1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Landlock LSM - Filesystem management and hooks
4 *
5 * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net>
6 * Copyright © 2018-2020 ANSSI
7 * Copyright © 2021-2022 Microsoft Corporation
8 */
9
10 #include <linux/atomic.h>
11 #include <linux/bitops.h>
12 #include <linux/bits.h>
13 #include <linux/compiler_types.h>
14 #include <linux/dcache.h>
15 #include <linux/err.h>
16 #include <linux/fs.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/limits.h>
20 #include <linux/list.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mount.h>
23 #include <linux/namei.h>
24 #include <linux/path.h>
25 #include <linux/rcupdate.h>
26 #include <linux/spinlock.h>
27 #include <linux/stat.h>
28 #include <linux/types.h>
29 #include <linux/wait_bit.h>
30 #include <linux/workqueue.h>
31 #include <uapi/linux/landlock.h>
32
33 #include "common.h"
34 #include "cred.h"
35 #include "fs.h"
36 #include "limits.h"
37 #include "object.h"
38 #include "ruleset.h"
39 #include "setup.h"
40
41 /* Underlying object management */
42
release_inode(struct landlock_object * const object)43 static void release_inode(struct landlock_object *const object)
44 __releases(object->lock)
45 {
46 struct inode *const inode = object->underobj;
47 struct super_block *sb;
48
49 if (!inode) {
50 spin_unlock(&object->lock);
51 return;
52 }
53
54 /*
55 * Protects against concurrent use by hook_sb_delete() of the reference
56 * to the underlying inode.
57 */
58 object->underobj = NULL;
59 /*
60 * Makes sure that if the filesystem is concurrently unmounted,
61 * hook_sb_delete() will wait for us to finish iput().
62 */
63 sb = inode->i_sb;
64 atomic_long_inc(&landlock_superblock(sb)->inode_refs);
65 spin_unlock(&object->lock);
66 /*
67 * Because object->underobj was not NULL, hook_sb_delete() and
68 * get_inode_object() guarantee that it is safe to reset
69 * landlock_inode(inode)->object while it is not NULL. It is therefore
70 * not necessary to lock inode->i_lock.
71 */
72 rcu_assign_pointer(landlock_inode(inode)->object, NULL);
73 /*
74 * Now, new rules can safely be tied to @inode with get_inode_object().
75 */
76
77 iput(inode);
78 if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
79 wake_up_var(&landlock_superblock(sb)->inode_refs);
80 }
81
82 static const struct landlock_object_underops landlock_fs_underops = {
83 .release = release_inode
84 };
85
86 /* Ruleset management */
87
get_inode_object(struct inode * const inode)88 static struct landlock_object *get_inode_object(struct inode *const inode)
89 {
90 struct landlock_object *object, *new_object;
91 struct landlock_inode_security *inode_sec = landlock_inode(inode);
92
93 rcu_read_lock();
94 retry:
95 object = rcu_dereference(inode_sec->object);
96 if (object) {
97 if (likely(refcount_inc_not_zero(&object->usage))) {
98 rcu_read_unlock();
99 return object;
100 }
101 /*
102 * We are racing with release_inode(), the object is going
103 * away. Wait for release_inode(), then retry.
104 */
105 spin_lock(&object->lock);
106 spin_unlock(&object->lock);
107 goto retry;
108 }
109 rcu_read_unlock();
110
111 /*
112 * If there is no object tied to @inode, then create a new one (without
113 * holding any locks).
114 */
115 new_object = landlock_create_object(&landlock_fs_underops, inode);
116 if (IS_ERR(new_object))
117 return new_object;
118
119 /*
120 * Protects against concurrent calls to get_inode_object() or
121 * hook_sb_delete().
122 */
123 spin_lock(&inode->i_lock);
124 if (unlikely(rcu_access_pointer(inode_sec->object))) {
125 /* Someone else just created the object, bail out and retry. */
126 spin_unlock(&inode->i_lock);
127 kfree(new_object);
128
129 rcu_read_lock();
130 goto retry;
131 }
132
133 /*
134 * @inode will be released by hook_sb_delete() on its superblock
135 * shutdown, or by release_inode() when no more ruleset references the
136 * related object.
137 */
138 ihold(inode);
139 rcu_assign_pointer(inode_sec->object, new_object);
140 spin_unlock(&inode->i_lock);
141 return new_object;
142 }
143
144 /* All access rights that can be tied to files. */
145 /* clang-format off */
146 #define ACCESS_FILE ( \
147 LANDLOCK_ACCESS_FS_EXECUTE | \
148 LANDLOCK_ACCESS_FS_WRITE_FILE | \
149 LANDLOCK_ACCESS_FS_READ_FILE | \
150 LANDLOCK_ACCESS_FS_TRUNCATE)
151 /* clang-format on */
152
153 /*
154 * All access rights that are denied by default whether they are handled or not
155 * by a ruleset/layer. This must be ORed with all ruleset->fs_access_masks[]
156 * entries when we need to get the absolute handled access masks.
157 */
158 /* clang-format off */
159 #define ACCESS_INITIALLY_DENIED ( \
160 LANDLOCK_ACCESS_FS_REFER)
161 /* clang-format on */
162
163 /*
164 * @path: Should have been checked by get_path_from_fd().
165 */
landlock_append_fs_rule(struct landlock_ruleset * const ruleset,const struct path * const path,access_mask_t access_rights)166 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
167 const struct path *const path,
168 access_mask_t access_rights)
169 {
170 int err;
171 struct landlock_object *object;
172
173 /* Files only get access rights that make sense. */
174 if (!d_is_dir(path->dentry) &&
175 (access_rights | ACCESS_FILE) != ACCESS_FILE)
176 return -EINVAL;
177 if (WARN_ON_ONCE(ruleset->num_layers != 1))
178 return -EINVAL;
179
180 /* Transforms relative access rights to absolute ones. */
181 access_rights |=
182 LANDLOCK_MASK_ACCESS_FS &
183 ~(ruleset->fs_access_masks[0] | ACCESS_INITIALLY_DENIED);
184 object = get_inode_object(d_backing_inode(path->dentry));
185 if (IS_ERR(object))
186 return PTR_ERR(object);
187 mutex_lock(&ruleset->lock);
188 err = landlock_insert_rule(ruleset, object, access_rights);
189 mutex_unlock(&ruleset->lock);
190 /*
191 * No need to check for an error because landlock_insert_rule()
192 * increments the refcount for the new object if needed.
193 */
194 landlock_put_object(object);
195 return err;
196 }
197
198 /* Access-control management */
199
200 /*
201 * The lifetime of the returned rule is tied to @domain.
202 *
203 * Returns NULL if no rule is found or if @dentry is negative.
204 */
205 static inline const struct landlock_rule *
find_rule(const struct landlock_ruleset * const domain,const struct dentry * const dentry)206 find_rule(const struct landlock_ruleset *const domain,
207 const struct dentry *const dentry)
208 {
209 const struct landlock_rule *rule;
210 const struct inode *inode;
211
212 /* Ignores nonexistent leafs. */
213 if (d_is_negative(dentry))
214 return NULL;
215
216 inode = d_backing_inode(dentry);
217 rcu_read_lock();
218 rule = landlock_find_rule(
219 domain, rcu_dereference(landlock_inode(inode)->object));
220 rcu_read_unlock();
221 return rule;
222 }
223
224 /*
225 * @layer_masks is read and may be updated according to the access request and
226 * the matching rule.
227 *
228 * Returns true if the request is allowed (i.e. relevant layer masks for the
229 * request are empty).
230 */
231 static inline bool
unmask_layers(const struct landlock_rule * const rule,const access_mask_t access_request,layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])232 unmask_layers(const struct landlock_rule *const rule,
233 const access_mask_t access_request,
234 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
235 {
236 size_t layer_level;
237
238 if (!access_request || !layer_masks)
239 return true;
240 if (!rule)
241 return false;
242
243 /*
244 * An access is granted if, for each policy layer, at least one rule
245 * encountered on the pathwalk grants the requested access,
246 * regardless of its position in the layer stack. We must then check
247 * the remaining layers for each inode, from the first added layer to
248 * the last one. When there is multiple requested accesses, for each
249 * policy layer, the full set of requested accesses may not be granted
250 * by only one rule, but by the union (binary OR) of multiple rules.
251 * E.g. /a/b <execute> + /a <read> => /a/b <execute + read>
252 */
253 for (layer_level = 0; layer_level < rule->num_layers; layer_level++) {
254 const struct landlock_layer *const layer =
255 &rule->layers[layer_level];
256 const layer_mask_t layer_bit = BIT_ULL(layer->level - 1);
257 const unsigned long access_req = access_request;
258 unsigned long access_bit;
259 bool is_empty;
260
261 /*
262 * Records in @layer_masks which layer grants access to each
263 * requested access.
264 */
265 is_empty = true;
266 for_each_set_bit(access_bit, &access_req,
267 ARRAY_SIZE(*layer_masks)) {
268 if (layer->access & BIT_ULL(access_bit))
269 (*layer_masks)[access_bit] &= ~layer_bit;
270 is_empty = is_empty && !(*layer_masks)[access_bit];
271 }
272 if (is_empty)
273 return true;
274 }
275 return false;
276 }
277
278 /*
279 * Allows access to pseudo filesystems that will never be mountable (e.g.
280 * sockfs, pipefs), but can still be reachable through
281 * /proc/<pid>/fd/<file-descriptor>
282 */
is_nouser_or_private(const struct dentry * dentry)283 static inline bool is_nouser_or_private(const struct dentry *dentry)
284 {
285 return (dentry->d_sb->s_flags & SB_NOUSER) ||
286 (d_is_positive(dentry) &&
287 unlikely(IS_PRIVATE(d_backing_inode(dentry))));
288 }
289
290 static inline access_mask_t
get_handled_accesses(const struct landlock_ruleset * const domain)291 get_handled_accesses(const struct landlock_ruleset *const domain)
292 {
293 access_mask_t access_dom = ACCESS_INITIALLY_DENIED;
294 size_t layer_level;
295
296 for (layer_level = 0; layer_level < domain->num_layers; layer_level++)
297 access_dom |= domain->fs_access_masks[layer_level];
298 return access_dom & LANDLOCK_MASK_ACCESS_FS;
299 }
300
301 /**
302 * init_layer_masks - Initialize layer masks from an access request
303 *
304 * Populates @layer_masks such that for each access right in @access_request,
305 * the bits for all the layers are set where this access right is handled.
306 *
307 * @domain: The domain that defines the current restrictions.
308 * @access_request: The requested access rights to check.
309 * @layer_masks: The layer masks to populate.
310 *
311 * Returns: An access mask where each access right bit is set which is handled
312 * in any of the active layers in @domain.
313 */
314 static inline access_mask_t
init_layer_masks(const struct landlock_ruleset * const domain,const access_mask_t access_request,layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])315 init_layer_masks(const struct landlock_ruleset *const domain,
316 const access_mask_t access_request,
317 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
318 {
319 access_mask_t handled_accesses = 0;
320 size_t layer_level;
321
322 memset(layer_masks, 0, sizeof(*layer_masks));
323 /* An empty access request can happen because of O_WRONLY | O_RDWR. */
324 if (!access_request)
325 return 0;
326
327 /* Saves all handled accesses per layer. */
328 for (layer_level = 0; layer_level < domain->num_layers; layer_level++) {
329 const unsigned long access_req = access_request;
330 unsigned long access_bit;
331
332 for_each_set_bit(access_bit, &access_req,
333 ARRAY_SIZE(*layer_masks)) {
334 /*
335 * Artificially handles all initially denied by default
336 * access rights.
337 */
338 if (BIT_ULL(access_bit) &
339 (domain->fs_access_masks[layer_level] |
340 ACCESS_INITIALLY_DENIED)) {
341 (*layer_masks)[access_bit] |=
342 BIT_ULL(layer_level);
343 handled_accesses |= BIT_ULL(access_bit);
344 }
345 }
346 }
347 return handled_accesses;
348 }
349
350 /*
351 * Check that a destination file hierarchy has more restrictions than a source
352 * file hierarchy. This is only used for link and rename actions.
353 *
354 * @layer_masks_child2: Optional child masks.
355 */
no_more_access(const layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],const bool child1_is_directory,const layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const layer_mask_t (* const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],const bool child2_is_directory)356 static inline bool no_more_access(
357 const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
358 const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
359 const bool child1_is_directory,
360 const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
361 const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
362 const bool child2_is_directory)
363 {
364 unsigned long access_bit;
365
366 for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
367 access_bit++) {
368 /* Ignores accesses that only make sense for directories. */
369 const bool is_file_access =
370 !!(BIT_ULL(access_bit) & ACCESS_FILE);
371
372 if (child1_is_directory || is_file_access) {
373 /*
374 * Checks if the destination restrictions are a
375 * superset of the source ones (i.e. inherited access
376 * rights without child exceptions):
377 * restrictions(parent2) >= restrictions(child1)
378 */
379 if ((((*layer_masks_parent1)[access_bit] &
380 (*layer_masks_child1)[access_bit]) |
381 (*layer_masks_parent2)[access_bit]) !=
382 (*layer_masks_parent2)[access_bit])
383 return false;
384 }
385
386 if (!layer_masks_child2)
387 continue;
388 if (child2_is_directory || is_file_access) {
389 /*
390 * Checks inverted restrictions for RENAME_EXCHANGE:
391 * restrictions(parent1) >= restrictions(child2)
392 */
393 if ((((*layer_masks_parent2)[access_bit] &
394 (*layer_masks_child2)[access_bit]) |
395 (*layer_masks_parent1)[access_bit]) !=
396 (*layer_masks_parent1)[access_bit])
397 return false;
398 }
399 }
400 return true;
401 }
402
403 /*
404 * Removes @layer_masks accesses that are not requested.
405 *
406 * Returns true if the request is allowed, false otherwise.
407 */
408 static inline bool
scope_to_request(const access_mask_t access_request,layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS])409 scope_to_request(const access_mask_t access_request,
410 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
411 {
412 const unsigned long access_req = access_request;
413 unsigned long access_bit;
414
415 if (WARN_ON_ONCE(!layer_masks))
416 return true;
417
418 for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
419 (*layer_masks)[access_bit] = 0;
420 return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
421 }
422
423 /*
424 * Returns true if there is at least one access right different than
425 * LANDLOCK_ACCESS_FS_REFER.
426 */
427 static inline bool
is_eacces(const layer_mask_t (* const layer_masks)[LANDLOCK_NUM_ACCESS_FS],const access_mask_t access_request)428 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
429 const access_mask_t access_request)
430 {
431 unsigned long access_bit;
432 /* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
433 const unsigned long access_check = access_request &
434 ~LANDLOCK_ACCESS_FS_REFER;
435
436 if (!layer_masks)
437 return false;
438
439 for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
440 if ((*layer_masks)[access_bit])
441 return true;
442 }
443 return false;
444 }
445
446 /**
447 * is_access_to_paths_allowed - Check accesses for requests with a common path
448 *
449 * @domain: Domain to check against.
450 * @path: File hierarchy to walk through.
451 * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
452 * equal to @layer_masks_parent2 (if any). This is tied to the unique
453 * requested path for most actions, or the source in case of a refer action
454 * (i.e. rename or link), or the source and destination in case of
455 * RENAME_EXCHANGE.
456 * @layer_masks_parent1: Pointer to a matrix of layer masks per access
457 * masks, identifying the layers that forbid a specific access. Bits from
458 * this matrix can be unset according to the @path walk. An empty matrix
459 * means that @domain allows all possible Landlock accesses (i.e. not only
460 * those identified by @access_request_parent1). This matrix can
461 * initially refer to domain layer masks and, when the accesses for the
462 * destination and source are the same, to requested layer masks.
463 * @dentry_child1: Dentry to the initial child of the parent1 path. This
464 * pointer must be NULL for non-refer actions (i.e. not link nor rename).
465 * @access_request_parent2: Similar to @access_request_parent1 but for a
466 * request involving a source and a destination. This refers to the
467 * destination, except in case of RENAME_EXCHANGE where it also refers to
468 * the source. Must be set to 0 when using a simple path request.
469 * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
470 * action. This must be NULL otherwise.
471 * @dentry_child2: Dentry to the initial child of the parent2 path. This
472 * pointer is only set for RENAME_EXCHANGE actions and must be NULL
473 * otherwise.
474 *
475 * This helper first checks that the destination has a superset of restrictions
476 * compared to the source (if any) for a common path. Because of
477 * RENAME_EXCHANGE actions, source and destinations may be swapped. It then
478 * checks that the collected accesses and the remaining ones are enough to
479 * allow the request.
480 *
481 * Returns:
482 * - true if the access request is granted;
483 * - false otherwise.
484 */
is_access_to_paths_allowed(const struct landlock_ruleset * const domain,const struct path * const path,const access_mask_t access_request_parent1,layer_mask_t (* const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child1,const access_mask_t access_request_parent2,layer_mask_t (* const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],const struct dentry * const dentry_child2)485 static bool is_access_to_paths_allowed(
486 const struct landlock_ruleset *const domain,
487 const struct path *const path,
488 const access_mask_t access_request_parent1,
489 layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
490 const struct dentry *const dentry_child1,
491 const access_mask_t access_request_parent2,
492 layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
493 const struct dentry *const dentry_child2)
494 {
495 bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
496 child1_is_directory = true, child2_is_directory = true;
497 struct path walker_path;
498 access_mask_t access_masked_parent1, access_masked_parent2;
499 layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
500 _layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
501 layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
502 (*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
503
504 if (!access_request_parent1 && !access_request_parent2)
505 return true;
506 if (WARN_ON_ONCE(!domain || !path))
507 return true;
508 if (is_nouser_or_private(path->dentry))
509 return true;
510 if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
511 return false;
512
513 if (unlikely(layer_masks_parent2)) {
514 if (WARN_ON_ONCE(!dentry_child1))
515 return false;
516 /*
517 * For a double request, first check for potential privilege
518 * escalation by looking at domain handled accesses (which are
519 * a superset of the meaningful requested accesses).
520 */
521 access_masked_parent1 = access_masked_parent2 =
522 get_handled_accesses(domain);
523 is_dom_check = true;
524 } else {
525 if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
526 return false;
527 /* For a simple request, only check for requested accesses. */
528 access_masked_parent1 = access_request_parent1;
529 access_masked_parent2 = access_request_parent2;
530 is_dom_check = false;
531 }
532
533 if (unlikely(dentry_child1)) {
534 unmask_layers(find_rule(domain, dentry_child1),
535 init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
536 &_layer_masks_child1),
537 &_layer_masks_child1);
538 layer_masks_child1 = &_layer_masks_child1;
539 child1_is_directory = d_is_dir(dentry_child1);
540 }
541 if (unlikely(dentry_child2)) {
542 unmask_layers(find_rule(domain, dentry_child2),
543 init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
544 &_layer_masks_child2),
545 &_layer_masks_child2);
546 layer_masks_child2 = &_layer_masks_child2;
547 child2_is_directory = d_is_dir(dentry_child2);
548 }
549
550 walker_path = *path;
551 path_get(&walker_path);
552 /*
553 * We need to walk through all the hierarchy to not miss any relevant
554 * restriction.
555 */
556 while (true) {
557 struct dentry *parent_dentry;
558 const struct landlock_rule *rule;
559
560 /*
561 * If at least all accesses allowed on the destination are
562 * already allowed on the source, respectively if there is at
563 * least as much as restrictions on the destination than on the
564 * source, then we can safely refer files from the source to
565 * the destination without risking a privilege escalation.
566 * This also applies in the case of RENAME_EXCHANGE, which
567 * implies checks on both direction. This is crucial for
568 * standalone multilayered security policies. Furthermore,
569 * this helps avoid policy writers to shoot themselves in the
570 * foot.
571 */
572 if (unlikely(is_dom_check &&
573 no_more_access(
574 layer_masks_parent1, layer_masks_child1,
575 child1_is_directory, layer_masks_parent2,
576 layer_masks_child2,
577 child2_is_directory))) {
578 allowed_parent1 = scope_to_request(
579 access_request_parent1, layer_masks_parent1);
580 allowed_parent2 = scope_to_request(
581 access_request_parent2, layer_masks_parent2);
582
583 /* Stops when all accesses are granted. */
584 if (allowed_parent1 && allowed_parent2)
585 break;
586
587 /*
588 * Now, downgrades the remaining checks from domain
589 * handled accesses to requested accesses.
590 */
591 is_dom_check = false;
592 access_masked_parent1 = access_request_parent1;
593 access_masked_parent2 = access_request_parent2;
594 }
595
596 rule = find_rule(domain, walker_path.dentry);
597 allowed_parent1 = unmask_layers(rule, access_masked_parent1,
598 layer_masks_parent1);
599 allowed_parent2 = unmask_layers(rule, access_masked_parent2,
600 layer_masks_parent2);
601
602 /* Stops when a rule from each layer grants access. */
603 if (allowed_parent1 && allowed_parent2)
604 break;
605
606 jump_up:
607 if (walker_path.dentry == walker_path.mnt->mnt_root) {
608 if (follow_up(&walker_path)) {
609 /* Ignores hidden mount points. */
610 goto jump_up;
611 } else {
612 /*
613 * Stops at the real root. Denies access
614 * because not all layers have granted access.
615 */
616 break;
617 }
618 }
619 if (unlikely(IS_ROOT(walker_path.dentry))) {
620 /*
621 * Stops at disconnected root directories. Only allows
622 * access to internal filesystems (e.g. nsfs, which is
623 * reachable through /proc/<pid>/ns/<namespace>).
624 */
625 allowed_parent1 = allowed_parent2 =
626 !!(walker_path.mnt->mnt_flags & MNT_INTERNAL);
627 break;
628 }
629 parent_dentry = dget_parent(walker_path.dentry);
630 dput(walker_path.dentry);
631 walker_path.dentry = parent_dentry;
632 }
633 path_put(&walker_path);
634
635 return allowed_parent1 && allowed_parent2;
636 }
637
check_access_path(const struct landlock_ruleset * const domain,const struct path * const path,access_mask_t access_request)638 static inline int check_access_path(const struct landlock_ruleset *const domain,
639 const struct path *const path,
640 access_mask_t access_request)
641 {
642 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
643
644 access_request = init_layer_masks(domain, access_request, &layer_masks);
645 if (is_access_to_paths_allowed(domain, path, access_request,
646 &layer_masks, NULL, 0, NULL, NULL))
647 return 0;
648 return -EACCES;
649 }
650
current_check_access_path(const struct path * const path,const access_mask_t access_request)651 static inline int current_check_access_path(const struct path *const path,
652 const access_mask_t access_request)
653 {
654 const struct landlock_ruleset *const dom =
655 landlock_get_current_domain();
656
657 if (!dom)
658 return 0;
659 return check_access_path(dom, path, access_request);
660 }
661
get_mode_access(const umode_t mode)662 static inline access_mask_t get_mode_access(const umode_t mode)
663 {
664 switch (mode & S_IFMT) {
665 case S_IFLNK:
666 return LANDLOCK_ACCESS_FS_MAKE_SYM;
667 case 0:
668 /* A zero mode translates to S_IFREG. */
669 case S_IFREG:
670 return LANDLOCK_ACCESS_FS_MAKE_REG;
671 case S_IFDIR:
672 return LANDLOCK_ACCESS_FS_MAKE_DIR;
673 case S_IFCHR:
674 return LANDLOCK_ACCESS_FS_MAKE_CHAR;
675 case S_IFBLK:
676 return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
677 case S_IFIFO:
678 return LANDLOCK_ACCESS_FS_MAKE_FIFO;
679 case S_IFSOCK:
680 return LANDLOCK_ACCESS_FS_MAKE_SOCK;
681 default:
682 WARN_ON_ONCE(1);
683 return 0;
684 }
685 }
686
maybe_remove(const struct dentry * const dentry)687 static inline access_mask_t maybe_remove(const struct dentry *const dentry)
688 {
689 if (d_is_negative(dentry))
690 return 0;
691 return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
692 LANDLOCK_ACCESS_FS_REMOVE_FILE;
693 }
694
695 /**
696 * collect_domain_accesses - Walk through a file path and collect accesses
697 *
698 * @domain: Domain to check against.
699 * @mnt_root: Last directory to check.
700 * @dir: Directory to start the walk from.
701 * @layer_masks_dom: Where to store the collected accesses.
702 *
703 * This helper is useful to begin a path walk from the @dir directory to a
704 * @mnt_root directory used as a mount point. This mount point is the common
705 * ancestor between the source and the destination of a renamed and linked
706 * file. While walking from @dir to @mnt_root, we record all the domain's
707 * allowed accesses in @layer_masks_dom.
708 *
709 * This is similar to is_access_to_paths_allowed() but much simpler because it
710 * only handles walking on the same mount point and only checks one set of
711 * accesses.
712 *
713 * Returns:
714 * - true if all the domain access rights are allowed for @dir;
715 * - false if the walk reached @mnt_root.
716 */
collect_domain_accesses(const struct landlock_ruleset * const domain,const struct dentry * const mnt_root,struct dentry * dir,layer_mask_t (* const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])717 static bool collect_domain_accesses(
718 const struct landlock_ruleset *const domain,
719 const struct dentry *const mnt_root, struct dentry *dir,
720 layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
721 {
722 unsigned long access_dom;
723 bool ret = false;
724
725 if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
726 return true;
727 if (is_nouser_or_private(dir))
728 return true;
729
730 access_dom = init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
731 layer_masks_dom);
732
733 dget(dir);
734 while (true) {
735 struct dentry *parent_dentry;
736
737 /* Gets all layers allowing all domain accesses. */
738 if (unmask_layers(find_rule(domain, dir), access_dom,
739 layer_masks_dom)) {
740 /*
741 * Stops when all handled accesses are allowed by at
742 * least one rule in each layer.
743 */
744 ret = true;
745 break;
746 }
747
748 /* We should not reach a root other than @mnt_root. */
749 if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
750 break;
751
752 parent_dentry = dget_parent(dir);
753 dput(dir);
754 dir = parent_dentry;
755 }
756 dput(dir);
757 return ret;
758 }
759
760 /**
761 * current_check_refer_path - Check if a rename or link action is allowed
762 *
763 * @old_dentry: File or directory requested to be moved or linked.
764 * @new_dir: Destination parent directory.
765 * @new_dentry: Destination file or directory.
766 * @removable: Sets to true if it is a rename operation.
767 * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
768 *
769 * Because of its unprivileged constraints, Landlock relies on file hierarchies
770 * (and not only inodes) to tie access rights to files. Being able to link or
771 * rename a file hierarchy brings some challenges. Indeed, moving or linking a
772 * file (i.e. creating a new reference to an inode) can have an impact on the
773 * actions allowed for a set of files if it would change its parent directory
774 * (i.e. reparenting).
775 *
776 * To avoid trivial access right bypasses, Landlock first checks if the file or
777 * directory requested to be moved would gain new access rights inherited from
778 * its new hierarchy. Before returning any error, Landlock then checks that
779 * the parent source hierarchy and the destination hierarchy would allow the
780 * link or rename action. If it is not the case, an error with EACCES is
781 * returned to inform user space that there is no way to remove or create the
782 * requested source file type. If it should be allowed but the new inherited
783 * access rights would be greater than the source access rights, then the
784 * kernel returns an error with EXDEV. Prioritizing EACCES over EXDEV enables
785 * user space to abort the whole operation if there is no way to do it, or to
786 * manually copy the source to the destination if this remains allowed, e.g.
787 * because file creation is allowed on the destination directory but not direct
788 * linking.
789 *
790 * To achieve this goal, the kernel needs to compare two file hierarchies: the
791 * one identifying the source file or directory (including itself), and the
792 * destination one. This can be seen as a multilayer partial ordering problem.
793 * The kernel walks through these paths and collects in a matrix the access
794 * rights that are denied per layer. These matrices are then compared to see
795 * if the destination one has more (or the same) restrictions as the source
796 * one. If this is the case, the requested action will not return EXDEV, which
797 * doesn't mean the action is allowed. The parent hierarchy of the source
798 * (i.e. parent directory), and the destination hierarchy must also be checked
799 * to verify that they explicitly allow such action (i.e. referencing,
800 * creation and potentially removal rights). The kernel implementation is then
801 * required to rely on potentially four matrices of access rights: one for the
802 * source file or directory (i.e. the child), a potentially other one for the
803 * other source/destination (in case of RENAME_EXCHANGE), one for the source
804 * parent hierarchy and a last one for the destination hierarchy. These
805 * ephemeral matrices take some space on the stack, which limits the number of
806 * layers to a deemed reasonable number: 16.
807 *
808 * Returns:
809 * - 0 if access is allowed;
810 * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
811 * - -EACCES if file removal or creation is denied.
812 */
current_check_refer_path(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const bool removable,const bool exchange)813 static int current_check_refer_path(struct dentry *const old_dentry,
814 const struct path *const new_dir,
815 struct dentry *const new_dentry,
816 const bool removable, const bool exchange)
817 {
818 const struct landlock_ruleset *const dom =
819 landlock_get_current_domain();
820 bool allow_parent1, allow_parent2;
821 access_mask_t access_request_parent1, access_request_parent2;
822 struct path mnt_dir;
823 layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS],
824 layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS];
825
826 if (!dom)
827 return 0;
828 if (WARN_ON_ONCE(dom->num_layers < 1))
829 return -EACCES;
830 if (unlikely(d_is_negative(old_dentry)))
831 return -ENOENT;
832 if (exchange) {
833 if (unlikely(d_is_negative(new_dentry)))
834 return -ENOENT;
835 access_request_parent1 =
836 get_mode_access(d_backing_inode(new_dentry)->i_mode);
837 } else {
838 access_request_parent1 = 0;
839 }
840 access_request_parent2 =
841 get_mode_access(d_backing_inode(old_dentry)->i_mode);
842 if (removable) {
843 access_request_parent1 |= maybe_remove(old_dentry);
844 access_request_parent2 |= maybe_remove(new_dentry);
845 }
846
847 /* The mount points are the same for old and new paths, cf. EXDEV. */
848 if (old_dentry->d_parent == new_dir->dentry) {
849 /*
850 * The LANDLOCK_ACCESS_FS_REFER access right is not required
851 * for same-directory referer (i.e. no reparenting).
852 */
853 access_request_parent1 = init_layer_masks(
854 dom, access_request_parent1 | access_request_parent2,
855 &layer_masks_parent1);
856 if (is_access_to_paths_allowed(
857 dom, new_dir, access_request_parent1,
858 &layer_masks_parent1, NULL, 0, NULL, NULL))
859 return 0;
860 return -EACCES;
861 }
862
863 access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
864 access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
865
866 /* Saves the common mount point. */
867 mnt_dir.mnt = new_dir->mnt;
868 mnt_dir.dentry = new_dir->mnt->mnt_root;
869
870 /* new_dir->dentry is equal to new_dentry->d_parent */
871 allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry,
872 old_dentry->d_parent,
873 &layer_masks_parent1);
874 allow_parent2 = collect_domain_accesses(
875 dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
876
877 if (allow_parent1 && allow_parent2)
878 return 0;
879
880 /*
881 * To be able to compare source and destination domain access rights,
882 * take into account the @old_dentry access rights aggregated with its
883 * parent access rights. This will be useful to compare with the
884 * destination parent access rights.
885 */
886 if (is_access_to_paths_allowed(
887 dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
888 old_dentry, access_request_parent2, &layer_masks_parent2,
889 exchange ? new_dentry : NULL))
890 return 0;
891
892 /*
893 * This prioritizes EACCES over EXDEV for all actions, including
894 * renames with RENAME_EXCHANGE.
895 */
896 if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
897 is_eacces(&layer_masks_parent2, access_request_parent2)))
898 return -EACCES;
899
900 /*
901 * Gracefully forbids reparenting if the destination directory
902 * hierarchy is not a superset of restrictions of the source directory
903 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
904 * source or the destination.
905 */
906 return -EXDEV;
907 }
908
909 /* Inode hooks */
910
hook_inode_free_security(struct inode * const inode)911 static void hook_inode_free_security(struct inode *const inode)
912 {
913 /*
914 * All inodes must already have been untied from their object by
915 * release_inode() or hook_sb_delete().
916 */
917 WARN_ON_ONCE(landlock_inode(inode)->object);
918 }
919
920 /* Super-block hooks */
921
922 /*
923 * Release the inodes used in a security policy.
924 *
925 * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
926 */
hook_sb_delete(struct super_block * const sb)927 static void hook_sb_delete(struct super_block *const sb)
928 {
929 struct inode *inode, *prev_inode = NULL;
930
931 if (!landlock_initialized)
932 return;
933
934 spin_lock(&sb->s_inode_list_lock);
935 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
936 struct landlock_object *object;
937
938 /* Only handles referenced inodes. */
939 if (!atomic_read(&inode->i_count))
940 continue;
941
942 /*
943 * Protects against concurrent modification of inode (e.g.
944 * from get_inode_object()).
945 */
946 spin_lock(&inode->i_lock);
947 /*
948 * Checks I_FREEING and I_WILL_FREE to protect against a race
949 * condition when release_inode() just called iput(), which
950 * could lead to a NULL dereference of inode->security or a
951 * second call to iput() for the same Landlock object. Also
952 * checks I_NEW because such inode cannot be tied to an object.
953 */
954 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
955 spin_unlock(&inode->i_lock);
956 continue;
957 }
958
959 rcu_read_lock();
960 object = rcu_dereference(landlock_inode(inode)->object);
961 if (!object) {
962 rcu_read_unlock();
963 spin_unlock(&inode->i_lock);
964 continue;
965 }
966 /* Keeps a reference to this inode until the next loop walk. */
967 __iget(inode);
968 spin_unlock(&inode->i_lock);
969
970 /*
971 * If there is no concurrent release_inode() ongoing, then we
972 * are in charge of calling iput() on this inode, otherwise we
973 * will just wait for it to finish.
974 */
975 spin_lock(&object->lock);
976 if (object->underobj == inode) {
977 object->underobj = NULL;
978 spin_unlock(&object->lock);
979 rcu_read_unlock();
980
981 /*
982 * Because object->underobj was not NULL,
983 * release_inode() and get_inode_object() guarantee
984 * that it is safe to reset
985 * landlock_inode(inode)->object while it is not NULL.
986 * It is therefore not necessary to lock inode->i_lock.
987 */
988 rcu_assign_pointer(landlock_inode(inode)->object, NULL);
989 /*
990 * At this point, we own the ihold() reference that was
991 * originally set up by get_inode_object() and the
992 * __iget() reference that we just set in this loop
993 * walk. Therefore the following call to iput() will
994 * not sleep nor drop the inode because there is now at
995 * least two references to it.
996 */
997 iput(inode);
998 } else {
999 spin_unlock(&object->lock);
1000 rcu_read_unlock();
1001 }
1002
1003 if (prev_inode) {
1004 /*
1005 * At this point, we still own the __iget() reference
1006 * that we just set in this loop walk. Therefore we
1007 * can drop the list lock and know that the inode won't
1008 * disappear from under us until the next loop walk.
1009 */
1010 spin_unlock(&sb->s_inode_list_lock);
1011 /*
1012 * We can now actually put the inode reference from the
1013 * previous loop walk, which is not needed anymore.
1014 */
1015 iput(prev_inode);
1016 cond_resched();
1017 spin_lock(&sb->s_inode_list_lock);
1018 }
1019 prev_inode = inode;
1020 }
1021 spin_unlock(&sb->s_inode_list_lock);
1022
1023 /* Puts the inode reference from the last loop walk, if any. */
1024 if (prev_inode)
1025 iput(prev_inode);
1026 /* Waits for pending iput() in release_inode(). */
1027 wait_var_event(&landlock_superblock(sb)->inode_refs,
1028 !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1029 }
1030
1031 /*
1032 * Because a Landlock security policy is defined according to the filesystem
1033 * topology (i.e. the mount namespace), changing it may grant access to files
1034 * not previously allowed.
1035 *
1036 * To make it simple, deny any filesystem topology modification by landlocked
1037 * processes. Non-landlocked processes may still change the namespace of a
1038 * landlocked process, but this kind of threat must be handled by a system-wide
1039 * access-control security policy.
1040 *
1041 * This could be lifted in the future if Landlock can safely handle mount
1042 * namespace updates requested by a landlocked process. Indeed, we could
1043 * update the current domain (which is currently read-only) by taking into
1044 * account the accesses of the source and the destination of a new mount point.
1045 * However, it would also require to make all the child domains dynamically
1046 * inherit these new constraints. Anyway, for backward compatibility reasons,
1047 * a dedicated user space option would be required (e.g. as a ruleset flag).
1048 */
hook_sb_mount(const char * const dev_name,const struct path * const path,const char * const type,const unsigned long flags,void * const data)1049 static int hook_sb_mount(const char *const dev_name,
1050 const struct path *const path, const char *const type,
1051 const unsigned long flags, void *const data)
1052 {
1053 if (!landlock_get_current_domain())
1054 return 0;
1055 return -EPERM;
1056 }
1057
hook_move_mount(const struct path * const from_path,const struct path * const to_path)1058 static int hook_move_mount(const struct path *const from_path,
1059 const struct path *const to_path)
1060 {
1061 if (!landlock_get_current_domain())
1062 return 0;
1063 return -EPERM;
1064 }
1065
1066 /*
1067 * Removing a mount point may reveal a previously hidden file hierarchy, which
1068 * may then grant access to files, which may have previously been forbidden.
1069 */
hook_sb_umount(struct vfsmount * const mnt,const int flags)1070 static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1071 {
1072 if (!landlock_get_current_domain())
1073 return 0;
1074 return -EPERM;
1075 }
1076
hook_sb_remount(struct super_block * const sb,void * const mnt_opts)1077 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1078 {
1079 if (!landlock_get_current_domain())
1080 return 0;
1081 return -EPERM;
1082 }
1083
1084 /*
1085 * pivot_root(2), like mount(2), changes the current mount namespace. It must
1086 * then be forbidden for a landlocked process.
1087 *
1088 * However, chroot(2) may be allowed because it only changes the relative root
1089 * directory of the current process. Moreover, it can be used to restrict the
1090 * view of the filesystem.
1091 */
hook_sb_pivotroot(const struct path * const old_path,const struct path * const new_path)1092 static int hook_sb_pivotroot(const struct path *const old_path,
1093 const struct path *const new_path)
1094 {
1095 if (!landlock_get_current_domain())
1096 return 0;
1097 return -EPERM;
1098 }
1099
1100 /* Path hooks */
1101
hook_path_link(struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry)1102 static int hook_path_link(struct dentry *const old_dentry,
1103 const struct path *const new_dir,
1104 struct dentry *const new_dentry)
1105 {
1106 return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1107 false);
1108 }
1109
hook_path_rename(const struct path * const old_dir,struct dentry * const old_dentry,const struct path * const new_dir,struct dentry * const new_dentry,const unsigned int flags)1110 static int hook_path_rename(const struct path *const old_dir,
1111 struct dentry *const old_dentry,
1112 const struct path *const new_dir,
1113 struct dentry *const new_dentry,
1114 const unsigned int flags)
1115 {
1116 /* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1117 return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1118 !!(flags & RENAME_EXCHANGE));
1119 }
1120
hook_path_mkdir(const struct path * const dir,struct dentry * const dentry,const umode_t mode)1121 static int hook_path_mkdir(const struct path *const dir,
1122 struct dentry *const dentry, const umode_t mode)
1123 {
1124 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1125 }
1126
hook_path_mknod(const struct path * const dir,struct dentry * const dentry,const umode_t mode,const unsigned int dev)1127 static int hook_path_mknod(const struct path *const dir,
1128 struct dentry *const dentry, const umode_t mode,
1129 const unsigned int dev)
1130 {
1131 const struct landlock_ruleset *const dom =
1132 landlock_get_current_domain();
1133
1134 if (!dom)
1135 return 0;
1136 return check_access_path(dom, dir, get_mode_access(mode));
1137 }
1138
hook_path_symlink(const struct path * const dir,struct dentry * const dentry,const char * const old_name)1139 static int hook_path_symlink(const struct path *const dir,
1140 struct dentry *const dentry,
1141 const char *const old_name)
1142 {
1143 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1144 }
1145
hook_path_unlink(const struct path * const dir,struct dentry * const dentry)1146 static int hook_path_unlink(const struct path *const dir,
1147 struct dentry *const dentry)
1148 {
1149 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1150 }
1151
hook_path_rmdir(const struct path * const dir,struct dentry * const dentry)1152 static int hook_path_rmdir(const struct path *const dir,
1153 struct dentry *const dentry)
1154 {
1155 return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1156 }
1157
hook_path_truncate(const struct path * const path)1158 static int hook_path_truncate(const struct path *const path)
1159 {
1160 return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
1161 }
1162
1163 /* File hooks */
1164
1165 /**
1166 * get_required_file_open_access - Get access needed to open a file
1167 *
1168 * @file: File being opened.
1169 *
1170 * Returns the access rights that are required for opening the given file,
1171 * depending on the file type and open mode.
1172 */
1173 static inline access_mask_t
get_required_file_open_access(const struct file * const file)1174 get_required_file_open_access(const struct file *const file)
1175 {
1176 access_mask_t access = 0;
1177
1178 if (file->f_mode & FMODE_READ) {
1179 /* A directory can only be opened in read mode. */
1180 if (S_ISDIR(file_inode(file)->i_mode))
1181 return LANDLOCK_ACCESS_FS_READ_DIR;
1182 access = LANDLOCK_ACCESS_FS_READ_FILE;
1183 }
1184 if (file->f_mode & FMODE_WRITE)
1185 access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1186 /* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1187 if (file->f_flags & __FMODE_EXEC)
1188 access |= LANDLOCK_ACCESS_FS_EXECUTE;
1189 return access;
1190 }
1191
hook_file_alloc_security(struct file * const file)1192 static int hook_file_alloc_security(struct file *const file)
1193 {
1194 /*
1195 * Grants all access rights, even if most of them are not checked later
1196 * on. It is more consistent.
1197 *
1198 * Notably, file descriptors for regular files can also be acquired
1199 * without going through the file_open hook, for example when using
1200 * memfd_create(2).
1201 */
1202 landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
1203 return 0;
1204 }
1205
hook_file_open(struct file * const file)1206 static int hook_file_open(struct file *const file)
1207 {
1208 layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
1209 access_mask_t open_access_request, full_access_request, allowed_access;
1210 const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
1211 const struct landlock_ruleset *const dom =
1212 landlock_get_current_domain();
1213
1214 if (!dom)
1215 return 0;
1216
1217 /*
1218 * Because a file may be opened with O_PATH, get_required_file_open_access()
1219 * may return 0. This case will be handled with a future Landlock
1220 * evolution.
1221 */
1222 open_access_request = get_required_file_open_access(file);
1223
1224 /*
1225 * We look up more access than what we immediately need for open(), so
1226 * that we can later authorize operations on opened files.
1227 */
1228 full_access_request = open_access_request | optional_access;
1229
1230 if (is_access_to_paths_allowed(
1231 dom, &file->f_path,
1232 init_layer_masks(dom, full_access_request, &layer_masks),
1233 &layer_masks, NULL, 0, NULL, NULL)) {
1234 allowed_access = full_access_request;
1235 } else {
1236 unsigned long access_bit;
1237 const unsigned long access_req = full_access_request;
1238
1239 /*
1240 * Calculate the actual allowed access rights from layer_masks.
1241 * Add each access right to allowed_access which has not been
1242 * vetoed by any layer.
1243 */
1244 allowed_access = 0;
1245 for_each_set_bit(access_bit, &access_req,
1246 ARRAY_SIZE(layer_masks)) {
1247 if (!layer_masks[access_bit])
1248 allowed_access |= BIT_ULL(access_bit);
1249 }
1250 }
1251
1252 /*
1253 * For operations on already opened files (i.e. ftruncate()), it is the
1254 * access rights at the time of open() which decide whether the
1255 * operation is permitted. Therefore, we record the relevant subset of
1256 * file access rights in the opened struct file.
1257 */
1258 landlock_file(file)->allowed_access = allowed_access;
1259
1260 if ((open_access_request & allowed_access) == open_access_request)
1261 return 0;
1262
1263 return -EACCES;
1264 }
1265
hook_file_truncate(struct file * const file)1266 static int hook_file_truncate(struct file *const file)
1267 {
1268 /*
1269 * Allows truncation if the truncate right was available at the time of
1270 * opening the file, to get a consistent access check as for read, write
1271 * and execute operations.
1272 *
1273 * Note: For checks done based on the file's Landlock allowed access, we
1274 * enforce them independently of whether the current thread is in a
1275 * Landlock domain, so that open files passed between independent
1276 * processes retain their behaviour.
1277 */
1278 if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
1279 return 0;
1280 return -EACCES;
1281 }
1282
1283 static struct security_hook_list landlock_hooks[] __ro_after_init = {
1284 LSM_HOOK_INIT(inode_free_security, hook_inode_free_security),
1285
1286 LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1287 LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1288 LSM_HOOK_INIT(move_mount, hook_move_mount),
1289 LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1290 LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1291 LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1292
1293 LSM_HOOK_INIT(path_link, hook_path_link),
1294 LSM_HOOK_INIT(path_rename, hook_path_rename),
1295 LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1296 LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1297 LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1298 LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1299 LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1300 LSM_HOOK_INIT(path_truncate, hook_path_truncate),
1301
1302 LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
1303 LSM_HOOK_INIT(file_open, hook_file_open),
1304 LSM_HOOK_INIT(file_truncate, hook_file_truncate),
1305 };
1306
landlock_add_fs_hooks(void)1307 __init void landlock_add_fs_hooks(void)
1308 {
1309 security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1310 LANDLOCK_NAME);
1311 }
1312