1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28
29 /*
30 * Relocation overview
31 *
32 * [What does relocation do]
33 *
34 * The objective of relocation is to relocate all extents of the target block
35 * group to other block groups.
36 * This is utilized by resize (shrink only), profile converting, compacting
37 * space, or balance routine to spread chunks over devices.
38 *
39 * Before | After
40 * ------------------------------------------------------------------
41 * BG A: 10 data extents | BG A: deleted
42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
44 *
45 * [How does relocation work]
46 *
47 * 1. Mark the target block group read-only
48 * New extents won't be allocated from the target block group.
49 *
50 * 2.1 Record each extent in the target block group
51 * To build a proper map of extents to be relocated.
52 *
53 * 2.2 Build data reloc tree and reloc trees
54 * Data reloc tree will contain an inode, recording all newly relocated
55 * data extents.
56 * There will be only one data reloc tree for one data block group.
57 *
58 * Reloc tree will be a special snapshot of its source tree, containing
59 * relocated tree blocks.
60 * Each tree referring to a tree block in target block group will get its
61 * reloc tree built.
62 *
63 * 2.3 Swap source tree with its corresponding reloc tree
64 * Each involved tree only refers to new extents after swap.
65 *
66 * 3. Cleanup reloc trees and data reloc tree.
67 * As old extents in the target block group are still referenced by reloc
68 * trees, we need to clean them up before really freeing the target block
69 * group.
70 *
71 * The main complexity is in steps 2.2 and 2.3.
72 *
73 * The entry point of relocation is relocate_block_group() function.
74 */
75
76 #define RELOCATION_RESERVED_NODES 256
77 /*
78 * map address of tree root to tree
79 */
80 struct mapping_node {
81 struct {
82 struct rb_node rb_node;
83 u64 bytenr;
84 }; /* Use rb_simle_node for search/insert */
85 void *data;
86 };
87
88 struct mapping_tree {
89 struct rb_root rb_root;
90 spinlock_t lock;
91 };
92
93 /*
94 * present a tree block to process
95 */
96 struct tree_block {
97 struct {
98 struct rb_node rb_node;
99 u64 bytenr;
100 }; /* Use rb_simple_node for search/insert */
101 u64 owner;
102 struct btrfs_key key;
103 unsigned int level:8;
104 unsigned int key_ready:1;
105 };
106
107 #define MAX_EXTENTS 128
108
109 struct file_extent_cluster {
110 u64 start;
111 u64 end;
112 u64 boundary[MAX_EXTENTS];
113 unsigned int nr;
114 };
115
116 struct reloc_control {
117 /* block group to relocate */
118 struct btrfs_block_group *block_group;
119 /* extent tree */
120 struct btrfs_root *extent_root;
121 /* inode for moving data */
122 struct inode *data_inode;
123
124 struct btrfs_block_rsv *block_rsv;
125
126 struct btrfs_backref_cache backref_cache;
127
128 struct file_extent_cluster cluster;
129 /* tree blocks have been processed */
130 struct extent_io_tree processed_blocks;
131 /* map start of tree root to corresponding reloc tree */
132 struct mapping_tree reloc_root_tree;
133 /* list of reloc trees */
134 struct list_head reloc_roots;
135 /* list of subvolume trees that get relocated */
136 struct list_head dirty_subvol_roots;
137 /* size of metadata reservation for merging reloc trees */
138 u64 merging_rsv_size;
139 /* size of relocated tree nodes */
140 u64 nodes_relocated;
141 /* reserved size for block group relocation*/
142 u64 reserved_bytes;
143
144 u64 search_start;
145 u64 extents_found;
146
147 unsigned int stage:8;
148 unsigned int create_reloc_tree:1;
149 unsigned int merge_reloc_tree:1;
150 unsigned int found_file_extent:1;
151 };
152
153 /* stages of data relocation */
154 #define MOVE_DATA_EXTENTS 0
155 #define UPDATE_DATA_PTRS 1
156
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)157 static void mark_block_processed(struct reloc_control *rc,
158 struct btrfs_backref_node *node)
159 {
160 u32 blocksize;
161
162 if (node->level == 0 ||
163 in_range(node->bytenr, rc->block_group->start,
164 rc->block_group->length)) {
165 blocksize = rc->extent_root->fs_info->nodesize;
166 set_extent_bits(&rc->processed_blocks, node->bytenr,
167 node->bytenr + blocksize - 1, EXTENT_DIRTY);
168 }
169 node->processed = 1;
170 }
171
172
mapping_tree_init(struct mapping_tree * tree)173 static void mapping_tree_init(struct mapping_tree *tree)
174 {
175 tree->rb_root = RB_ROOT;
176 spin_lock_init(&tree->lock);
177 }
178
179 /*
180 * walk up backref nodes until reach node presents tree root
181 */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)182 static struct btrfs_backref_node *walk_up_backref(
183 struct btrfs_backref_node *node,
184 struct btrfs_backref_edge *edges[], int *index)
185 {
186 struct btrfs_backref_edge *edge;
187 int idx = *index;
188
189 while (!list_empty(&node->upper)) {
190 edge = list_entry(node->upper.next,
191 struct btrfs_backref_edge, list[LOWER]);
192 edges[idx++] = edge;
193 node = edge->node[UPPER];
194 }
195 BUG_ON(node->detached);
196 *index = idx;
197 return node;
198 }
199
200 /*
201 * walk down backref nodes to find start of next reference path
202 */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)203 static struct btrfs_backref_node *walk_down_backref(
204 struct btrfs_backref_edge *edges[], int *index)
205 {
206 struct btrfs_backref_edge *edge;
207 struct btrfs_backref_node *lower;
208 int idx = *index;
209
210 while (idx > 0) {
211 edge = edges[idx - 1];
212 lower = edge->node[LOWER];
213 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
214 idx--;
215 continue;
216 }
217 edge = list_entry(edge->list[LOWER].next,
218 struct btrfs_backref_edge, list[LOWER]);
219 edges[idx - 1] = edge;
220 *index = idx;
221 return edge->node[UPPER];
222 }
223 *index = 0;
224 return NULL;
225 }
226
update_backref_node(struct btrfs_backref_cache * cache,struct btrfs_backref_node * node,u64 bytenr)227 static void update_backref_node(struct btrfs_backref_cache *cache,
228 struct btrfs_backref_node *node, u64 bytenr)
229 {
230 struct rb_node *rb_node;
231 rb_erase(&node->rb_node, &cache->rb_root);
232 node->bytenr = bytenr;
233 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
234 if (rb_node)
235 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
236 }
237
238 /*
239 * update backref cache after a transaction commit
240 */
update_backref_cache(struct btrfs_trans_handle * trans,struct btrfs_backref_cache * cache)241 static int update_backref_cache(struct btrfs_trans_handle *trans,
242 struct btrfs_backref_cache *cache)
243 {
244 struct btrfs_backref_node *node;
245 int level = 0;
246
247 if (cache->last_trans == 0) {
248 cache->last_trans = trans->transid;
249 return 0;
250 }
251
252 if (cache->last_trans == trans->transid)
253 return 0;
254
255 /*
256 * detached nodes are used to avoid unnecessary backref
257 * lookup. transaction commit changes the extent tree.
258 * so the detached nodes are no longer useful.
259 */
260 while (!list_empty(&cache->detached)) {
261 node = list_entry(cache->detached.next,
262 struct btrfs_backref_node, list);
263 btrfs_backref_cleanup_node(cache, node);
264 }
265
266 while (!list_empty(&cache->changed)) {
267 node = list_entry(cache->changed.next,
268 struct btrfs_backref_node, list);
269 list_del_init(&node->list);
270 BUG_ON(node->pending);
271 update_backref_node(cache, node, node->new_bytenr);
272 }
273
274 /*
275 * some nodes can be left in the pending list if there were
276 * errors during processing the pending nodes.
277 */
278 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
279 list_for_each_entry(node, &cache->pending[level], list) {
280 BUG_ON(!node->pending);
281 if (node->bytenr == node->new_bytenr)
282 continue;
283 update_backref_node(cache, node, node->new_bytenr);
284 }
285 }
286
287 cache->last_trans = 0;
288 return 1;
289 }
290
reloc_root_is_dead(struct btrfs_root * root)291 static bool reloc_root_is_dead(struct btrfs_root *root)
292 {
293 /*
294 * Pair with set_bit/clear_bit in clean_dirty_subvols and
295 * btrfs_update_reloc_root. We need to see the updated bit before
296 * trying to access reloc_root
297 */
298 smp_rmb();
299 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
300 return true;
301 return false;
302 }
303
304 /*
305 * Check if this subvolume tree has valid reloc tree.
306 *
307 * Reloc tree after swap is considered dead, thus not considered as valid.
308 * This is enough for most callers, as they don't distinguish dead reloc root
309 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
310 * special case.
311 */
have_reloc_root(struct btrfs_root * root)312 static bool have_reloc_root(struct btrfs_root *root)
313 {
314 if (reloc_root_is_dead(root))
315 return false;
316 if (!root->reloc_root)
317 return false;
318 return true;
319 }
320
btrfs_should_ignore_reloc_root(struct btrfs_root * root)321 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
322 {
323 struct btrfs_root *reloc_root;
324
325 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
326 return 0;
327
328 /* This root has been merged with its reloc tree, we can ignore it */
329 if (reloc_root_is_dead(root))
330 return 1;
331
332 reloc_root = root->reloc_root;
333 if (!reloc_root)
334 return 0;
335
336 if (btrfs_header_generation(reloc_root->commit_root) ==
337 root->fs_info->running_transaction->transid)
338 return 0;
339 /*
340 * if there is reloc tree and it was created in previous
341 * transaction backref lookup can find the reloc tree,
342 * so backref node for the fs tree root is useless for
343 * relocation.
344 */
345 return 1;
346 }
347
348 /*
349 * find reloc tree by address of tree root
350 */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)351 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
352 {
353 struct reloc_control *rc = fs_info->reloc_ctl;
354 struct rb_node *rb_node;
355 struct mapping_node *node;
356 struct btrfs_root *root = NULL;
357
358 ASSERT(rc);
359 spin_lock(&rc->reloc_root_tree.lock);
360 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
361 if (rb_node) {
362 node = rb_entry(rb_node, struct mapping_node, rb_node);
363 root = (struct btrfs_root *)node->data;
364 }
365 spin_unlock(&rc->reloc_root_tree.lock);
366 return btrfs_grab_root(root);
367 }
368
369 /*
370 * For useless nodes, do two major clean ups:
371 *
372 * - Cleanup the children edges and nodes
373 * If child node is also orphan (no parent) during cleanup, then the child
374 * node will also be cleaned up.
375 *
376 * - Freeing up leaves (level 0), keeps nodes detached
377 * For nodes, the node is still cached as "detached"
378 *
379 * Return false if @node is not in the @useless_nodes list.
380 * Return true if @node is in the @useless_nodes list.
381 */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)382 static bool handle_useless_nodes(struct reloc_control *rc,
383 struct btrfs_backref_node *node)
384 {
385 struct btrfs_backref_cache *cache = &rc->backref_cache;
386 struct list_head *useless_node = &cache->useless_node;
387 bool ret = false;
388
389 while (!list_empty(useless_node)) {
390 struct btrfs_backref_node *cur;
391
392 cur = list_first_entry(useless_node, struct btrfs_backref_node,
393 list);
394 list_del_init(&cur->list);
395
396 /* Only tree root nodes can be added to @useless_nodes */
397 ASSERT(list_empty(&cur->upper));
398
399 if (cur == node)
400 ret = true;
401
402 /* The node is the lowest node */
403 if (cur->lowest) {
404 list_del_init(&cur->lower);
405 cur->lowest = 0;
406 }
407
408 /* Cleanup the lower edges */
409 while (!list_empty(&cur->lower)) {
410 struct btrfs_backref_edge *edge;
411 struct btrfs_backref_node *lower;
412
413 edge = list_entry(cur->lower.next,
414 struct btrfs_backref_edge, list[UPPER]);
415 list_del(&edge->list[UPPER]);
416 list_del(&edge->list[LOWER]);
417 lower = edge->node[LOWER];
418 btrfs_backref_free_edge(cache, edge);
419
420 /* Child node is also orphan, queue for cleanup */
421 if (list_empty(&lower->upper))
422 list_add(&lower->list, useless_node);
423 }
424 /* Mark this block processed for relocation */
425 mark_block_processed(rc, cur);
426
427 /*
428 * Backref nodes for tree leaves are deleted from the cache.
429 * Backref nodes for upper level tree blocks are left in the
430 * cache to avoid unnecessary backref lookup.
431 */
432 if (cur->level > 0) {
433 list_add(&cur->list, &cache->detached);
434 cur->detached = 1;
435 } else {
436 rb_erase(&cur->rb_node, &cache->rb_root);
437 btrfs_backref_free_node(cache, cur);
438 }
439 }
440 return ret;
441 }
442
443 /*
444 * Build backref tree for a given tree block. Root of the backref tree
445 * corresponds the tree block, leaves of the backref tree correspond roots of
446 * b-trees that reference the tree block.
447 *
448 * The basic idea of this function is check backrefs of a given block to find
449 * upper level blocks that reference the block, and then check backrefs of
450 * these upper level blocks recursively. The recursion stops when tree root is
451 * reached or backrefs for the block is cached.
452 *
453 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
454 * all upper level blocks that directly/indirectly reference the block are also
455 * cached.
456 */
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)457 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
458 struct reloc_control *rc, struct btrfs_key *node_key,
459 int level, u64 bytenr)
460 {
461 struct btrfs_backref_iter *iter;
462 struct btrfs_backref_cache *cache = &rc->backref_cache;
463 /* For searching parent of TREE_BLOCK_REF */
464 struct btrfs_path *path;
465 struct btrfs_backref_node *cur;
466 struct btrfs_backref_node *node = NULL;
467 struct btrfs_backref_edge *edge;
468 int ret;
469 int err = 0;
470
471 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
472 if (!iter)
473 return ERR_PTR(-ENOMEM);
474 path = btrfs_alloc_path();
475 if (!path) {
476 err = -ENOMEM;
477 goto out;
478 }
479
480 node = btrfs_backref_alloc_node(cache, bytenr, level);
481 if (!node) {
482 err = -ENOMEM;
483 goto out;
484 }
485
486 node->lowest = 1;
487 cur = node;
488
489 /* Breadth-first search to build backref cache */
490 do {
491 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
492 cur);
493 if (ret < 0) {
494 err = ret;
495 goto out;
496 }
497 edge = list_first_entry_or_null(&cache->pending_edge,
498 struct btrfs_backref_edge, list[UPPER]);
499 /*
500 * The pending list isn't empty, take the first block to
501 * process
502 */
503 if (edge) {
504 list_del_init(&edge->list[UPPER]);
505 cur = edge->node[UPPER];
506 }
507 } while (edge);
508
509 /* Finish the upper linkage of newly added edges/nodes */
510 ret = btrfs_backref_finish_upper_links(cache, node);
511 if (ret < 0) {
512 err = ret;
513 goto out;
514 }
515
516 if (handle_useless_nodes(rc, node))
517 node = NULL;
518 out:
519 btrfs_backref_iter_free(iter);
520 btrfs_free_path(path);
521 if (err) {
522 btrfs_backref_error_cleanup(cache, node);
523 return ERR_PTR(err);
524 }
525 ASSERT(!node || !node->detached);
526 ASSERT(list_empty(&cache->useless_node) &&
527 list_empty(&cache->pending_edge));
528 return node;
529 }
530
531 /*
532 * helper to add backref node for the newly created snapshot.
533 * the backref node is created by cloning backref node that
534 * corresponds to root of source tree
535 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)536 static int clone_backref_node(struct btrfs_trans_handle *trans,
537 struct reloc_control *rc,
538 struct btrfs_root *src,
539 struct btrfs_root *dest)
540 {
541 struct btrfs_root *reloc_root = src->reloc_root;
542 struct btrfs_backref_cache *cache = &rc->backref_cache;
543 struct btrfs_backref_node *node = NULL;
544 struct btrfs_backref_node *new_node;
545 struct btrfs_backref_edge *edge;
546 struct btrfs_backref_edge *new_edge;
547 struct rb_node *rb_node;
548
549 if (cache->last_trans > 0)
550 update_backref_cache(trans, cache);
551
552 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
553 if (rb_node) {
554 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
555 if (node->detached)
556 node = NULL;
557 else
558 BUG_ON(node->new_bytenr != reloc_root->node->start);
559 }
560
561 if (!node) {
562 rb_node = rb_simple_search(&cache->rb_root,
563 reloc_root->commit_root->start);
564 if (rb_node) {
565 node = rb_entry(rb_node, struct btrfs_backref_node,
566 rb_node);
567 BUG_ON(node->detached);
568 }
569 }
570
571 if (!node)
572 return 0;
573
574 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
575 node->level);
576 if (!new_node)
577 return -ENOMEM;
578
579 new_node->lowest = node->lowest;
580 new_node->checked = 1;
581 new_node->root = btrfs_grab_root(dest);
582 ASSERT(new_node->root);
583
584 if (!node->lowest) {
585 list_for_each_entry(edge, &node->lower, list[UPPER]) {
586 new_edge = btrfs_backref_alloc_edge(cache);
587 if (!new_edge)
588 goto fail;
589
590 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
591 new_node, LINK_UPPER);
592 }
593 } else {
594 list_add_tail(&new_node->lower, &cache->leaves);
595 }
596
597 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
598 &new_node->rb_node);
599 if (rb_node)
600 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
601
602 if (!new_node->lowest) {
603 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
604 list_add_tail(&new_edge->list[LOWER],
605 &new_edge->node[LOWER]->upper);
606 }
607 }
608 return 0;
609 fail:
610 while (!list_empty(&new_node->lower)) {
611 new_edge = list_entry(new_node->lower.next,
612 struct btrfs_backref_edge, list[UPPER]);
613 list_del(&new_edge->list[UPPER]);
614 btrfs_backref_free_edge(cache, new_edge);
615 }
616 btrfs_backref_free_node(cache, new_node);
617 return -ENOMEM;
618 }
619
620 /*
621 * helper to add 'address of tree root -> reloc tree' mapping
622 */
__add_reloc_root(struct btrfs_root * root)623 static int __must_check __add_reloc_root(struct btrfs_root *root)
624 {
625 struct btrfs_fs_info *fs_info = root->fs_info;
626 struct rb_node *rb_node;
627 struct mapping_node *node;
628 struct reloc_control *rc = fs_info->reloc_ctl;
629
630 node = kmalloc(sizeof(*node), GFP_NOFS);
631 if (!node)
632 return -ENOMEM;
633
634 node->bytenr = root->commit_root->start;
635 node->data = root;
636
637 spin_lock(&rc->reloc_root_tree.lock);
638 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
639 node->bytenr, &node->rb_node);
640 spin_unlock(&rc->reloc_root_tree.lock);
641 if (rb_node) {
642 btrfs_err(fs_info,
643 "Duplicate root found for start=%llu while inserting into relocation tree",
644 node->bytenr);
645 return -EEXIST;
646 }
647
648 list_add_tail(&root->root_list, &rc->reloc_roots);
649 return 0;
650 }
651
652 /*
653 * helper to delete the 'address of tree root -> reloc tree'
654 * mapping
655 */
__del_reloc_root(struct btrfs_root * root)656 static void __del_reloc_root(struct btrfs_root *root)
657 {
658 struct btrfs_fs_info *fs_info = root->fs_info;
659 struct rb_node *rb_node;
660 struct mapping_node *node = NULL;
661 struct reloc_control *rc = fs_info->reloc_ctl;
662 bool put_ref = false;
663
664 if (rc && root->node) {
665 spin_lock(&rc->reloc_root_tree.lock);
666 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
667 root->commit_root->start);
668 if (rb_node) {
669 node = rb_entry(rb_node, struct mapping_node, rb_node);
670 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
671 RB_CLEAR_NODE(&node->rb_node);
672 }
673 spin_unlock(&rc->reloc_root_tree.lock);
674 ASSERT(!node || (struct btrfs_root *)node->data == root);
675 }
676
677 /*
678 * We only put the reloc root here if it's on the list. There's a lot
679 * of places where the pattern is to splice the rc->reloc_roots, process
680 * the reloc roots, and then add the reloc root back onto
681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
682 * list we don't want the reference being dropped, because the guy
683 * messing with the list is in charge of the reference.
684 */
685 spin_lock(&fs_info->trans_lock);
686 if (!list_empty(&root->root_list)) {
687 put_ref = true;
688 list_del_init(&root->root_list);
689 }
690 spin_unlock(&fs_info->trans_lock);
691 if (put_ref)
692 btrfs_put_root(root);
693 kfree(node);
694 }
695
696 /*
697 * helper to update the 'address of tree root -> reloc tree'
698 * mapping
699 */
__update_reloc_root(struct btrfs_root * root)700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702 struct btrfs_fs_info *fs_info = root->fs_info;
703 struct rb_node *rb_node;
704 struct mapping_node *node = NULL;
705 struct reloc_control *rc = fs_info->reloc_ctl;
706
707 spin_lock(&rc->reloc_root_tree.lock);
708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 root->commit_root->start);
710 if (rb_node) {
711 node = rb_entry(rb_node, struct mapping_node, rb_node);
712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 }
714 spin_unlock(&rc->reloc_root_tree.lock);
715
716 if (!node)
717 return 0;
718 BUG_ON((struct btrfs_root *)node->data != root);
719
720 spin_lock(&rc->reloc_root_tree.lock);
721 node->bytenr = root->node->start;
722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 node->bytenr, &node->rb_node);
724 spin_unlock(&rc->reloc_root_tree.lock);
725 if (rb_node)
726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 return 0;
728 }
729
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 struct btrfs_root *root, u64 objectid)
732 {
733 struct btrfs_fs_info *fs_info = root->fs_info;
734 struct btrfs_root *reloc_root;
735 struct extent_buffer *eb;
736 struct btrfs_root_item *root_item;
737 struct btrfs_key root_key;
738 int ret = 0;
739 bool must_abort = false;
740
741 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
742 if (!root_item)
743 return ERR_PTR(-ENOMEM);
744
745 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
746 root_key.type = BTRFS_ROOT_ITEM_KEY;
747 root_key.offset = objectid;
748
749 if (root->root_key.objectid == objectid) {
750 u64 commit_root_gen;
751
752 /* called by btrfs_init_reloc_root */
753 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
754 BTRFS_TREE_RELOC_OBJECTID);
755 if (ret)
756 goto fail;
757
758 /*
759 * Set the last_snapshot field to the generation of the commit
760 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
761 * correctly (returns true) when the relocation root is created
762 * either inside the critical section of a transaction commit
763 * (through transaction.c:qgroup_account_snapshot()) and when
764 * it's created before the transaction commit is started.
765 */
766 commit_root_gen = btrfs_header_generation(root->commit_root);
767 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
768 } else {
769 /*
770 * called by btrfs_reloc_post_snapshot_hook.
771 * the source tree is a reloc tree, all tree blocks
772 * modified after it was created have RELOC flag
773 * set in their headers. so it's OK to not update
774 * the 'last_snapshot'.
775 */
776 ret = btrfs_copy_root(trans, root, root->node, &eb,
777 BTRFS_TREE_RELOC_OBJECTID);
778 if (ret)
779 goto fail;
780 }
781
782 /*
783 * We have changed references at this point, we must abort the
784 * transaction if anything fails.
785 */
786 must_abort = true;
787
788 memcpy(root_item, &root->root_item, sizeof(*root_item));
789 btrfs_set_root_bytenr(root_item, eb->start);
790 btrfs_set_root_level(root_item, btrfs_header_level(eb));
791 btrfs_set_root_generation(root_item, trans->transid);
792
793 if (root->root_key.objectid == objectid) {
794 btrfs_set_root_refs(root_item, 0);
795 memset(&root_item->drop_progress, 0,
796 sizeof(struct btrfs_disk_key));
797 btrfs_set_root_drop_level(root_item, 0);
798 }
799
800 btrfs_tree_unlock(eb);
801 free_extent_buffer(eb);
802
803 ret = btrfs_insert_root(trans, fs_info->tree_root,
804 &root_key, root_item);
805 if (ret)
806 goto fail;
807
808 kfree(root_item);
809
810 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
811 if (IS_ERR(reloc_root)) {
812 ret = PTR_ERR(reloc_root);
813 goto abort;
814 }
815 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
816 reloc_root->last_trans = trans->transid;
817 return reloc_root;
818 fail:
819 kfree(root_item);
820 abort:
821 if (must_abort)
822 btrfs_abort_transaction(trans, ret);
823 return ERR_PTR(ret);
824 }
825
826 /*
827 * create reloc tree for a given fs tree. reloc tree is just a
828 * snapshot of the fs tree with special root objectid.
829 *
830 * The reloc_root comes out of here with two references, one for
831 * root->reloc_root, and another for being on the rc->reloc_roots list.
832 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)833 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
834 struct btrfs_root *root)
835 {
836 struct btrfs_fs_info *fs_info = root->fs_info;
837 struct btrfs_root *reloc_root;
838 struct reloc_control *rc = fs_info->reloc_ctl;
839 struct btrfs_block_rsv *rsv;
840 int clear_rsv = 0;
841 int ret;
842
843 if (!rc)
844 return 0;
845
846 /*
847 * The subvolume has reloc tree but the swap is finished, no need to
848 * create/update the dead reloc tree
849 */
850 if (reloc_root_is_dead(root))
851 return 0;
852
853 /*
854 * This is subtle but important. We do not do
855 * record_root_in_transaction for reloc roots, instead we record their
856 * corresponding fs root, and then here we update the last trans for the
857 * reloc root. This means that we have to do this for the entire life
858 * of the reloc root, regardless of which stage of the relocation we are
859 * in.
860 */
861 if (root->reloc_root) {
862 reloc_root = root->reloc_root;
863 reloc_root->last_trans = trans->transid;
864 return 0;
865 }
866
867 /*
868 * We are merging reloc roots, we do not need new reloc trees. Also
869 * reloc trees never need their own reloc tree.
870 */
871 if (!rc->create_reloc_tree ||
872 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
873 return 0;
874
875 if (!trans->reloc_reserved) {
876 rsv = trans->block_rsv;
877 trans->block_rsv = rc->block_rsv;
878 clear_rsv = 1;
879 }
880 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
881 if (clear_rsv)
882 trans->block_rsv = rsv;
883 if (IS_ERR(reloc_root))
884 return PTR_ERR(reloc_root);
885
886 ret = __add_reloc_root(reloc_root);
887 ASSERT(ret != -EEXIST);
888 if (ret) {
889 /* Pairs with create_reloc_root */
890 btrfs_put_root(reloc_root);
891 return ret;
892 }
893 root->reloc_root = btrfs_grab_root(reloc_root);
894 return 0;
895 }
896
897 /*
898 * update root item of reloc tree
899 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)900 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
901 struct btrfs_root *root)
902 {
903 struct btrfs_fs_info *fs_info = root->fs_info;
904 struct btrfs_root *reloc_root;
905 struct btrfs_root_item *root_item;
906 int ret;
907
908 if (!have_reloc_root(root))
909 return 0;
910
911 reloc_root = root->reloc_root;
912 root_item = &reloc_root->root_item;
913
914 /*
915 * We are probably ok here, but __del_reloc_root() will drop its ref of
916 * the root. We have the ref for root->reloc_root, but just in case
917 * hold it while we update the reloc root.
918 */
919 btrfs_grab_root(reloc_root);
920
921 /* root->reloc_root will stay until current relocation finished */
922 if (fs_info->reloc_ctl->merge_reloc_tree &&
923 btrfs_root_refs(root_item) == 0) {
924 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
925 /*
926 * Mark the tree as dead before we change reloc_root so
927 * have_reloc_root will not touch it from now on.
928 */
929 smp_wmb();
930 __del_reloc_root(reloc_root);
931 }
932
933 if (reloc_root->commit_root != reloc_root->node) {
934 __update_reloc_root(reloc_root);
935 btrfs_set_root_node(root_item, reloc_root->node);
936 free_extent_buffer(reloc_root->commit_root);
937 reloc_root->commit_root = btrfs_root_node(reloc_root);
938 }
939
940 ret = btrfs_update_root(trans, fs_info->tree_root,
941 &reloc_root->root_key, root_item);
942 btrfs_put_root(reloc_root);
943 return ret;
944 }
945
946 /*
947 * helper to find first cached inode with inode number >= objectid
948 * in a subvolume
949 */
find_next_inode(struct btrfs_root * root,u64 objectid)950 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
951 {
952 struct rb_node *node;
953 struct rb_node *prev;
954 struct btrfs_inode *entry;
955 struct inode *inode;
956
957 spin_lock(&root->inode_lock);
958 again:
959 node = root->inode_tree.rb_node;
960 prev = NULL;
961 while (node) {
962 prev = node;
963 entry = rb_entry(node, struct btrfs_inode, rb_node);
964
965 if (objectid < btrfs_ino(entry))
966 node = node->rb_left;
967 else if (objectid > btrfs_ino(entry))
968 node = node->rb_right;
969 else
970 break;
971 }
972 if (!node) {
973 while (prev) {
974 entry = rb_entry(prev, struct btrfs_inode, rb_node);
975 if (objectid <= btrfs_ino(entry)) {
976 node = prev;
977 break;
978 }
979 prev = rb_next(prev);
980 }
981 }
982 while (node) {
983 entry = rb_entry(node, struct btrfs_inode, rb_node);
984 inode = igrab(&entry->vfs_inode);
985 if (inode) {
986 spin_unlock(&root->inode_lock);
987 return inode;
988 }
989
990 objectid = btrfs_ino(entry) + 1;
991 if (cond_resched_lock(&root->inode_lock))
992 goto again;
993
994 node = rb_next(node);
995 }
996 spin_unlock(&root->inode_lock);
997 return NULL;
998 }
999
1000 /*
1001 * get new location of data
1002 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1003 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1004 u64 bytenr, u64 num_bytes)
1005 {
1006 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1007 struct btrfs_path *path;
1008 struct btrfs_file_extent_item *fi;
1009 struct extent_buffer *leaf;
1010 int ret;
1011
1012 path = btrfs_alloc_path();
1013 if (!path)
1014 return -ENOMEM;
1015
1016 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1017 ret = btrfs_lookup_file_extent(NULL, root, path,
1018 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1019 if (ret < 0)
1020 goto out;
1021 if (ret > 0) {
1022 ret = -ENOENT;
1023 goto out;
1024 }
1025
1026 leaf = path->nodes[0];
1027 fi = btrfs_item_ptr(leaf, path->slots[0],
1028 struct btrfs_file_extent_item);
1029
1030 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1031 btrfs_file_extent_compression(leaf, fi) ||
1032 btrfs_file_extent_encryption(leaf, fi) ||
1033 btrfs_file_extent_other_encoding(leaf, fi));
1034
1035 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1036 ret = -EINVAL;
1037 goto out;
1038 }
1039
1040 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1041 ret = 0;
1042 out:
1043 btrfs_free_path(path);
1044 return ret;
1045 }
1046
1047 /*
1048 * update file extent items in the tree leaf to point to
1049 * the new locations.
1050 */
1051 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1052 int replace_file_extents(struct btrfs_trans_handle *trans,
1053 struct reloc_control *rc,
1054 struct btrfs_root *root,
1055 struct extent_buffer *leaf)
1056 {
1057 struct btrfs_fs_info *fs_info = root->fs_info;
1058 struct btrfs_key key;
1059 struct btrfs_file_extent_item *fi;
1060 struct inode *inode = NULL;
1061 u64 parent;
1062 u64 bytenr;
1063 u64 new_bytenr = 0;
1064 u64 num_bytes;
1065 u64 end;
1066 u32 nritems;
1067 u32 i;
1068 int ret = 0;
1069 int first = 1;
1070 int dirty = 0;
1071
1072 if (rc->stage != UPDATE_DATA_PTRS)
1073 return 0;
1074
1075 /* reloc trees always use full backref */
1076 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1077 parent = leaf->start;
1078 else
1079 parent = 0;
1080
1081 nritems = btrfs_header_nritems(leaf);
1082 for (i = 0; i < nritems; i++) {
1083 struct btrfs_ref ref = { 0 };
1084
1085 cond_resched();
1086 btrfs_item_key_to_cpu(leaf, &key, i);
1087 if (key.type != BTRFS_EXTENT_DATA_KEY)
1088 continue;
1089 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1090 if (btrfs_file_extent_type(leaf, fi) ==
1091 BTRFS_FILE_EXTENT_INLINE)
1092 continue;
1093 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1094 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1095 if (bytenr == 0)
1096 continue;
1097 if (!in_range(bytenr, rc->block_group->start,
1098 rc->block_group->length))
1099 continue;
1100
1101 /*
1102 * if we are modifying block in fs tree, wait for readpage
1103 * to complete and drop the extent cache
1104 */
1105 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1106 if (first) {
1107 inode = find_next_inode(root, key.objectid);
1108 first = 0;
1109 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1110 btrfs_add_delayed_iput(inode);
1111 inode = find_next_inode(root, key.objectid);
1112 }
1113 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1114 end = key.offset +
1115 btrfs_file_extent_num_bytes(leaf, fi);
1116 WARN_ON(!IS_ALIGNED(key.offset,
1117 fs_info->sectorsize));
1118 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1119 end--;
1120 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1121 key.offset, end);
1122 if (!ret)
1123 continue;
1124
1125 btrfs_drop_extent_cache(BTRFS_I(inode),
1126 key.offset, end, 1);
1127 unlock_extent(&BTRFS_I(inode)->io_tree,
1128 key.offset, end);
1129 }
1130 }
1131
1132 ret = get_new_location(rc->data_inode, &new_bytenr,
1133 bytenr, num_bytes);
1134 if (ret) {
1135 /*
1136 * Don't have to abort since we've not changed anything
1137 * in the file extent yet.
1138 */
1139 break;
1140 }
1141
1142 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1143 dirty = 1;
1144
1145 key.offset -= btrfs_file_extent_offset(leaf, fi);
1146 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1147 num_bytes, parent);
1148 ref.real_root = root->root_key.objectid;
1149 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1150 key.objectid, key.offset);
1151 ret = btrfs_inc_extent_ref(trans, &ref);
1152 if (ret) {
1153 btrfs_abort_transaction(trans, ret);
1154 break;
1155 }
1156
1157 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1158 num_bytes, parent);
1159 ref.real_root = root->root_key.objectid;
1160 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1161 key.objectid, key.offset);
1162 ret = btrfs_free_extent(trans, &ref);
1163 if (ret) {
1164 btrfs_abort_transaction(trans, ret);
1165 break;
1166 }
1167 }
1168 if (dirty)
1169 btrfs_mark_buffer_dirty(leaf);
1170 if (inode)
1171 btrfs_add_delayed_iput(inode);
1172 return ret;
1173 }
1174
1175 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1176 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1177 struct btrfs_path *path, int level)
1178 {
1179 struct btrfs_disk_key key1;
1180 struct btrfs_disk_key key2;
1181 btrfs_node_key(eb, &key1, slot);
1182 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1183 return memcmp(&key1, &key2, sizeof(key1));
1184 }
1185
1186 /*
1187 * try to replace tree blocks in fs tree with the new blocks
1188 * in reloc tree. tree blocks haven't been modified since the
1189 * reloc tree was create can be replaced.
1190 *
1191 * if a block was replaced, level of the block + 1 is returned.
1192 * if no block got replaced, 0 is returned. if there are other
1193 * errors, a negative error number is returned.
1194 */
1195 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1196 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1197 struct btrfs_root *dest, struct btrfs_root *src,
1198 struct btrfs_path *path, struct btrfs_key *next_key,
1199 int lowest_level, int max_level)
1200 {
1201 struct btrfs_fs_info *fs_info = dest->fs_info;
1202 struct extent_buffer *eb;
1203 struct extent_buffer *parent;
1204 struct btrfs_ref ref = { 0 };
1205 struct btrfs_key key;
1206 u64 old_bytenr;
1207 u64 new_bytenr;
1208 u64 old_ptr_gen;
1209 u64 new_ptr_gen;
1210 u64 last_snapshot;
1211 u32 blocksize;
1212 int cow = 0;
1213 int level;
1214 int ret;
1215 int slot;
1216
1217 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1218 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1219
1220 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1221 again:
1222 slot = path->slots[lowest_level];
1223 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1224
1225 eb = btrfs_lock_root_node(dest);
1226 level = btrfs_header_level(eb);
1227
1228 if (level < lowest_level) {
1229 btrfs_tree_unlock(eb);
1230 free_extent_buffer(eb);
1231 return 0;
1232 }
1233
1234 if (cow) {
1235 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1236 BTRFS_NESTING_COW);
1237 if (ret) {
1238 btrfs_tree_unlock(eb);
1239 free_extent_buffer(eb);
1240 return ret;
1241 }
1242 }
1243
1244 if (next_key) {
1245 next_key->objectid = (u64)-1;
1246 next_key->type = (u8)-1;
1247 next_key->offset = (u64)-1;
1248 }
1249
1250 parent = eb;
1251 while (1) {
1252 level = btrfs_header_level(parent);
1253 ASSERT(level >= lowest_level);
1254
1255 ret = btrfs_bin_search(parent, &key, &slot);
1256 if (ret < 0)
1257 break;
1258 if (ret && slot > 0)
1259 slot--;
1260
1261 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1262 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1263
1264 old_bytenr = btrfs_node_blockptr(parent, slot);
1265 blocksize = fs_info->nodesize;
1266 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1267
1268 if (level <= max_level) {
1269 eb = path->nodes[level];
1270 new_bytenr = btrfs_node_blockptr(eb,
1271 path->slots[level]);
1272 new_ptr_gen = btrfs_node_ptr_generation(eb,
1273 path->slots[level]);
1274 } else {
1275 new_bytenr = 0;
1276 new_ptr_gen = 0;
1277 }
1278
1279 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1280 ret = level;
1281 break;
1282 }
1283
1284 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1285 memcmp_node_keys(parent, slot, path, level)) {
1286 if (level <= lowest_level) {
1287 ret = 0;
1288 break;
1289 }
1290
1291 eb = btrfs_read_node_slot(parent, slot);
1292 if (IS_ERR(eb)) {
1293 ret = PTR_ERR(eb);
1294 break;
1295 }
1296 btrfs_tree_lock(eb);
1297 if (cow) {
1298 ret = btrfs_cow_block(trans, dest, eb, parent,
1299 slot, &eb,
1300 BTRFS_NESTING_COW);
1301 if (ret) {
1302 btrfs_tree_unlock(eb);
1303 free_extent_buffer(eb);
1304 break;
1305 }
1306 }
1307
1308 btrfs_tree_unlock(parent);
1309 free_extent_buffer(parent);
1310
1311 parent = eb;
1312 continue;
1313 }
1314
1315 if (!cow) {
1316 btrfs_tree_unlock(parent);
1317 free_extent_buffer(parent);
1318 cow = 1;
1319 goto again;
1320 }
1321
1322 btrfs_node_key_to_cpu(path->nodes[level], &key,
1323 path->slots[level]);
1324 btrfs_release_path(path);
1325
1326 path->lowest_level = level;
1327 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1328 path->lowest_level = 0;
1329 if (ret) {
1330 if (ret > 0)
1331 ret = -ENOENT;
1332 break;
1333 }
1334
1335 /*
1336 * Info qgroup to trace both subtrees.
1337 *
1338 * We must trace both trees.
1339 * 1) Tree reloc subtree
1340 * If not traced, we will leak data numbers
1341 * 2) Fs subtree
1342 * If not traced, we will double count old data
1343 *
1344 * We don't scan the subtree right now, but only record
1345 * the swapped tree blocks.
1346 * The real subtree rescan is delayed until we have new
1347 * CoW on the subtree root node before transaction commit.
1348 */
1349 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1350 rc->block_group, parent, slot,
1351 path->nodes[level], path->slots[level],
1352 last_snapshot);
1353 if (ret < 0)
1354 break;
1355 /*
1356 * swap blocks in fs tree and reloc tree.
1357 */
1358 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1359 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1360 btrfs_mark_buffer_dirty(parent);
1361
1362 btrfs_set_node_blockptr(path->nodes[level],
1363 path->slots[level], old_bytenr);
1364 btrfs_set_node_ptr_generation(path->nodes[level],
1365 path->slots[level], old_ptr_gen);
1366 btrfs_mark_buffer_dirty(path->nodes[level]);
1367
1368 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1369 blocksize, path->nodes[level]->start);
1370 ref.skip_qgroup = true;
1371 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1372 ret = btrfs_inc_extent_ref(trans, &ref);
1373 if (ret) {
1374 btrfs_abort_transaction(trans, ret);
1375 break;
1376 }
1377 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1378 blocksize, 0);
1379 ref.skip_qgroup = true;
1380 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1381 ret = btrfs_inc_extent_ref(trans, &ref);
1382 if (ret) {
1383 btrfs_abort_transaction(trans, ret);
1384 break;
1385 }
1386
1387 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1388 blocksize, path->nodes[level]->start);
1389 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1390 ref.skip_qgroup = true;
1391 ret = btrfs_free_extent(trans, &ref);
1392 if (ret) {
1393 btrfs_abort_transaction(trans, ret);
1394 break;
1395 }
1396
1397 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1398 blocksize, 0);
1399 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1400 ref.skip_qgroup = true;
1401 ret = btrfs_free_extent(trans, &ref);
1402 if (ret) {
1403 btrfs_abort_transaction(trans, ret);
1404 break;
1405 }
1406
1407 btrfs_unlock_up_safe(path, 0);
1408
1409 ret = level;
1410 break;
1411 }
1412 btrfs_tree_unlock(parent);
1413 free_extent_buffer(parent);
1414 return ret;
1415 }
1416
1417 /*
1418 * helper to find next relocated block in reloc tree
1419 */
1420 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1421 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1422 int *level)
1423 {
1424 struct extent_buffer *eb;
1425 int i;
1426 u64 last_snapshot;
1427 u32 nritems;
1428
1429 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1430
1431 for (i = 0; i < *level; i++) {
1432 free_extent_buffer(path->nodes[i]);
1433 path->nodes[i] = NULL;
1434 }
1435
1436 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1437 eb = path->nodes[i];
1438 nritems = btrfs_header_nritems(eb);
1439 while (path->slots[i] + 1 < nritems) {
1440 path->slots[i]++;
1441 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1442 last_snapshot)
1443 continue;
1444
1445 *level = i;
1446 return 0;
1447 }
1448 free_extent_buffer(path->nodes[i]);
1449 path->nodes[i] = NULL;
1450 }
1451 return 1;
1452 }
1453
1454 /*
1455 * walk down reloc tree to find relocated block of lowest level
1456 */
1457 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1458 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1459 int *level)
1460 {
1461 struct extent_buffer *eb = NULL;
1462 int i;
1463 u64 ptr_gen = 0;
1464 u64 last_snapshot;
1465 u32 nritems;
1466
1467 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1468
1469 for (i = *level; i > 0; i--) {
1470 eb = path->nodes[i];
1471 nritems = btrfs_header_nritems(eb);
1472 while (path->slots[i] < nritems) {
1473 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1474 if (ptr_gen > last_snapshot)
1475 break;
1476 path->slots[i]++;
1477 }
1478 if (path->slots[i] >= nritems) {
1479 if (i == *level)
1480 break;
1481 *level = i + 1;
1482 return 0;
1483 }
1484 if (i == 1) {
1485 *level = i;
1486 return 0;
1487 }
1488
1489 eb = btrfs_read_node_slot(eb, path->slots[i]);
1490 if (IS_ERR(eb))
1491 return PTR_ERR(eb);
1492 BUG_ON(btrfs_header_level(eb) != i - 1);
1493 path->nodes[i - 1] = eb;
1494 path->slots[i - 1] = 0;
1495 }
1496 return 1;
1497 }
1498
1499 /*
1500 * invalidate extent cache for file extents whose key in range of
1501 * [min_key, max_key)
1502 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)1503 static int invalidate_extent_cache(struct btrfs_root *root,
1504 struct btrfs_key *min_key,
1505 struct btrfs_key *max_key)
1506 {
1507 struct btrfs_fs_info *fs_info = root->fs_info;
1508 struct inode *inode = NULL;
1509 u64 objectid;
1510 u64 start, end;
1511 u64 ino;
1512
1513 objectid = min_key->objectid;
1514 while (1) {
1515 cond_resched();
1516 iput(inode);
1517
1518 if (objectid > max_key->objectid)
1519 break;
1520
1521 inode = find_next_inode(root, objectid);
1522 if (!inode)
1523 break;
1524 ino = btrfs_ino(BTRFS_I(inode));
1525
1526 if (ino > max_key->objectid) {
1527 iput(inode);
1528 break;
1529 }
1530
1531 objectid = ino + 1;
1532 if (!S_ISREG(inode->i_mode))
1533 continue;
1534
1535 if (unlikely(min_key->objectid == ino)) {
1536 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1537 continue;
1538 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1539 start = 0;
1540 else {
1541 start = min_key->offset;
1542 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1543 }
1544 } else {
1545 start = 0;
1546 }
1547
1548 if (unlikely(max_key->objectid == ino)) {
1549 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1550 continue;
1551 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1552 end = (u64)-1;
1553 } else {
1554 if (max_key->offset == 0)
1555 continue;
1556 end = max_key->offset;
1557 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1558 end--;
1559 }
1560 } else {
1561 end = (u64)-1;
1562 }
1563
1564 /* the lock_extent waits for readpage to complete */
1565 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1566 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1567 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1568 }
1569 return 0;
1570 }
1571
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1572 static int find_next_key(struct btrfs_path *path, int level,
1573 struct btrfs_key *key)
1574
1575 {
1576 while (level < BTRFS_MAX_LEVEL) {
1577 if (!path->nodes[level])
1578 break;
1579 if (path->slots[level] + 1 <
1580 btrfs_header_nritems(path->nodes[level])) {
1581 btrfs_node_key_to_cpu(path->nodes[level], key,
1582 path->slots[level] + 1);
1583 return 0;
1584 }
1585 level++;
1586 }
1587 return 1;
1588 }
1589
1590 /*
1591 * Insert current subvolume into reloc_control::dirty_subvol_roots
1592 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1593 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1594 struct reloc_control *rc,
1595 struct btrfs_root *root)
1596 {
1597 struct btrfs_root *reloc_root = root->reloc_root;
1598 struct btrfs_root_item *reloc_root_item;
1599 int ret;
1600
1601 /* @root must be a subvolume tree root with a valid reloc tree */
1602 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1603 ASSERT(reloc_root);
1604
1605 reloc_root_item = &reloc_root->root_item;
1606 memset(&reloc_root_item->drop_progress, 0,
1607 sizeof(reloc_root_item->drop_progress));
1608 btrfs_set_root_drop_level(reloc_root_item, 0);
1609 btrfs_set_root_refs(reloc_root_item, 0);
1610 ret = btrfs_update_reloc_root(trans, root);
1611 if (ret)
1612 return ret;
1613
1614 if (list_empty(&root->reloc_dirty_list)) {
1615 btrfs_grab_root(root);
1616 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1617 }
1618
1619 return 0;
1620 }
1621
clean_dirty_subvols(struct reloc_control * rc)1622 static int clean_dirty_subvols(struct reloc_control *rc)
1623 {
1624 struct btrfs_root *root;
1625 struct btrfs_root *next;
1626 int ret = 0;
1627 int ret2;
1628
1629 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1630 reloc_dirty_list) {
1631 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1632 /* Merged subvolume, cleanup its reloc root */
1633 struct btrfs_root *reloc_root = root->reloc_root;
1634
1635 list_del_init(&root->reloc_dirty_list);
1636 root->reloc_root = NULL;
1637 /*
1638 * Need barrier to ensure clear_bit() only happens after
1639 * root->reloc_root = NULL. Pairs with have_reloc_root.
1640 */
1641 smp_wmb();
1642 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1643 if (reloc_root) {
1644 /*
1645 * btrfs_drop_snapshot drops our ref we hold for
1646 * ->reloc_root. If it fails however we must
1647 * drop the ref ourselves.
1648 */
1649 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1650 if (ret2 < 0) {
1651 btrfs_put_root(reloc_root);
1652 if (!ret)
1653 ret = ret2;
1654 }
1655 }
1656 btrfs_put_root(root);
1657 } else {
1658 /* Orphan reloc tree, just clean it up */
1659 ret2 = btrfs_drop_snapshot(root, 0, 1);
1660 if (ret2 < 0) {
1661 btrfs_put_root(root);
1662 if (!ret)
1663 ret = ret2;
1664 }
1665 }
1666 }
1667 return ret;
1668 }
1669
1670 /*
1671 * merge the relocated tree blocks in reloc tree with corresponding
1672 * fs tree.
1673 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1674 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1675 struct btrfs_root *root)
1676 {
1677 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1678 struct btrfs_key key;
1679 struct btrfs_key next_key;
1680 struct btrfs_trans_handle *trans = NULL;
1681 struct btrfs_root *reloc_root;
1682 struct btrfs_root_item *root_item;
1683 struct btrfs_path *path;
1684 struct extent_buffer *leaf;
1685 int reserve_level;
1686 int level;
1687 int max_level;
1688 int replaced = 0;
1689 int ret = 0;
1690 u32 min_reserved;
1691
1692 path = btrfs_alloc_path();
1693 if (!path)
1694 return -ENOMEM;
1695 path->reada = READA_FORWARD;
1696
1697 reloc_root = root->reloc_root;
1698 root_item = &reloc_root->root_item;
1699
1700 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1701 level = btrfs_root_level(root_item);
1702 atomic_inc(&reloc_root->node->refs);
1703 path->nodes[level] = reloc_root->node;
1704 path->slots[level] = 0;
1705 } else {
1706 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1707
1708 level = btrfs_root_drop_level(root_item);
1709 BUG_ON(level == 0);
1710 path->lowest_level = level;
1711 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1712 path->lowest_level = 0;
1713 if (ret < 0) {
1714 btrfs_free_path(path);
1715 return ret;
1716 }
1717
1718 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1719 path->slots[level]);
1720 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1721
1722 btrfs_unlock_up_safe(path, 0);
1723 }
1724
1725 /*
1726 * In merge_reloc_root(), we modify the upper level pointer to swap the
1727 * tree blocks between reloc tree and subvolume tree. Thus for tree
1728 * block COW, we COW at most from level 1 to root level for each tree.
1729 *
1730 * Thus the needed metadata size is at most root_level * nodesize,
1731 * and * 2 since we have two trees to COW.
1732 */
1733 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1734 min_reserved = fs_info->nodesize * reserve_level * 2;
1735 memset(&next_key, 0, sizeof(next_key));
1736
1737 while (1) {
1738 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1739 BTRFS_RESERVE_FLUSH_LIMIT);
1740 if (ret)
1741 goto out;
1742 trans = btrfs_start_transaction(root, 0);
1743 if (IS_ERR(trans)) {
1744 ret = PTR_ERR(trans);
1745 trans = NULL;
1746 goto out;
1747 }
1748
1749 /*
1750 * At this point we no longer have a reloc_control, so we can't
1751 * depend on btrfs_init_reloc_root to update our last_trans.
1752 *
1753 * But that's ok, we started the trans handle on our
1754 * corresponding fs_root, which means it's been added to the
1755 * dirty list. At commit time we'll still call
1756 * btrfs_update_reloc_root() and update our root item
1757 * appropriately.
1758 */
1759 reloc_root->last_trans = trans->transid;
1760 trans->block_rsv = rc->block_rsv;
1761
1762 replaced = 0;
1763 max_level = level;
1764
1765 ret = walk_down_reloc_tree(reloc_root, path, &level);
1766 if (ret < 0)
1767 goto out;
1768 if (ret > 0)
1769 break;
1770
1771 if (!find_next_key(path, level, &key) &&
1772 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1773 ret = 0;
1774 } else {
1775 ret = replace_path(trans, rc, root, reloc_root, path,
1776 &next_key, level, max_level);
1777 }
1778 if (ret < 0)
1779 goto out;
1780 if (ret > 0) {
1781 level = ret;
1782 btrfs_node_key_to_cpu(path->nodes[level], &key,
1783 path->slots[level]);
1784 replaced = 1;
1785 }
1786
1787 ret = walk_up_reloc_tree(reloc_root, path, &level);
1788 if (ret > 0)
1789 break;
1790
1791 BUG_ON(level == 0);
1792 /*
1793 * save the merging progress in the drop_progress.
1794 * this is OK since root refs == 1 in this case.
1795 */
1796 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1797 path->slots[level]);
1798 btrfs_set_root_drop_level(root_item, level);
1799
1800 btrfs_end_transaction_throttle(trans);
1801 trans = NULL;
1802
1803 btrfs_btree_balance_dirty(fs_info);
1804
1805 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1806 invalidate_extent_cache(root, &key, &next_key);
1807 }
1808
1809 /*
1810 * handle the case only one block in the fs tree need to be
1811 * relocated and the block is tree root.
1812 */
1813 leaf = btrfs_lock_root_node(root);
1814 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1815 BTRFS_NESTING_COW);
1816 btrfs_tree_unlock(leaf);
1817 free_extent_buffer(leaf);
1818 out:
1819 btrfs_free_path(path);
1820
1821 if (ret == 0) {
1822 ret = insert_dirty_subvol(trans, rc, root);
1823 if (ret)
1824 btrfs_abort_transaction(trans, ret);
1825 }
1826
1827 if (trans)
1828 btrfs_end_transaction_throttle(trans);
1829
1830 btrfs_btree_balance_dirty(fs_info);
1831
1832 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1833 invalidate_extent_cache(root, &key, &next_key);
1834
1835 return ret;
1836 }
1837
1838 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1839 int prepare_to_merge(struct reloc_control *rc, int err)
1840 {
1841 struct btrfs_root *root = rc->extent_root;
1842 struct btrfs_fs_info *fs_info = root->fs_info;
1843 struct btrfs_root *reloc_root;
1844 struct btrfs_trans_handle *trans;
1845 LIST_HEAD(reloc_roots);
1846 u64 num_bytes = 0;
1847 int ret;
1848
1849 mutex_lock(&fs_info->reloc_mutex);
1850 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1851 rc->merging_rsv_size += rc->nodes_relocated * 2;
1852 mutex_unlock(&fs_info->reloc_mutex);
1853
1854 again:
1855 if (!err) {
1856 num_bytes = rc->merging_rsv_size;
1857 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1858 BTRFS_RESERVE_FLUSH_ALL);
1859 if (ret)
1860 err = ret;
1861 }
1862
1863 trans = btrfs_join_transaction(rc->extent_root);
1864 if (IS_ERR(trans)) {
1865 if (!err)
1866 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1867 num_bytes, NULL);
1868 return PTR_ERR(trans);
1869 }
1870
1871 if (!err) {
1872 if (num_bytes != rc->merging_rsv_size) {
1873 btrfs_end_transaction(trans);
1874 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1875 num_bytes, NULL);
1876 goto again;
1877 }
1878 }
1879
1880 rc->merge_reloc_tree = 1;
1881
1882 while (!list_empty(&rc->reloc_roots)) {
1883 reloc_root = list_entry(rc->reloc_roots.next,
1884 struct btrfs_root, root_list);
1885 list_del_init(&reloc_root->root_list);
1886
1887 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1888 false);
1889 if (IS_ERR(root)) {
1890 /*
1891 * Even if we have an error we need this reloc root
1892 * back on our list so we can clean up properly.
1893 */
1894 list_add(&reloc_root->root_list, &reloc_roots);
1895 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1896 if (!err)
1897 err = PTR_ERR(root);
1898 break;
1899 }
1900 ASSERT(root->reloc_root == reloc_root);
1901
1902 /*
1903 * set reference count to 1, so btrfs_recover_relocation
1904 * knows it should resumes merging
1905 */
1906 if (!err)
1907 btrfs_set_root_refs(&reloc_root->root_item, 1);
1908 ret = btrfs_update_reloc_root(trans, root);
1909
1910 /*
1911 * Even if we have an error we need this reloc root back on our
1912 * list so we can clean up properly.
1913 */
1914 list_add(&reloc_root->root_list, &reloc_roots);
1915 btrfs_put_root(root);
1916
1917 if (ret) {
1918 btrfs_abort_transaction(trans, ret);
1919 if (!err)
1920 err = ret;
1921 break;
1922 }
1923 }
1924
1925 list_splice(&reloc_roots, &rc->reloc_roots);
1926
1927 if (!err)
1928 err = btrfs_commit_transaction(trans);
1929 else
1930 btrfs_end_transaction(trans);
1931 return err;
1932 }
1933
1934 static noinline_for_stack
free_reloc_roots(struct list_head * list)1935 void free_reloc_roots(struct list_head *list)
1936 {
1937 struct btrfs_root *reloc_root, *tmp;
1938
1939 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1940 __del_reloc_root(reloc_root);
1941 }
1942
1943 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1944 void merge_reloc_roots(struct reloc_control *rc)
1945 {
1946 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1947 struct btrfs_root *root;
1948 struct btrfs_root *reloc_root;
1949 LIST_HEAD(reloc_roots);
1950 int found = 0;
1951 int ret = 0;
1952 again:
1953 root = rc->extent_root;
1954
1955 /*
1956 * this serializes us with btrfs_record_root_in_transaction,
1957 * we have to make sure nobody is in the middle of
1958 * adding their roots to the list while we are
1959 * doing this splice
1960 */
1961 mutex_lock(&fs_info->reloc_mutex);
1962 list_splice_init(&rc->reloc_roots, &reloc_roots);
1963 mutex_unlock(&fs_info->reloc_mutex);
1964
1965 while (!list_empty(&reloc_roots)) {
1966 found = 1;
1967 reloc_root = list_entry(reloc_roots.next,
1968 struct btrfs_root, root_list);
1969
1970 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1971 false);
1972 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1973 if (IS_ERR(root)) {
1974 /*
1975 * For recovery we read the fs roots on mount,
1976 * and if we didn't find the root then we marked
1977 * the reloc root as a garbage root. For normal
1978 * relocation obviously the root should exist in
1979 * memory. However there's no reason we can't
1980 * handle the error properly here just in case.
1981 */
1982 ASSERT(0);
1983 ret = PTR_ERR(root);
1984 goto out;
1985 }
1986 if (root->reloc_root != reloc_root) {
1987 /*
1988 * This is actually impossible without something
1989 * going really wrong (like weird race condition
1990 * or cosmic rays).
1991 */
1992 ASSERT(0);
1993 ret = -EINVAL;
1994 goto out;
1995 }
1996 ret = merge_reloc_root(rc, root);
1997 btrfs_put_root(root);
1998 if (ret) {
1999 if (list_empty(&reloc_root->root_list))
2000 list_add_tail(&reloc_root->root_list,
2001 &reloc_roots);
2002 goto out;
2003 }
2004 } else {
2005 if (!IS_ERR(root)) {
2006 if (root->reloc_root == reloc_root) {
2007 root->reloc_root = NULL;
2008 btrfs_put_root(reloc_root);
2009 }
2010 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2011 &root->state);
2012 btrfs_put_root(root);
2013 }
2014
2015 list_del_init(&reloc_root->root_list);
2016 /* Don't forget to queue this reloc root for cleanup */
2017 list_add_tail(&reloc_root->reloc_dirty_list,
2018 &rc->dirty_subvol_roots);
2019 }
2020 }
2021
2022 if (found) {
2023 found = 0;
2024 goto again;
2025 }
2026 out:
2027 if (ret) {
2028 btrfs_handle_fs_error(fs_info, ret, NULL);
2029 free_reloc_roots(&reloc_roots);
2030
2031 /* new reloc root may be added */
2032 mutex_lock(&fs_info->reloc_mutex);
2033 list_splice_init(&rc->reloc_roots, &reloc_roots);
2034 mutex_unlock(&fs_info->reloc_mutex);
2035 free_reloc_roots(&reloc_roots);
2036 }
2037
2038 /*
2039 * We used to have
2040 *
2041 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2042 *
2043 * here, but it's wrong. If we fail to start the transaction in
2044 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2045 * have actually been removed from the reloc_root_tree rb tree. This is
2046 * fine because we're bailing here, and we hold a reference on the root
2047 * for the list that holds it, so these roots will be cleaned up when we
2048 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2049 * will be cleaned up on unmount.
2050 *
2051 * The remaining nodes will be cleaned up by free_reloc_control.
2052 */
2053 }
2054
free_block_list(struct rb_root * blocks)2055 static void free_block_list(struct rb_root *blocks)
2056 {
2057 struct tree_block *block;
2058 struct rb_node *rb_node;
2059 while ((rb_node = rb_first(blocks))) {
2060 block = rb_entry(rb_node, struct tree_block, rb_node);
2061 rb_erase(rb_node, blocks);
2062 kfree(block);
2063 }
2064 }
2065
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2066 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2067 struct btrfs_root *reloc_root)
2068 {
2069 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2070 struct btrfs_root *root;
2071 int ret;
2072
2073 if (reloc_root->last_trans == trans->transid)
2074 return 0;
2075
2076 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2077
2078 /*
2079 * This should succeed, since we can't have a reloc root without having
2080 * already looked up the actual root and created the reloc root for this
2081 * root.
2082 *
2083 * However if there's some sort of corruption where we have a ref to a
2084 * reloc root without a corresponding root this could return ENOENT.
2085 */
2086 if (IS_ERR(root)) {
2087 ASSERT(0);
2088 return PTR_ERR(root);
2089 }
2090 if (root->reloc_root != reloc_root) {
2091 ASSERT(0);
2092 btrfs_err(fs_info,
2093 "root %llu has two reloc roots associated with it",
2094 reloc_root->root_key.offset);
2095 btrfs_put_root(root);
2096 return -EUCLEAN;
2097 }
2098 ret = btrfs_record_root_in_trans(trans, root);
2099 btrfs_put_root(root);
2100
2101 return ret;
2102 }
2103
2104 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])2105 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2106 struct reloc_control *rc,
2107 struct btrfs_backref_node *node,
2108 struct btrfs_backref_edge *edges[])
2109 {
2110 struct btrfs_backref_node *next;
2111 struct btrfs_root *root;
2112 int index = 0;
2113 int ret;
2114
2115 next = node;
2116 while (1) {
2117 cond_resched();
2118 next = walk_up_backref(next, edges, &index);
2119 root = next->root;
2120
2121 /*
2122 * If there is no root, then our references for this block are
2123 * incomplete, as we should be able to walk all the way up to a
2124 * block that is owned by a root.
2125 *
2126 * This path is only for SHAREABLE roots, so if we come upon a
2127 * non-SHAREABLE root then we have backrefs that resolve
2128 * improperly.
2129 *
2130 * Both of these cases indicate file system corruption, or a bug
2131 * in the backref walking code.
2132 */
2133 if (!root) {
2134 ASSERT(0);
2135 btrfs_err(trans->fs_info,
2136 "bytenr %llu doesn't have a backref path ending in a root",
2137 node->bytenr);
2138 return ERR_PTR(-EUCLEAN);
2139 }
2140 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2141 ASSERT(0);
2142 btrfs_err(trans->fs_info,
2143 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2144 node->bytenr);
2145 return ERR_PTR(-EUCLEAN);
2146 }
2147
2148 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2149 ret = record_reloc_root_in_trans(trans, root);
2150 if (ret)
2151 return ERR_PTR(ret);
2152 break;
2153 }
2154
2155 ret = btrfs_record_root_in_trans(trans, root);
2156 if (ret)
2157 return ERR_PTR(ret);
2158 root = root->reloc_root;
2159
2160 /*
2161 * We could have raced with another thread which failed, so
2162 * root->reloc_root may not be set, return ENOENT in this case.
2163 */
2164 if (!root)
2165 return ERR_PTR(-ENOENT);
2166
2167 if (next->new_bytenr != root->node->start) {
2168 /*
2169 * We just created the reloc root, so we shouldn't have
2170 * ->new_bytenr set and this shouldn't be in the changed
2171 * list. If it is then we have multiple roots pointing
2172 * at the same bytenr which indicates corruption, or
2173 * we've made a mistake in the backref walking code.
2174 */
2175 ASSERT(next->new_bytenr == 0);
2176 ASSERT(list_empty(&next->list));
2177 if (next->new_bytenr || !list_empty(&next->list)) {
2178 btrfs_err(trans->fs_info,
2179 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2180 node->bytenr, next->bytenr);
2181 return ERR_PTR(-EUCLEAN);
2182 }
2183
2184 next->new_bytenr = root->node->start;
2185 btrfs_put_root(next->root);
2186 next->root = btrfs_grab_root(root);
2187 ASSERT(next->root);
2188 list_add_tail(&next->list,
2189 &rc->backref_cache.changed);
2190 mark_block_processed(rc, next);
2191 break;
2192 }
2193
2194 WARN_ON(1);
2195 root = NULL;
2196 next = walk_down_backref(edges, &index);
2197 if (!next || next->level <= node->level)
2198 break;
2199 }
2200 if (!root) {
2201 /*
2202 * This can happen if there's fs corruption or if there's a bug
2203 * in the backref lookup code.
2204 */
2205 ASSERT(0);
2206 return ERR_PTR(-ENOENT);
2207 }
2208
2209 next = node;
2210 /* setup backref node path for btrfs_reloc_cow_block */
2211 while (1) {
2212 rc->backref_cache.path[next->level] = next;
2213 if (--index < 0)
2214 break;
2215 next = edges[index]->node[UPPER];
2216 }
2217 return root;
2218 }
2219
2220 /*
2221 * Select a tree root for relocation.
2222 *
2223 * Return NULL if the block is not shareable. We should use do_relocation() in
2224 * this case.
2225 *
2226 * Return a tree root pointer if the block is shareable.
2227 * Return -ENOENT if the block is root of reloc tree.
2228 */
2229 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2230 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2231 {
2232 struct btrfs_backref_node *next;
2233 struct btrfs_root *root;
2234 struct btrfs_root *fs_root = NULL;
2235 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2236 int index = 0;
2237
2238 next = node;
2239 while (1) {
2240 cond_resched();
2241 next = walk_up_backref(next, edges, &index);
2242 root = next->root;
2243
2244 /*
2245 * This can occur if we have incomplete extent refs leading all
2246 * the way up a particular path, in this case return -EUCLEAN.
2247 */
2248 if (!root)
2249 return ERR_PTR(-EUCLEAN);
2250
2251 /* No other choice for non-shareable tree */
2252 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2253 return root;
2254
2255 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2256 fs_root = root;
2257
2258 if (next != node)
2259 return NULL;
2260
2261 next = walk_down_backref(edges, &index);
2262 if (!next || next->level <= node->level)
2263 break;
2264 }
2265
2266 if (!fs_root)
2267 return ERR_PTR(-ENOENT);
2268 return fs_root;
2269 }
2270
2271 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node,int reserve)2272 u64 calcu_metadata_size(struct reloc_control *rc,
2273 struct btrfs_backref_node *node, int reserve)
2274 {
2275 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2276 struct btrfs_backref_node *next = node;
2277 struct btrfs_backref_edge *edge;
2278 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2279 u64 num_bytes = 0;
2280 int index = 0;
2281
2282 BUG_ON(reserve && node->processed);
2283
2284 while (next) {
2285 cond_resched();
2286 while (1) {
2287 if (next->processed && (reserve || next != node))
2288 break;
2289
2290 num_bytes += fs_info->nodesize;
2291
2292 if (list_empty(&next->upper))
2293 break;
2294
2295 edge = list_entry(next->upper.next,
2296 struct btrfs_backref_edge, list[LOWER]);
2297 edges[index++] = edge;
2298 next = edge->node[UPPER];
2299 }
2300 next = walk_down_backref(edges, &index);
2301 }
2302 return num_bytes;
2303 }
2304
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2305 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2306 struct reloc_control *rc,
2307 struct btrfs_backref_node *node)
2308 {
2309 struct btrfs_root *root = rc->extent_root;
2310 struct btrfs_fs_info *fs_info = root->fs_info;
2311 u64 num_bytes;
2312 int ret;
2313 u64 tmp;
2314
2315 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2316
2317 trans->block_rsv = rc->block_rsv;
2318 rc->reserved_bytes += num_bytes;
2319
2320 /*
2321 * We are under a transaction here so we can only do limited flushing.
2322 * If we get an enospc just kick back -EAGAIN so we know to drop the
2323 * transaction and try to refill when we can flush all the things.
2324 */
2325 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2326 BTRFS_RESERVE_FLUSH_LIMIT);
2327 if (ret) {
2328 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2329 while (tmp <= rc->reserved_bytes)
2330 tmp <<= 1;
2331 /*
2332 * only one thread can access block_rsv at this point,
2333 * so we don't need hold lock to protect block_rsv.
2334 * we expand more reservation size here to allow enough
2335 * space for relocation and we will return earlier in
2336 * enospc case.
2337 */
2338 rc->block_rsv->size = tmp + fs_info->nodesize *
2339 RELOCATION_RESERVED_NODES;
2340 return -EAGAIN;
2341 }
2342
2343 return 0;
2344 }
2345
2346 /*
2347 * relocate a block tree, and then update pointers in upper level
2348 * blocks that reference the block to point to the new location.
2349 *
2350 * if called by link_to_upper, the block has already been relocated.
2351 * in that case this function just updates pointers.
2352 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2353 static int do_relocation(struct btrfs_trans_handle *trans,
2354 struct reloc_control *rc,
2355 struct btrfs_backref_node *node,
2356 struct btrfs_key *key,
2357 struct btrfs_path *path, int lowest)
2358 {
2359 struct btrfs_backref_node *upper;
2360 struct btrfs_backref_edge *edge;
2361 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2362 struct btrfs_root *root;
2363 struct extent_buffer *eb;
2364 u32 blocksize;
2365 u64 bytenr;
2366 int slot;
2367 int ret = 0;
2368
2369 /*
2370 * If we are lowest then this is the first time we're processing this
2371 * block, and thus shouldn't have an eb associated with it yet.
2372 */
2373 ASSERT(!lowest || !node->eb);
2374
2375 path->lowest_level = node->level + 1;
2376 rc->backref_cache.path[node->level] = node;
2377 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2378 struct btrfs_ref ref = { 0 };
2379
2380 cond_resched();
2381
2382 upper = edge->node[UPPER];
2383 root = select_reloc_root(trans, rc, upper, edges);
2384 if (IS_ERR(root)) {
2385 ret = PTR_ERR(root);
2386 goto next;
2387 }
2388
2389 if (upper->eb && !upper->locked) {
2390 if (!lowest) {
2391 ret = btrfs_bin_search(upper->eb, key, &slot);
2392 if (ret < 0)
2393 goto next;
2394 BUG_ON(ret);
2395 bytenr = btrfs_node_blockptr(upper->eb, slot);
2396 if (node->eb->start == bytenr)
2397 goto next;
2398 }
2399 btrfs_backref_drop_node_buffer(upper);
2400 }
2401
2402 if (!upper->eb) {
2403 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2404 if (ret) {
2405 if (ret > 0)
2406 ret = -ENOENT;
2407
2408 btrfs_release_path(path);
2409 break;
2410 }
2411
2412 if (!upper->eb) {
2413 upper->eb = path->nodes[upper->level];
2414 path->nodes[upper->level] = NULL;
2415 } else {
2416 BUG_ON(upper->eb != path->nodes[upper->level]);
2417 }
2418
2419 upper->locked = 1;
2420 path->locks[upper->level] = 0;
2421
2422 slot = path->slots[upper->level];
2423 btrfs_release_path(path);
2424 } else {
2425 ret = btrfs_bin_search(upper->eb, key, &slot);
2426 if (ret < 0)
2427 goto next;
2428 BUG_ON(ret);
2429 }
2430
2431 bytenr = btrfs_node_blockptr(upper->eb, slot);
2432 if (lowest) {
2433 if (bytenr != node->bytenr) {
2434 btrfs_err(root->fs_info,
2435 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2436 bytenr, node->bytenr, slot,
2437 upper->eb->start);
2438 ret = -EIO;
2439 goto next;
2440 }
2441 } else {
2442 if (node->eb->start == bytenr)
2443 goto next;
2444 }
2445
2446 blocksize = root->fs_info->nodesize;
2447 eb = btrfs_read_node_slot(upper->eb, slot);
2448 if (IS_ERR(eb)) {
2449 ret = PTR_ERR(eb);
2450 goto next;
2451 }
2452 btrfs_tree_lock(eb);
2453
2454 if (!node->eb) {
2455 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2456 slot, &eb, BTRFS_NESTING_COW);
2457 btrfs_tree_unlock(eb);
2458 free_extent_buffer(eb);
2459 if (ret < 0)
2460 goto next;
2461 /*
2462 * We've just COWed this block, it should have updated
2463 * the correct backref node entry.
2464 */
2465 ASSERT(node->eb == eb);
2466 } else {
2467 btrfs_set_node_blockptr(upper->eb, slot,
2468 node->eb->start);
2469 btrfs_set_node_ptr_generation(upper->eb, slot,
2470 trans->transid);
2471 btrfs_mark_buffer_dirty(upper->eb);
2472
2473 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2474 node->eb->start, blocksize,
2475 upper->eb->start);
2476 ref.real_root = root->root_key.objectid;
2477 btrfs_init_tree_ref(&ref, node->level,
2478 btrfs_header_owner(upper->eb));
2479 ret = btrfs_inc_extent_ref(trans, &ref);
2480 if (!ret)
2481 ret = btrfs_drop_subtree(trans, root, eb,
2482 upper->eb);
2483 if (ret)
2484 btrfs_abort_transaction(trans, ret);
2485 }
2486 next:
2487 if (!upper->pending)
2488 btrfs_backref_drop_node_buffer(upper);
2489 else
2490 btrfs_backref_unlock_node_buffer(upper);
2491 if (ret)
2492 break;
2493 }
2494
2495 if (!ret && node->pending) {
2496 btrfs_backref_drop_node_buffer(node);
2497 list_move_tail(&node->list, &rc->backref_cache.changed);
2498 node->pending = 0;
2499 }
2500
2501 path->lowest_level = 0;
2502
2503 /*
2504 * We should have allocated all of our space in the block rsv and thus
2505 * shouldn't ENOSPC.
2506 */
2507 ASSERT(ret != -ENOSPC);
2508 return ret;
2509 }
2510
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2511 static int link_to_upper(struct btrfs_trans_handle *trans,
2512 struct reloc_control *rc,
2513 struct btrfs_backref_node *node,
2514 struct btrfs_path *path)
2515 {
2516 struct btrfs_key key;
2517
2518 btrfs_node_key_to_cpu(node->eb, &key, 0);
2519 return do_relocation(trans, rc, node, &key, path, 0);
2520 }
2521
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2522 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2523 struct reloc_control *rc,
2524 struct btrfs_path *path, int err)
2525 {
2526 LIST_HEAD(list);
2527 struct btrfs_backref_cache *cache = &rc->backref_cache;
2528 struct btrfs_backref_node *node;
2529 int level;
2530 int ret;
2531
2532 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2533 while (!list_empty(&cache->pending[level])) {
2534 node = list_entry(cache->pending[level].next,
2535 struct btrfs_backref_node, list);
2536 list_move_tail(&node->list, &list);
2537 BUG_ON(!node->pending);
2538
2539 if (!err) {
2540 ret = link_to_upper(trans, rc, node, path);
2541 if (ret < 0)
2542 err = ret;
2543 }
2544 }
2545 list_splice_init(&list, &cache->pending[level]);
2546 }
2547 return err;
2548 }
2549
2550 /*
2551 * mark a block and all blocks directly/indirectly reference the block
2552 * as processed.
2553 */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2554 static void update_processed_blocks(struct reloc_control *rc,
2555 struct btrfs_backref_node *node)
2556 {
2557 struct btrfs_backref_node *next = node;
2558 struct btrfs_backref_edge *edge;
2559 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2560 int index = 0;
2561
2562 while (next) {
2563 cond_resched();
2564 while (1) {
2565 if (next->processed)
2566 break;
2567
2568 mark_block_processed(rc, next);
2569
2570 if (list_empty(&next->upper))
2571 break;
2572
2573 edge = list_entry(next->upper.next,
2574 struct btrfs_backref_edge, list[LOWER]);
2575 edges[index++] = edge;
2576 next = edge->node[UPPER];
2577 }
2578 next = walk_down_backref(edges, &index);
2579 }
2580 }
2581
tree_block_processed(u64 bytenr,struct reloc_control * rc)2582 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2583 {
2584 u32 blocksize = rc->extent_root->fs_info->nodesize;
2585
2586 if (test_range_bit(&rc->processed_blocks, bytenr,
2587 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2588 return 1;
2589 return 0;
2590 }
2591
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2592 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2593 struct tree_block *block)
2594 {
2595 struct extent_buffer *eb;
2596
2597 eb = read_tree_block(fs_info, block->bytenr, block->owner,
2598 block->key.offset, block->level, NULL);
2599 if (IS_ERR(eb)) {
2600 return PTR_ERR(eb);
2601 } else if (!extent_buffer_uptodate(eb)) {
2602 free_extent_buffer(eb);
2603 return -EIO;
2604 }
2605 if (block->level == 0)
2606 btrfs_item_key_to_cpu(eb, &block->key, 0);
2607 else
2608 btrfs_node_key_to_cpu(eb, &block->key, 0);
2609 free_extent_buffer(eb);
2610 block->key_ready = 1;
2611 return 0;
2612 }
2613
2614 /*
2615 * helper function to relocate a tree block
2616 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2617 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2618 struct reloc_control *rc,
2619 struct btrfs_backref_node *node,
2620 struct btrfs_key *key,
2621 struct btrfs_path *path)
2622 {
2623 struct btrfs_root *root;
2624 int ret = 0;
2625
2626 if (!node)
2627 return 0;
2628
2629 /*
2630 * If we fail here we want to drop our backref_node because we are going
2631 * to start over and regenerate the tree for it.
2632 */
2633 ret = reserve_metadata_space(trans, rc, node);
2634 if (ret)
2635 goto out;
2636
2637 BUG_ON(node->processed);
2638 root = select_one_root(node);
2639 if (IS_ERR(root)) {
2640 ret = PTR_ERR(root);
2641
2642 /* See explanation in select_one_root for the -EUCLEAN case. */
2643 ASSERT(ret == -ENOENT);
2644 if (ret == -ENOENT) {
2645 ret = 0;
2646 update_processed_blocks(rc, node);
2647 }
2648 goto out;
2649 }
2650
2651 if (root) {
2652 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2653 /*
2654 * This block was the root block of a root, and this is
2655 * the first time we're processing the block and thus it
2656 * should not have had the ->new_bytenr modified and
2657 * should have not been included on the changed list.
2658 *
2659 * However in the case of corruption we could have
2660 * multiple refs pointing to the same block improperly,
2661 * and thus we would trip over these checks. ASSERT()
2662 * for the developer case, because it could indicate a
2663 * bug in the backref code, however error out for a
2664 * normal user in the case of corruption.
2665 */
2666 ASSERT(node->new_bytenr == 0);
2667 ASSERT(list_empty(&node->list));
2668 if (node->new_bytenr || !list_empty(&node->list)) {
2669 btrfs_err(root->fs_info,
2670 "bytenr %llu has improper references to it",
2671 node->bytenr);
2672 ret = -EUCLEAN;
2673 goto out;
2674 }
2675 ret = btrfs_record_root_in_trans(trans, root);
2676 if (ret)
2677 goto out;
2678 /*
2679 * Another thread could have failed, need to check if we
2680 * have reloc_root actually set.
2681 */
2682 if (!root->reloc_root) {
2683 ret = -ENOENT;
2684 goto out;
2685 }
2686 root = root->reloc_root;
2687 node->new_bytenr = root->node->start;
2688 btrfs_put_root(node->root);
2689 node->root = btrfs_grab_root(root);
2690 ASSERT(node->root);
2691 list_add_tail(&node->list, &rc->backref_cache.changed);
2692 } else {
2693 path->lowest_level = node->level;
2694 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2695 btrfs_release_path(path);
2696 if (ret > 0)
2697 ret = 0;
2698 }
2699 if (!ret)
2700 update_processed_blocks(rc, node);
2701 } else {
2702 ret = do_relocation(trans, rc, node, key, path, 1);
2703 }
2704 out:
2705 if (ret || node->level == 0 || node->cowonly)
2706 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2707 return ret;
2708 }
2709
2710 /*
2711 * relocate a list of blocks
2712 */
2713 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2714 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2715 struct reloc_control *rc, struct rb_root *blocks)
2716 {
2717 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2718 struct btrfs_backref_node *node;
2719 struct btrfs_path *path;
2720 struct tree_block *block;
2721 struct tree_block *next;
2722 int ret;
2723 int err = 0;
2724
2725 path = btrfs_alloc_path();
2726 if (!path) {
2727 err = -ENOMEM;
2728 goto out_free_blocks;
2729 }
2730
2731 /* Kick in readahead for tree blocks with missing keys */
2732 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2733 if (!block->key_ready)
2734 btrfs_readahead_tree_block(fs_info, block->bytenr,
2735 block->owner, 0,
2736 block->level);
2737 }
2738
2739 /* Get first keys */
2740 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2741 if (!block->key_ready) {
2742 err = get_tree_block_key(fs_info, block);
2743 if (err)
2744 goto out_free_path;
2745 }
2746 }
2747
2748 /* Do tree relocation */
2749 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2750 node = build_backref_tree(rc, &block->key,
2751 block->level, block->bytenr);
2752 if (IS_ERR(node)) {
2753 err = PTR_ERR(node);
2754 goto out;
2755 }
2756
2757 ret = relocate_tree_block(trans, rc, node, &block->key,
2758 path);
2759 if (ret < 0) {
2760 err = ret;
2761 break;
2762 }
2763 }
2764 out:
2765 err = finish_pending_nodes(trans, rc, path, err);
2766
2767 out_free_path:
2768 btrfs_free_path(path);
2769 out_free_blocks:
2770 free_block_list(blocks);
2771 return err;
2772 }
2773
prealloc_file_extent_cluster(struct btrfs_inode * inode,struct file_extent_cluster * cluster)2774 static noinline_for_stack int prealloc_file_extent_cluster(
2775 struct btrfs_inode *inode,
2776 struct file_extent_cluster *cluster)
2777 {
2778 u64 alloc_hint = 0;
2779 u64 start;
2780 u64 end;
2781 u64 offset = inode->index_cnt;
2782 u64 num_bytes;
2783 int nr;
2784 int ret = 0;
2785 u64 i_size = i_size_read(&inode->vfs_inode);
2786 u64 prealloc_start = cluster->start - offset;
2787 u64 prealloc_end = cluster->end - offset;
2788 u64 cur_offset = prealloc_start;
2789
2790 /*
2791 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2792 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2793 * btrfs_do_readpage() call of previously relocated file cluster.
2794 *
2795 * If the current cluster starts in the above range, btrfs_do_readpage()
2796 * will skip the read, and relocate_one_page() will later writeback
2797 * the padding zeros as new data, causing data corruption.
2798 *
2799 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2800 */
2801 if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2802 struct address_space *mapping = inode->vfs_inode.i_mapping;
2803 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2804 const u32 sectorsize = fs_info->sectorsize;
2805 struct page *page;
2806
2807 ASSERT(sectorsize < PAGE_SIZE);
2808 ASSERT(IS_ALIGNED(i_size, sectorsize));
2809
2810 /*
2811 * Subpage can't handle page with DIRTY but without UPTODATE
2812 * bit as it can lead to the following deadlock:
2813 *
2814 * btrfs_readpage()
2815 * | Page already *locked*
2816 * |- btrfs_lock_and_flush_ordered_range()
2817 * |- btrfs_start_ordered_extent()
2818 * |- extent_write_cache_pages()
2819 * |- lock_page()
2820 * We try to lock the page we already hold.
2821 *
2822 * Here we just writeback the whole data reloc inode, so that
2823 * we will be ensured to have no dirty range in the page, and
2824 * are safe to clear the uptodate bits.
2825 *
2826 * This shouldn't cause too much overhead, as we need to write
2827 * the data back anyway.
2828 */
2829 ret = filemap_write_and_wait(mapping);
2830 if (ret < 0)
2831 return ret;
2832
2833 clear_extent_bits(&inode->io_tree, i_size,
2834 round_up(i_size, PAGE_SIZE) - 1,
2835 EXTENT_UPTODATE);
2836 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2837 /*
2838 * If page is freed we don't need to do anything then, as we
2839 * will re-read the whole page anyway.
2840 */
2841 if (page) {
2842 btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2843 round_up(i_size, PAGE_SIZE) - i_size);
2844 unlock_page(page);
2845 put_page(page);
2846 }
2847 }
2848
2849 BUG_ON(cluster->start != cluster->boundary[0]);
2850 ret = btrfs_alloc_data_chunk_ondemand(inode,
2851 prealloc_end + 1 - prealloc_start);
2852 if (ret)
2853 return ret;
2854
2855 /*
2856 * On a zoned filesystem, we cannot preallocate the file region.
2857 * Instead, we dirty and fiemap_write the region.
2858 */
2859 if (btrfs_is_zoned(inode->root->fs_info)) {
2860 struct btrfs_root *root = inode->root;
2861 struct btrfs_trans_handle *trans;
2862
2863 end = cluster->end - offset + 1;
2864 trans = btrfs_start_transaction(root, 1);
2865 if (IS_ERR(trans))
2866 return PTR_ERR(trans);
2867
2868 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2869 i_size_write(&inode->vfs_inode, end);
2870 ret = btrfs_update_inode(trans, root, inode);
2871 if (ret) {
2872 btrfs_abort_transaction(trans, ret);
2873 btrfs_end_transaction(trans);
2874 return ret;
2875 }
2876
2877 return btrfs_end_transaction(trans);
2878 }
2879
2880 btrfs_inode_lock(&inode->vfs_inode, 0);
2881 for (nr = 0; nr < cluster->nr; nr++) {
2882 start = cluster->boundary[nr] - offset;
2883 if (nr + 1 < cluster->nr)
2884 end = cluster->boundary[nr + 1] - 1 - offset;
2885 else
2886 end = cluster->end - offset;
2887
2888 lock_extent(&inode->io_tree, start, end);
2889 num_bytes = end + 1 - start;
2890 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2891 num_bytes, num_bytes,
2892 end + 1, &alloc_hint);
2893 cur_offset = end + 1;
2894 unlock_extent(&inode->io_tree, start, end);
2895 if (ret)
2896 break;
2897 }
2898 btrfs_inode_unlock(&inode->vfs_inode, 0);
2899
2900 if (cur_offset < prealloc_end)
2901 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2902 prealloc_end + 1 - cur_offset);
2903 return ret;
2904 }
2905
2906 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)2907 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2908 u64 block_start)
2909 {
2910 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2911 struct extent_map *em;
2912 int ret = 0;
2913
2914 em = alloc_extent_map();
2915 if (!em)
2916 return -ENOMEM;
2917
2918 em->start = start;
2919 em->len = end + 1 - start;
2920 em->block_len = em->len;
2921 em->block_start = block_start;
2922 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2923
2924 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2925 while (1) {
2926 write_lock(&em_tree->lock);
2927 ret = add_extent_mapping(em_tree, em, 0);
2928 write_unlock(&em_tree->lock);
2929 if (ret != -EEXIST) {
2930 free_extent_map(em);
2931 break;
2932 }
2933 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2934 }
2935 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2936 return ret;
2937 }
2938
2939 /*
2940 * Allow error injection to test balance/relocation cancellation
2941 */
btrfs_should_cancel_balance(struct btrfs_fs_info * fs_info)2942 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2943 {
2944 return atomic_read(&fs_info->balance_cancel_req) ||
2945 atomic_read(&fs_info->reloc_cancel_req) ||
2946 fatal_signal_pending(current);
2947 }
2948 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2949
get_cluster_boundary_end(struct file_extent_cluster * cluster,int cluster_nr)2950 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2951 int cluster_nr)
2952 {
2953 /* Last extent, use cluster end directly */
2954 if (cluster_nr >= cluster->nr - 1)
2955 return cluster->end;
2956
2957 /* Use next boundary start*/
2958 return cluster->boundary[cluster_nr + 1] - 1;
2959 }
2960
relocate_one_page(struct inode * inode,struct file_ra_state * ra,struct file_extent_cluster * cluster,int * cluster_nr,unsigned long page_index)2961 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2962 struct file_extent_cluster *cluster,
2963 int *cluster_nr, unsigned long page_index)
2964 {
2965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2966 u64 offset = BTRFS_I(inode)->index_cnt;
2967 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2968 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2969 struct page *page;
2970 u64 page_start;
2971 u64 page_end;
2972 u64 cur;
2973 int ret;
2974
2975 ASSERT(page_index <= last_index);
2976 page = find_lock_page(inode->i_mapping, page_index);
2977 if (!page) {
2978 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2979 page_index, last_index + 1 - page_index);
2980 page = find_or_create_page(inode->i_mapping, page_index, mask);
2981 if (!page)
2982 return -ENOMEM;
2983 }
2984 ret = set_page_extent_mapped(page);
2985 if (ret < 0)
2986 goto release_page;
2987
2988 if (PageReadahead(page))
2989 page_cache_async_readahead(inode->i_mapping, ra, NULL, page,
2990 page_index, last_index + 1 - page_index);
2991
2992 if (!PageUptodate(page)) {
2993 btrfs_readpage(NULL, page);
2994 lock_page(page);
2995 if (!PageUptodate(page)) {
2996 ret = -EIO;
2997 goto release_page;
2998 }
2999 }
3000
3001 page_start = page_offset(page);
3002 page_end = page_start + PAGE_SIZE - 1;
3003
3004 /*
3005 * Start from the cluster, as for subpage case, the cluster can start
3006 * inside the page.
3007 */
3008 cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3009 while (cur <= page_end) {
3010 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3011 u64 extent_end = get_cluster_boundary_end(cluster,
3012 *cluster_nr) - offset;
3013 u64 clamped_start = max(page_start, extent_start);
3014 u64 clamped_end = min(page_end, extent_end);
3015 u32 clamped_len = clamped_end + 1 - clamped_start;
3016
3017 /* Reserve metadata for this range */
3018 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3019 clamped_len);
3020 if (ret)
3021 goto release_page;
3022
3023 /* Mark the range delalloc and dirty for later writeback */
3024 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3025 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3026 clamped_end, 0, NULL);
3027 if (ret) {
3028 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3029 clamped_start, clamped_end,
3030 EXTENT_LOCKED | EXTENT_BOUNDARY);
3031 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3032 clamped_len, true);
3033 btrfs_delalloc_release_extents(BTRFS_I(inode),
3034 clamped_len);
3035 goto release_page;
3036 }
3037 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3038
3039 /*
3040 * Set the boundary if it's inside the page.
3041 * Data relocation requires the destination extents to have the
3042 * same size as the source.
3043 * EXTENT_BOUNDARY bit prevents current extent from being merged
3044 * with previous extent.
3045 */
3046 if (in_range(cluster->boundary[*cluster_nr] - offset,
3047 page_start, PAGE_SIZE)) {
3048 u64 boundary_start = cluster->boundary[*cluster_nr] -
3049 offset;
3050 u64 boundary_end = boundary_start +
3051 fs_info->sectorsize - 1;
3052
3053 set_extent_bits(&BTRFS_I(inode)->io_tree,
3054 boundary_start, boundary_end,
3055 EXTENT_BOUNDARY);
3056 }
3057 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3058 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3059 cur += clamped_len;
3060
3061 /* Crossed extent end, go to next extent */
3062 if (cur >= extent_end) {
3063 (*cluster_nr)++;
3064 /* Just finished the last extent of the cluster, exit. */
3065 if (*cluster_nr >= cluster->nr)
3066 break;
3067 }
3068 }
3069 unlock_page(page);
3070 put_page(page);
3071
3072 balance_dirty_pages_ratelimited(inode->i_mapping);
3073 btrfs_throttle(fs_info);
3074 if (btrfs_should_cancel_balance(fs_info))
3075 ret = -ECANCELED;
3076 return ret;
3077
3078 release_page:
3079 unlock_page(page);
3080 put_page(page);
3081 return ret;
3082 }
3083
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3084 static int relocate_file_extent_cluster(struct inode *inode,
3085 struct file_extent_cluster *cluster)
3086 {
3087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3088 u64 offset = BTRFS_I(inode)->index_cnt;
3089 unsigned long index;
3090 unsigned long last_index;
3091 struct file_ra_state *ra;
3092 int cluster_nr = 0;
3093 int ret = 0;
3094
3095 if (!cluster->nr)
3096 return 0;
3097
3098 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3099 if (!ra)
3100 return -ENOMEM;
3101
3102 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3103 if (ret)
3104 goto out;
3105
3106 file_ra_state_init(ra, inode->i_mapping);
3107
3108 ret = setup_extent_mapping(inode, cluster->start - offset,
3109 cluster->end - offset, cluster->start);
3110 if (ret)
3111 goto out;
3112
3113 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3114 for (index = (cluster->start - offset) >> PAGE_SHIFT;
3115 index <= last_index && !ret; index++)
3116 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3117 if (btrfs_is_zoned(fs_info) && !ret)
3118 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3119 if (ret == 0)
3120 WARN_ON(cluster_nr != cluster->nr);
3121 out:
3122 kfree(ra);
3123 return ret;
3124 }
3125
3126 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3127 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3128 struct file_extent_cluster *cluster)
3129 {
3130 int ret;
3131
3132 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3133 ret = relocate_file_extent_cluster(inode, cluster);
3134 if (ret)
3135 return ret;
3136 cluster->nr = 0;
3137 }
3138
3139 if (!cluster->nr)
3140 cluster->start = extent_key->objectid;
3141 else
3142 BUG_ON(cluster->nr >= MAX_EXTENTS);
3143 cluster->end = extent_key->objectid + extent_key->offset - 1;
3144 cluster->boundary[cluster->nr] = extent_key->objectid;
3145 cluster->nr++;
3146
3147 if (cluster->nr >= MAX_EXTENTS) {
3148 ret = relocate_file_extent_cluster(inode, cluster);
3149 if (ret)
3150 return ret;
3151 cluster->nr = 0;
3152 }
3153 return 0;
3154 }
3155
3156 /*
3157 * helper to add a tree block to the list.
3158 * the major work is getting the generation and level of the block
3159 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3160 static int add_tree_block(struct reloc_control *rc,
3161 struct btrfs_key *extent_key,
3162 struct btrfs_path *path,
3163 struct rb_root *blocks)
3164 {
3165 struct extent_buffer *eb;
3166 struct btrfs_extent_item *ei;
3167 struct btrfs_tree_block_info *bi;
3168 struct tree_block *block;
3169 struct rb_node *rb_node;
3170 u32 item_size;
3171 int level = -1;
3172 u64 generation;
3173 u64 owner = 0;
3174
3175 eb = path->nodes[0];
3176 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3177
3178 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3179 item_size >= sizeof(*ei) + sizeof(*bi)) {
3180 unsigned long ptr = 0, end;
3181
3182 ei = btrfs_item_ptr(eb, path->slots[0],
3183 struct btrfs_extent_item);
3184 end = (unsigned long)ei + item_size;
3185 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3186 bi = (struct btrfs_tree_block_info *)(ei + 1);
3187 level = btrfs_tree_block_level(eb, bi);
3188 ptr = (unsigned long)(bi + 1);
3189 } else {
3190 level = (int)extent_key->offset;
3191 ptr = (unsigned long)(ei + 1);
3192 }
3193 generation = btrfs_extent_generation(eb, ei);
3194
3195 /*
3196 * We're reading random blocks without knowing their owner ahead
3197 * of time. This is ok most of the time, as all reloc roots and
3198 * fs roots have the same lock type. However normal trees do
3199 * not, and the only way to know ahead of time is to read the
3200 * inline ref offset. We know it's an fs root if
3201 *
3202 * 1. There's more than one ref.
3203 * 2. There's a SHARED_DATA_REF_KEY set.
3204 * 3. FULL_BACKREF is set on the flags.
3205 *
3206 * Otherwise it's safe to assume that the ref offset == the
3207 * owner of this block, so we can use that when calling
3208 * read_tree_block.
3209 */
3210 if (btrfs_extent_refs(eb, ei) == 1 &&
3211 !(btrfs_extent_flags(eb, ei) &
3212 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3213 ptr < end) {
3214 struct btrfs_extent_inline_ref *iref;
3215 int type;
3216
3217 iref = (struct btrfs_extent_inline_ref *)ptr;
3218 type = btrfs_get_extent_inline_ref_type(eb, iref,
3219 BTRFS_REF_TYPE_BLOCK);
3220 if (type == BTRFS_REF_TYPE_INVALID)
3221 return -EINVAL;
3222 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3223 owner = btrfs_extent_inline_ref_offset(eb, iref);
3224 }
3225 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3226 btrfs_print_v0_err(eb->fs_info);
3227 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3228 return -EINVAL;
3229 } else {
3230 BUG();
3231 }
3232
3233 btrfs_release_path(path);
3234
3235 BUG_ON(level == -1);
3236
3237 block = kmalloc(sizeof(*block), GFP_NOFS);
3238 if (!block)
3239 return -ENOMEM;
3240
3241 block->bytenr = extent_key->objectid;
3242 block->key.objectid = rc->extent_root->fs_info->nodesize;
3243 block->key.offset = generation;
3244 block->level = level;
3245 block->key_ready = 0;
3246 block->owner = owner;
3247
3248 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3249 if (rb_node)
3250 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3251 -EEXIST);
3252
3253 return 0;
3254 }
3255
3256 /*
3257 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3258 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3259 static int __add_tree_block(struct reloc_control *rc,
3260 u64 bytenr, u32 blocksize,
3261 struct rb_root *blocks)
3262 {
3263 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3264 struct btrfs_path *path;
3265 struct btrfs_key key;
3266 int ret;
3267 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3268
3269 if (tree_block_processed(bytenr, rc))
3270 return 0;
3271
3272 if (rb_simple_search(blocks, bytenr))
3273 return 0;
3274
3275 path = btrfs_alloc_path();
3276 if (!path)
3277 return -ENOMEM;
3278 again:
3279 key.objectid = bytenr;
3280 if (skinny) {
3281 key.type = BTRFS_METADATA_ITEM_KEY;
3282 key.offset = (u64)-1;
3283 } else {
3284 key.type = BTRFS_EXTENT_ITEM_KEY;
3285 key.offset = blocksize;
3286 }
3287
3288 path->search_commit_root = 1;
3289 path->skip_locking = 1;
3290 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3291 if (ret < 0)
3292 goto out;
3293
3294 if (ret > 0 && skinny) {
3295 if (path->slots[0]) {
3296 path->slots[0]--;
3297 btrfs_item_key_to_cpu(path->nodes[0], &key,
3298 path->slots[0]);
3299 if (key.objectid == bytenr &&
3300 (key.type == BTRFS_METADATA_ITEM_KEY ||
3301 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3302 key.offset == blocksize)))
3303 ret = 0;
3304 }
3305
3306 if (ret) {
3307 skinny = false;
3308 btrfs_release_path(path);
3309 goto again;
3310 }
3311 }
3312 if (ret) {
3313 ASSERT(ret == 1);
3314 btrfs_print_leaf(path->nodes[0]);
3315 btrfs_err(fs_info,
3316 "tree block extent item (%llu) is not found in extent tree",
3317 bytenr);
3318 WARN_ON(1);
3319 ret = -EINVAL;
3320 goto out;
3321 }
3322
3323 ret = add_tree_block(rc, &key, path, blocks);
3324 out:
3325 btrfs_free_path(path);
3326 return ret;
3327 }
3328
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3329 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3330 struct btrfs_block_group *block_group,
3331 struct inode *inode,
3332 u64 ino)
3333 {
3334 struct btrfs_root *root = fs_info->tree_root;
3335 struct btrfs_trans_handle *trans;
3336 int ret = 0;
3337
3338 if (inode)
3339 goto truncate;
3340
3341 inode = btrfs_iget(fs_info->sb, ino, root);
3342 if (IS_ERR(inode))
3343 return -ENOENT;
3344
3345 truncate:
3346 ret = btrfs_check_trunc_cache_free_space(fs_info,
3347 &fs_info->global_block_rsv);
3348 if (ret)
3349 goto out;
3350
3351 trans = btrfs_join_transaction(root);
3352 if (IS_ERR(trans)) {
3353 ret = PTR_ERR(trans);
3354 goto out;
3355 }
3356
3357 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3358
3359 btrfs_end_transaction(trans);
3360 btrfs_btree_balance_dirty(fs_info);
3361 out:
3362 iput(inode);
3363 return ret;
3364 }
3365
3366 /*
3367 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3368 * cache inode, to avoid free space cache data extent blocking data relocation.
3369 */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3370 static int delete_v1_space_cache(struct extent_buffer *leaf,
3371 struct btrfs_block_group *block_group,
3372 u64 data_bytenr)
3373 {
3374 u64 space_cache_ino;
3375 struct btrfs_file_extent_item *ei;
3376 struct btrfs_key key;
3377 bool found = false;
3378 int i;
3379 int ret;
3380
3381 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3382 return 0;
3383
3384 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3385 u8 type;
3386
3387 btrfs_item_key_to_cpu(leaf, &key, i);
3388 if (key.type != BTRFS_EXTENT_DATA_KEY)
3389 continue;
3390 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3391 type = btrfs_file_extent_type(leaf, ei);
3392
3393 if ((type == BTRFS_FILE_EXTENT_REG ||
3394 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3395 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3396 found = true;
3397 space_cache_ino = key.objectid;
3398 break;
3399 }
3400 }
3401 if (!found)
3402 return -ENOENT;
3403 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3404 space_cache_ino);
3405 return ret;
3406 }
3407
3408 /*
3409 * helper to find all tree blocks that reference a given data extent
3410 */
3411 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3412 int add_data_references(struct reloc_control *rc,
3413 struct btrfs_key *extent_key,
3414 struct btrfs_path *path,
3415 struct rb_root *blocks)
3416 {
3417 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3418 struct ulist *leaves = NULL;
3419 struct ulist_iterator leaf_uiter;
3420 struct ulist_node *ref_node = NULL;
3421 const u32 blocksize = fs_info->nodesize;
3422 int ret = 0;
3423
3424 btrfs_release_path(path);
3425 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3426 0, &leaves, NULL, true);
3427 if (ret < 0)
3428 return ret;
3429
3430 ULIST_ITER_INIT(&leaf_uiter);
3431 while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3432 struct extent_buffer *eb;
3433
3434 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3435 if (IS_ERR(eb)) {
3436 ret = PTR_ERR(eb);
3437 break;
3438 }
3439 ret = delete_v1_space_cache(eb, rc->block_group,
3440 extent_key->objectid);
3441 free_extent_buffer(eb);
3442 if (ret < 0)
3443 break;
3444 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3445 if (ret < 0)
3446 break;
3447 }
3448 if (ret < 0)
3449 free_block_list(blocks);
3450 ulist_free(leaves);
3451 return ret;
3452 }
3453
3454 /*
3455 * helper to find next unprocessed extent
3456 */
3457 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3458 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3459 struct btrfs_key *extent_key)
3460 {
3461 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3462 struct btrfs_key key;
3463 struct extent_buffer *leaf;
3464 u64 start, end, last;
3465 int ret;
3466
3467 last = rc->block_group->start + rc->block_group->length;
3468 while (1) {
3469 cond_resched();
3470 if (rc->search_start >= last) {
3471 ret = 1;
3472 break;
3473 }
3474
3475 key.objectid = rc->search_start;
3476 key.type = BTRFS_EXTENT_ITEM_KEY;
3477 key.offset = 0;
3478
3479 path->search_commit_root = 1;
3480 path->skip_locking = 1;
3481 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3482 0, 0);
3483 if (ret < 0)
3484 break;
3485 next:
3486 leaf = path->nodes[0];
3487 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3488 ret = btrfs_next_leaf(rc->extent_root, path);
3489 if (ret != 0)
3490 break;
3491 leaf = path->nodes[0];
3492 }
3493
3494 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3495 if (key.objectid >= last) {
3496 ret = 1;
3497 break;
3498 }
3499
3500 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3501 key.type != BTRFS_METADATA_ITEM_KEY) {
3502 path->slots[0]++;
3503 goto next;
3504 }
3505
3506 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3507 key.objectid + key.offset <= rc->search_start) {
3508 path->slots[0]++;
3509 goto next;
3510 }
3511
3512 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3513 key.objectid + fs_info->nodesize <=
3514 rc->search_start) {
3515 path->slots[0]++;
3516 goto next;
3517 }
3518
3519 ret = find_first_extent_bit(&rc->processed_blocks,
3520 key.objectid, &start, &end,
3521 EXTENT_DIRTY, NULL);
3522
3523 if (ret == 0 && start <= key.objectid) {
3524 btrfs_release_path(path);
3525 rc->search_start = end + 1;
3526 } else {
3527 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3528 rc->search_start = key.objectid + key.offset;
3529 else
3530 rc->search_start = key.objectid +
3531 fs_info->nodesize;
3532 memcpy(extent_key, &key, sizeof(key));
3533 return 0;
3534 }
3535 }
3536 btrfs_release_path(path);
3537 return ret;
3538 }
3539
set_reloc_control(struct reloc_control * rc)3540 static void set_reloc_control(struct reloc_control *rc)
3541 {
3542 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3543
3544 mutex_lock(&fs_info->reloc_mutex);
3545 fs_info->reloc_ctl = rc;
3546 mutex_unlock(&fs_info->reloc_mutex);
3547 }
3548
unset_reloc_control(struct reloc_control * rc)3549 static void unset_reloc_control(struct reloc_control *rc)
3550 {
3551 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3552
3553 mutex_lock(&fs_info->reloc_mutex);
3554 fs_info->reloc_ctl = NULL;
3555 mutex_unlock(&fs_info->reloc_mutex);
3556 }
3557
3558 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3559 int prepare_to_relocate(struct reloc_control *rc)
3560 {
3561 struct btrfs_trans_handle *trans;
3562 int ret;
3563
3564 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3565 BTRFS_BLOCK_RSV_TEMP);
3566 if (!rc->block_rsv)
3567 return -ENOMEM;
3568
3569 memset(&rc->cluster, 0, sizeof(rc->cluster));
3570 rc->search_start = rc->block_group->start;
3571 rc->extents_found = 0;
3572 rc->nodes_relocated = 0;
3573 rc->merging_rsv_size = 0;
3574 rc->reserved_bytes = 0;
3575 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3576 RELOCATION_RESERVED_NODES;
3577 ret = btrfs_block_rsv_refill(rc->extent_root,
3578 rc->block_rsv, rc->block_rsv->size,
3579 BTRFS_RESERVE_FLUSH_ALL);
3580 if (ret)
3581 return ret;
3582
3583 rc->create_reloc_tree = 1;
3584 set_reloc_control(rc);
3585
3586 trans = btrfs_join_transaction(rc->extent_root);
3587 if (IS_ERR(trans)) {
3588 unset_reloc_control(rc);
3589 /*
3590 * extent tree is not a ref_cow tree and has no reloc_root to
3591 * cleanup. And callers are responsible to free the above
3592 * block rsv.
3593 */
3594 return PTR_ERR(trans);
3595 }
3596 return btrfs_commit_transaction(trans);
3597 }
3598
relocate_block_group(struct reloc_control * rc)3599 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3600 {
3601 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3602 struct rb_root blocks = RB_ROOT;
3603 struct btrfs_key key;
3604 struct btrfs_trans_handle *trans = NULL;
3605 struct btrfs_path *path;
3606 struct btrfs_extent_item *ei;
3607 u64 flags;
3608 int ret;
3609 int err = 0;
3610 int progress = 0;
3611
3612 path = btrfs_alloc_path();
3613 if (!path)
3614 return -ENOMEM;
3615 path->reada = READA_FORWARD;
3616
3617 ret = prepare_to_relocate(rc);
3618 if (ret) {
3619 err = ret;
3620 goto out_free;
3621 }
3622
3623 while (1) {
3624 rc->reserved_bytes = 0;
3625 ret = btrfs_block_rsv_refill(rc->extent_root,
3626 rc->block_rsv, rc->block_rsv->size,
3627 BTRFS_RESERVE_FLUSH_ALL);
3628 if (ret) {
3629 err = ret;
3630 break;
3631 }
3632 progress++;
3633 trans = btrfs_start_transaction(rc->extent_root, 0);
3634 if (IS_ERR(trans)) {
3635 err = PTR_ERR(trans);
3636 trans = NULL;
3637 break;
3638 }
3639 restart:
3640 if (update_backref_cache(trans, &rc->backref_cache)) {
3641 btrfs_end_transaction(trans);
3642 trans = NULL;
3643 continue;
3644 }
3645
3646 ret = find_next_extent(rc, path, &key);
3647 if (ret < 0)
3648 err = ret;
3649 if (ret != 0)
3650 break;
3651
3652 rc->extents_found++;
3653
3654 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3655 struct btrfs_extent_item);
3656 flags = btrfs_extent_flags(path->nodes[0], ei);
3657
3658 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3659 ret = add_tree_block(rc, &key, path, &blocks);
3660 } else if (rc->stage == UPDATE_DATA_PTRS &&
3661 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3662 ret = add_data_references(rc, &key, path, &blocks);
3663 } else {
3664 btrfs_release_path(path);
3665 ret = 0;
3666 }
3667 if (ret < 0) {
3668 err = ret;
3669 break;
3670 }
3671
3672 if (!RB_EMPTY_ROOT(&blocks)) {
3673 ret = relocate_tree_blocks(trans, rc, &blocks);
3674 if (ret < 0) {
3675 if (ret != -EAGAIN) {
3676 err = ret;
3677 break;
3678 }
3679 rc->extents_found--;
3680 rc->search_start = key.objectid;
3681 }
3682 }
3683
3684 btrfs_end_transaction_throttle(trans);
3685 btrfs_btree_balance_dirty(fs_info);
3686 trans = NULL;
3687
3688 if (rc->stage == MOVE_DATA_EXTENTS &&
3689 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3690 rc->found_file_extent = 1;
3691 ret = relocate_data_extent(rc->data_inode,
3692 &key, &rc->cluster);
3693 if (ret < 0) {
3694 err = ret;
3695 break;
3696 }
3697 }
3698 if (btrfs_should_cancel_balance(fs_info)) {
3699 err = -ECANCELED;
3700 break;
3701 }
3702 }
3703 if (trans && progress && err == -ENOSPC) {
3704 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3705 if (ret == 1) {
3706 err = 0;
3707 progress = 0;
3708 goto restart;
3709 }
3710 }
3711
3712 btrfs_release_path(path);
3713 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3714
3715 if (trans) {
3716 btrfs_end_transaction_throttle(trans);
3717 btrfs_btree_balance_dirty(fs_info);
3718 }
3719
3720 if (!err) {
3721 ret = relocate_file_extent_cluster(rc->data_inode,
3722 &rc->cluster);
3723 if (ret < 0)
3724 err = ret;
3725 }
3726
3727 rc->create_reloc_tree = 0;
3728 set_reloc_control(rc);
3729
3730 btrfs_backref_release_cache(&rc->backref_cache);
3731 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3732
3733 /*
3734 * Even in the case when the relocation is cancelled, we should all go
3735 * through prepare_to_merge() and merge_reloc_roots().
3736 *
3737 * For error (including cancelled balance), prepare_to_merge() will
3738 * mark all reloc trees orphan, then queue them for cleanup in
3739 * merge_reloc_roots()
3740 */
3741 err = prepare_to_merge(rc, err);
3742
3743 merge_reloc_roots(rc);
3744
3745 rc->merge_reloc_tree = 0;
3746 unset_reloc_control(rc);
3747 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3748
3749 /* get rid of pinned extents */
3750 trans = btrfs_join_transaction(rc->extent_root);
3751 if (IS_ERR(trans)) {
3752 err = PTR_ERR(trans);
3753 goto out_free;
3754 }
3755 ret = btrfs_commit_transaction(trans);
3756 if (ret && !err)
3757 err = ret;
3758 out_free:
3759 ret = clean_dirty_subvols(rc);
3760 if (ret < 0 && !err)
3761 err = ret;
3762 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3763 btrfs_free_path(path);
3764 return err;
3765 }
3766
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3767 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3768 struct btrfs_root *root, u64 objectid)
3769 {
3770 struct btrfs_path *path;
3771 struct btrfs_inode_item *item;
3772 struct extent_buffer *leaf;
3773 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3774 int ret;
3775
3776 if (btrfs_is_zoned(trans->fs_info))
3777 flags &= ~BTRFS_INODE_PREALLOC;
3778
3779 path = btrfs_alloc_path();
3780 if (!path)
3781 return -ENOMEM;
3782
3783 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3784 if (ret)
3785 goto out;
3786
3787 leaf = path->nodes[0];
3788 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3789 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3790 btrfs_set_inode_generation(leaf, item, 1);
3791 btrfs_set_inode_size(leaf, item, 0);
3792 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3793 btrfs_set_inode_flags(leaf, item, flags);
3794 btrfs_mark_buffer_dirty(leaf);
3795 out:
3796 btrfs_free_path(path);
3797 return ret;
3798 }
3799
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3800 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3801 struct btrfs_root *root, u64 objectid)
3802 {
3803 struct btrfs_path *path;
3804 struct btrfs_key key;
3805 int ret = 0;
3806
3807 path = btrfs_alloc_path();
3808 if (!path) {
3809 ret = -ENOMEM;
3810 goto out;
3811 }
3812
3813 key.objectid = objectid;
3814 key.type = BTRFS_INODE_ITEM_KEY;
3815 key.offset = 0;
3816 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3817 if (ret) {
3818 if (ret > 0)
3819 ret = -ENOENT;
3820 goto out;
3821 }
3822 ret = btrfs_del_item(trans, root, path);
3823 out:
3824 if (ret)
3825 btrfs_abort_transaction(trans, ret);
3826 btrfs_free_path(path);
3827 }
3828
3829 /*
3830 * helper to create inode for data relocation.
3831 * the inode is in data relocation tree and its link count is 0
3832 */
3833 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group * group)3834 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3835 struct btrfs_block_group *group)
3836 {
3837 struct inode *inode = NULL;
3838 struct btrfs_trans_handle *trans;
3839 struct btrfs_root *root;
3840 u64 objectid;
3841 int err = 0;
3842
3843 root = btrfs_grab_root(fs_info->data_reloc_root);
3844 trans = btrfs_start_transaction(root, 6);
3845 if (IS_ERR(trans)) {
3846 btrfs_put_root(root);
3847 return ERR_CAST(trans);
3848 }
3849
3850 err = btrfs_get_free_objectid(root, &objectid);
3851 if (err)
3852 goto out;
3853
3854 err = __insert_orphan_inode(trans, root, objectid);
3855 if (err)
3856 goto out;
3857
3858 inode = btrfs_iget(fs_info->sb, objectid, root);
3859 if (IS_ERR(inode)) {
3860 delete_orphan_inode(trans, root, objectid);
3861 err = PTR_ERR(inode);
3862 inode = NULL;
3863 goto out;
3864 }
3865 BTRFS_I(inode)->index_cnt = group->start;
3866
3867 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3868 out:
3869 btrfs_put_root(root);
3870 btrfs_end_transaction(trans);
3871 btrfs_btree_balance_dirty(fs_info);
3872 if (err) {
3873 if (inode)
3874 iput(inode);
3875 inode = ERR_PTR(err);
3876 }
3877 return inode;
3878 }
3879
3880 /*
3881 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3882 * has been requested meanwhile and don't start in that case.
3883 *
3884 * Return:
3885 * 0 success
3886 * -EINPROGRESS operation is already in progress, that's probably a bug
3887 * -ECANCELED cancellation request was set before the operation started
3888 * -EAGAIN can not start because there are ongoing send operations
3889 */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3890 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3891 {
3892 spin_lock(&fs_info->send_reloc_lock);
3893 if (fs_info->send_in_progress) {
3894 btrfs_warn_rl(fs_info,
3895 "cannot run relocation while send operations are in progress (%d in progress)",
3896 fs_info->send_in_progress);
3897 spin_unlock(&fs_info->send_reloc_lock);
3898 return -EAGAIN;
3899 }
3900 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3901 /* This should not happen */
3902 spin_unlock(&fs_info->send_reloc_lock);
3903 btrfs_err(fs_info, "reloc already running, cannot start");
3904 return -EINPROGRESS;
3905 }
3906 spin_unlock(&fs_info->send_reloc_lock);
3907
3908 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3909 btrfs_info(fs_info, "chunk relocation canceled on start");
3910 /*
3911 * On cancel, clear all requests but let the caller mark
3912 * the end after cleanup operations.
3913 */
3914 atomic_set(&fs_info->reloc_cancel_req, 0);
3915 return -ECANCELED;
3916 }
3917 return 0;
3918 }
3919
3920 /*
3921 * Mark end of chunk relocation that is cancellable and wake any waiters.
3922 */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3923 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3924 {
3925 /* Requested after start, clear bit first so any waiters can continue */
3926 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3927 btrfs_info(fs_info, "chunk relocation canceled during operation");
3928 spin_lock(&fs_info->send_reloc_lock);
3929 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3930 spin_unlock(&fs_info->send_reloc_lock);
3931 atomic_set(&fs_info->reloc_cancel_req, 0);
3932 }
3933
alloc_reloc_control(struct btrfs_fs_info * fs_info)3934 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3935 {
3936 struct reloc_control *rc;
3937
3938 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3939 if (!rc)
3940 return NULL;
3941
3942 INIT_LIST_HEAD(&rc->reloc_roots);
3943 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3944 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3945 mapping_tree_init(&rc->reloc_root_tree);
3946 extent_io_tree_init(fs_info, &rc->processed_blocks,
3947 IO_TREE_RELOC_BLOCKS, NULL);
3948 return rc;
3949 }
3950
free_reloc_control(struct reloc_control * rc)3951 static void free_reloc_control(struct reloc_control *rc)
3952 {
3953 struct mapping_node *node, *tmp;
3954
3955 free_reloc_roots(&rc->reloc_roots);
3956 rbtree_postorder_for_each_entry_safe(node, tmp,
3957 &rc->reloc_root_tree.rb_root, rb_node)
3958 kfree(node);
3959
3960 kfree(rc);
3961 }
3962
3963 /*
3964 * Print the block group being relocated
3965 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group * block_group)3966 static void describe_relocation(struct btrfs_fs_info *fs_info,
3967 struct btrfs_block_group *block_group)
3968 {
3969 char buf[128] = {'\0'};
3970
3971 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3972
3973 btrfs_info(fs_info,
3974 "relocating block group %llu flags %s",
3975 block_group->start, buf);
3976 }
3977
stage_to_string(int stage)3978 static const char *stage_to_string(int stage)
3979 {
3980 if (stage == MOVE_DATA_EXTENTS)
3981 return "move data extents";
3982 if (stage == UPDATE_DATA_PTRS)
3983 return "update data pointers";
3984 return "unknown";
3985 }
3986
3987 /*
3988 * function to relocate all extents in a block group.
3989 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)3990 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3991 {
3992 struct btrfs_block_group *bg;
3993 struct btrfs_root *extent_root = fs_info->extent_root;
3994 struct reloc_control *rc;
3995 struct inode *inode;
3996 struct btrfs_path *path;
3997 int ret;
3998 int rw = 0;
3999 int err = 0;
4000
4001 bg = btrfs_lookup_block_group(fs_info, group_start);
4002 if (!bg)
4003 return -ENOENT;
4004
4005 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4006 btrfs_put_block_group(bg);
4007 return -ETXTBSY;
4008 }
4009
4010 rc = alloc_reloc_control(fs_info);
4011 if (!rc) {
4012 btrfs_put_block_group(bg);
4013 return -ENOMEM;
4014 }
4015
4016 ret = reloc_chunk_start(fs_info);
4017 if (ret < 0) {
4018 err = ret;
4019 goto out_put_bg;
4020 }
4021
4022 rc->extent_root = extent_root;
4023 rc->block_group = bg;
4024
4025 ret = btrfs_inc_block_group_ro(rc->block_group, true);
4026 if (ret) {
4027 err = ret;
4028 goto out;
4029 }
4030 rw = 1;
4031
4032 path = btrfs_alloc_path();
4033 if (!path) {
4034 err = -ENOMEM;
4035 goto out;
4036 }
4037
4038 inode = lookup_free_space_inode(rc->block_group, path);
4039 btrfs_free_path(path);
4040
4041 if (!IS_ERR(inode))
4042 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4043 else
4044 ret = PTR_ERR(inode);
4045
4046 if (ret && ret != -ENOENT) {
4047 err = ret;
4048 goto out;
4049 }
4050
4051 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4052 if (IS_ERR(rc->data_inode)) {
4053 err = PTR_ERR(rc->data_inode);
4054 rc->data_inode = NULL;
4055 goto out;
4056 }
4057
4058 describe_relocation(fs_info, rc->block_group);
4059
4060 btrfs_wait_block_group_reservations(rc->block_group);
4061 btrfs_wait_nocow_writers(rc->block_group);
4062 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4063 rc->block_group->start,
4064 rc->block_group->length);
4065
4066 while (1) {
4067 int finishes_stage;
4068
4069 mutex_lock(&fs_info->cleaner_mutex);
4070 ret = relocate_block_group(rc);
4071 mutex_unlock(&fs_info->cleaner_mutex);
4072 if (ret < 0)
4073 err = ret;
4074
4075 finishes_stage = rc->stage;
4076 /*
4077 * We may have gotten ENOSPC after we already dirtied some
4078 * extents. If writeout happens while we're relocating a
4079 * different block group we could end up hitting the
4080 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4081 * btrfs_reloc_cow_block. Make sure we write everything out
4082 * properly so we don't trip over this problem, and then break
4083 * out of the loop if we hit an error.
4084 */
4085 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4086 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4087 (u64)-1);
4088 if (ret)
4089 err = ret;
4090 invalidate_mapping_pages(rc->data_inode->i_mapping,
4091 0, -1);
4092 rc->stage = UPDATE_DATA_PTRS;
4093 }
4094
4095 if (err < 0)
4096 goto out;
4097
4098 if (rc->extents_found == 0)
4099 break;
4100
4101 btrfs_info(fs_info, "found %llu extents, stage: %s",
4102 rc->extents_found, stage_to_string(finishes_stage));
4103 }
4104
4105 WARN_ON(rc->block_group->pinned > 0);
4106 WARN_ON(rc->block_group->reserved > 0);
4107 WARN_ON(rc->block_group->used > 0);
4108 out:
4109 if (err && rw)
4110 btrfs_dec_block_group_ro(rc->block_group);
4111 iput(rc->data_inode);
4112 out_put_bg:
4113 btrfs_put_block_group(bg);
4114 reloc_chunk_end(fs_info);
4115 free_reloc_control(rc);
4116 return err;
4117 }
4118
mark_garbage_root(struct btrfs_root * root)4119 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4120 {
4121 struct btrfs_fs_info *fs_info = root->fs_info;
4122 struct btrfs_trans_handle *trans;
4123 int ret, err;
4124
4125 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4126 if (IS_ERR(trans))
4127 return PTR_ERR(trans);
4128
4129 memset(&root->root_item.drop_progress, 0,
4130 sizeof(root->root_item.drop_progress));
4131 btrfs_set_root_drop_level(&root->root_item, 0);
4132 btrfs_set_root_refs(&root->root_item, 0);
4133 ret = btrfs_update_root(trans, fs_info->tree_root,
4134 &root->root_key, &root->root_item);
4135
4136 err = btrfs_end_transaction(trans);
4137 if (err)
4138 return err;
4139 return ret;
4140 }
4141
4142 /*
4143 * recover relocation interrupted by system crash.
4144 *
4145 * this function resumes merging reloc trees with corresponding fs trees.
4146 * this is important for keeping the sharing of tree blocks
4147 */
btrfs_recover_relocation(struct btrfs_root * root)4148 int btrfs_recover_relocation(struct btrfs_root *root)
4149 {
4150 struct btrfs_fs_info *fs_info = root->fs_info;
4151 LIST_HEAD(reloc_roots);
4152 struct btrfs_key key;
4153 struct btrfs_root *fs_root;
4154 struct btrfs_root *reloc_root;
4155 struct btrfs_path *path;
4156 struct extent_buffer *leaf;
4157 struct reloc_control *rc = NULL;
4158 struct btrfs_trans_handle *trans;
4159 int ret;
4160 int err = 0;
4161
4162 path = btrfs_alloc_path();
4163 if (!path)
4164 return -ENOMEM;
4165 path->reada = READA_BACK;
4166
4167 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4168 key.type = BTRFS_ROOT_ITEM_KEY;
4169 key.offset = (u64)-1;
4170
4171 while (1) {
4172 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4173 path, 0, 0);
4174 if (ret < 0) {
4175 err = ret;
4176 goto out;
4177 }
4178 if (ret > 0) {
4179 if (path->slots[0] == 0)
4180 break;
4181 path->slots[0]--;
4182 }
4183 leaf = path->nodes[0];
4184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4185 btrfs_release_path(path);
4186
4187 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4188 key.type != BTRFS_ROOT_ITEM_KEY)
4189 break;
4190
4191 reloc_root = btrfs_read_tree_root(root, &key);
4192 if (IS_ERR(reloc_root)) {
4193 err = PTR_ERR(reloc_root);
4194 goto out;
4195 }
4196
4197 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4198 list_add(&reloc_root->root_list, &reloc_roots);
4199
4200 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4201 fs_root = btrfs_get_fs_root(fs_info,
4202 reloc_root->root_key.offset, false);
4203 if (IS_ERR(fs_root)) {
4204 ret = PTR_ERR(fs_root);
4205 if (ret != -ENOENT) {
4206 err = ret;
4207 goto out;
4208 }
4209 ret = mark_garbage_root(reloc_root);
4210 if (ret < 0) {
4211 err = ret;
4212 goto out;
4213 }
4214 } else {
4215 btrfs_put_root(fs_root);
4216 }
4217 }
4218
4219 if (key.offset == 0)
4220 break;
4221
4222 key.offset--;
4223 }
4224 btrfs_release_path(path);
4225
4226 if (list_empty(&reloc_roots))
4227 goto out;
4228
4229 rc = alloc_reloc_control(fs_info);
4230 if (!rc) {
4231 err = -ENOMEM;
4232 goto out;
4233 }
4234
4235 ret = reloc_chunk_start(fs_info);
4236 if (ret < 0) {
4237 err = ret;
4238 goto out_end;
4239 }
4240
4241 rc->extent_root = fs_info->extent_root;
4242
4243 set_reloc_control(rc);
4244
4245 trans = btrfs_join_transaction(rc->extent_root);
4246 if (IS_ERR(trans)) {
4247 err = PTR_ERR(trans);
4248 goto out_unset;
4249 }
4250
4251 rc->merge_reloc_tree = 1;
4252
4253 while (!list_empty(&reloc_roots)) {
4254 reloc_root = list_entry(reloc_roots.next,
4255 struct btrfs_root, root_list);
4256 list_del(&reloc_root->root_list);
4257
4258 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4259 list_add_tail(&reloc_root->root_list,
4260 &rc->reloc_roots);
4261 continue;
4262 }
4263
4264 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4265 false);
4266 if (IS_ERR(fs_root)) {
4267 err = PTR_ERR(fs_root);
4268 list_add_tail(&reloc_root->root_list, &reloc_roots);
4269 btrfs_end_transaction(trans);
4270 goto out_unset;
4271 }
4272
4273 err = __add_reloc_root(reloc_root);
4274 ASSERT(err != -EEXIST);
4275 if (err) {
4276 list_add_tail(&reloc_root->root_list, &reloc_roots);
4277 btrfs_put_root(fs_root);
4278 btrfs_end_transaction(trans);
4279 goto out_unset;
4280 }
4281 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4282 btrfs_put_root(fs_root);
4283 }
4284
4285 err = btrfs_commit_transaction(trans);
4286 if (err)
4287 goto out_unset;
4288
4289 merge_reloc_roots(rc);
4290
4291 unset_reloc_control(rc);
4292
4293 trans = btrfs_join_transaction(rc->extent_root);
4294 if (IS_ERR(trans)) {
4295 err = PTR_ERR(trans);
4296 goto out_clean;
4297 }
4298 err = btrfs_commit_transaction(trans);
4299 out_clean:
4300 ret = clean_dirty_subvols(rc);
4301 if (ret < 0 && !err)
4302 err = ret;
4303 out_unset:
4304 unset_reloc_control(rc);
4305 out_end:
4306 reloc_chunk_end(fs_info);
4307 free_reloc_control(rc);
4308 out:
4309 free_reloc_roots(&reloc_roots);
4310
4311 btrfs_free_path(path);
4312
4313 if (err == 0) {
4314 /* cleanup orphan inode in data relocation tree */
4315 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4316 ASSERT(fs_root);
4317 err = btrfs_orphan_cleanup(fs_root);
4318 btrfs_put_root(fs_root);
4319 }
4320 return err;
4321 }
4322
4323 /*
4324 * helper to add ordered checksum for data relocation.
4325 *
4326 * cloning checksum properly handles the nodatasum extents.
4327 * it also saves CPU time to re-calculate the checksum.
4328 */
btrfs_reloc_clone_csums(struct btrfs_inode * inode,u64 file_pos,u64 len)4329 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4330 {
4331 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4332 struct btrfs_ordered_sum *sums;
4333 struct btrfs_ordered_extent *ordered;
4334 int ret;
4335 u64 disk_bytenr;
4336 u64 new_bytenr;
4337 LIST_HEAD(list);
4338
4339 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4340 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4341
4342 disk_bytenr = file_pos + inode->index_cnt;
4343 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4344 disk_bytenr + len - 1, &list, 0);
4345 if (ret)
4346 goto out;
4347
4348 while (!list_empty(&list)) {
4349 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4350 list_del_init(&sums->list);
4351
4352 /*
4353 * We need to offset the new_bytenr based on where the csum is.
4354 * We need to do this because we will read in entire prealloc
4355 * extents but we may have written to say the middle of the
4356 * prealloc extent, so we need to make sure the csum goes with
4357 * the right disk offset.
4358 *
4359 * We can do this because the data reloc inode refers strictly
4360 * to the on disk bytes, so we don't have to worry about
4361 * disk_len vs real len like with real inodes since it's all
4362 * disk length.
4363 */
4364 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4365 sums->bytenr = new_bytenr;
4366
4367 btrfs_add_ordered_sum(ordered, sums);
4368 }
4369 out:
4370 btrfs_put_ordered_extent(ordered);
4371 return ret;
4372 }
4373
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4374 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4375 struct btrfs_root *root, struct extent_buffer *buf,
4376 struct extent_buffer *cow)
4377 {
4378 struct btrfs_fs_info *fs_info = root->fs_info;
4379 struct reloc_control *rc;
4380 struct btrfs_backref_node *node;
4381 int first_cow = 0;
4382 int level;
4383 int ret = 0;
4384
4385 rc = fs_info->reloc_ctl;
4386 if (!rc)
4387 return 0;
4388
4389 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4390 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4391
4392 level = btrfs_header_level(buf);
4393 if (btrfs_header_generation(buf) <=
4394 btrfs_root_last_snapshot(&root->root_item))
4395 first_cow = 1;
4396
4397 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4398 rc->create_reloc_tree) {
4399 WARN_ON(!first_cow && level == 0);
4400
4401 node = rc->backref_cache.path[level];
4402 BUG_ON(node->bytenr != buf->start &&
4403 node->new_bytenr != buf->start);
4404
4405 btrfs_backref_drop_node_buffer(node);
4406 atomic_inc(&cow->refs);
4407 node->eb = cow;
4408 node->new_bytenr = cow->start;
4409
4410 if (!node->pending) {
4411 list_move_tail(&node->list,
4412 &rc->backref_cache.pending[level]);
4413 node->pending = 1;
4414 }
4415
4416 if (first_cow)
4417 mark_block_processed(rc, node);
4418
4419 if (first_cow && level > 0)
4420 rc->nodes_relocated += buf->len;
4421 }
4422
4423 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4424 ret = replace_file_extents(trans, rc, root, cow);
4425 return ret;
4426 }
4427
4428 /*
4429 * called before creating snapshot. it calculates metadata reservation
4430 * required for relocating tree blocks in the snapshot
4431 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4432 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4433 u64 *bytes_to_reserve)
4434 {
4435 struct btrfs_root *root = pending->root;
4436 struct reloc_control *rc = root->fs_info->reloc_ctl;
4437
4438 if (!rc || !have_reloc_root(root))
4439 return;
4440
4441 if (!rc->merge_reloc_tree)
4442 return;
4443
4444 root = root->reloc_root;
4445 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4446 /*
4447 * relocation is in the stage of merging trees. the space
4448 * used by merging a reloc tree is twice the size of
4449 * relocated tree nodes in the worst case. half for cowing
4450 * the reloc tree, half for cowing the fs tree. the space
4451 * used by cowing the reloc tree will be freed after the
4452 * tree is dropped. if we create snapshot, cowing the fs
4453 * tree may use more space than it frees. so we need
4454 * reserve extra space.
4455 */
4456 *bytes_to_reserve += rc->nodes_relocated;
4457 }
4458
4459 /*
4460 * called after snapshot is created. migrate block reservation
4461 * and create reloc root for the newly created snapshot
4462 *
4463 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4464 * references held on the reloc_root, one for root->reloc_root and one for
4465 * rc->reloc_roots.
4466 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4467 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4468 struct btrfs_pending_snapshot *pending)
4469 {
4470 struct btrfs_root *root = pending->root;
4471 struct btrfs_root *reloc_root;
4472 struct btrfs_root *new_root;
4473 struct reloc_control *rc = root->fs_info->reloc_ctl;
4474 int ret;
4475
4476 if (!rc || !have_reloc_root(root))
4477 return 0;
4478
4479 rc = root->fs_info->reloc_ctl;
4480 rc->merging_rsv_size += rc->nodes_relocated;
4481
4482 if (rc->merge_reloc_tree) {
4483 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4484 rc->block_rsv,
4485 rc->nodes_relocated, true);
4486 if (ret)
4487 return ret;
4488 }
4489
4490 new_root = pending->snap;
4491 reloc_root = create_reloc_root(trans, root->reloc_root,
4492 new_root->root_key.objectid);
4493 if (IS_ERR(reloc_root))
4494 return PTR_ERR(reloc_root);
4495
4496 ret = __add_reloc_root(reloc_root);
4497 ASSERT(ret != -EEXIST);
4498 if (ret) {
4499 /* Pairs with create_reloc_root */
4500 btrfs_put_root(reloc_root);
4501 return ret;
4502 }
4503 new_root->reloc_root = btrfs_grab_root(reloc_root);
4504
4505 if (rc->create_reloc_tree)
4506 ret = clone_backref_node(trans, rc, root, reloc_root);
4507 return ret;
4508 }
4509