1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct pagevec;
20 
21 /*
22  * Bits in mapping->flags.
23  */
24 enum mapping_flags {
25 	AS_EIO		= 0,	/* IO error on async write */
26 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
27 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
28 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
29 	AS_EXITING	= 4, 	/* final truncate in progress */
30 	/* writeback related tags are not used */
31 	AS_NO_WRITEBACK_TAGS = 5,
32 	AS_THP_SUPPORT = 6,	/* THPs supported */
33 };
34 
35 /**
36  * mapping_set_error - record a writeback error in the address_space
37  * @mapping: the mapping in which an error should be set
38  * @error: the error to set in the mapping
39  *
40  * When writeback fails in some way, we must record that error so that
41  * userspace can be informed when fsync and the like are called.  We endeavor
42  * to report errors on any file that was open at the time of the error.  Some
43  * internal callers also need to know when writeback errors have occurred.
44  *
45  * When a writeback error occurs, most filesystems will want to call
46  * mapping_set_error to record the error in the mapping so that it can be
47  * reported when the application calls fsync(2).
48  */
mapping_set_error(struct address_space * mapping,int error)49 static inline void mapping_set_error(struct address_space *mapping, int error)
50 {
51 	if (likely(!error))
52 		return;
53 
54 	/* Record in wb_err for checkers using errseq_t based tracking */
55 	__filemap_set_wb_err(mapping, error);
56 
57 	/* Record it in superblock */
58 	if (mapping->host)
59 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
60 
61 	/* Record it in flags for now, for legacy callers */
62 	if (error == -ENOSPC)
63 		set_bit(AS_ENOSPC, &mapping->flags);
64 	else
65 		set_bit(AS_EIO, &mapping->flags);
66 }
67 
mapping_set_unevictable(struct address_space * mapping)68 static inline void mapping_set_unevictable(struct address_space *mapping)
69 {
70 	set_bit(AS_UNEVICTABLE, &mapping->flags);
71 }
72 
mapping_clear_unevictable(struct address_space * mapping)73 static inline void mapping_clear_unevictable(struct address_space *mapping)
74 {
75 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
76 }
77 
mapping_unevictable(struct address_space * mapping)78 static inline bool mapping_unevictable(struct address_space *mapping)
79 {
80 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
81 }
82 
mapping_set_exiting(struct address_space * mapping)83 static inline void mapping_set_exiting(struct address_space *mapping)
84 {
85 	set_bit(AS_EXITING, &mapping->flags);
86 }
87 
mapping_exiting(struct address_space * mapping)88 static inline int mapping_exiting(struct address_space *mapping)
89 {
90 	return test_bit(AS_EXITING, &mapping->flags);
91 }
92 
mapping_set_no_writeback_tags(struct address_space * mapping)93 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
94 {
95 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
96 }
97 
mapping_use_writeback_tags(struct address_space * mapping)98 static inline int mapping_use_writeback_tags(struct address_space *mapping)
99 {
100 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101 }
102 
mapping_gfp_mask(struct address_space * mapping)103 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
104 {
105 	return mapping->gfp_mask;
106 }
107 
108 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)109 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
110 		gfp_t gfp_mask)
111 {
112 	return mapping_gfp_mask(mapping) & gfp_mask;
113 }
114 
115 /*
116  * This is non-atomic.  Only to be used before the mapping is activated.
117  * Probably needs a barrier...
118  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)119 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
120 {
121 	m->gfp_mask = mask;
122 }
123 
mapping_thp_support(struct address_space * mapping)124 static inline bool mapping_thp_support(struct address_space *mapping)
125 {
126 	return test_bit(AS_THP_SUPPORT, &mapping->flags);
127 }
128 
filemap_nr_thps(struct address_space * mapping)129 static inline int filemap_nr_thps(struct address_space *mapping)
130 {
131 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
132 	return atomic_read(&mapping->nr_thps);
133 #else
134 	return 0;
135 #endif
136 }
137 
filemap_nr_thps_inc(struct address_space * mapping)138 static inline void filemap_nr_thps_inc(struct address_space *mapping)
139 {
140 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
141 	if (!mapping_thp_support(mapping))
142 		atomic_inc(&mapping->nr_thps);
143 #else
144 	WARN_ON_ONCE(1);
145 #endif
146 }
147 
filemap_nr_thps_dec(struct address_space * mapping)148 static inline void filemap_nr_thps_dec(struct address_space *mapping)
149 {
150 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
151 	if (!mapping_thp_support(mapping))
152 		atomic_dec(&mapping->nr_thps);
153 #else
154 	WARN_ON_ONCE(1);
155 #endif
156 }
157 
158 void release_pages(struct page **pages, int nr);
159 
160 /*
161  * speculatively take a reference to a page.
162  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
163  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
164  *
165  * This function must be called inside the same rcu_read_lock() section as has
166  * been used to lookup the page in the pagecache radix-tree (or page table):
167  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
168  *
169  * Unless an RCU grace period has passed, the count of all pages coming out
170  * of the allocator must be considered unstable. page_count may return higher
171  * than expected, and put_page must be able to do the right thing when the
172  * page has been finished with, no matter what it is subsequently allocated
173  * for (because put_page is what is used here to drop an invalid speculative
174  * reference).
175  *
176  * This is the interesting part of the lockless pagecache (and lockless
177  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
178  * has the following pattern:
179  * 1. find page in radix tree
180  * 2. conditionally increment refcount
181  * 3. check the page is still in pagecache (if no, goto 1)
182  *
183  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
184  * following (with the i_pages lock held):
185  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
186  * B. remove page from pagecache
187  * C. free the page
188  *
189  * There are 2 critical interleavings that matter:
190  * - 2 runs before A: in this case, A sees elevated refcount and bails out
191  * - A runs before 2: in this case, 2 sees zero refcount and retries;
192  *   subsequently, B will complete and 1 will find no page, causing the
193  *   lookup to return NULL.
194  *
195  * It is possible that between 1 and 2, the page is removed then the exact same
196  * page is inserted into the same position in pagecache. That's OK: the
197  * old find_get_page using a lock could equally have run before or after
198  * such a re-insertion, depending on order that locks are granted.
199  *
200  * Lookups racing against pagecache insertion isn't a big problem: either 1
201  * will find the page or it will not. Likewise, the old find_get_page could run
202  * either before the insertion or afterwards, depending on timing.
203  */
__page_cache_add_speculative(struct page * page,int count)204 static inline int __page_cache_add_speculative(struct page *page, int count)
205 {
206 #ifdef CONFIG_TINY_RCU
207 # ifdef CONFIG_PREEMPT_COUNT
208 	VM_BUG_ON(!in_atomic() && !irqs_disabled());
209 # endif
210 	/*
211 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
212 	 * this for us.
213 	 *
214 	 * Pagecache won't be truncated from interrupt context, so if we have
215 	 * found a page in the radix tree here, we have pinned its refcount by
216 	 * disabling preempt, and hence no need for the "speculative get" that
217 	 * SMP requires.
218 	 */
219 	VM_BUG_ON_PAGE(page_count(page) == 0, page);
220 	page_ref_add(page, count);
221 
222 #else
223 	if (unlikely(!page_ref_add_unless(page, count, 0))) {
224 		/*
225 		 * Either the page has been freed, or will be freed.
226 		 * In either case, retry here and the caller should
227 		 * do the right thing (see comments above).
228 		 */
229 		return 0;
230 	}
231 #endif
232 	VM_BUG_ON_PAGE(PageTail(page), page);
233 
234 	return 1;
235 }
236 
page_cache_get_speculative(struct page * page)237 static inline int page_cache_get_speculative(struct page *page)
238 {
239 	return __page_cache_add_speculative(page, 1);
240 }
241 
page_cache_add_speculative(struct page * page,int count)242 static inline int page_cache_add_speculative(struct page *page, int count)
243 {
244 	return __page_cache_add_speculative(page, count);
245 }
246 
247 /**
248  * attach_page_private - Attach private data to a page.
249  * @page: Page to attach data to.
250  * @data: Data to attach to page.
251  *
252  * Attaching private data to a page increments the page's reference count.
253  * The data must be detached before the page will be freed.
254  */
attach_page_private(struct page * page,void * data)255 static inline void attach_page_private(struct page *page, void *data)
256 {
257 	get_page(page);
258 	set_page_private(page, (unsigned long)data);
259 	SetPagePrivate(page);
260 }
261 
262 /**
263  * detach_page_private - Detach private data from a page.
264  * @page: Page to detach data from.
265  *
266  * Removes the data that was previously attached to the page and decrements
267  * the refcount on the page.
268  *
269  * Return: Data that was attached to the page.
270  */
detach_page_private(struct page * page)271 static inline void *detach_page_private(struct page *page)
272 {
273 	void *data = (void *)page_private(page);
274 
275 	if (!PagePrivate(page))
276 		return NULL;
277 	ClearPagePrivate(page);
278 	set_page_private(page, 0);
279 	put_page(page);
280 
281 	return data;
282 }
283 
284 #ifdef CONFIG_NUMA
285 extern struct page *__page_cache_alloc(gfp_t gfp);
286 #else
__page_cache_alloc(gfp_t gfp)287 static inline struct page *__page_cache_alloc(gfp_t gfp)
288 {
289 	return alloc_pages(gfp, 0);
290 }
291 #endif
292 
page_cache_alloc(struct address_space * x)293 static inline struct page *page_cache_alloc(struct address_space *x)
294 {
295 	return __page_cache_alloc(mapping_gfp_mask(x));
296 }
297 
readahead_gfp_mask(struct address_space * x)298 static inline gfp_t readahead_gfp_mask(struct address_space *x)
299 {
300 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
301 }
302 
303 typedef int filler_t(void *, struct page *);
304 
305 pgoff_t page_cache_next_miss(struct address_space *mapping,
306 			     pgoff_t index, unsigned long max_scan);
307 pgoff_t page_cache_prev_miss(struct address_space *mapping,
308 			     pgoff_t index, unsigned long max_scan);
309 
310 #define FGP_ACCESSED		0x00000001
311 #define FGP_LOCK		0x00000002
312 #define FGP_CREAT		0x00000004
313 #define FGP_WRITE		0x00000008
314 #define FGP_NOFS		0x00000010
315 #define FGP_NOWAIT		0x00000020
316 #define FGP_FOR_MMAP		0x00000040
317 #define FGP_HEAD		0x00000080
318 
319 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
320 		int fgp_flags, gfp_t cache_gfp_mask);
321 
322 /**
323  * find_get_page - find and get a page reference
324  * @mapping: the address_space to search
325  * @offset: the page index
326  *
327  * Looks up the page cache slot at @mapping & @offset.  If there is a
328  * page cache page, it is returned with an increased refcount.
329  *
330  * Otherwise, %NULL is returned.
331  */
find_get_page(struct address_space * mapping,pgoff_t offset)332 static inline struct page *find_get_page(struct address_space *mapping,
333 					pgoff_t offset)
334 {
335 	return pagecache_get_page(mapping, offset, 0, 0);
336 }
337 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)338 static inline struct page *find_get_page_flags(struct address_space *mapping,
339 					pgoff_t offset, int fgp_flags)
340 {
341 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
342 }
343 
344 /**
345  * find_lock_page - locate, pin and lock a pagecache page
346  * @mapping: the address_space to search
347  * @index: the page index
348  *
349  * Looks up the page cache entry at @mapping & @index.  If there is a
350  * page cache page, it is returned locked and with an increased
351  * refcount.
352  *
353  * Context: May sleep.
354  * Return: A struct page or %NULL if there is no page in the cache for this
355  * index.
356  */
find_lock_page(struct address_space * mapping,pgoff_t index)357 static inline struct page *find_lock_page(struct address_space *mapping,
358 					pgoff_t index)
359 {
360 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
361 }
362 
363 /**
364  * find_lock_head - Locate, pin and lock a pagecache page.
365  * @mapping: The address_space to search.
366  * @index: The page index.
367  *
368  * Looks up the page cache entry at @mapping & @index.  If there is a
369  * page cache page, its head page is returned locked and with an increased
370  * refcount.
371  *
372  * Context: May sleep.
373  * Return: A struct page which is !PageTail, or %NULL if there is no page
374  * in the cache for this index.
375  */
find_lock_head(struct address_space * mapping,pgoff_t index)376 static inline struct page *find_lock_head(struct address_space *mapping,
377 					pgoff_t index)
378 {
379 	return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
380 }
381 
382 /**
383  * find_or_create_page - locate or add a pagecache page
384  * @mapping: the page's address_space
385  * @index: the page's index into the mapping
386  * @gfp_mask: page allocation mode
387  *
388  * Looks up the page cache slot at @mapping & @offset.  If there is a
389  * page cache page, it is returned locked and with an increased
390  * refcount.
391  *
392  * If the page is not present, a new page is allocated using @gfp_mask
393  * and added to the page cache and the VM's LRU list.  The page is
394  * returned locked and with an increased refcount.
395  *
396  * On memory exhaustion, %NULL is returned.
397  *
398  * find_or_create_page() may sleep, even if @gfp_flags specifies an
399  * atomic allocation!
400  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)401 static inline struct page *find_or_create_page(struct address_space *mapping,
402 					pgoff_t index, gfp_t gfp_mask)
403 {
404 	return pagecache_get_page(mapping, index,
405 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
406 					gfp_mask);
407 }
408 
409 /**
410  * grab_cache_page_nowait - returns locked page at given index in given cache
411  * @mapping: target address_space
412  * @index: the page index
413  *
414  * Same as grab_cache_page(), but do not wait if the page is unavailable.
415  * This is intended for speculative data generators, where the data can
416  * be regenerated if the page couldn't be grabbed.  This routine should
417  * be safe to call while holding the lock for another page.
418  *
419  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
420  * and deadlock against the caller's locked page.
421  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)422 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
423 				pgoff_t index)
424 {
425 	return pagecache_get_page(mapping, index,
426 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
427 			mapping_gfp_mask(mapping));
428 }
429 
430 /* Does this page contain this index? */
thp_contains(struct page * head,pgoff_t index)431 static inline bool thp_contains(struct page *head, pgoff_t index)
432 {
433 	/* HugeTLBfs indexes the page cache in units of hpage_size */
434 	if (PageHuge(head))
435 		return head->index == index;
436 	return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
437 }
438 
439 /*
440  * Given the page we found in the page cache, return the page corresponding
441  * to this index in the file
442  */
find_subpage(struct page * head,pgoff_t index)443 static inline struct page *find_subpage(struct page *head, pgoff_t index)
444 {
445 	/* HugeTLBfs wants the head page regardless */
446 	if (PageHuge(head))
447 		return head;
448 
449 	return head + (index & (thp_nr_pages(head) - 1));
450 }
451 
452 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
453 			  unsigned int nr_entries, struct page **entries,
454 			  pgoff_t *indices);
455 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
456 			pgoff_t end, unsigned int nr_pages,
457 			struct page **pages);
find_get_pages(struct address_space * mapping,pgoff_t * start,unsigned int nr_pages,struct page ** pages)458 static inline unsigned find_get_pages(struct address_space *mapping,
459 			pgoff_t *start, unsigned int nr_pages,
460 			struct page **pages)
461 {
462 	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
463 				    pages);
464 }
465 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
466 			       unsigned int nr_pages, struct page **pages);
467 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
468 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
469 			struct page **pages);
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)470 static inline unsigned find_get_pages_tag(struct address_space *mapping,
471 			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
472 			struct page **pages)
473 {
474 	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
475 					nr_pages, pages);
476 }
477 
478 struct page *grab_cache_page_write_begin(struct address_space *mapping,
479 			pgoff_t index, unsigned flags);
480 
481 /*
482  * Returns locked page at given index in given cache, creating it if needed.
483  */
grab_cache_page(struct address_space * mapping,pgoff_t index)484 static inline struct page *grab_cache_page(struct address_space *mapping,
485 								pgoff_t index)
486 {
487 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
488 }
489 
490 extern struct page * read_cache_page(struct address_space *mapping,
491 				pgoff_t index, filler_t *filler, void *data);
492 extern struct page * read_cache_page_gfp(struct address_space *mapping,
493 				pgoff_t index, gfp_t gfp_mask);
494 extern int read_cache_pages(struct address_space *mapping,
495 		struct list_head *pages, filler_t *filler, void *data);
496 
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)497 static inline struct page *read_mapping_page(struct address_space *mapping,
498 				pgoff_t index, void *data)
499 {
500 	return read_cache_page(mapping, index, NULL, data);
501 }
502 
503 /*
504  * Get index of the page with in radix-tree
505  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
506  */
page_to_index(struct page * page)507 static inline pgoff_t page_to_index(struct page *page)
508 {
509 	pgoff_t pgoff;
510 
511 	if (likely(!PageTransTail(page)))
512 		return page->index;
513 
514 	/*
515 	 *  We don't initialize ->index for tail pages: calculate based on
516 	 *  head page
517 	 */
518 	pgoff = compound_head(page)->index;
519 	pgoff += page - compound_head(page);
520 	return pgoff;
521 }
522 
523 /*
524  * Get the offset in PAGE_SIZE.
525  * (TODO: hugepage should have ->index in PAGE_SIZE)
526  */
page_to_pgoff(struct page * page)527 static inline pgoff_t page_to_pgoff(struct page *page)
528 {
529 	if (unlikely(PageHeadHuge(page)))
530 		return page->index << compound_order(page);
531 
532 	return page_to_index(page);
533 }
534 
535 /*
536  * Return byte-offset into filesystem object for page.
537  */
page_offset(struct page * page)538 static inline loff_t page_offset(struct page *page)
539 {
540 	return ((loff_t)page->index) << PAGE_SHIFT;
541 }
542 
page_file_offset(struct page * page)543 static inline loff_t page_file_offset(struct page *page)
544 {
545 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
546 }
547 
548 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
549 				     unsigned long address);
550 
linear_page_index(struct vm_area_struct * vma,unsigned long address)551 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
552 					unsigned long address)
553 {
554 	pgoff_t pgoff;
555 	if (unlikely(is_vm_hugetlb_page(vma)))
556 		return linear_hugepage_index(vma, address);
557 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
558 	pgoff += vma->vm_pgoff;
559 	return pgoff;
560 }
561 
562 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
563 struct wait_page_key {
564 	struct page *page;
565 	int bit_nr;
566 	int page_match;
567 };
568 
569 struct wait_page_queue {
570 	struct page *page;
571 	int bit_nr;
572 	wait_queue_entry_t wait;
573 };
574 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)575 static inline bool wake_page_match(struct wait_page_queue *wait_page,
576 				  struct wait_page_key *key)
577 {
578 	if (wait_page->page != key->page)
579 	       return false;
580 	key->page_match = 1;
581 
582 	if (wait_page->bit_nr != key->bit_nr)
583 		return false;
584 
585 	return true;
586 }
587 
588 extern void __lock_page(struct page *page);
589 extern int __lock_page_killable(struct page *page);
590 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
591 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
592 				unsigned int flags);
593 extern void unlock_page(struct page *page);
594 
595 /*
596  * Return true if the page was successfully locked
597  */
trylock_page(struct page * page)598 static inline int trylock_page(struct page *page)
599 {
600 	page = compound_head(page);
601 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
602 }
603 
604 /*
605  * lock_page may only be called if we have the page's inode pinned.
606  */
lock_page(struct page * page)607 static inline void lock_page(struct page *page)
608 {
609 	might_sleep();
610 	if (!trylock_page(page))
611 		__lock_page(page);
612 }
613 
614 /*
615  * lock_page_killable is like lock_page but can be interrupted by fatal
616  * signals.  It returns 0 if it locked the page and -EINTR if it was
617  * killed while waiting.
618  */
lock_page_killable(struct page * page)619 static inline int lock_page_killable(struct page *page)
620 {
621 	might_sleep();
622 	if (!trylock_page(page))
623 		return __lock_page_killable(page);
624 	return 0;
625 }
626 
627 /*
628  * lock_page_async - Lock the page, unless this would block. If the page
629  * is already locked, then queue a callback when the page becomes unlocked.
630  * This callback can then retry the operation.
631  *
632  * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
633  * was already locked and the callback defined in 'wait' was queued.
634  */
lock_page_async(struct page * page,struct wait_page_queue * wait)635 static inline int lock_page_async(struct page *page,
636 				  struct wait_page_queue *wait)
637 {
638 	if (!trylock_page(page))
639 		return __lock_page_async(page, wait);
640 	return 0;
641 }
642 
643 /*
644  * lock_page_or_retry - Lock the page, unless this would block and the
645  * caller indicated that it can handle a retry.
646  *
647  * Return value and mmap_lock implications depend on flags; see
648  * __lock_page_or_retry().
649  */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)650 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
651 				     unsigned int flags)
652 {
653 	might_sleep();
654 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
655 }
656 
657 /*
658  * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
659  * and should not be used directly.
660  */
661 extern void wait_on_page_bit(struct page *page, int bit_nr);
662 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
663 
664 /*
665  * Wait for a page to be unlocked.
666  *
667  * This must be called with the caller "holding" the page,
668  * ie with increased "page->count" so that the page won't
669  * go away during the wait..
670  */
wait_on_page_locked(struct page * page)671 static inline void wait_on_page_locked(struct page *page)
672 {
673 	if (PageLocked(page))
674 		wait_on_page_bit(compound_head(page), PG_locked);
675 }
676 
wait_on_page_locked_killable(struct page * page)677 static inline int wait_on_page_locked_killable(struct page *page)
678 {
679 	if (!PageLocked(page))
680 		return 0;
681 	return wait_on_page_bit_killable(compound_head(page), PG_locked);
682 }
683 
684 extern void put_and_wait_on_page_locked(struct page *page);
685 
686 void wait_on_page_writeback(struct page *page);
687 extern void end_page_writeback(struct page *page);
688 void wait_for_stable_page(struct page *page);
689 
690 void page_endio(struct page *page, bool is_write, int err);
691 
692 /*
693  * Add an arbitrary waiter to a page's wait queue
694  */
695 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
696 
697 /*
698  * Fault everything in given userspace address range in.
699  */
fault_in_pages_writeable(char __user * uaddr,int size)700 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
701 {
702 	char __user *end = uaddr + size - 1;
703 
704 	if (unlikely(size == 0))
705 		return 0;
706 
707 	if (unlikely(uaddr > end))
708 		return -EFAULT;
709 	/*
710 	 * Writing zeroes into userspace here is OK, because we know that if
711 	 * the zero gets there, we'll be overwriting it.
712 	 */
713 	do {
714 		if (unlikely(__put_user(0, uaddr) != 0))
715 			return -EFAULT;
716 		uaddr += PAGE_SIZE;
717 	} while (uaddr <= end);
718 
719 	/* Check whether the range spilled into the next page. */
720 	if (((unsigned long)uaddr & PAGE_MASK) ==
721 			((unsigned long)end & PAGE_MASK))
722 		return __put_user(0, end);
723 
724 	return 0;
725 }
726 
fault_in_pages_readable(const char __user * uaddr,int size)727 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
728 {
729 	volatile char c;
730 	const char __user *end = uaddr + size - 1;
731 
732 	if (unlikely(size == 0))
733 		return 0;
734 
735 	if (unlikely(uaddr > end))
736 		return -EFAULT;
737 
738 	do {
739 		if (unlikely(__get_user(c, uaddr) != 0))
740 			return -EFAULT;
741 		uaddr += PAGE_SIZE;
742 	} while (uaddr <= end);
743 
744 	/* Check whether the range spilled into the next page. */
745 	if (((unsigned long)uaddr & PAGE_MASK) ==
746 			((unsigned long)end & PAGE_MASK)) {
747 		return __get_user(c, end);
748 	}
749 
750 	(void)c;
751 	return 0;
752 }
753 
754 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
755 				pgoff_t index, gfp_t gfp_mask);
756 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
757 				pgoff_t index, gfp_t gfp_mask);
758 extern void delete_from_page_cache(struct page *page);
759 extern void __delete_from_page_cache(struct page *page, void *shadow);
760 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
761 void delete_from_page_cache_batch(struct address_space *mapping,
762 				  struct pagevec *pvec);
763 
764 /*
765  * Like add_to_page_cache_locked, but used to add newly allocated pages:
766  * the page is new, so we can just run __SetPageLocked() against it.
767  */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)768 static inline int add_to_page_cache(struct page *page,
769 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
770 {
771 	int error;
772 
773 	__SetPageLocked(page);
774 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
775 	if (unlikely(error))
776 		__ClearPageLocked(page);
777 	return error;
778 }
779 
780 /**
781  * struct readahead_control - Describes a readahead request.
782  *
783  * A readahead request is for consecutive pages.  Filesystems which
784  * implement the ->readahead method should call readahead_page() or
785  * readahead_page_batch() in a loop and attempt to start I/O against
786  * each page in the request.
787  *
788  * Most of the fields in this struct are private and should be accessed
789  * by the functions below.
790  *
791  * @file: The file, used primarily by network filesystems for authentication.
792  *	  May be NULL if invoked internally by the filesystem.
793  * @mapping: Readahead this filesystem object.
794  */
795 struct readahead_control {
796 	struct file *file;
797 	struct address_space *mapping;
798 /* private: use the readahead_* accessors instead */
799 	pgoff_t _index;
800 	unsigned int _nr_pages;
801 	unsigned int _batch_count;
802 };
803 
804 #define DEFINE_READAHEAD(rac, f, m, i)					\
805 	struct readahead_control rac = {				\
806 		.file = f,						\
807 		.mapping = m,						\
808 		._index = i,						\
809 	}
810 
811 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
812 
813 void page_cache_ra_unbounded(struct readahead_control *,
814 		unsigned long nr_to_read, unsigned long lookahead_count);
815 void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *,
816 		unsigned long req_count);
817 void page_cache_async_ra(struct readahead_control *, struct file_ra_state *,
818 		struct page *, unsigned long req_count);
819 
820 /**
821  * page_cache_sync_readahead - generic file readahead
822  * @mapping: address_space which holds the pagecache and I/O vectors
823  * @ra: file_ra_state which holds the readahead state
824  * @file: Used by the filesystem for authentication.
825  * @index: Index of first page to be read.
826  * @req_count: Total number of pages being read by the caller.
827  *
828  * page_cache_sync_readahead() should be called when a cache miss happened:
829  * it will submit the read.  The readahead logic may decide to piggyback more
830  * pages onto the read request if access patterns suggest it will improve
831  * performance.
832  */
833 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)834 void page_cache_sync_readahead(struct address_space *mapping,
835 		struct file_ra_state *ra, struct file *file, pgoff_t index,
836 		unsigned long req_count)
837 {
838 	DEFINE_READAHEAD(ractl, file, mapping, index);
839 	page_cache_sync_ra(&ractl, ra, req_count);
840 }
841 
842 /**
843  * page_cache_async_readahead - file readahead for marked pages
844  * @mapping: address_space which holds the pagecache and I/O vectors
845  * @ra: file_ra_state which holds the readahead state
846  * @file: Used by the filesystem for authentication.
847  * @page: The page at @index which triggered the readahead call.
848  * @index: Index of first page to be read.
849  * @req_count: Total number of pages being read by the caller.
850  *
851  * page_cache_async_readahead() should be called when a page is used which
852  * is marked as PageReadahead; this is a marker to suggest that the application
853  * has used up enough of the readahead window that we should start pulling in
854  * more pages.
855  */
856 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t index,unsigned long req_count)857 void page_cache_async_readahead(struct address_space *mapping,
858 		struct file_ra_state *ra, struct file *file,
859 		struct page *page, pgoff_t index, unsigned long req_count)
860 {
861 	DEFINE_READAHEAD(ractl, file, mapping, index);
862 	page_cache_async_ra(&ractl, ra, page, req_count);
863 }
864 
865 /**
866  * readahead_page - Get the next page to read.
867  * @rac: The current readahead request.
868  *
869  * Context: The page is locked and has an elevated refcount.  The caller
870  * should decreases the refcount once the page has been submitted for I/O
871  * and unlock the page once all I/O to that page has completed.
872  * Return: A pointer to the next page, or %NULL if we are done.
873  */
readahead_page(struct readahead_control * rac)874 static inline struct page *readahead_page(struct readahead_control *rac)
875 {
876 	struct page *page;
877 
878 	BUG_ON(rac->_batch_count > rac->_nr_pages);
879 	rac->_nr_pages -= rac->_batch_count;
880 	rac->_index += rac->_batch_count;
881 
882 	if (!rac->_nr_pages) {
883 		rac->_batch_count = 0;
884 		return NULL;
885 	}
886 
887 	page = xa_load(&rac->mapping->i_pages, rac->_index);
888 	VM_BUG_ON_PAGE(!PageLocked(page), page);
889 	rac->_batch_count = thp_nr_pages(page);
890 
891 	return page;
892 }
893 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)894 static inline unsigned int __readahead_batch(struct readahead_control *rac,
895 		struct page **array, unsigned int array_sz)
896 {
897 	unsigned int i = 0;
898 	XA_STATE(xas, &rac->mapping->i_pages, 0);
899 	struct page *page;
900 
901 	BUG_ON(rac->_batch_count > rac->_nr_pages);
902 	rac->_nr_pages -= rac->_batch_count;
903 	rac->_index += rac->_batch_count;
904 	rac->_batch_count = 0;
905 
906 	xas_set(&xas, rac->_index);
907 	rcu_read_lock();
908 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
909 		if (xas_retry(&xas, page))
910 			continue;
911 		VM_BUG_ON_PAGE(!PageLocked(page), page);
912 		VM_BUG_ON_PAGE(PageTail(page), page);
913 		array[i++] = page;
914 		rac->_batch_count += thp_nr_pages(page);
915 
916 		/*
917 		 * The page cache isn't using multi-index entries yet,
918 		 * so the xas cursor needs to be manually moved to the
919 		 * next index.  This can be removed once the page cache
920 		 * is converted.
921 		 */
922 		if (PageHead(page))
923 			xas_set(&xas, rac->_index + rac->_batch_count);
924 
925 		if (i == array_sz)
926 			break;
927 	}
928 	rcu_read_unlock();
929 
930 	return i;
931 }
932 
933 /**
934  * readahead_page_batch - Get a batch of pages to read.
935  * @rac: The current readahead request.
936  * @array: An array of pointers to struct page.
937  *
938  * Context: The pages are locked and have an elevated refcount.  The caller
939  * should decreases the refcount once the page has been submitted for I/O
940  * and unlock the page once all I/O to that page has completed.
941  * Return: The number of pages placed in the array.  0 indicates the request
942  * is complete.
943  */
944 #define readahead_page_batch(rac, array)				\
945 	__readahead_batch(rac, array, ARRAY_SIZE(array))
946 
947 /**
948  * readahead_pos - The byte offset into the file of this readahead request.
949  * @rac: The readahead request.
950  */
readahead_pos(struct readahead_control * rac)951 static inline loff_t readahead_pos(struct readahead_control *rac)
952 {
953 	return (loff_t)rac->_index * PAGE_SIZE;
954 }
955 
956 /**
957  * readahead_length - The number of bytes in this readahead request.
958  * @rac: The readahead request.
959  */
readahead_length(struct readahead_control * rac)960 static inline loff_t readahead_length(struct readahead_control *rac)
961 {
962 	return (loff_t)rac->_nr_pages * PAGE_SIZE;
963 }
964 
965 /**
966  * readahead_index - The index of the first page in this readahead request.
967  * @rac: The readahead request.
968  */
readahead_index(struct readahead_control * rac)969 static inline pgoff_t readahead_index(struct readahead_control *rac)
970 {
971 	return rac->_index;
972 }
973 
974 /**
975  * readahead_count - The number of pages in this readahead request.
976  * @rac: The readahead request.
977  */
readahead_count(struct readahead_control * rac)978 static inline unsigned int readahead_count(struct readahead_control *rac)
979 {
980 	return rac->_nr_pages;
981 }
982 
dir_pages(struct inode * inode)983 static inline unsigned long dir_pages(struct inode *inode)
984 {
985 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
986 			       PAGE_SHIFT;
987 }
988 
989 /**
990  * page_mkwrite_check_truncate - check if page was truncated
991  * @page: the page to check
992  * @inode: the inode to check the page against
993  *
994  * Returns the number of bytes in the page up to EOF,
995  * or -EFAULT if the page was truncated.
996  */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)997 static inline int page_mkwrite_check_truncate(struct page *page,
998 					      struct inode *inode)
999 {
1000 	loff_t size = i_size_read(inode);
1001 	pgoff_t index = size >> PAGE_SHIFT;
1002 	int offset = offset_in_page(size);
1003 
1004 	if (page->mapping != inode->i_mapping)
1005 		return -EFAULT;
1006 
1007 	/* page is wholly inside EOF */
1008 	if (page->index < index)
1009 		return PAGE_SIZE;
1010 	/* page is wholly past EOF */
1011 	if (page->index > index || !offset)
1012 		return -EFAULT;
1013 	/* page is partially inside EOF */
1014 	return offset;
1015 }
1016 
1017 /**
1018  * i_blocks_per_page - How many blocks fit in this page.
1019  * @inode: The inode which contains the blocks.
1020  * @page: The page (head page if the page is a THP).
1021  *
1022  * If the block size is larger than the size of this page, return zero.
1023  *
1024  * Context: The caller should hold a refcount on the page to prevent it
1025  * from being split.
1026  * Return: The number of filesystem blocks covered by this page.
1027  */
1028 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1029 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1030 {
1031 	return thp_size(page) >> inode->i_blkbits;
1032 }
1033 #endif /* _LINUX_PAGEMAP_H */
1034