1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/set_memory.h>
26
27 #include <asm/barrier.h>
28 #include <asm/cputype.h>
29 #include <asm/fixmap.h>
30 #include <asm/kasan.h>
31 #include <asm/kernel-pgtable.h>
32 #include <asm/sections.h>
33 #include <asm/setup.h>
34 #include <linux/sizes.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37 #include <asm/ptdump.h>
38 #include <asm/tlbflush.h>
39 #include <asm/pgalloc.h>
40
41 #define NO_BLOCK_MAPPINGS BIT(0)
42 #define NO_CONT_MAPPINGS BIT(1)
43 #define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
44
45 u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
46 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
47
48 u64 __section(".mmuoff.data.write") vabits_actual;
49 EXPORT_SYMBOL(vabits_actual);
50
51 u64 kimage_voffset __ro_after_init;
52 EXPORT_SYMBOL(kimage_voffset);
53
54 /*
55 * Empty_zero_page is a special page that is used for zero-initialized data
56 * and COW.
57 */
58 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
59 EXPORT_SYMBOL(empty_zero_page);
60
61 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
62 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
63 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
64
65 static DEFINE_SPINLOCK(swapper_pgdir_lock);
66
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)67 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
68 {
69 pgd_t *fixmap_pgdp;
70
71 spin_lock(&swapper_pgdir_lock);
72 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
73 WRITE_ONCE(*fixmap_pgdp, pgd);
74 /*
75 * We need dsb(ishst) here to ensure the page-table-walker sees
76 * our new entry before set_p?d() returns. The fixmap's
77 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
78 */
79 pgd_clear_fixmap();
80 spin_unlock(&swapper_pgdir_lock);
81 }
82
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
84 unsigned long size, pgprot_t vma_prot)
85 {
86 if (!pfn_is_map_memory(pfn))
87 return pgprot_noncached(vma_prot);
88 else if (file->f_flags & O_SYNC)
89 return pgprot_writecombine(vma_prot);
90 return vma_prot;
91 }
92 EXPORT_SYMBOL(phys_mem_access_prot);
93
early_pgtable_alloc(int shift)94 static phys_addr_t __init early_pgtable_alloc(int shift)
95 {
96 phys_addr_t phys;
97 void *ptr;
98
99 phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
100 if (!phys)
101 panic("Failed to allocate page table page\n");
102
103 /*
104 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
105 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
106 * any level of table.
107 */
108 ptr = pte_set_fixmap(phys);
109
110 memset(ptr, 0, PAGE_SIZE);
111
112 /*
113 * Implicit barriers also ensure the zeroed page is visible to the page
114 * table walker
115 */
116 pte_clear_fixmap();
117
118 return phys;
119 }
120
pgattr_change_is_safe(u64 old,u64 new)121 static bool pgattr_change_is_safe(u64 old, u64 new)
122 {
123 /*
124 * The following mapping attributes may be updated in live
125 * kernel mappings without the need for break-before-make.
126 */
127 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
128
129 /* creating or taking down mappings is always safe */
130 if (old == 0 || new == 0)
131 return true;
132
133 /* live contiguous mappings may not be manipulated at all */
134 if ((old | new) & PTE_CONT)
135 return false;
136
137 /* Transitioning from Non-Global to Global is unsafe */
138 if (old & ~new & PTE_NG)
139 return false;
140
141 /*
142 * Changing the memory type between Normal and Normal-Tagged is safe
143 * since Tagged is considered a permission attribute from the
144 * mismatched attribute aliases perspective.
145 */
146 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
147 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
148 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
149 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
150 mask |= PTE_ATTRINDX_MASK;
151
152 return ((old ^ new) & ~mask) == 0;
153 }
154
init_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)155 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
156 phys_addr_t phys, pgprot_t prot)
157 {
158 pte_t *ptep;
159
160 ptep = pte_set_fixmap_offset(pmdp, addr);
161 do {
162 pte_t old_pte = READ_ONCE(*ptep);
163
164 set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
165
166 /*
167 * After the PTE entry has been populated once, we
168 * only allow updates to the permission attributes.
169 */
170 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
171 READ_ONCE(pte_val(*ptep))));
172
173 phys += PAGE_SIZE;
174 } while (ptep++, addr += PAGE_SIZE, addr != end);
175
176 pte_clear_fixmap();
177 }
178
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)179 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
180 unsigned long end, phys_addr_t phys,
181 pgprot_t prot,
182 phys_addr_t (*pgtable_alloc)(int),
183 int flags)
184 {
185 unsigned long next;
186 pmd_t pmd = READ_ONCE(*pmdp);
187
188 BUG_ON(pmd_sect(pmd));
189 if (pmd_none(pmd)) {
190 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
191 phys_addr_t pte_phys;
192
193 if (flags & NO_EXEC_MAPPINGS)
194 pmdval |= PMD_TABLE_PXN;
195 BUG_ON(!pgtable_alloc);
196 pte_phys = pgtable_alloc(PAGE_SHIFT);
197 __pmd_populate(pmdp, pte_phys, pmdval);
198 pmd = READ_ONCE(*pmdp);
199 }
200 BUG_ON(pmd_bad(pmd));
201
202 do {
203 pgprot_t __prot = prot;
204
205 next = pte_cont_addr_end(addr, end);
206
207 /* use a contiguous mapping if the range is suitably aligned */
208 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
209 (flags & NO_CONT_MAPPINGS) == 0)
210 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
211
212 init_pte(pmdp, addr, next, phys, __prot);
213
214 phys += next - addr;
215 } while (addr = next, addr != end);
216 }
217
init_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)218 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
219 phys_addr_t phys, pgprot_t prot,
220 phys_addr_t (*pgtable_alloc)(int), int flags)
221 {
222 unsigned long next;
223 pmd_t *pmdp;
224
225 pmdp = pmd_set_fixmap_offset(pudp, addr);
226 do {
227 pmd_t old_pmd = READ_ONCE(*pmdp);
228
229 next = pmd_addr_end(addr, end);
230
231 /* try section mapping first */
232 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
233 (flags & NO_BLOCK_MAPPINGS) == 0) {
234 pmd_set_huge(pmdp, phys, prot);
235
236 /*
237 * After the PMD entry has been populated once, we
238 * only allow updates to the permission attributes.
239 */
240 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
241 READ_ONCE(pmd_val(*pmdp))));
242 } else {
243 alloc_init_cont_pte(pmdp, addr, next, phys, prot,
244 pgtable_alloc, flags);
245
246 BUG_ON(pmd_val(old_pmd) != 0 &&
247 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
248 }
249 phys += next - addr;
250 } while (pmdp++, addr = next, addr != end);
251
252 pmd_clear_fixmap();
253 }
254
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)255 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
256 unsigned long end, phys_addr_t phys,
257 pgprot_t prot,
258 phys_addr_t (*pgtable_alloc)(int), int flags)
259 {
260 unsigned long next;
261 pud_t pud = READ_ONCE(*pudp);
262
263 /*
264 * Check for initial section mappings in the pgd/pud.
265 */
266 BUG_ON(pud_sect(pud));
267 if (pud_none(pud)) {
268 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
269 phys_addr_t pmd_phys;
270
271 if (flags & NO_EXEC_MAPPINGS)
272 pudval |= PUD_TABLE_PXN;
273 BUG_ON(!pgtable_alloc);
274 pmd_phys = pgtable_alloc(PMD_SHIFT);
275 __pud_populate(pudp, pmd_phys, pudval);
276 pud = READ_ONCE(*pudp);
277 }
278 BUG_ON(pud_bad(pud));
279
280 do {
281 pgprot_t __prot = prot;
282
283 next = pmd_cont_addr_end(addr, end);
284
285 /* use a contiguous mapping if the range is suitably aligned */
286 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
287 (flags & NO_CONT_MAPPINGS) == 0)
288 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
289
290 init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
291
292 phys += next - addr;
293 } while (addr = next, addr != end);
294 }
295
use_1G_block(unsigned long addr,unsigned long next,unsigned long phys)296 static inline bool use_1G_block(unsigned long addr, unsigned long next,
297 unsigned long phys)
298 {
299 if (PAGE_SHIFT != 12)
300 return false;
301
302 if (((addr | next | phys) & ~PUD_MASK) != 0)
303 return false;
304
305 return true;
306 }
307
alloc_init_pud(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)308 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
309 phys_addr_t phys, pgprot_t prot,
310 phys_addr_t (*pgtable_alloc)(int),
311 int flags)
312 {
313 unsigned long next;
314 pud_t *pudp;
315 p4d_t *p4dp = p4d_offset(pgdp, addr);
316 p4d_t p4d = READ_ONCE(*p4dp);
317
318 if (p4d_none(p4d)) {
319 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
320 phys_addr_t pud_phys;
321
322 if (flags & NO_EXEC_MAPPINGS)
323 p4dval |= P4D_TABLE_PXN;
324 BUG_ON(!pgtable_alloc);
325 pud_phys = pgtable_alloc(PUD_SHIFT);
326 __p4d_populate(p4dp, pud_phys, p4dval);
327 p4d = READ_ONCE(*p4dp);
328 }
329 BUG_ON(p4d_bad(p4d));
330
331 pudp = pud_set_fixmap_offset(p4dp, addr);
332 do {
333 pud_t old_pud = READ_ONCE(*pudp);
334
335 next = pud_addr_end(addr, end);
336
337 /*
338 * For 4K granule only, attempt to put down a 1GB block
339 */
340 if (use_1G_block(addr, next, phys) &&
341 (flags & NO_BLOCK_MAPPINGS) == 0) {
342 pud_set_huge(pudp, phys, prot);
343
344 /*
345 * After the PUD entry has been populated once, we
346 * only allow updates to the permission attributes.
347 */
348 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
349 READ_ONCE(pud_val(*pudp))));
350 } else {
351 alloc_init_cont_pmd(pudp, addr, next, phys, prot,
352 pgtable_alloc, flags);
353
354 BUG_ON(pud_val(old_pud) != 0 &&
355 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
356 }
357 phys += next - addr;
358 } while (pudp++, addr = next, addr != end);
359
360 pud_clear_fixmap();
361 }
362
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(int),int flags)363 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
364 unsigned long virt, phys_addr_t size,
365 pgprot_t prot,
366 phys_addr_t (*pgtable_alloc)(int),
367 int flags)
368 {
369 unsigned long addr, end, next;
370 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
371
372 /*
373 * If the virtual and physical address don't have the same offset
374 * within a page, we cannot map the region as the caller expects.
375 */
376 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
377 return;
378
379 phys &= PAGE_MASK;
380 addr = virt & PAGE_MASK;
381 end = PAGE_ALIGN(virt + size);
382
383 do {
384 next = pgd_addr_end(addr, end);
385 alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
386 flags);
387 phys += next - addr;
388 } while (pgdp++, addr = next, addr != end);
389 }
390
__pgd_pgtable_alloc(int shift)391 static phys_addr_t __pgd_pgtable_alloc(int shift)
392 {
393 void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
394 BUG_ON(!ptr);
395
396 /* Ensure the zeroed page is visible to the page table walker */
397 dsb(ishst);
398 return __pa(ptr);
399 }
400
pgd_pgtable_alloc(int shift)401 static phys_addr_t pgd_pgtable_alloc(int shift)
402 {
403 phys_addr_t pa = __pgd_pgtable_alloc(shift);
404
405 /*
406 * Call proper page table ctor in case later we need to
407 * call core mm functions like apply_to_page_range() on
408 * this pre-allocated page table.
409 *
410 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
411 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
412 */
413 if (shift == PAGE_SHIFT)
414 BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
415 else if (shift == PMD_SHIFT)
416 BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
417
418 return pa;
419 }
420
421 /*
422 * This function can only be used to modify existing table entries,
423 * without allocating new levels of table. Note that this permits the
424 * creation of new section or page entries.
425 */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)426 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
427 phys_addr_t size, pgprot_t prot)
428 {
429 if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
430 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
431 &phys, virt);
432 return;
433 }
434 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
435 NO_CONT_MAPPINGS);
436 }
437
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)438 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
439 unsigned long virt, phys_addr_t size,
440 pgprot_t prot, bool page_mappings_only)
441 {
442 int flags = 0;
443
444 BUG_ON(mm == &init_mm);
445
446 if (page_mappings_only)
447 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
448
449 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
450 pgd_pgtable_alloc, flags);
451 }
452
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)453 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
454 phys_addr_t size, pgprot_t prot)
455 {
456 if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
457 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
458 &phys, virt);
459 return;
460 }
461
462 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
463 NO_CONT_MAPPINGS);
464
465 /* flush the TLBs after updating live kernel mappings */
466 flush_tlb_kernel_range(virt, virt + size);
467 }
468
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)469 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
470 phys_addr_t end, pgprot_t prot, int flags)
471 {
472 __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
473 prot, early_pgtable_alloc, flags);
474 }
475
mark_linear_text_alias_ro(void)476 void __init mark_linear_text_alias_ro(void)
477 {
478 /*
479 * Remove the write permissions from the linear alias of .text/.rodata
480 */
481 update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
482 (unsigned long)__init_begin - (unsigned long)_stext,
483 PAGE_KERNEL_RO);
484 }
485
486 static bool crash_mem_map __initdata;
487
enable_crash_mem_map(char * arg)488 static int __init enable_crash_mem_map(char *arg)
489 {
490 /*
491 * Proper parameter parsing is done by reserve_crashkernel(). We only
492 * need to know if the linear map has to avoid block mappings so that
493 * the crashkernel reservations can be unmapped later.
494 */
495 crash_mem_map = true;
496
497 return 0;
498 }
499 early_param("crashkernel", enable_crash_mem_map);
500
map_mem(pgd_t * pgdp)501 static void __init map_mem(pgd_t *pgdp)
502 {
503 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
504 phys_addr_t kernel_start = __pa_symbol(_stext);
505 phys_addr_t kernel_end = __pa_symbol(__init_begin);
506 phys_addr_t start, end;
507 int flags = NO_EXEC_MAPPINGS;
508 u64 i;
509
510 /*
511 * Setting hierarchical PXNTable attributes on table entries covering
512 * the linear region is only possible if it is guaranteed that no table
513 * entries at any level are being shared between the linear region and
514 * the vmalloc region. Check whether this is true for the PGD level, in
515 * which case it is guaranteed to be true for all other levels as well.
516 */
517 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
518
519 if (can_set_direct_map() || crash_mem_map || IS_ENABLED(CONFIG_KFENCE))
520 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
521
522 /*
523 * Take care not to create a writable alias for the
524 * read-only text and rodata sections of the kernel image.
525 * So temporarily mark them as NOMAP to skip mappings in
526 * the following for-loop
527 */
528 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
529
530 /* map all the memory banks */
531 for_each_mem_range(i, &start, &end) {
532 if (start >= end)
533 break;
534 /*
535 * The linear map must allow allocation tags reading/writing
536 * if MTE is present. Otherwise, it has the same attributes as
537 * PAGE_KERNEL.
538 */
539 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
540 flags);
541 }
542
543 /*
544 * Map the linear alias of the [_stext, __init_begin) interval
545 * as non-executable now, and remove the write permission in
546 * mark_linear_text_alias_ro() below (which will be called after
547 * alternative patching has completed). This makes the contents
548 * of the region accessible to subsystems such as hibernate,
549 * but protects it from inadvertent modification or execution.
550 * Note that contiguous mappings cannot be remapped in this way,
551 * so we should avoid them here.
552 */
553 __map_memblock(pgdp, kernel_start, kernel_end,
554 PAGE_KERNEL, NO_CONT_MAPPINGS);
555 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
556 }
557
mark_rodata_ro(void)558 void mark_rodata_ro(void)
559 {
560 unsigned long section_size;
561
562 /*
563 * mark .rodata as read only. Use __init_begin rather than __end_rodata
564 * to cover NOTES and EXCEPTION_TABLE.
565 */
566 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
567 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
568 section_size, PAGE_KERNEL_RO);
569
570 debug_checkwx();
571 }
572
map_kernel_segment(pgd_t * pgdp,void * va_start,void * va_end,pgprot_t prot,struct vm_struct * vma,int flags,unsigned long vm_flags)573 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
574 pgprot_t prot, struct vm_struct *vma,
575 int flags, unsigned long vm_flags)
576 {
577 phys_addr_t pa_start = __pa_symbol(va_start);
578 unsigned long size = va_end - va_start;
579
580 BUG_ON(!PAGE_ALIGNED(pa_start));
581 BUG_ON(!PAGE_ALIGNED(size));
582
583 __create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
584 early_pgtable_alloc, flags);
585
586 if (!(vm_flags & VM_NO_GUARD))
587 size += PAGE_SIZE;
588
589 vma->addr = va_start;
590 vma->phys_addr = pa_start;
591 vma->size = size;
592 vma->flags = VM_MAP | vm_flags;
593 vma->caller = __builtin_return_address(0);
594
595 vm_area_add_early(vma);
596 }
597
parse_rodata(char * arg)598 static int __init parse_rodata(char *arg)
599 {
600 int ret = strtobool(arg, &rodata_enabled);
601 if (!ret) {
602 rodata_full = false;
603 return 0;
604 }
605
606 /* permit 'full' in addition to boolean options */
607 if (strcmp(arg, "full"))
608 return -EINVAL;
609
610 rodata_enabled = true;
611 rodata_full = true;
612 return 0;
613 }
614 early_param("rodata", parse_rodata);
615
616 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
map_entry_trampoline(void)617 static int __init map_entry_trampoline(void)
618 {
619 pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
620 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
621
622 /* The trampoline is always mapped and can therefore be global */
623 pgprot_val(prot) &= ~PTE_NG;
624
625 /* Map only the text into the trampoline page table */
626 memset(tramp_pg_dir, 0, PGD_SIZE);
627 __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
628 prot, __pgd_pgtable_alloc, 0);
629
630 /* Map both the text and data into the kernel page table */
631 __set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
632 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
633 extern char __entry_tramp_data_start[];
634
635 __set_fixmap(FIX_ENTRY_TRAMP_DATA,
636 __pa_symbol(__entry_tramp_data_start),
637 PAGE_KERNEL_RO);
638 }
639
640 return 0;
641 }
642 core_initcall(map_entry_trampoline);
643 #endif
644
645 /*
646 * Open coded check for BTI, only for use to determine configuration
647 * for early mappings for before the cpufeature code has run.
648 */
arm64_early_this_cpu_has_bti(void)649 static bool arm64_early_this_cpu_has_bti(void)
650 {
651 u64 pfr1;
652
653 if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
654 return false;
655
656 pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
657 return cpuid_feature_extract_unsigned_field(pfr1,
658 ID_AA64PFR1_BT_SHIFT);
659 }
660
661 /*
662 * Create fine-grained mappings for the kernel.
663 */
map_kernel(pgd_t * pgdp)664 static void __init map_kernel(pgd_t *pgdp)
665 {
666 static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
667 vmlinux_initdata, vmlinux_data;
668
669 /*
670 * External debuggers may need to write directly to the text
671 * mapping to install SW breakpoints. Allow this (only) when
672 * explicitly requested with rodata=off.
673 */
674 pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
675
676 /*
677 * If we have a CPU that supports BTI and a kernel built for
678 * BTI then mark the kernel executable text as guarded pages
679 * now so we don't have to rewrite the page tables later.
680 */
681 if (arm64_early_this_cpu_has_bti())
682 text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
683
684 /*
685 * Only rodata will be remapped with different permissions later on,
686 * all other segments are allowed to use contiguous mappings.
687 */
688 map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
689 VM_NO_GUARD);
690 map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
691 &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
692 map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
693 &vmlinux_inittext, 0, VM_NO_GUARD);
694 map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
695 &vmlinux_initdata, 0, VM_NO_GUARD);
696 map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
697
698 if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
699 /*
700 * The fixmap falls in a separate pgd to the kernel, and doesn't
701 * live in the carveout for the swapper_pg_dir. We can simply
702 * re-use the existing dir for the fixmap.
703 */
704 set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
705 READ_ONCE(*pgd_offset_k(FIXADDR_START)));
706 } else if (CONFIG_PGTABLE_LEVELS > 3) {
707 pgd_t *bm_pgdp;
708 p4d_t *bm_p4dp;
709 pud_t *bm_pudp;
710 /*
711 * The fixmap shares its top level pgd entry with the kernel
712 * mapping. This can really only occur when we are running
713 * with 16k/4 levels, so we can simply reuse the pud level
714 * entry instead.
715 */
716 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
717 bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
718 bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
719 bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
720 pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
721 pud_clear_fixmap();
722 } else {
723 BUG();
724 }
725
726 kasan_copy_shadow(pgdp);
727 }
728
paging_init(void)729 void __init paging_init(void)
730 {
731 pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
732
733 map_kernel(pgdp);
734 map_mem(pgdp);
735
736 pgd_clear_fixmap();
737
738 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
739 init_mm.pgd = swapper_pg_dir;
740
741 memblock_free(__pa_symbol(init_pg_dir),
742 __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
743
744 memblock_allow_resize();
745 }
746
747 /*
748 * Check whether a kernel address is valid (derived from arch/x86/).
749 */
kern_addr_valid(unsigned long addr)750 int kern_addr_valid(unsigned long addr)
751 {
752 pgd_t *pgdp;
753 p4d_t *p4dp;
754 pud_t *pudp, pud;
755 pmd_t *pmdp, pmd;
756 pte_t *ptep, pte;
757
758 addr = arch_kasan_reset_tag(addr);
759 if ((((long)addr) >> VA_BITS) != -1UL)
760 return 0;
761
762 pgdp = pgd_offset_k(addr);
763 if (pgd_none(READ_ONCE(*pgdp)))
764 return 0;
765
766 p4dp = p4d_offset(pgdp, addr);
767 if (p4d_none(READ_ONCE(*p4dp)))
768 return 0;
769
770 pudp = pud_offset(p4dp, addr);
771 pud = READ_ONCE(*pudp);
772 if (pud_none(pud))
773 return 0;
774
775 if (pud_sect(pud))
776 return pfn_valid(pud_pfn(pud));
777
778 pmdp = pmd_offset(pudp, addr);
779 pmd = READ_ONCE(*pmdp);
780 if (pmd_none(pmd))
781 return 0;
782
783 if (pmd_sect(pmd))
784 return pfn_valid(pmd_pfn(pmd));
785
786 ptep = pte_offset_kernel(pmdp, addr);
787 pte = READ_ONCE(*ptep);
788 if (pte_none(pte))
789 return 0;
790
791 return pfn_valid(pte_pfn(pte));
792 }
793
794 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)795 static void free_hotplug_page_range(struct page *page, size_t size,
796 struct vmem_altmap *altmap)
797 {
798 if (altmap) {
799 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
800 } else {
801 WARN_ON(PageReserved(page));
802 free_pages((unsigned long)page_address(page), get_order(size));
803 }
804 }
805
free_hotplug_pgtable_page(struct page * page)806 static void free_hotplug_pgtable_page(struct page *page)
807 {
808 free_hotplug_page_range(page, PAGE_SIZE, NULL);
809 }
810
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)811 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
812 unsigned long floor, unsigned long ceiling,
813 unsigned long mask)
814 {
815 start &= mask;
816 if (start < floor)
817 return false;
818
819 if (ceiling) {
820 ceiling &= mask;
821 if (!ceiling)
822 return false;
823 }
824
825 if (end - 1 > ceiling - 1)
826 return false;
827 return true;
828 }
829
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)830 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
831 unsigned long end, bool free_mapped,
832 struct vmem_altmap *altmap)
833 {
834 pte_t *ptep, pte;
835
836 do {
837 ptep = pte_offset_kernel(pmdp, addr);
838 pte = READ_ONCE(*ptep);
839 if (pte_none(pte))
840 continue;
841
842 WARN_ON(!pte_present(pte));
843 pte_clear(&init_mm, addr, ptep);
844 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
845 if (free_mapped)
846 free_hotplug_page_range(pte_page(pte),
847 PAGE_SIZE, altmap);
848 } while (addr += PAGE_SIZE, addr < end);
849 }
850
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)851 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
852 unsigned long end, bool free_mapped,
853 struct vmem_altmap *altmap)
854 {
855 unsigned long next;
856 pmd_t *pmdp, pmd;
857
858 do {
859 next = pmd_addr_end(addr, end);
860 pmdp = pmd_offset(pudp, addr);
861 pmd = READ_ONCE(*pmdp);
862 if (pmd_none(pmd))
863 continue;
864
865 WARN_ON(!pmd_present(pmd));
866 if (pmd_sect(pmd)) {
867 pmd_clear(pmdp);
868
869 /*
870 * One TLBI should be sufficient here as the PMD_SIZE
871 * range is mapped with a single block entry.
872 */
873 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
874 if (free_mapped)
875 free_hotplug_page_range(pmd_page(pmd),
876 PMD_SIZE, altmap);
877 continue;
878 }
879 WARN_ON(!pmd_table(pmd));
880 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
881 } while (addr = next, addr < end);
882 }
883
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)884 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
885 unsigned long end, bool free_mapped,
886 struct vmem_altmap *altmap)
887 {
888 unsigned long next;
889 pud_t *pudp, pud;
890
891 do {
892 next = pud_addr_end(addr, end);
893 pudp = pud_offset(p4dp, addr);
894 pud = READ_ONCE(*pudp);
895 if (pud_none(pud))
896 continue;
897
898 WARN_ON(!pud_present(pud));
899 if (pud_sect(pud)) {
900 pud_clear(pudp);
901
902 /*
903 * One TLBI should be sufficient here as the PUD_SIZE
904 * range is mapped with a single block entry.
905 */
906 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
907 if (free_mapped)
908 free_hotplug_page_range(pud_page(pud),
909 PUD_SIZE, altmap);
910 continue;
911 }
912 WARN_ON(!pud_table(pud));
913 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
914 } while (addr = next, addr < end);
915 }
916
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)917 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
918 unsigned long end, bool free_mapped,
919 struct vmem_altmap *altmap)
920 {
921 unsigned long next;
922 p4d_t *p4dp, p4d;
923
924 do {
925 next = p4d_addr_end(addr, end);
926 p4dp = p4d_offset(pgdp, addr);
927 p4d = READ_ONCE(*p4dp);
928 if (p4d_none(p4d))
929 continue;
930
931 WARN_ON(!p4d_present(p4d));
932 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
933 } while (addr = next, addr < end);
934 }
935
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)936 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
937 bool free_mapped, struct vmem_altmap *altmap)
938 {
939 unsigned long next;
940 pgd_t *pgdp, pgd;
941
942 /*
943 * altmap can only be used as vmemmap mapping backing memory.
944 * In case the backing memory itself is not being freed, then
945 * altmap is irrelevant. Warn about this inconsistency when
946 * encountered.
947 */
948 WARN_ON(!free_mapped && altmap);
949
950 do {
951 next = pgd_addr_end(addr, end);
952 pgdp = pgd_offset_k(addr);
953 pgd = READ_ONCE(*pgdp);
954 if (pgd_none(pgd))
955 continue;
956
957 WARN_ON(!pgd_present(pgd));
958 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
959 } while (addr = next, addr < end);
960 }
961
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)962 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
963 unsigned long end, unsigned long floor,
964 unsigned long ceiling)
965 {
966 pte_t *ptep, pte;
967 unsigned long i, start = addr;
968
969 do {
970 ptep = pte_offset_kernel(pmdp, addr);
971 pte = READ_ONCE(*ptep);
972
973 /*
974 * This is just a sanity check here which verifies that
975 * pte clearing has been done by earlier unmap loops.
976 */
977 WARN_ON(!pte_none(pte));
978 } while (addr += PAGE_SIZE, addr < end);
979
980 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
981 return;
982
983 /*
984 * Check whether we can free the pte page if the rest of the
985 * entries are empty. Overlap with other regions have been
986 * handled by the floor/ceiling check.
987 */
988 ptep = pte_offset_kernel(pmdp, 0UL);
989 for (i = 0; i < PTRS_PER_PTE; i++) {
990 if (!pte_none(READ_ONCE(ptep[i])))
991 return;
992 }
993
994 pmd_clear(pmdp);
995 __flush_tlb_kernel_pgtable(start);
996 free_hotplug_pgtable_page(virt_to_page(ptep));
997 }
998
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)999 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1000 unsigned long end, unsigned long floor,
1001 unsigned long ceiling)
1002 {
1003 pmd_t *pmdp, pmd;
1004 unsigned long i, next, start = addr;
1005
1006 do {
1007 next = pmd_addr_end(addr, end);
1008 pmdp = pmd_offset(pudp, addr);
1009 pmd = READ_ONCE(*pmdp);
1010 if (pmd_none(pmd))
1011 continue;
1012
1013 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1014 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1015 } while (addr = next, addr < end);
1016
1017 if (CONFIG_PGTABLE_LEVELS <= 2)
1018 return;
1019
1020 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1021 return;
1022
1023 /*
1024 * Check whether we can free the pmd page if the rest of the
1025 * entries are empty. Overlap with other regions have been
1026 * handled by the floor/ceiling check.
1027 */
1028 pmdp = pmd_offset(pudp, 0UL);
1029 for (i = 0; i < PTRS_PER_PMD; i++) {
1030 if (!pmd_none(READ_ONCE(pmdp[i])))
1031 return;
1032 }
1033
1034 pud_clear(pudp);
1035 __flush_tlb_kernel_pgtable(start);
1036 free_hotplug_pgtable_page(virt_to_page(pmdp));
1037 }
1038
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1039 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1040 unsigned long end, unsigned long floor,
1041 unsigned long ceiling)
1042 {
1043 pud_t *pudp, pud;
1044 unsigned long i, next, start = addr;
1045
1046 do {
1047 next = pud_addr_end(addr, end);
1048 pudp = pud_offset(p4dp, addr);
1049 pud = READ_ONCE(*pudp);
1050 if (pud_none(pud))
1051 continue;
1052
1053 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1054 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1055 } while (addr = next, addr < end);
1056
1057 if (CONFIG_PGTABLE_LEVELS <= 3)
1058 return;
1059
1060 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1061 return;
1062
1063 /*
1064 * Check whether we can free the pud page if the rest of the
1065 * entries are empty. Overlap with other regions have been
1066 * handled by the floor/ceiling check.
1067 */
1068 pudp = pud_offset(p4dp, 0UL);
1069 for (i = 0; i < PTRS_PER_PUD; i++) {
1070 if (!pud_none(READ_ONCE(pudp[i])))
1071 return;
1072 }
1073
1074 p4d_clear(p4dp);
1075 __flush_tlb_kernel_pgtable(start);
1076 free_hotplug_pgtable_page(virt_to_page(pudp));
1077 }
1078
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1079 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1080 unsigned long end, unsigned long floor,
1081 unsigned long ceiling)
1082 {
1083 unsigned long next;
1084 p4d_t *p4dp, p4d;
1085
1086 do {
1087 next = p4d_addr_end(addr, end);
1088 p4dp = p4d_offset(pgdp, addr);
1089 p4d = READ_ONCE(*p4dp);
1090 if (p4d_none(p4d))
1091 continue;
1092
1093 WARN_ON(!p4d_present(p4d));
1094 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1095 } while (addr = next, addr < end);
1096 }
1097
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1098 static void free_empty_tables(unsigned long addr, unsigned long end,
1099 unsigned long floor, unsigned long ceiling)
1100 {
1101 unsigned long next;
1102 pgd_t *pgdp, pgd;
1103
1104 do {
1105 next = pgd_addr_end(addr, end);
1106 pgdp = pgd_offset_k(addr);
1107 pgd = READ_ONCE(*pgdp);
1108 if (pgd_none(pgd))
1109 continue;
1110
1111 WARN_ON(!pgd_present(pgd));
1112 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1113 } while (addr = next, addr < end);
1114 }
1115 #endif
1116
1117 #if !ARM64_KERNEL_USES_PMD_MAPS
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1118 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1119 struct vmem_altmap *altmap)
1120 {
1121 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1122 return vmemmap_populate_basepages(start, end, node, altmap);
1123 }
1124 #else /* !ARM64_KERNEL_USES_PMD_MAPS */
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1125 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1126 struct vmem_altmap *altmap)
1127 {
1128 unsigned long addr = start;
1129 unsigned long next;
1130 pgd_t *pgdp;
1131 p4d_t *p4dp;
1132 pud_t *pudp;
1133 pmd_t *pmdp;
1134
1135 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1136 do {
1137 next = pmd_addr_end(addr, end);
1138
1139 pgdp = vmemmap_pgd_populate(addr, node);
1140 if (!pgdp)
1141 return -ENOMEM;
1142
1143 p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1144 if (!p4dp)
1145 return -ENOMEM;
1146
1147 pudp = vmemmap_pud_populate(p4dp, addr, node);
1148 if (!pudp)
1149 return -ENOMEM;
1150
1151 pmdp = pmd_offset(pudp, addr);
1152 if (pmd_none(READ_ONCE(*pmdp))) {
1153 void *p = NULL;
1154
1155 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1156 if (!p) {
1157 if (vmemmap_populate_basepages(addr, next, node, altmap))
1158 return -ENOMEM;
1159 continue;
1160 }
1161
1162 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1163 } else
1164 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1165 } while (addr = next, addr != end);
1166
1167 return 0;
1168 }
1169 #endif /* !ARM64_KERNEL_USES_PMD_MAPS */
1170
1171 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1172 void vmemmap_free(unsigned long start, unsigned long end,
1173 struct vmem_altmap *altmap)
1174 {
1175 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1176
1177 unmap_hotplug_range(start, end, true, altmap);
1178 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1179 }
1180 #endif /* CONFIG_MEMORY_HOTPLUG */
1181
fixmap_pud(unsigned long addr)1182 static inline pud_t *fixmap_pud(unsigned long addr)
1183 {
1184 pgd_t *pgdp = pgd_offset_k(addr);
1185 p4d_t *p4dp = p4d_offset(pgdp, addr);
1186 p4d_t p4d = READ_ONCE(*p4dp);
1187
1188 BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1189
1190 return pud_offset_kimg(p4dp, addr);
1191 }
1192
fixmap_pmd(unsigned long addr)1193 static inline pmd_t *fixmap_pmd(unsigned long addr)
1194 {
1195 pud_t *pudp = fixmap_pud(addr);
1196 pud_t pud = READ_ONCE(*pudp);
1197
1198 BUG_ON(pud_none(pud) || pud_bad(pud));
1199
1200 return pmd_offset_kimg(pudp, addr);
1201 }
1202
fixmap_pte(unsigned long addr)1203 static inline pte_t *fixmap_pte(unsigned long addr)
1204 {
1205 return &bm_pte[pte_index(addr)];
1206 }
1207
1208 /*
1209 * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1210 * directly on kernel symbols (bm_p*d). This function is called too early to use
1211 * lm_alias so __p*d_populate functions must be used to populate with the
1212 * physical address from __pa_symbol.
1213 */
early_fixmap_init(void)1214 void __init early_fixmap_init(void)
1215 {
1216 pgd_t *pgdp;
1217 p4d_t *p4dp, p4d;
1218 pud_t *pudp;
1219 pmd_t *pmdp;
1220 unsigned long addr = FIXADDR_START;
1221
1222 pgdp = pgd_offset_k(addr);
1223 p4dp = p4d_offset(pgdp, addr);
1224 p4d = READ_ONCE(*p4dp);
1225 if (CONFIG_PGTABLE_LEVELS > 3 &&
1226 !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1227 /*
1228 * We only end up here if the kernel mapping and the fixmap
1229 * share the top level pgd entry, which should only happen on
1230 * 16k/4 levels configurations.
1231 */
1232 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1233 pudp = pud_offset_kimg(p4dp, addr);
1234 } else {
1235 if (p4d_none(p4d))
1236 __p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
1237 pudp = fixmap_pud(addr);
1238 }
1239 if (pud_none(READ_ONCE(*pudp)))
1240 __pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
1241 pmdp = fixmap_pmd(addr);
1242 __pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1243
1244 /*
1245 * The boot-ioremap range spans multiple pmds, for which
1246 * we are not prepared:
1247 */
1248 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1249 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1250
1251 if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1252 || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1253 WARN_ON(1);
1254 pr_warn("pmdp %p != %p, %p\n",
1255 pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1256 fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1257 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1258 fix_to_virt(FIX_BTMAP_BEGIN));
1259 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1260 fix_to_virt(FIX_BTMAP_END));
1261
1262 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1263 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1264 }
1265 }
1266
1267 /*
1268 * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1269 * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1270 */
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)1271 void __set_fixmap(enum fixed_addresses idx,
1272 phys_addr_t phys, pgprot_t flags)
1273 {
1274 unsigned long addr = __fix_to_virt(idx);
1275 pte_t *ptep;
1276
1277 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1278
1279 ptep = fixmap_pte(addr);
1280
1281 if (pgprot_val(flags)) {
1282 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1283 } else {
1284 pte_clear(&init_mm, addr, ptep);
1285 flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1286 }
1287 }
1288
fixmap_remap_fdt(phys_addr_t dt_phys,int * size,pgprot_t prot)1289 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1290 {
1291 const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1292 int offset;
1293 void *dt_virt;
1294
1295 /*
1296 * Check whether the physical FDT address is set and meets the minimum
1297 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1298 * at least 8 bytes so that we can always access the magic and size
1299 * fields of the FDT header after mapping the first chunk, double check
1300 * here if that is indeed the case.
1301 */
1302 BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1303 if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1304 return NULL;
1305
1306 /*
1307 * Make sure that the FDT region can be mapped without the need to
1308 * allocate additional translation table pages, so that it is safe
1309 * to call create_mapping_noalloc() this early.
1310 *
1311 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1312 * be in the same PMD as the rest of the fixmap.
1313 * On 4k pages, we'll use section mappings for the FDT so we only
1314 * have to be in the same PUD.
1315 */
1316 BUILD_BUG_ON(dt_virt_base % SZ_2M);
1317
1318 BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1319 __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1320
1321 offset = dt_phys % SWAPPER_BLOCK_SIZE;
1322 dt_virt = (void *)dt_virt_base + offset;
1323
1324 /* map the first chunk so we can read the size from the header */
1325 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1326 dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1327
1328 if (fdt_magic(dt_virt) != FDT_MAGIC)
1329 return NULL;
1330
1331 *size = fdt_totalsize(dt_virt);
1332 if (*size > MAX_FDT_SIZE)
1333 return NULL;
1334
1335 if (offset + *size > SWAPPER_BLOCK_SIZE)
1336 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1337 round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1338
1339 return dt_virt;
1340 }
1341
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1342 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1343 {
1344 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1345
1346 /* Only allow permission changes for now */
1347 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1348 pud_val(new_pud)))
1349 return 0;
1350
1351 VM_BUG_ON(phys & ~PUD_MASK);
1352 set_pud(pudp, new_pud);
1353 return 1;
1354 }
1355
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1356 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1357 {
1358 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1359
1360 /* Only allow permission changes for now */
1361 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1362 pmd_val(new_pmd)))
1363 return 0;
1364
1365 VM_BUG_ON(phys & ~PMD_MASK);
1366 set_pmd(pmdp, new_pmd);
1367 return 1;
1368 }
1369
pud_clear_huge(pud_t * pudp)1370 int pud_clear_huge(pud_t *pudp)
1371 {
1372 if (!pud_sect(READ_ONCE(*pudp)))
1373 return 0;
1374 pud_clear(pudp);
1375 return 1;
1376 }
1377
pmd_clear_huge(pmd_t * pmdp)1378 int pmd_clear_huge(pmd_t *pmdp)
1379 {
1380 if (!pmd_sect(READ_ONCE(*pmdp)))
1381 return 0;
1382 pmd_clear(pmdp);
1383 return 1;
1384 }
1385
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1386 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1387 {
1388 pte_t *table;
1389 pmd_t pmd;
1390
1391 pmd = READ_ONCE(*pmdp);
1392
1393 if (!pmd_table(pmd)) {
1394 VM_WARN_ON(1);
1395 return 1;
1396 }
1397
1398 table = pte_offset_kernel(pmdp, addr);
1399 pmd_clear(pmdp);
1400 __flush_tlb_kernel_pgtable(addr);
1401 pte_free_kernel(NULL, table);
1402 return 1;
1403 }
1404
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1405 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1406 {
1407 pmd_t *table;
1408 pmd_t *pmdp;
1409 pud_t pud;
1410 unsigned long next, end;
1411
1412 pud = READ_ONCE(*pudp);
1413
1414 if (!pud_table(pud)) {
1415 VM_WARN_ON(1);
1416 return 1;
1417 }
1418
1419 table = pmd_offset(pudp, addr);
1420 pmdp = table;
1421 next = addr;
1422 end = addr + PUD_SIZE;
1423 do {
1424 pmd_free_pte_page(pmdp, next);
1425 } while (pmdp++, next += PMD_SIZE, next != end);
1426
1427 pud_clear(pudp);
1428 __flush_tlb_kernel_pgtable(addr);
1429 pmd_free(NULL, table);
1430 return 1;
1431 }
1432
1433 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1434 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1435 {
1436 unsigned long end = start + size;
1437
1438 WARN_ON(pgdir != init_mm.pgd);
1439 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1440
1441 unmap_hotplug_range(start, end, false, NULL);
1442 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1443 }
1444
arch_get_mappable_range(void)1445 struct range arch_get_mappable_range(void)
1446 {
1447 struct range mhp_range;
1448 u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1449 u64 end_linear_pa = __pa(PAGE_END - 1);
1450
1451 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1452 /*
1453 * Check for a wrap, it is possible because of randomized linear
1454 * mapping the start physical address is actually bigger than
1455 * the end physical address. In this case set start to zero
1456 * because [0, end_linear_pa] range must still be able to cover
1457 * all addressable physical addresses.
1458 */
1459 if (start_linear_pa > end_linear_pa)
1460 start_linear_pa = 0;
1461 }
1462
1463 WARN_ON(start_linear_pa > end_linear_pa);
1464
1465 /*
1466 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1467 * accommodating both its ends but excluding PAGE_END. Max physical
1468 * range which can be mapped inside this linear mapping range, must
1469 * also be derived from its end points.
1470 */
1471 mhp_range.start = start_linear_pa;
1472 mhp_range.end = end_linear_pa;
1473
1474 return mhp_range;
1475 }
1476
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1477 int arch_add_memory(int nid, u64 start, u64 size,
1478 struct mhp_params *params)
1479 {
1480 int ret, flags = NO_EXEC_MAPPINGS;
1481
1482 VM_BUG_ON(!mhp_range_allowed(start, size, true));
1483
1484 /*
1485 * KFENCE requires linear map to be mapped at page granularity, so that
1486 * it is possible to protect/unprotect single pages in the KFENCE pool.
1487 */
1488 if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
1489 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1490
1491 __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1492 size, params->pgprot, __pgd_pgtable_alloc,
1493 flags);
1494
1495 memblock_clear_nomap(start, size);
1496
1497 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1498 params);
1499 if (ret)
1500 __remove_pgd_mapping(swapper_pg_dir,
1501 __phys_to_virt(start), size);
1502 return ret;
1503 }
1504
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1505 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1506 {
1507 unsigned long start_pfn = start >> PAGE_SHIFT;
1508 unsigned long nr_pages = size >> PAGE_SHIFT;
1509
1510 __remove_pages(start_pfn, nr_pages, altmap);
1511 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1512 }
1513
1514 /*
1515 * This memory hotplug notifier helps prevent boot memory from being
1516 * inadvertently removed as it blocks pfn range offlining process in
1517 * __offline_pages(). Hence this prevents both offlining as well as
1518 * removal process for boot memory which is initially always online.
1519 * In future if and when boot memory could be removed, this notifier
1520 * should be dropped and free_hotplug_page_range() should handle any
1521 * reserved pages allocated during boot.
1522 */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)1523 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1524 unsigned long action, void *data)
1525 {
1526 struct mem_section *ms;
1527 struct memory_notify *arg = data;
1528 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1529 unsigned long pfn = arg->start_pfn;
1530
1531 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1532 return NOTIFY_OK;
1533
1534 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1535 unsigned long start = PFN_PHYS(pfn);
1536 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1537
1538 ms = __pfn_to_section(pfn);
1539 if (!early_section(ms))
1540 continue;
1541
1542 if (action == MEM_GOING_OFFLINE) {
1543 /*
1544 * Boot memory removal is not supported. Prevent
1545 * it via blocking any attempted offline request
1546 * for the boot memory and just report it.
1547 */
1548 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1549 return NOTIFY_BAD;
1550 } else if (action == MEM_OFFLINE) {
1551 /*
1552 * This should have never happened. Boot memory
1553 * offlining should have been prevented by this
1554 * very notifier. Probably some memory removal
1555 * procedure might have changed which would then
1556 * require further debug.
1557 */
1558 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1559
1560 /*
1561 * Core memory hotplug does not process a return
1562 * code from the notifier for MEM_OFFLINE events.
1563 * The error condition has been reported. Return
1564 * from here as if ignored.
1565 */
1566 return NOTIFY_DONE;
1567 }
1568 }
1569 return NOTIFY_OK;
1570 }
1571
1572 static struct notifier_block prevent_bootmem_remove_nb = {
1573 .notifier_call = prevent_bootmem_remove_notifier,
1574 };
1575
1576 /*
1577 * This ensures that boot memory sections on the platform are online
1578 * from early boot. Memory sections could not be prevented from being
1579 * offlined, unless for some reason they are not online to begin with.
1580 * This helps validate the basic assumption on which the above memory
1581 * event notifier works to prevent boot memory section offlining and
1582 * its possible removal.
1583 */
validate_bootmem_online(void)1584 static void validate_bootmem_online(void)
1585 {
1586 phys_addr_t start, end, addr;
1587 struct mem_section *ms;
1588 u64 i;
1589
1590 /*
1591 * Scanning across all memblock might be expensive
1592 * on some big memory systems. Hence enable this
1593 * validation only with DEBUG_VM.
1594 */
1595 if (!IS_ENABLED(CONFIG_DEBUG_VM))
1596 return;
1597
1598 for_each_mem_range(i, &start, &end) {
1599 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1600 ms = __pfn_to_section(PHYS_PFN(addr));
1601
1602 /*
1603 * All memory ranges in the system at this point
1604 * should have been marked as early sections.
1605 */
1606 WARN_ON(!early_section(ms));
1607
1608 /*
1609 * Memory notifier mechanism here to prevent boot
1610 * memory offlining depends on the fact that each
1611 * early section memory on the system is initially
1612 * online. Otherwise a given memory section which
1613 * is already offline will be overlooked and can
1614 * be removed completely. Call out such sections.
1615 */
1616 if (!online_section(ms))
1617 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1618 addr, addr + (1UL << PA_SECTION_SHIFT));
1619 }
1620 }
1621 }
1622
prevent_bootmem_remove_init(void)1623 static int __init prevent_bootmem_remove_init(void)
1624 {
1625 int ret = 0;
1626
1627 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1628 return ret;
1629
1630 validate_bootmem_online();
1631 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1632 if (ret)
1633 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1634
1635 return ret;
1636 }
1637 early_initcall(prevent_bootmem_remove_init);
1638 #endif
1639