq(tx_ring));
188
189 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
190 memset(tx_ring->tx_buffer, 0, size);
191
192 /* Zero out the descriptor ring */
193 memset(tx_ring->desc, 0, tx_ring->size);
194 }
195
196 /**
197 * fm10k_free_tx_resources - Free Tx Resources per Queue
198 * @tx_ring: Tx descriptor ring for a specific queue
199 *
200 * Free all transmit software resources
201 **/
fm10k_free_tx_resources(struct fm10k_ring * tx_ring)202 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
203 {
204 fm10k_clean_tx_ring(tx_ring);
205
206 vfree(tx_ring->tx_buffer);
207 tx_ring->tx_buffer = NULL;
208
209 /* if not set, then don't free */
210 if (!tx_ring->desc)
211 return;
212
213 dma_free_coherent(tx_ring->dev, tx_ring->size,
214 tx_ring->desc, tx_ring->dma);
215 tx_ring->desc = NULL;
216 }
217
218 /**
219 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
220 * @interface: board private structure
221 **/
fm10k_clean_all_tx_rings(struct fm10k_intfc * interface)222 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
223 {
224 int i;
225
226 for (i = 0; i < interface->num_tx_queues; i++)
227 fm10k_clean_tx_ring(interface->tx_ring[i]);
228 }
229
230 /**
231 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
232 * @interface: board private structure
233 *
234 * Free all transmit software resources
235 **/
fm10k_free_all_tx_resources(struct fm10k_intfc * interface)236 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
237 {
238 int i = interface->num_tx_queues;
239
240 while (i--)
241 fm10k_free_tx_resources(interface->tx_ring[i]);
242 }
243
244 /**
245 * fm10k_clean_rx_ring - Free Rx Buffers per Queue
246 * @rx_ring: ring to free buffers from
247 **/
fm10k_clean_rx_ring(struct fm10k_ring * rx_ring)248 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
249 {
250 unsigned long size;
251 u16 i;
252
253 if (!rx_ring->rx_buffer)
254 return;
255
256 if (rx_ring->skb)
257 dev_kfree_skb(rx_ring->skb);
258 rx_ring->skb = NULL;
259
260 /* Free all the Rx ring sk_buffs */
261 for (i = 0; i < rx_ring->count; i++) {
262 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
263 /* clean-up will only set page pointer to NULL */
264 if (!buffer->page)
265 continue;
266
267 dma_unmap_page(rx_ring->dev, buffer->dma,
268 PAGE_SIZE, DMA_FROM_DEVICE);
269 __free_page(buffer->page);
270
271 buffer->page = NULL;
272 }
273
274 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
275 memset(rx_ring->rx_buffer, 0, size);
276
277 /* Zero out the descriptor ring */
278 memset(rx_ring->desc, 0, rx_ring->size);
279
280 rx_ring->next_to_alloc = 0;
281 rx_ring->next_to_clean = 0;
282 rx_ring->next_to_use = 0;
283 }
284
285 /**
286 * fm10k_free_rx_resources - Free Rx Resources
287 * @rx_ring: ring to clean the resources from
288 *
289 * Free all receive software resources
290 **/
fm10k_free_rx_resources(struct fm10k_ring * rx_ring)291 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
292 {
293 fm10k_clean_rx_ring(rx_ring);
294
295 vfree(rx_ring->rx_buffer);
296 rx_ring->rx_buffer = NULL;
297
298 /* if not set, then don't free */
299 if (!rx_ring->desc)
300 return;
301
302 dma_free_coherent(rx_ring->dev, rx_ring->size,
303 rx_ring->desc, rx_ring->dma);
304
305 rx_ring->desc = NULL;
306 }
307
308 /**
309 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
310 * @interface: board private structure
311 **/
fm10k_clean_all_rx_rings(struct fm10k_intfc * interface)312 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
313 {
314 int i;
315
316 for (i = 0; i < interface->num_rx_queues; i++)
317 fm10k_clean_rx_ring(interface->rx_ring[i]);
318 }
319
320 /**
321 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
322 * @interface: board private structure
323 *
324 * Free all receive software resources
325 **/
fm10k_free_all_rx_resources(struct fm10k_intfc * interface)326 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
327 {
328 int i = interface->num_rx_queues;
329
330 while (i--)
331 fm10k_free_rx_resources(interface->rx_ring[i]);
332 }
333
334 /**
335 * fm10k_request_glort_range - Request GLORTs for use in configuring rules
336 * @interface: board private structure
337 *
338 * This function allocates a range of glorts for this interface to use.
339 **/
fm10k_request_glort_range(struct fm10k_intfc * interface)340 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
341 {
342 struct fm10k_hw *hw = &interface->hw;
343 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
344
345 /* establish GLORT base */
346 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
347 interface->glort_count = 0;
348
349 /* nothing we can do until mask is allocated */
350 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
351 return;
352
353 /* we support 3 possible GLORT configurations.
354 * 1: VFs consume all but the last 1
355 * 2: VFs and PF split glorts with possible gap between
356 * 3: VFs allocated first 64, all others belong to PF
357 */
358 if (mask <= hw->iov.total_vfs) {
359 interface->glort_count = 1;
360 interface->glort += mask;
361 } else if (mask < 64) {
362 interface->glort_count = (mask + 1) / 2;
363 interface->glort += interface->glort_count;
364 } else {
365 interface->glort_count = mask - 63;
366 interface->glort += 64;
367 }
368 }
369
370 /**
371 * fm10k_free_udp_port_info
372 * @interface: board private structure
373 *
374 * This function frees both geneve_port and vxlan_port structures
375 **/
fm10k_free_udp_port_info(struct fm10k_intfc * interface)376 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface)
377 {
378 struct fm10k_udp_port *port;
379
380 /* flush all entries from vxlan list */
381 port = list_first_entry_or_null(&interface->vxlan_port,
382 struct fm10k_udp_port, list);
383 while (port) {
384 list_del(&port->list);
385 kfree(port);
386 port = list_first_entry_or_null(&interface->vxlan_port,
387 struct fm10k_udp_port,
388 list);
389 }
390
391 /* flush all entries from geneve list */
392 port = list_first_entry_or_null(&interface->geneve_port,
393 struct fm10k_udp_port, list);
394 while (port) {
395 list_del(&port->list);
396 kfree(port);
397 port = list_first_entry_or_null(&interface->vxlan_port,
398 struct fm10k_udp_port,
399 list);
400 }
401 }
402
403 /**
404 * fm10k_restore_udp_port_info
405 * @interface: board private structure
406 *
407 * This function restores the value in the tunnel_cfg register(s) after reset
408 **/
fm10k_restore_udp_port_info(struct fm10k_intfc * interface)409 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
410 {
411 struct fm10k_hw *hw = &interface->hw;
412 struct fm10k_udp_port *port;
413
414 /* only the PF supports configuring tunnels */
415 if (hw->mac.type != fm10k_mac_pf)
416 return;
417
418 port = list_first_entry_or_null(&interface->vxlan_port,
419 struct fm10k_udp_port, list);
420
421 /* restore tunnel configuration register */
422 fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
423 (port ? ntohs(port->port) : 0) |
424 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
425
426 port = list_first_entry_or_null(&interface->geneve_port,
427 struct fm10k_udp_port, list);
428
429 /* restore Geneve tunnel configuration register */
430 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
431 (port ? ntohs(port->port) : 0));
432 }
433
434 static struct fm10k_udp_port *
fm10k_remove_tunnel_port(struct list_head * ports,struct udp_tunnel_info * ti)435 fm10k_remove_tunnel_port(struct list_head *ports,
436 struct udp_tunnel_info *ti)
437 {
438 struct fm10k_udp_port *port;
439
440 list_for_each_entry(port, ports, list) {
441 if ((port->port == ti->port) &&
442 (port->sa_family == ti->sa_family)) {
443 list_del(&port->list);
444 return port;
445 }
446 }
447
448 return NULL;
449 }
450
fm10k_insert_tunnel_port(struct list_head * ports,struct udp_tunnel_info * ti)451 static void fm10k_insert_tunnel_port(struct list_head *ports,
452 struct udp_tunnel_info *ti)
453 {
454 struct fm10k_udp_port *port;
455
456 /* remove existing port entry from the list so that the newest items
457 * are always at the tail of the list.
458 */
459 port = fm10k_remove_tunnel_port(ports, ti);
460 if (!port) {
461 port = kmalloc(sizeof(*port), GFP_ATOMIC);
462 if (!port)
463 return;
464 port->port = ti->port;
465 port->sa_family = ti->sa_family;
466 }
467
468 list_add_tail(&port->list, ports);
469 }
470
471 /**
472 * fm10k_udp_tunnel_add
473 * @dev: network interface device structure
474 * @ti: Tunnel endpoint information
475 *
476 * This function is called when a new UDP tunnel port has been added.
477 * Due to hardware restrictions, only one port per type can be offloaded at
478 * once.
479 **/
fm10k_udp_tunnel_add(struct net_device * dev,struct udp_tunnel_info * ti)480 static void fm10k_udp_tunnel_add(struct net_device *dev,
481 struct udp_tunnel_info *ti)
482 {
483 struct fm10k_intfc *interface = netdev_priv(dev);
484
485 /* only the PF supports configuring tunnels */
486 if (interface->hw.mac.type != fm10k_mac_pf)
487 return;
488
489 switch (ti->type) {
490 case UDP_TUNNEL_TYPE_VXLAN:
491 fm10k_insert_tunnel_port(&interface->vxlan_port, ti);
492 break;
493 case UDP_TUNNEL_TYPE_GENEVE:
494 fm10k_insert_tunnel_port(&interface->geneve_port, ti);
495 break;
496 default:
497 return;
498 }
499
500 fm10k_restore_udp_port_info(interface);
501 }
502
503 /**
504 * fm10k_udp_tunnel_del
505 * @dev: network interface device structure
506 * @ti: Tunnel end point information
507 *
508 * This function is called when a new UDP tunnel port is deleted. The freed
509 * port will be removed from the list, then we reprogram the offloaded port
510 * based on the head of the list.
511 **/
fm10k_udp_tunnel_del(struct net_device * dev,struct udp_tunnel_info * ti)512 static void fm10k_udp_tunnel_del(struct net_device *dev,
513 struct udp_tunnel_info *ti)
514 {
515 struct fm10k_intfc *interface = netdev_priv(dev);
516 struct fm10k_udp_port *port = NULL;
517
518 if (interface->hw.mac.type != fm10k_mac_pf)
519 return;
520
521 switch (ti->type) {
522 case UDP_TUNNEL_TYPE_VXLAN:
523 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti);
524 break;
525 case UDP_TUNNEL_TYPE_GENEVE:
526 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti);
527 break;
528 default:
529 return;
530 }
531
532 /* if we did remove a port we need to free its memory */
533 kfree(port);
534
535 fm10k_restore_udp_port_info(interface);
536 }
537
538 /**
539 * fm10k_open - Called when a network interface is made active
540 * @netdev: network interface device structure
541 *
542 * Returns 0 on success, negative value on failure
543 *
544 * The open entry point is called when a network interface is made
545 * active by the system (IFF_UP). At this point all resources needed
546 * for transmit and receive operations are allocated, the interrupt
547 * handler is registered with the OS, the watchdog timer is started,
548 * and the stack is notified that the interface is ready.
549 **/
fm10k_open(struct net_device * netdev)550 int fm10k_open(struct net_device *netdev)
551 {
552 struct fm10k_intfc *interface = netdev_priv(netdev);
553 int err;
554
555 /* allocate transmit descriptors */
556 err = fm10k_setup_all_tx_resources(interface);
557 if (err)
558 goto err_setup_tx;
559
560 /* allocate receive descriptors */
561 err = fm10k_setup_all_rx_resources(interface);
562 if (err)
563 goto err_setup_rx;
564
565 /* allocate interrupt resources */
566 err = fm10k_qv_request_irq(interface);
567 if (err)
568 goto err_req_irq;
569
570 /* setup GLORT assignment for this port */
571 fm10k_request_glort_range(interface);
572
573 /* Notify the stack of the actual queue counts */
574 err = netif_set_real_num_tx_queues(netdev,
575 interface->num_tx_queues);
576 if (err)
577 goto err_set_queues;
578
579 err = netif_set_real_num_rx_queues(netdev,
580 interface->num_rx_queues);
581 if (err)
582 goto err_set_queues;
583
584 udp_tunnel_get_rx_info(netdev);
585
586 fm10k_up(interface);
587
588 return 0;
589
590 err_set_queues:
591 fm10k_qv_free_irq(interface);
592 err_req_irq:
593 fm10k_free_all_rx_resources(interface);
594 err_setup_rx:
595 fm10k_free_all_tx_resources(interface);
596 err_setup_tx:
597 return err;
598 }
599
600 /**
601 * fm10k_close - Disables a network interface
602 * @netdev: network interface device structure
603 *
604 * Returns 0, this is not allowed to fail
605 *
606 * The close entry point is called when an interface is de-activated
607 * by the OS. The hardware is still under the drivers control, but
608 * needs to be disabled. A global MAC reset is issued to stop the
609 * hardware, and all transmit and receive resources are freed.
610 **/
fm10k_close(struct net_device * netdev)611 int fm10k_close(struct net_device *netdev)
612 {
613 struct fm10k_intfc *interface = netdev_priv(netdev);
614
615 fm10k_down(interface);
616
617 fm10k_qv_free_irq(interface);
618
619 fm10k_free_udp_port_info(interface);
620
621 fm10k_free_all_tx_resources(interface);
622 fm10k_free_all_rx_resources(interface);
623
624 return 0;
625 }
626
fm10k_xmit_frame(struct sk_buff * skb,struct net_device * dev)627 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
628 {
629 struct fm10k_intfc *interface = netdev_priv(dev);
630 int num_tx_queues = READ_ONCE(interface->num_tx_queues);
631 unsigned int r_idx = skb->queue_mapping;
632 int err;
633
634 if (!num_tx_queues)
635 return NETDEV_TX_BUSY;
636
637 if ((skb->protocol == htons(ETH_P_8021Q)) &&
638 !skb_vlan_tag_present(skb)) {
639 /* FM10K only supports hardware tagging, any tags in frame
640 * are considered 2nd level or "outer" tags
641 */
642 struct vlan_hdr *vhdr;
643 __be16 proto;
644
645 /* make sure skb is not shared */
646 skb = skb_share_check(skb, GFP_ATOMIC);
647 if (!skb)
648 return NETDEV_TX_OK;
649
650 /* make sure there is enough room to move the ethernet header */
651 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
652 return NETDEV_TX_OK;
653
654 /* verify the skb head is not shared */
655 err = skb_cow_head(skb, 0);
656 if (err) {
657 dev_kfree_skb(skb);
658 return NETDEV_TX_OK;
659 }
660
661 /* locate VLAN header */
662 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
663
664 /* pull the 2 key pieces of data out of it */
665 __vlan_hwaccel_put_tag(skb,
666 htons(ETH_P_8021Q),
667 ntohs(vhdr->h_vlan_TCI));
668 proto = vhdr->h_vlan_encapsulated_proto;
669 skb->protocol = (ntohs(proto) >= 1536) ? proto :
670 htons(ETH_P_802_2);
671
672 /* squash it by moving the ethernet addresses up 4 bytes */
673 memmove(skb->data + VLAN_HLEN, skb->data, 12);
674 __skb_pull(skb, VLAN_HLEN);
675 skb_reset_mac_header(skb);
676 }
677
678 /* The minimum packet size for a single buffer is 17B so pad the skb
679 * in order to meet this minimum size requirement.
680 */
681 if (unlikely(skb->len < 17)) {
682 int pad_len = 17 - skb->len;
683
684 if (skb_pad(skb, pad_len))
685 return NETDEV_TX_OK;
686 __skb_put(skb, pad_len);
687 }
688
689 if (r_idx >= num_tx_queues)
690 r_idx %= num_tx_queues;
691
692 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
693
694 return err;
695 }
696
697 /**
698 * fm10k_tx_timeout - Respond to a Tx Hang
699 * @netdev: network interface device structure
700 **/
fm10k_tx_timeout(struct net_device * netdev)701 static void fm10k_tx_timeout(struct net_device *netdev)
702 {
703 struct fm10k_intfc *interface = netdev_priv(netdev);
704 bool real_tx_hang = false;
705 int i;
706
707 #define TX_TIMEO_LIMIT 16000
708 for (i = 0; i < interface->num_tx_queues; i++) {
709 struct fm10k_ring *tx_ring = interface->tx_ring[i];
710
711 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
712 real_tx_hang = true;
713 }
714
715 if (real_tx_hang) {
716 fm10k_tx_timeout_reset(interface);
717 } else {
718 netif_info(interface, drv, netdev,
719 "Fake Tx hang detected with timeout of %d seconds\n",
720 netdev->watchdog_timeo / HZ);
721
722 /* fake Tx hang - increase the kernel timeout */
723 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
724 netdev->watchdog_timeo *= 2;
725 }
726 }
727
728 /**
729 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness
730 * @interface: board private structure
731 *
732 * This function checks if the PF interface's mailbox is ready before queueing
733 * mailbox messages for transmission. This will prevent filling the TX mailbox
734 * queue when the receiver is not ready. VF interfaces are exempt from this
735 * check since it will block all PF-VF mailbox messages from being sent from
736 * the VF to the PF at initialization.
737 **/
fm10k_host_mbx_ready(struct fm10k_intfc * interface)738 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
739 {
740 struct fm10k_hw *hw = &interface->hw;
741
742 return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
743 }
744
745 /**
746 * fm10k_queue_vlan_request - Queue a VLAN update request
747 * @interface: the fm10k interface structure
748 * @vid: the VLAN vid
749 * @vsi: VSI index number
750 * @set: whether to set or clear
751 *
752 * This function queues up a VLAN update. For VFs, this must be sent to the
753 * managing PF over the mailbox. For PFs, we'll use the same handling so that
754 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too
755 * many VLAN updates during reset.
756 */
fm10k_queue_vlan_request(struct fm10k_intfc * interface,u32 vid,u8 vsi,bool set)757 int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
758 u32 vid, u8 vsi, bool set)
759 {
760 struct fm10k_macvlan_request *request;
761 unsigned long flags;
762
763 /* This must be atomic since we may be called while the netdev
764 * addr_list_lock is held
765 */
766 request = kzalloc(sizeof(*request), GFP_ATOMIC);
767 if (!request)
768 return -ENOMEM;
769
770 request->type = FM10K_VLAN_REQUEST;
771 request->vlan.vid = vid;
772 request->vlan.vsi = vsi;
773 request->set = set;
774
775 spin_lock_irqsave(&interface->macvlan_lock, flags);
776 list_add_tail(&request->list, &interface->macvlan_requests);
777 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
778
779 fm10k_macvlan_schedule(interface);
780
781 return 0;
782 }
783
784 /**
785 * fm10k_queue_mac_request - Queue a MAC update request
786 * @interface: the fm10k interface structure
787 * @glort: the target glort for this update
788 * @addr: the address to update
789 * @vid: the vid to update
790 * @set: whether to add or remove
791 *
792 * This function queues up a MAC request for sending to the switch manager.
793 * A separate thread monitors the queue and sends updates to the switch
794 * manager. Return 0 on success, and negative error code on failure.
795 **/
fm10k_queue_mac_request(struct fm10k_intfc * interface,u16 glort,const unsigned char * addr,u16 vid,bool set)796 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
797 const unsigned char *addr, u16 vid, bool set)
798 {
799 struct fm10k_macvlan_request *request;
800 unsigned long flags;
801
802 /* This must be atomic since we may be called while the netdev
803 * addr_list_lock is held
804 */
805 request = kzalloc(sizeof(*request), GFP_ATOMIC);
806 if (!request)
807 return -ENOMEM;
808
809 if (is_multicast_ether_addr(addr))
810 request->type = FM10K_MC_MAC_REQUEST;
811 else
812 request->type = FM10K_UC_MAC_REQUEST;
813
814 ether_addr_copy(request->mac.addr, addr);
815 request->mac.glort = glort;
816 request->mac.vid = vid;
817 request->set = set;
818
819 spin_lock_irqsave(&interface->macvlan_lock, flags);
820 list_add_tail(&request->list, &interface->macvlan_requests);
821 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
822
823 fm10k_macvlan_schedule(interface);
824
825 return 0;
826 }
827
828 /**
829 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
830 * @interface: the fm10k interface structure
831 * @glort: the target glort to clear
832 * @vlans: true to clear VLAN messages, false to ignore them
833 *
834 * Cancel any outstanding MAC/VLAN requests for a given glort. This is
835 * expected to be called when a logical port goes down.
836 **/
fm10k_clear_macvlan_queue(struct fm10k_intfc * interface,u16 glort,bool vlans)837 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
838 u16 glort, bool vlans)
839
840 {
841 struct fm10k_macvlan_request *r, *tmp;
842 unsigned long flags;
843
844 spin_lock_irqsave(&interface->macvlan_lock, flags);
845
846 /* Free any outstanding MAC/VLAN requests for this interface */
847 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
848 switch (r->type) {
849 case FM10K_MC_MAC_REQUEST:
850 case FM10K_UC_MAC_REQUEST:
851 /* Don't free requests for other interfaces */
852 if (r->mac.glort != glort)
853 break;
854 /* fall through */
855 case FM10K_VLAN_REQUEST:
856 if (vlans) {
857 list_del(&r->list);
858 kfree(r);
859 }
860 break;
861 }
862 }
863
864 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
865 }
866
fm10k_uc_vlan_unsync(struct net_device * netdev,const unsigned char * uc_addr)867 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
868 const unsigned char *uc_addr)
869 {
870 struct fm10k_intfc *interface = netdev_priv(netdev);
871 u16 glort = interface->glort;
872 u16 vid = interface->vid;
873 bool set = !!(vid / VLAN_N_VID);
874 int err = -EHOSTDOWN;
875
876 /* drop any leading bits on the VLAN ID */
877 vid &= VLAN_N_VID - 1;
878
879 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
880 if (err)
881 return err;
882
883 /* return non-zero value as we are only doing a partial sync/unsync */
884 return 1;
885 }
886
fm10k_mc_vlan_unsync(struct net_device * netdev,const unsigned char * mc_addr)887 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
888 const unsigned char *mc_addr)
889 {
890 struct fm10k_intfc *interface = netdev_priv(netdev);
891 u16 glort = interface->glort;
892 u16 vid = interface->vid;
893 bool set = !!(vid / VLAN_N_VID);
894 int err = -EHOSTDOWN;
895
896 /* drop any leading bits on the VLAN ID */
897 vid &= VLAN_N_VID - 1;
898
899 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
900 if (err)
901 return err;
902
903 /* return non-zero value as we are only doing a partial sync/unsync */
904 return 1;
905 }
906
fm10k_update_vid(struct net_device * netdev,u16 vid,bool set)907 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
908 {
909 struct fm10k_intfc *interface = netdev_priv(netdev);
910 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
911 struct fm10k_hw *hw = &interface->hw;
912 u16 glort;
913 s32 err;
914 int i;
915
916 /* updates do not apply to VLAN 0 */
917 if (!vid)
918 return 0;
919
920 if (vid >= VLAN_N_VID)
921 return -EINVAL;
922
923 /* Verify that we have permission to add VLANs. If this is a request
924 * to remove a VLAN, we still want to allow the user to remove the
925 * VLAN device. In that case, we need to clear the bit in the
926 * active_vlans bitmask.
927 */
928 if (set && hw->mac.vlan_override)
929 return -EACCES;
930
931 /* update active_vlans bitmask */
932 set_bit(vid, interface->active_vlans);
933 if (!set)
934 clear_bit(vid, interface->active_vlans);
935
936 /* disable the default VLAN ID on ring if we have an active VLAN */
937 for (i = 0; i < interface->num_rx_queues; i++) {
938 struct fm10k_ring *rx_ring = interface->rx_ring[i];
939 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
940
941 if (test_bit(rx_vid, interface->active_vlans))
942 rx_ring->vid |= FM10K_VLAN_CLEAR;
943 else
944 rx_ring->vid &= ~FM10K_VLAN_CLEAR;
945 }
946
947 /* If our VLAN has been overridden, there is no reason to send VLAN
948 * removal requests as they will be silently ignored.
949 */
950 if (hw->mac.vlan_override)
951 return 0;
952
953 /* Do not remove default VLAN ID related entries from VLAN and MAC
954 * tables
955 */
956 if (!set && vid == hw->mac.default_vid)
957 return 0;
958
959 /* Do not throw an error if the interface is down. We will sync once
960 * we come up
961 */
962 if (test_bit(__FM10K_DOWN, interface->state))
963 return 0;
964
965 fm10k_mbx_lock(interface);
966
967 /* only need to update the VLAN if not in promiscuous mode */
968 if (!(netdev->flags & IFF_PROMISC)) {
969 err = fm10k_queue_vlan_request(interface, vid, 0, set);
970 if (err)
971 goto err_out;
972 }
973
974 /* Update our base MAC address */
975 err = fm10k_queue_mac_request(interface, interface->glort,
976 hw->mac.addr, vid, set);
977 if (err)
978 goto err_out;
979
980 /* Update L2 accelerated macvlan addresses */
981 if (l2_accel) {
982 for (i = 0; i < l2_accel->size; i++) {
983 struct net_device *sdev = l2_accel->macvlan[i];
984
985 if (!sdev)
986 continue;
987
988 glort = l2_accel->dglort + 1 + i;
989
990 fm10k_queue_mac_request(interface, glort,
991 sdev->dev_addr,
992 vid, set);
993 }
994 }
995
996 /* set VLAN ID prior to syncing/unsyncing the VLAN */
997 interface->vid = vid + (set ? VLAN_N_VID : 0);
998
999 /* Update the unicast and multicast address list to add/drop VLAN */
1000 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
1001 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
1002
1003 err_out:
1004 fm10k_mbx_unlock(interface);
1005
1006 return err;
1007 }
1008
fm10k_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)1009 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
1010 __always_unused __be16 proto, u16 vid)
1011 {
1012 /* update VLAN and address table based on changes */
1013 return fm10k_update_vid(netdev, vid, true);
1014 }
1015
fm10k_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)1016 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
1017 __always_unused __be16 proto, u16 vid)
1018 {
1019 /* update VLAN and address table based on changes */
1020 return fm10k_update_vid(netdev, vid, false);
1021 }
1022
fm10k_find_next_vlan(struct fm10k_intfc * interface,u16 vid)1023 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
1024 {
1025 struct fm10k_hw *hw = &interface->hw;
1026 u16 default_vid = hw->mac.default_vid;
1027 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
1028
1029 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
1030
1031 return vid;
1032 }
1033
fm10k_clear_unused_vlans(struct fm10k_intfc * interface)1034 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
1035 {
1036 u32 vid, prev_vid;
1037
1038 /* loop through and find any gaps in the table */
1039 for (vid = 0, prev_vid = 0;
1040 prev_vid < VLAN_N_VID;
1041 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
1042 if (prev_vid == vid)
1043 continue;
1044
1045 /* send request to clear multiple bits at a time */
1046 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
1047 fm10k_queue_vlan_request(interface, prev_vid, 0, false);
1048 }
1049 }
1050
__fm10k_uc_sync(struct net_device * dev,const unsigned char * addr,bool sync)1051 static int __fm10k_uc_sync(struct net_device *dev,
1052 const unsigned char *addr, bool sync)
1053 {
1054 struct fm10k_intfc *interface = netdev_priv(dev);
1055 u16 vid, glort = interface->glort;
1056 s32 err;
1057
1058 if (!is_valid_ether_addr(addr))
1059 return -EADDRNOTAVAIL;
1060
1061 for (vid = fm10k_find_next_vlan(interface, 0);
1062 vid < VLAN_N_VID;
1063 vid = fm10k_find_next_vlan(interface, vid)) {
1064 err = fm10k_queue_mac_request(interface, glort,
1065 addr, vid, sync);
1066 if (err)
1067 return err;
1068 }
1069
1070 return 0;
1071 }
1072
fm10k_uc_sync(struct net_device * dev,const unsigned char * addr)1073 static int fm10k_uc_sync(struct net_device *dev,
1074 const unsigned char *addr)
1075 {
1076 return __fm10k_uc_sync(dev, addr, true);
1077 }
1078
fm10k_uc_unsync(struct net_device * dev,const unsigned char * addr)1079 static int fm10k_uc_unsync(struct net_device *dev,
1080 const unsigned char *addr)
1081 {
1082 return __fm10k_uc_sync(dev, addr, false);
1083 }
1084
fm10k_set_mac(struct net_device * dev,void * p)1085 static int fm10k_set_mac(struct net_device *dev, void *p)
1086 {
1087 struct fm10k_intfc *interface = netdev_priv(dev);
1088 struct fm10k_hw *hw = &interface->hw;
1089 struct sockaddr *addr = p;
1090 s32 err = 0;
1091
1092 if (!is_valid_ether_addr(addr->sa_data))
1093 return -EADDRNOTAVAIL;
1094
1095 if (dev->flags & IFF_UP) {
1096 /* setting MAC address requires mailbox */
1097 fm10k_mbx_lock(interface);
1098
1099 err = fm10k_uc_sync(dev, addr->sa_data);
1100 if (!err)
1101 fm10k_uc_unsync(dev, hw->mac.addr);
1102
1103 fm10k_mbx_unlock(interface);
1104 }
1105
1106 if (!err) {
1107 ether_addr_copy(dev->dev_addr, addr->sa_data);
1108 ether_addr_copy(hw->mac.addr, addr->sa_data);
1109 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
1110 }
1111
1112 /* if we had a mailbox error suggest trying again */
1113 return err ? -EAGAIN : 0;
1114 }
1115
__fm10k_mc_sync(struct net_device * dev,const unsigned char * addr,bool sync)1116 static int __fm10k_mc_sync(struct net_device *dev,
1117 const unsigned char *addr, bool sync)
1118 {
1119 struct fm10k_intfc *interface = netdev_priv(dev);
1120 u16 vid, glort = interface->glort;
1121 s32 err;
1122
1123 if (!is_multicast_ether_addr(addr))
1124 return -EADDRNOTAVAIL;
1125
1126 for (vid = fm10k_find_next_vlan(interface, 0);
1127 vid < VLAN_N_VID;
1128 vid = fm10k_find_next_vlan(interface, vid)) {
1129 err = fm10k_queue_mac_request(interface, glort,
1130 addr, vid, sync);
1131 if (err)
1132 return err;
1133 }
1134
1135 return 0;
1136 }
1137
fm10k_mc_sync(struct net_device * dev,const unsigned char * addr)1138 static int fm10k_mc_sync(struct net_device *dev,
1139 const unsigned char *addr)
1140 {
1141 return __fm10k_mc_sync(dev, addr, true);
1142 }
1143
fm10k_mc_unsync(struct net_device * dev,const unsigned char * addr)1144 static int fm10k_mc_unsync(struct net_device *dev,
1145 const unsigned char *addr)
1146 {
1147 return __fm10k_mc_sync(dev, addr, false);
1148 }
1149
fm10k_set_rx_mode(struct net_device * dev)1150 static void fm10k_set_rx_mode(struct net_device *dev)
1151 {
1152 struct fm10k_intfc *interface = netdev_priv(dev);
1153 struct fm10k_hw *hw = &interface->hw;
1154 int xcast_mode;
1155
1156 /* no need to update the harwdare if we are not running */
1157 if (!(dev->flags & IFF_UP))
1158 return;
1159
1160 /* determine new mode based on flags */
1161 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
1162 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
1163 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1164 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
1165
1166 fm10k_mbx_lock(interface);
1167
1168 /* update xcast mode first, but only if it changed */
1169 if (interface->xcast_mode != xcast_mode) {
1170 /* update VLAN table when entering promiscuous mode */
1171 if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
1172 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
1173 0, true);
1174
1175 /* clear VLAN table when exiting promiscuous mode */
1176 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
1177 fm10k_clear_unused_vlans(interface);
1178
1179 /* update xcast mode if host's mailbox is ready */
1180 if (fm10k_host_mbx_ready(interface))
1181 hw->mac.ops.update_xcast_mode(hw, interface->glort,
1182 xcast_mode);
1183
1184 /* record updated xcast mode state */
1185 interface->xcast_mode = xcast_mode;
1186 }
1187
1188 /* synchronize all of the addresses */
1189 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
1190 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1191
1192 fm10k_mbx_unlock(interface);
1193 }
1194
fm10k_restore_rx_state(struct fm10k_intfc * interface)1195 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1196 {
1197 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1198 struct net_device *netdev = interface->netdev;
1199 struct fm10k_hw *hw = &interface->hw;
1200 int xcast_mode, i;
1201 u16 vid, glort;
1202
1203 /* record glort for this interface */
1204 glort = interface->glort;
1205
1206 /* convert interface flags to xcast mode */
1207 if (netdev->flags & IFF_PROMISC)
1208 xcast_mode = FM10K_XCAST_MODE_PROMISC;
1209 else if (netdev->flags & IFF_ALLMULTI)
1210 xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1211 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1212 xcast_mode = FM10K_XCAST_MODE_MULTI;
1213 else
1214 xcast_mode = FM10K_XCAST_MODE_NONE;
1215
1216 fm10k_mbx_lock(interface);
1217
1218 /* Enable logical port if host's mailbox is ready */
1219 if (fm10k_host_mbx_ready(interface))
1220 hw->mac.ops.update_lport_state(hw, glort,
1221 interface->glort_count, true);
1222
1223 /* update VLAN table */
1224 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
1225 xcast_mode == FM10K_XCAST_MODE_PROMISC);
1226
1227 /* update table with current entries */
1228 for (vid = fm10k_find_next_vlan(interface, 0);
1229 vid < VLAN_N_VID;
1230 vid = fm10k_find_next_vlan(interface, vid)) {
1231 fm10k_queue_vlan_request(interface, vid, 0, true);
1232
1233 fm10k_queue_mac_request(interface, glort,
1234 hw->mac.addr, vid, true);
1235
1236 /* synchronize macvlan addresses */
1237 if (l2_accel) {
1238 for (i = 0; i < l2_accel->size; i++) {
1239 struct net_device *sdev = l2_accel->macvlan[i];
1240
1241 if (!sdev)
1242 continue;
1243
1244 glort = l2_accel->dglort + 1 + i;
1245
1246 fm10k_queue_mac_request(interface, glort,
1247 sdev->dev_addr,
1248 vid, true);
1249 }
1250 }
1251 }
1252
1253 /* update xcast mode before synchronizing addresses if host's mailbox
1254 * is ready
1255 */
1256 if (fm10k_host_mbx_ready(interface))
1257 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1258
1259 /* synchronize all of the addresses */
1260 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1261 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1262
1263 /* synchronize macvlan addresses */
1264 if (l2_accel) {
1265 for (i = 0; i < l2_accel->size; i++) {
1266 struct net_device *sdev = l2_accel->macvlan[i];
1267
1268 if (!sdev)
1269 continue;
1270
1271 glort = l2_accel->dglort + 1 + i;
1272
1273 hw->mac.ops.update_xcast_mode(hw, glort,
1274 FM10K_XCAST_MODE_NONE);
1275 fm10k_queue_mac_request(interface, glort,
1276 sdev->dev_addr,
1277 hw->mac.default_vid, true);
1278 }
1279 }
1280
1281 fm10k_mbx_unlock(interface);
1282
1283 /* record updated xcast mode state */
1284 interface->xcast_mode = xcast_mode;
1285
1286 /* Restore tunnel configuration */
1287 fm10k_restore_udp_port_info(interface);
1288 }
1289
fm10k_reset_rx_state(struct fm10k_intfc * interface)1290 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1291 {
1292 struct net_device *netdev = interface->netdev;
1293 struct fm10k_hw *hw = &interface->hw;
1294
1295 /* Wait for MAC/VLAN work to finish */
1296 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
1297 usleep_range(1000, 2000);
1298
1299 /* Cancel pending MAC/VLAN requests */
1300 fm10k_clear_macvlan_queue(interface, interface->glort, true);
1301
1302 fm10k_mbx_lock(interface);
1303
1304 /* clear the logical port state on lower device if host's mailbox is
1305 * ready
1306 */
1307 if (fm10k_host_mbx_ready(interface))
1308 hw->mac.ops.update_lport_state(hw, interface->glort,
1309 interface->glort_count, false);
1310
1311 fm10k_mbx_unlock(interface);
1312
1313 /* reset flags to default state */
1314 interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1315
1316 /* clear the sync flag since the lport has been dropped */
1317 __dev_uc_unsync(netdev, NULL);
1318 __dev_mc_unsync(netdev, NULL);
1319 }
1320
1321 /**
1322 * fm10k_get_stats64 - Get System Network Statistics
1323 * @netdev: network interface device structure
1324 * @stats: storage space for 64bit statistics
1325 *
1326 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
1327 * architectures.
1328 */
fm10k_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1329 static void fm10k_get_stats64(struct net_device *netdev,
1330 struct rtnl_link_stats64 *stats)
1331 {
1332 struct fm10k_intfc *interface = netdev_priv(netdev);
1333 struct fm10k_ring *ring;
1334 unsigned int start, i;
1335 u64 bytes, packets;
1336
1337 rcu_read_lock();
1338
1339 for (i = 0; i < interface->num_rx_queues; i++) {
1340 ring = READ_ONCE(interface->rx_ring[i]);
1341
1342 if (!ring)
1343 continue;
1344
1345 do {
1346 start = u64_stats_fetch_begin_irq(&ring->syncp);
1347 packets = ring->stats.packets;
1348 bytes = ring->stats.bytes;
1349 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1350
1351 stats->rx_packets += packets;
1352 stats->rx_bytes += bytes;
1353 }
1354
1355 for (i = 0; i < interface->num_tx_queues; i++) {
1356 ring = READ_ONCE(interface->tx_ring[i]);
1357
1358 if (!ring)
1359 continue;
1360
1361 do {
1362 start = u64_stats_fetch_begin_irq(&ring->syncp);
1363 packets = ring->stats.packets;
1364 bytes = ring->stats.bytes;
1365 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1366
1367 stats->tx_packets += packets;
1368 stats->tx_bytes += bytes;
1369 }
1370
1371 rcu_read_unlock();
1372
1373 /* following stats updated by fm10k_service_task() */
1374 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1375 }
1376
fm10k_setup_tc(struct net_device * dev,u8 tc)1377 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1378 {
1379 struct fm10k_intfc *interface = netdev_priv(dev);
1380 int err;
1381
1382 /* Currently only the PF supports priority classes */
1383 if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1384 return -EINVAL;
1385
1386 /* Hardware supports up to 8 traffic classes */
1387 if (tc > 8)
1388 return -EINVAL;
1389
1390 /* Hardware has to reinitialize queues to match packet
1391 * buffer alignment. Unfortunately, the hardware is not
1392 * flexible enough to do this dynamically.
1393 */
1394 if (netif_running(dev))
1395 fm10k_close(dev);
1396
1397 fm10k_mbx_free_irq(interface);
1398
1399 fm10k_clear_queueing_scheme(interface);
1400
1401 /* we expect the prio_tc map to be repopulated later */
1402 netdev_reset_tc(dev);
1403 netdev_set_num_tc(dev, tc);
1404
1405 err = fm10k_init_queueing_scheme(interface);
1406 if (err)
1407 goto err_queueing_scheme;
1408
1409 err = fm10k_mbx_request_irq(interface);
1410 if (err)
1411 goto err_mbx_irq;
1412
1413 err = netif_running(dev) ? fm10k_open(dev) : 0;
1414 if (err)
1415 goto err_open;
1416
1417 /* flag to indicate SWPRI has yet to be updated */
1418 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
1419
1420 return 0;
1421 err_open:
1422 fm10k_mbx_free_irq(interface);
1423 err_mbx_irq:
1424 fm10k_clear_queueing_scheme(interface);
1425 err_queueing_scheme:
1426 netif_device_detach(dev);
1427
1428 return err;
1429 }
1430
__fm10k_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)1431 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
1432 void *type_data)
1433 {
1434 struct tc_mqprio_qopt *mqprio = type_data;
1435
1436 if (type != TC_SETUP_QDISC_MQPRIO)
1437 return -EOPNOTSUPP;
1438
1439 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1440
1441 return fm10k_setup_tc(dev, mqprio->num_tc);
1442 }
1443
fm10k_assign_l2_accel(struct fm10k_intfc * interface,struct fm10k_l2_accel * l2_accel)1444 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1445 struct fm10k_l2_accel *l2_accel)
1446 {
1447 struct fm10k_ring *ring;
1448 int i;
1449
1450 for (i = 0; i < interface->num_rx_queues; i++) {
1451 ring = interface->rx_ring[i];
1452 rcu_assign_pointer(ring->l2_accel, l2_accel);
1453 }
1454
1455 interface->l2_accel = l2_accel;
1456 }
1457
fm10k_dfwd_add_station(struct net_device * dev,struct net_device * sdev)1458 static void *fm10k_dfwd_add_station(struct net_device *dev,
1459 struct net_device *sdev)
1460 {
1461 struct fm10k_intfc *interface = netdev_priv(dev);
1462 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1463 struct fm10k_l2_accel *old_l2_accel = NULL;
1464 struct fm10k_dglort_cfg dglort = { 0 };
1465 struct fm10k_hw *hw = &interface->hw;
1466 int size = 0, i;
1467 u16 vid, glort;
1468
1469 /* The hardware supported by fm10k only filters on the destination MAC
1470 * address. In order to avoid issues we only support offloading modes
1471 * where the hardware can actually provide the functionality.
1472 */
1473 if (!macvlan_supports_dest_filter(sdev))
1474 return ERR_PTR(-EMEDIUMTYPE);
1475
1476 /* allocate l2 accel structure if it is not available */
1477 if (!l2_accel) {
1478 /* verify there is enough free GLORTs to support l2_accel */
1479 if (interface->glort_count < 7)
1480 return ERR_PTR(-EBUSY);
1481
1482 size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1483 l2_accel = kzalloc(size, GFP_KERNEL);
1484 if (!l2_accel)
1485 return ERR_PTR(-ENOMEM);
1486
1487 l2_accel->size = 7;
1488 l2_accel->dglort = interface->glort;
1489
1490 /* update pointers */
1491 fm10k_assign_l2_accel(interface, l2_accel);
1492 /* do not expand if we are at our limit */
1493 } else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1494 (l2_accel->count == (interface->glort_count - 1))) {
1495 return ERR_PTR(-EBUSY);
1496 /* expand if we have hit the size limit */
1497 } else if (l2_accel->count == l2_accel->size) {
1498 old_l2_accel = l2_accel;
1499 size = offsetof(struct fm10k_l2_accel,
1500 macvlan[(l2_accel->size * 2) + 1]);
1501 l2_accel = kzalloc(size, GFP_KERNEL);
1502 if (!l2_accel)
1503 return ERR_PTR(-ENOMEM);
1504
1505 memcpy(l2_accel, old_l2_accel,
1506 offsetof(struct fm10k_l2_accel,
1507 macvlan[old_l2_accel->size]));
1508
1509 l2_accel->size = (old_l2_accel->size * 2) + 1;
1510
1511 /* update pointers */
1512 fm10k_assign_l2_accel(interface, l2_accel);
1513 kfree_rcu(old_l2_accel, rcu);
1514 }
1515
1516 /* add macvlan to accel table, and record GLORT for position */
1517 for (i = 0; i < l2_accel->size; i++) {
1518 if (!l2_accel->macvlan[i])
1519 break;
1520 }
1521
1522 /* record station */
1523 l2_accel->macvlan[i] = sdev;
1524 l2_accel->count++;
1525
1526 /* configure default DGLORT mapping for RSS/DCB */
1527 dglort.idx = fm10k_dglort_pf_rss;
1528 dglort.inner_rss = 1;
1529 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1530 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1531 dglort.glort = interface->glort;
1532 dglort.shared_l = fls(l2_accel->size);
1533 hw->mac.ops.configure_dglort_map(hw, &dglort);
1534
1535 /* Add rules for this specific dglort to the switch */
1536 fm10k_mbx_lock(interface);
1537
1538 glort = l2_accel->dglort + 1 + i;
1539
1540 if (fm10k_host_mbx_ready(interface))
1541 hw->mac.ops.update_xcast_mode(hw, glort,
1542 FM10K_XCAST_MODE_NONE);
1543
1544 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1545 hw->mac.default_vid, true);
1546
1547 for (vid = fm10k_find_next_vlan(interface, 0);
1548 vid < VLAN_N_VID;
1549 vid = fm10k_find_next_vlan(interface, vid))
1550 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1551 vid, true);
1552
1553 fm10k_mbx_unlock(interface);
1554
1555 return sdev;
1556 }
1557
fm10k_dfwd_del_station(struct net_device * dev,void * priv)1558 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1559 {
1560 struct fm10k_intfc *interface = netdev_priv(dev);
1561 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
1562 struct fm10k_dglort_cfg dglort = { 0 };
1563 struct fm10k_hw *hw = &interface->hw;
1564 struct net_device *sdev = priv;
1565 u16 vid, glort;
1566 int i;
1567
1568 if (!l2_accel)
1569 return;
1570
1571 /* search table for matching interface */
1572 for (i = 0; i < l2_accel->size; i++) {
1573 if (l2_accel->macvlan[i] == sdev)
1574 break;
1575 }
1576
1577 /* exit if macvlan not found */
1578 if (i == l2_accel->size)
1579 return;
1580
1581 /* Remove any rules specific to this dglort */
1582 fm10k_mbx_lock(interface);
1583
1584 glort = l2_accel->dglort + 1 + i;
1585
1586 if (fm10k_host_mbx_ready(interface))
1587 hw->mac.ops.update_xcast_mode(hw, glort,
1588 FM10K_XCAST_MODE_NONE);
1589
1590 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1591 hw->mac.default_vid, false);
1592
1593 for (vid = fm10k_find_next_vlan(interface, 0);
1594 vid < VLAN_N_VID;
1595 vid = fm10k_find_next_vlan(interface, vid))
1596 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1597 vid, false);
1598
1599 fm10k_mbx_unlock(interface);
1600
1601 /* record removal */
1602 l2_accel->macvlan[i] = NULL;
1603 l2_accel->count--;
1604
1605 /* configure default DGLORT mapping for RSS/DCB */
1606 dglort.idx = fm10k_dglort_pf_rss;
1607 dglort.inner_rss = 1;
1608 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1609 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1610 dglort.glort = interface->glort;
1611 dglort.shared_l = fls(l2_accel->size);
1612 hw->mac.ops.configure_dglort_map(hw, &dglort);
1613
1614 /* If table is empty remove it */
1615 if (l2_accel->count == 0) {
1616 fm10k_assign_l2_accel(interface, NULL);
1617 kfree_rcu(l2_accel, rcu);
1618 }
1619 }
1620
fm10k_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1621 static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1622 struct net_device *dev,
1623 netdev_features_t features)
1624 {
1625 if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1626 return features;
1627
1628 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1629 }
1630
1631 static const struct net_device_ops fm10k_netdev_ops = {
1632 .ndo_open = fm10k_open,
1633 .ndo_stop = fm10k_close,
1634 .ndo_validate_addr = eth_validate_addr,
1635 .ndo_start_xmit = fm10k_xmit_frame,
1636 .ndo_set_mac_address = fm10k_set_mac,
1637 .ndo_tx_timeout = fm10k_tx_timeout,
1638 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid,
1639 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid,
1640 .ndo_set_rx_mode = fm10k_set_rx_mode,
1641 .ndo_get_stats64 = fm10k_get_stats64,
1642 .ndo_setup_tc = __fm10k_setup_tc,
1643 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac,
1644 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan,
1645 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw,
1646 .ndo_get_vf_config = fm10k_ndo_get_vf_config,
1647 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add,
1648 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del,
1649 .ndo_dfwd_add_station = fm10k_dfwd_add_station,
1650 .ndo_dfwd_del_station = fm10k_dfwd_del_station,
1651 .ndo_features_check = fm10k_features_check,
1652 };
1653
1654 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1655
fm10k_alloc_netdev(const struct fm10k_info * info)1656 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1657 {
1658 netdev_features_t hw_features;
1659 struct fm10k_intfc *interface;
1660 struct net_device *dev;
1661
1662 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1663 if (!dev)
1664 return NULL;
1665
1666 /* set net device and ethtool ops */
1667 dev->netdev_ops = &fm10k_netdev_ops;
1668 fm10k_set_ethtool_ops(dev);
1669
1670 /* configure default debug level */
1671 interface = netdev_priv(dev);
1672 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1673
1674 /* configure default features */
1675 dev->features |= NETIF_F_IP_CSUM |
1676 NETIF_F_IPV6_CSUM |
1677 NETIF_F_SG |
1678 NETIF_F_TSO |
1679 NETIF_F_TSO6 |
1680 NETIF_F_TSO_ECN |
1681 NETIF_F_RXHASH |
1682 NETIF_F_RXCSUM;
1683
1684 /* Only the PF can support VXLAN and NVGRE tunnel offloads */
1685 if (info->mac == fm10k_mac_pf) {
1686 dev->hw_enc_features = NETIF_F_IP_CSUM |
1687 NETIF_F_TSO |
1688 NETIF_F_TSO6 |
1689 NETIF_F_TSO_ECN |
1690 NETIF_F_GSO_UDP_TUNNEL |
1691 NETIF_F_IPV6_CSUM |
1692 NETIF_F_SG;
1693
1694 dev->features |= NETIF_F_GSO_UDP_TUNNEL;
1695 }
1696
1697 /* all features defined to this point should be changeable */
1698 hw_features = dev->features;
1699
1700 /* allow user to enable L2 forwarding acceleration */
1701 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1702
1703 /* configure VLAN features */
1704 dev->vlan_features |= dev->features;
1705
1706 /* we want to leave these both on as we cannot disable VLAN tag
1707 * insertion or stripping on the hardware since it is contained
1708 * in the FTAG and not in the frame itself.
1709 */
1710 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1711 NETIF_F_HW_VLAN_CTAG_RX |
1712 NETIF_F_HW_VLAN_CTAG_FILTER;
1713
1714 dev->priv_flags |= IFF_UNICAST_FLT;
1715
1716 dev->hw_features |= hw_features;
1717
1718 /* MTU range: 68 - 15342 */
1719 dev->min_mtu = ETH_MIN_MTU;
1720 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
1721
1722 return dev;
1723 }
1724