1 /* hamachi.c: A Packet Engines GNIC-II Gigabit Ethernet driver for Linux. */
2 /*
3 Written 1998-2000 by Donald Becker.
4 Updates 2000 by Keith Underwood.
5
6 This software may be used and distributed according to the terms of
7 the GNU General Public License (GPL), incorporated herein by reference.
8 Drivers based on or derived from this code fall under the GPL and must
9 retain the authorship, copyright and license notice. This file is not
10 a complete program and may only be used when the entire operating
11 system is licensed under the GPL.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 This driver is for the Packet Engines GNIC-II PCI Gigabit Ethernet
19 adapter.
20
21 Support and updates available at
22 http://www.scyld.com/network/hamachi.html
23 [link no longer provides useful info -jgarzik]
24 or
25 http://www.parl.clemson.edu/~keithu/hamachi.html
26
27 */
28
29 #define DRV_NAME "hamachi"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "Sept 11, 2006"
32
33
34 /* A few user-configurable values. */
35
36 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
37 #define final_version
38 #define hamachi_debug debug
39 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
40 static int max_interrupt_work = 40;
41 static int mtu;
42 /* Default values selected by testing on a dual processor PIII-450 */
43 /* These six interrupt control parameters may be set directly when loading the
44 * module, or through the rx_params and tx_params variables
45 */
46 static int max_rx_latency = 0x11;
47 static int max_rx_gap = 0x05;
48 static int min_rx_pkt = 0x18;
49 static int max_tx_latency = 0x00;
50 static int max_tx_gap = 0x00;
51 static int min_tx_pkt = 0x30;
52
53 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
54 -Setting to > 1518 causes all frames to be copied
55 -Setting to 0 disables copies
56 */
57 static int rx_copybreak;
58
59 /* An override for the hardware detection of bus width.
60 Set to 1 to force 32 bit PCI bus detection. Set to 4 to force 64 bit.
61 Add 2 to disable parity detection.
62 */
63 static int force32;
64
65
66 /* Used to pass the media type, etc.
67 These exist for driver interoperability.
68 No media types are currently defined.
69 - The lower 4 bits are reserved for the media type.
70 - The next three bits may be set to one of the following:
71 0x00000000 : Autodetect PCI bus
72 0x00000010 : Force 32 bit PCI bus
73 0x00000020 : Disable parity detection
74 0x00000040 : Force 64 bit PCI bus
75 Default is autodetect
76 - The next bit can be used to force half-duplex. This is a bad
77 idea since no known implementations implement half-duplex, and,
78 in general, half-duplex for gigabit ethernet is a bad idea.
79 0x00000080 : Force half-duplex
80 Default is full-duplex.
81 - In the original driver, the ninth bit could be used to force
82 full-duplex. Maintain that for compatibility
83 0x00000200 : Force full-duplex
84 */
85 #define MAX_UNITS 8 /* More are supported, limit only on options */
86 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
87 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
88 /* The Hamachi chipset supports 3 parameters each for Rx and Tx
89 * interruput management. Parameters will be loaded as specified into
90 * the TxIntControl and RxIntControl registers.
91 *
92 * The registers are arranged as follows:
93 * 23 - 16 15 - 8 7 - 0
94 * _________________________________
95 * | min_pkt | max_gap | max_latency |
96 * ---------------------------------
97 * min_pkt : The minimum number of packets processed between
98 * interrupts.
99 * max_gap : The maximum inter-packet gap in units of 8.192 us
100 * max_latency : The absolute time between interrupts in units of 8.192 us
101 *
102 */
103 static int rx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
104 static int tx_params[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
105
106 /* Operational parameters that are set at compile time. */
107
108 /* Keep the ring sizes a power of two for compile efficiency.
109 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
110 Making the Tx ring too large decreases the effectiveness of channel
111 bonding and packet priority.
112 There are no ill effects from too-large receive rings, except for
113 excessive memory usage */
114 /* Empirically it appears that the Tx ring needs to be a little bigger
115 for these Gbit adapters or you get into an overrun condition really
116 easily. Also, things appear to work a bit better in back-to-back
117 configurations if the Rx ring is 8 times the size of the Tx ring
118 */
119 #define TX_RING_SIZE 64
120 #define RX_RING_SIZE 512
121 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct hamachi_desc)
122 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct hamachi_desc)
123
124 /*
125 * Enable netdev_ioctl. Added interrupt coalescing parameter adjustment.
126 * 2/19/99 Pete Wyckoff <wyckoff@ca.sandia.gov>
127 */
128
129 /* play with 64-bit addrlen; seems to be a teensy bit slower --pw */
130 /* #define ADDRLEN 64 */
131
132 /*
133 * RX_CHECKSUM turns on card-generated receive checksum generation for
134 * TCP and UDP packets. Otherwise the upper layers do the calculation.
135 * 3/10/1999 Pete Wyckoff <wyckoff@ca.sandia.gov>
136 */
137 #define RX_CHECKSUM
138
139 /* Operational parameters that usually are not changed. */
140 /* Time in jiffies before concluding the transmitter is hung. */
141 #define TX_TIMEOUT (5*HZ)
142
143 #include <linux/capability.h>
144 #include <linux/module.h>
145 #include <linux/kernel.h>
146 #include <linux/string.h>
147 #include <linux/timer.h>
148 #include <linux/time.h>
149 #include <linux/errno.h>
150 #include <linux/ioport.h>
151 #include <linux/interrupt.h>
152 #include <linux/pci.h>
153 #include <linux/init.h>
154 #include <linux/ethtool.h>
155 #include <linux/mii.h>
156 #include <linux/netdevice.h>
157 #include <linux/etherdevice.h>
158 #include <linux/skbuff.h>
159 #include <linux/ip.h>
160 #include <linux/delay.h>
161 #include <linux/bitops.h>
162
163 #include <linux/uaccess.h>
164 #include <asm/processor.h> /* Processor type for cache alignment. */
165 #include <asm/io.h>
166 #include <asm/unaligned.h>
167 #include <asm/cache.h>
168
169 static const char version[] =
170 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n"
171 " Some modifications by Eric kasten <kasten@nscl.msu.edu>\n"
172 " Further modifications by Keith Underwood <keithu@parl.clemson.edu>\n";
173
174
175 /* IP_MF appears to be only defined in <netinet/ip.h>, however,
176 we need it for hardware checksumming support. FYI... some of
177 the definitions in <netinet/ip.h> conflict/duplicate those in
178 other linux headers causing many compiler warnings.
179 */
180 #ifndef IP_MF
181 #define IP_MF 0x2000 /* IP more frags from <netinet/ip.h> */
182 #endif
183
184 /* Define IP_OFFSET to be IPOPT_OFFSET */
185 #ifndef IP_OFFSET
186 #ifdef IPOPT_OFFSET
187 #define IP_OFFSET IPOPT_OFFSET
188 #else
189 #define IP_OFFSET 2
190 #endif
191 #endif
192
193 #define RUN_AT(x) (jiffies + (x))
194
195 #ifndef ADDRLEN
196 #define ADDRLEN 32
197 #endif
198
199 /* Condensed bus+endian portability operations. */
200 #if ADDRLEN == 64
201 #define cpu_to_leXX(addr) cpu_to_le64(addr)
202 #define leXX_to_cpu(addr) le64_to_cpu(addr)
203 #else
204 #define cpu_to_leXX(addr) cpu_to_le32(addr)
205 #define leXX_to_cpu(addr) le32_to_cpu(addr)
206 #endif
207
208
209 /*
210 Theory of Operation
211
212 I. Board Compatibility
213
214 This device driver is designed for the Packet Engines "Hamachi"
215 Gigabit Ethernet chip. The only PCA currently supported is the GNIC-II 64-bit
216 66Mhz PCI card.
217
218 II. Board-specific settings
219
220 No jumpers exist on the board. The chip supports software correction of
221 various motherboard wiring errors, however this driver does not support
222 that feature.
223
224 III. Driver operation
225
226 IIIa. Ring buffers
227
228 The Hamachi uses a typical descriptor based bus-master architecture.
229 The descriptor list is similar to that used by the Digital Tulip.
230 This driver uses two statically allocated fixed-size descriptor lists
231 formed into rings by a branch from the final descriptor to the beginning of
232 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
233
234 This driver uses a zero-copy receive and transmit scheme similar my other
235 network drivers.
236 The driver allocates full frame size skbuffs for the Rx ring buffers at
237 open() time and passes the skb->data field to the Hamachi as receive data
238 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
239 a fresh skbuff is allocated and the frame is copied to the new skbuff.
240 When the incoming frame is larger, the skbuff is passed directly up the
241 protocol stack and replaced by a newly allocated skbuff.
242
243 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
244 using a full-sized skbuff for small frames vs. the copying costs of larger
245 frames. Gigabit cards are typically used on generously configured machines
246 and the underfilled buffers have negligible impact compared to the benefit of
247 a single allocation size, so the default value of zero results in never
248 copying packets.
249
250 IIIb/c. Transmit/Receive Structure
251
252 The Rx and Tx descriptor structure are straight-forward, with no historical
253 baggage that must be explained. Unlike the awkward DBDMA structure, there
254 are no unused fields or option bits that had only one allowable setting.
255
256 Two details should be noted about the descriptors: The chip supports both 32
257 bit and 64 bit address structures, and the length field is overwritten on
258 the receive descriptors. The descriptor length is set in the control word
259 for each channel. The development driver uses 32 bit addresses only, however
260 64 bit addresses may be enabled for 64 bit architectures e.g. the Alpha.
261
262 IIId. Synchronization
263
264 This driver is very similar to my other network drivers.
265 The driver runs as two independent, single-threaded flows of control. One
266 is the send-packet routine, which enforces single-threaded use by the
267 dev->tbusy flag. The other thread is the interrupt handler, which is single
268 threaded by the hardware and other software.
269
270 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
271 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
272 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
273 the 'hmp->tx_full' flag.
274
275 The interrupt handler has exclusive control over the Rx ring and records stats
276 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
277 empty by incrementing the dirty_tx mark. Iff the 'hmp->tx_full' flag is set, it
278 clears both the tx_full and tbusy flags.
279
280 IV. Notes
281
282 Thanks to Kim Stearns of Packet Engines for providing a pair of GNIC-II boards.
283
284 IVb. References
285
286 Hamachi Engineering Design Specification, 5/15/97
287 (Note: This version was marked "Confidential".)
288
289 IVc. Errata
290
291 None noted.
292
293 V. Recent Changes
294
295 01/15/1999 EPK Enlargement of the TX and RX ring sizes. This appears
296 to help avoid some stall conditions -- this needs further research.
297
298 01/15/1999 EPK Creation of the hamachi_tx function. This function cleans
299 the Tx ring and is called from hamachi_start_xmit (this used to be
300 called from hamachi_interrupt but it tends to delay execution of the
301 interrupt handler and thus reduce bandwidth by reducing the latency
302 between hamachi_rx()'s). Notably, some modification has been made so
303 that the cleaning loop checks only to make sure that the DescOwn bit
304 isn't set in the status flag since the card is not required
305 to set the entire flag to zero after processing.
306
307 01/15/1999 EPK In the hamachi_start_tx function, the Tx ring full flag is
308 checked before attempting to add a buffer to the ring. If the ring is full
309 an attempt is made to free any dirty buffers and thus find space for
310 the new buffer or the function returns non-zero which should case the
311 scheduler to reschedule the buffer later.
312
313 01/15/1999 EPK Some adjustments were made to the chip initialization.
314 End-to-end flow control should now be fully active and the interrupt
315 algorithm vars have been changed. These could probably use further tuning.
316
317 01/15/1999 EPK Added the max_{rx,tx}_latency options. These are used to
318 set the rx and tx latencies for the Hamachi interrupts. If you're having
319 problems with network stalls, try setting these to higher values.
320 Valid values are 0x00 through 0xff.
321
322 01/15/1999 EPK In general, the overall bandwidth has increased and
323 latencies are better (sometimes by a factor of 2). Stalls are rare at
324 this point, however there still appears to be a bug somewhere between the
325 hardware and driver. TCP checksum errors under load also appear to be
326 eliminated at this point.
327
328 01/18/1999 EPK Ensured that the DescEndRing bit was being set on both the
329 Rx and Tx rings. This appears to have been affecting whether a particular
330 peer-to-peer connection would hang under high load. I believe the Rx
331 rings was typically getting set correctly, but the Tx ring wasn't getting
332 the DescEndRing bit set during initialization. ??? Does this mean the
333 hamachi card is using the DescEndRing in processing even if a particular
334 slot isn't in use -- hypothetically, the card might be searching the
335 entire Tx ring for slots with the DescOwn bit set and then processing
336 them. If the DescEndRing bit isn't set, then it might just wander off
337 through memory until it hits a chunk of data with that bit set
338 and then looping back.
339
340 02/09/1999 EPK Added Michel Mueller's TxDMA Interrupt and Tx-timeout
341 problem (TxCmd and RxCmd need only to be set when idle or stopped.
342
343 02/09/1999 EPK Added code to check/reset dev->tbusy in hamachi_interrupt.
344 (Michel Mueller pointed out the ``permanently busy'' potential
345 problem here).
346
347 02/22/1999 EPK Added Pete Wyckoff's ioctl to control the Tx/Rx latencies.
348
349 02/23/1999 EPK Verified that the interrupt status field bits for Tx were
350 incorrectly defined and corrected (as per Michel Mueller).
351
352 02/23/1999 EPK Corrected the Tx full check to check that at least 4 slots
353 were available before resetting the tbusy and tx_full flags
354 (as per Michel Mueller).
355
356 03/11/1999 EPK Added Pete Wyckoff's hardware checksumming support.
357
358 12/31/1999 KDU Cleaned up assorted things and added Don's code to force
359 32 bit.
360
361 02/20/2000 KDU Some of the control was just plain odd. Cleaned up the
362 hamachi_start_xmit() and hamachi_interrupt() code. There is still some
363 re-structuring I would like to do.
364
365 03/01/2000 KDU Experimenting with a WIDE range of interrupt mitigation
366 parameters on a dual P3-450 setup yielded the new default interrupt
367 mitigation parameters. Tx should interrupt VERY infrequently due to
368 Eric's scheme. Rx should be more often...
369
370 03/13/2000 KDU Added a patch to make the Rx Checksum code interact
371 nicely with non-linux machines.
372
373 03/13/2000 KDU Experimented with some of the configuration values:
374
375 -It seems that enabling PCI performance commands for descriptors
376 (changing RxDMACtrl and TxDMACtrl lower nibble from 5 to D) has minimal
377 performance impact for any of my tests. (ttcp, netpipe, netperf) I will
378 leave them that way until I hear further feedback.
379
380 -Increasing the PCI_LATENCY_TIMER to 130
381 (2 + (burst size of 128 * (0 wait states + 1))) seems to slightly
382 degrade performance. Leaving default at 64 pending further information.
383
384 03/14/2000 KDU Further tuning:
385
386 -adjusted boguscnt in hamachi_rx() to depend on interrupt
387 mitigation parameters chosen.
388
389 -Selected a set of interrupt parameters based on some extensive testing.
390 These may change with more testing.
391
392 TO DO:
393
394 -Consider borrowing from the acenic driver code to check PCI_COMMAND for
395 PCI_COMMAND_INVALIDATE. Set maximum burst size to cache line size in
396 that case.
397
398 -fix the reset procedure. It doesn't quite work.
399 */
400
401 /* A few values that may be tweaked. */
402 /* Size of each temporary Rx buffer, calculated as:
403 * 1518 bytes (ethernet packet) + 2 bytes (to get 8 byte alignment for
404 * the card) + 8 bytes of status info + 8 bytes for the Rx Checksum
405 */
406 #define PKT_BUF_SZ 1536
407
408 /* For now, this is going to be set to the maximum size of an ethernet
409 * packet. Eventually, we may want to make it a variable that is
410 * related to the MTU
411 */
412 #define MAX_FRAME_SIZE 1518
413
414 /* The rest of these values should never change. */
415
416 static void hamachi_timer(struct timer_list *t);
417
418 enum capability_flags {CanHaveMII=1, };
419 static const struct chip_info {
420 u16 vendor_id, device_id, device_id_mask, pad;
421 const char *name;
422 void (*media_timer)(struct timer_list *t);
423 int flags;
424 } chip_tbl[] = {
425 {0x1318, 0x0911, 0xffff, 0, "Hamachi GNIC-II", hamachi_timer, 0},
426 {0,},
427 };
428
429 /* Offsets to the Hamachi registers. Various sizes. */
430 enum hamachi_offsets {
431 TxDMACtrl=0x00, TxCmd=0x04, TxStatus=0x06, TxPtr=0x08, TxCurPtr=0x10,
432 RxDMACtrl=0x20, RxCmd=0x24, RxStatus=0x26, RxPtr=0x28, RxCurPtr=0x30,
433 PCIClkMeas=0x060, MiscStatus=0x066, ChipRev=0x68, ChipReset=0x06B,
434 LEDCtrl=0x06C, VirtualJumpers=0x06D, GPIO=0x6E,
435 TxChecksum=0x074, RxChecksum=0x076,
436 TxIntrCtrl=0x078, RxIntrCtrl=0x07C,
437 InterruptEnable=0x080, InterruptClear=0x084, IntrStatus=0x088,
438 EventStatus=0x08C,
439 MACCnfg=0x0A0, FrameGap0=0x0A2, FrameGap1=0x0A4,
440 /* See enum MII_offsets below. */
441 MACCnfg2=0x0B0, RxDepth=0x0B8, FlowCtrl=0x0BC, MaxFrameSize=0x0CE,
442 AddrMode=0x0D0, StationAddr=0x0D2,
443 /* Gigabit AutoNegotiation. */
444 ANCtrl=0x0E0, ANStatus=0x0E2, ANXchngCtrl=0x0E4, ANAdvertise=0x0E8,
445 ANLinkPartnerAbility=0x0EA,
446 EECmdStatus=0x0F0, EEData=0x0F1, EEAddr=0x0F2,
447 FIFOcfg=0x0F8,
448 };
449
450 /* Offsets to the MII-mode registers. */
451 enum MII_offsets {
452 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
453 MII_Status=0xAE,
454 };
455
456 /* Bits in the interrupt status/mask registers. */
457 enum intr_status_bits {
458 IntrRxDone=0x01, IntrRxPCIFault=0x02, IntrRxPCIErr=0x04,
459 IntrTxDone=0x100, IntrTxPCIFault=0x200, IntrTxPCIErr=0x400,
460 LinkChange=0x10000, NegotiationChange=0x20000, StatsMax=0x40000, };
461
462 /* The Hamachi Rx and Tx buffer descriptors. */
463 struct hamachi_desc {
464 __le32 status_n_length;
465 #if ADDRLEN == 64
466 u32 pad;
467 __le64 addr;
468 #else
469 __le32 addr;
470 #endif
471 };
472
473 /* Bits in hamachi_desc.status_n_length */
474 enum desc_status_bits {
475 DescOwn=0x80000000, DescEndPacket=0x40000000, DescEndRing=0x20000000,
476 DescIntr=0x10000000,
477 };
478
479 #define PRIV_ALIGN 15 /* Required alignment mask */
480 #define MII_CNT 4
481 struct hamachi_private {
482 /* Descriptor rings first for alignment. Tx requires a second descriptor
483 for status. */
484 struct hamachi_desc *rx_ring;
485 struct hamachi_desc *tx_ring;
486 struct sk_buff* rx_skbuff[RX_RING_SIZE];
487 struct sk_buff* tx_skbuff[TX_RING_SIZE];
488 dma_addr_t tx_ring_dma;
489 dma_addr_t rx_ring_dma;
490 struct timer_list timer; /* Media selection timer. */
491 /* Frequently used and paired value: keep adjacent for cache effect. */
492 spinlock_t lock;
493 int chip_id;
494 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
495 unsigned int cur_tx, dirty_tx;
496 unsigned int rx_buf_sz; /* Based on MTU+slack. */
497 unsigned int tx_full:1; /* The Tx queue is full. */
498 unsigned int duplex_lock:1;
499 unsigned int default_port:4; /* Last dev->if_port value. */
500 /* MII transceiver section. */
501 int mii_cnt; /* MII device addresses. */
502 struct mii_if_info mii_if; /* MII lib hooks/info */
503 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
504 u32 rx_int_var, tx_int_var; /* interrupt control variables */
505 u32 option; /* Hold on to a copy of the options */
506 struct pci_dev *pci_dev;
507 void __iomem *base;
508 };
509
510 MODULE_AUTHOR("Donald Becker <becker@scyld.com>, Eric Kasten <kasten@nscl.msu.edu>, Keith Underwood <keithu@parl.clemson.edu>");
511 MODULE_DESCRIPTION("Packet Engines 'Hamachi' GNIC-II Gigabit Ethernet driver");
512 MODULE_LICENSE("GPL");
513
514 module_param(max_interrupt_work, int, 0);
515 module_param(mtu, int, 0);
516 module_param(debug, int, 0);
517 module_param(min_rx_pkt, int, 0);
518 module_param(max_rx_gap, int, 0);
519 module_param(max_rx_latency, int, 0);
520 module_param(min_tx_pkt, int, 0);
521 module_param(max_tx_gap, int, 0);
522 module_param(max_tx_latency, int, 0);
523 module_param(rx_copybreak, int, 0);
524 module_param_array(rx_params, int, NULL, 0);
525 module_param_array(tx_params, int, NULL, 0);
526 module_param_array(options, int, NULL, 0);
527 module_param_array(full_duplex, int, NULL, 0);
528 module_param(force32, int, 0);
529 MODULE_PARM_DESC(max_interrupt_work, "GNIC-II maximum events handled per interrupt");
530 MODULE_PARM_DESC(mtu, "GNIC-II MTU (all boards)");
531 MODULE_PARM_DESC(debug, "GNIC-II debug level (0-7)");
532 MODULE_PARM_DESC(min_rx_pkt, "GNIC-II minimum Rx packets processed between interrupts");
533 MODULE_PARM_DESC(max_rx_gap, "GNIC-II maximum Rx inter-packet gap in 8.192 microsecond units");
534 MODULE_PARM_DESC(max_rx_latency, "GNIC-II time between Rx interrupts in 8.192 microsecond units");
535 MODULE_PARM_DESC(min_tx_pkt, "GNIC-II minimum Tx packets processed between interrupts");
536 MODULE_PARM_DESC(max_tx_gap, "GNIC-II maximum Tx inter-packet gap in 8.192 microsecond units");
537 MODULE_PARM_DESC(max_tx_latency, "GNIC-II time between Tx interrupts in 8.192 microsecond units");
538 MODULE_PARM_DESC(rx_copybreak, "GNIC-II copy breakpoint for copy-only-tiny-frames");
539 MODULE_PARM_DESC(rx_params, "GNIC-II min_rx_pkt+max_rx_gap+max_rx_latency");
540 MODULE_PARM_DESC(tx_params, "GNIC-II min_tx_pkt+max_tx_gap+max_tx_latency");
541 MODULE_PARM_DESC(options, "GNIC-II Bits 0-3: media type, bits 4-6: as force32, bit 7: half duplex, bit 9 full duplex");
542 MODULE_PARM_DESC(full_duplex, "GNIC-II full duplex setting(s) (1)");
543 MODULE_PARM_DESC(force32, "GNIC-II: Bit 0: 32 bit PCI, bit 1: disable parity, bit 2: 64 bit PCI (all boards)");
544
545 static int read_eeprom(void __iomem *ioaddr, int location);
546 static int mdio_read(struct net_device *dev, int phy_id, int location);
547 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
548 static int hamachi_open(struct net_device *dev);
549 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
550 static void hamachi_timer(struct timer_list *t);
551 static void hamachi_tx_timeout(struct net_device *dev, unsigned int txqueue);
552 static void hamachi_init_ring(struct net_device *dev);
553 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
554 struct net_device *dev);
555 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance);
556 static int hamachi_rx(struct net_device *dev);
557 static inline int hamachi_tx(struct net_device *dev);
558 static void hamachi_error(struct net_device *dev, int intr_status);
559 static int hamachi_close(struct net_device *dev);
560 static struct net_device_stats *hamachi_get_stats(struct net_device *dev);
561 static void set_rx_mode(struct net_device *dev);
562 static const struct ethtool_ops ethtool_ops;
563 static const struct ethtool_ops ethtool_ops_no_mii;
564
565 static const struct net_device_ops hamachi_netdev_ops = {
566 .ndo_open = hamachi_open,
567 .ndo_stop = hamachi_close,
568 .ndo_start_xmit = hamachi_start_xmit,
569 .ndo_get_stats = hamachi_get_stats,
570 .ndo_set_rx_mode = set_rx_mode,
571 .ndo_validate_addr = eth_validate_addr,
572 .ndo_set_mac_address = eth_mac_addr,
573 .ndo_tx_timeout = hamachi_tx_timeout,
574 .ndo_do_ioctl = netdev_ioctl,
575 };
576
577
hamachi_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)578 static int hamachi_init_one(struct pci_dev *pdev,
579 const struct pci_device_id *ent)
580 {
581 struct hamachi_private *hmp;
582 int option, i, rx_int_var, tx_int_var, boguscnt;
583 int chip_id = ent->driver_data;
584 int irq;
585 void __iomem *ioaddr;
586 unsigned long base;
587 static int card_idx;
588 struct net_device *dev;
589 void *ring_space;
590 dma_addr_t ring_dma;
591 int ret = -ENOMEM;
592
593 /* when built into the kernel, we only print version if device is found */
594 #ifndef MODULE
595 static int printed_version;
596 if (!printed_version++)
597 printk(version);
598 #endif
599
600 if (pci_enable_device(pdev)) {
601 ret = -EIO;
602 goto err_out;
603 }
604
605 base = pci_resource_start(pdev, 0);
606 #ifdef __alpha__ /* Really "64 bit addrs" */
607 base |= (pci_resource_start(pdev, 1) << 32);
608 #endif
609
610 pci_set_master(pdev);
611
612 i = pci_request_regions(pdev, DRV_NAME);
613 if (i)
614 return i;
615
616 irq = pdev->irq;
617 ioaddr = ioremap(base, 0x400);
618 if (!ioaddr)
619 goto err_out_release;
620
621 dev = alloc_etherdev(sizeof(struct hamachi_private));
622 if (!dev)
623 goto err_out_iounmap;
624
625 SET_NETDEV_DEV(dev, &pdev->dev);
626
627 for (i = 0; i < 6; i++)
628 dev->dev_addr[i] = 1 ? read_eeprom(ioaddr, 4 + i)
629 : readb(ioaddr + StationAddr + i);
630
631 #if ! defined(final_version)
632 if (hamachi_debug > 4)
633 for (i = 0; i < 0x10; i++)
634 printk("%2.2x%s",
635 read_eeprom(ioaddr, i), i % 16 != 15 ? " " : "\n");
636 #endif
637
638 hmp = netdev_priv(dev);
639 spin_lock_init(&hmp->lock);
640
641 hmp->mii_if.dev = dev;
642 hmp->mii_if.mdio_read = mdio_read;
643 hmp->mii_if.mdio_write = mdio_write;
644 hmp->mii_if.phy_id_mask = 0x1f;
645 hmp->mii_if.reg_num_mask = 0x1f;
646
647 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
648 GFP_KERNEL);
649 if (!ring_space)
650 goto err_out_cleardev;
651 hmp->tx_ring = ring_space;
652 hmp->tx_ring_dma = ring_dma;
653
654 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
655 GFP_KERNEL);
656 if (!ring_space)
657 goto err_out_unmap_tx;
658 hmp->rx_ring = ring_space;
659 hmp->rx_ring_dma = ring_dma;
660
661 /* Check for options being passed in */
662 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
663 if (dev->mem_start)
664 option = dev->mem_start;
665
666 /* If the bus size is misidentified, do the following. */
667 force32 = force32 ? force32 :
668 ((option >= 0) ? ((option & 0x00000070) >> 4) : 0 );
669 if (force32)
670 writeb(force32, ioaddr + VirtualJumpers);
671
672 /* Hmmm, do we really need to reset the chip???. */
673 writeb(0x01, ioaddr + ChipReset);
674
675 /* After a reset, the clock speed measurement of the PCI bus will not
676 * be valid for a moment. Wait for a little while until it is. If
677 * it takes more than 10ms, forget it.
678 */
679 udelay(10);
680 i = readb(ioaddr + PCIClkMeas);
681 for (boguscnt = 0; (!(i & 0x080)) && boguscnt < 1000; boguscnt++){
682 udelay(10);
683 i = readb(ioaddr + PCIClkMeas);
684 }
685
686 hmp->base = ioaddr;
687 pci_set_drvdata(pdev, dev);
688
689 hmp->chip_id = chip_id;
690 hmp->pci_dev = pdev;
691
692 /* The lower four bits are the media type. */
693 if (option > 0) {
694 hmp->option = option;
695 if (option & 0x200)
696 hmp->mii_if.full_duplex = 1;
697 else if (option & 0x080)
698 hmp->mii_if.full_duplex = 0;
699 hmp->default_port = option & 15;
700 if (hmp->default_port)
701 hmp->mii_if.force_media = 1;
702 }
703 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
704 hmp->mii_if.full_duplex = 1;
705
706 /* lock the duplex mode if someone specified a value */
707 if (hmp->mii_if.full_duplex || (option & 0x080))
708 hmp->duplex_lock = 1;
709
710 /* Set interrupt tuning parameters */
711 max_rx_latency = max_rx_latency & 0x00ff;
712 max_rx_gap = max_rx_gap & 0x00ff;
713 min_rx_pkt = min_rx_pkt & 0x00ff;
714 max_tx_latency = max_tx_latency & 0x00ff;
715 max_tx_gap = max_tx_gap & 0x00ff;
716 min_tx_pkt = min_tx_pkt & 0x00ff;
717
718 rx_int_var = card_idx < MAX_UNITS ? rx_params[card_idx] : -1;
719 tx_int_var = card_idx < MAX_UNITS ? tx_params[card_idx] : -1;
720 hmp->rx_int_var = rx_int_var >= 0 ? rx_int_var :
721 (min_rx_pkt << 16 | max_rx_gap << 8 | max_rx_latency);
722 hmp->tx_int_var = tx_int_var >= 0 ? tx_int_var :
723 (min_tx_pkt << 16 | max_tx_gap << 8 | max_tx_latency);
724
725
726 /* The Hamachi-specific entries in the device structure. */
727 dev->netdev_ops = &hamachi_netdev_ops;
728 dev->ethtool_ops = (chip_tbl[hmp->chip_id].flags & CanHaveMII) ?
729 ðtool_ops : ðtool_ops_no_mii;
730 dev->watchdog_timeo = TX_TIMEOUT;
731 if (mtu)
732 dev->mtu = mtu;
733
734 i = register_netdev(dev);
735 if (i) {
736 ret = i;
737 goto err_out_unmap_rx;
738 }
739
740 printk(KERN_INFO "%s: %s type %x at %p, %pM, IRQ %d.\n",
741 dev->name, chip_tbl[chip_id].name, readl(ioaddr + ChipRev),
742 ioaddr, dev->dev_addr, irq);
743 i = readb(ioaddr + PCIClkMeas);
744 printk(KERN_INFO "%s: %d-bit %d Mhz PCI bus (%d), Virtual Jumpers "
745 "%2.2x, LPA %4.4x.\n",
746 dev->name, readw(ioaddr + MiscStatus) & 1 ? 64 : 32,
747 i ? 2000/(i&0x7f) : 0, i&0x7f, (int)readb(ioaddr + VirtualJumpers),
748 readw(ioaddr + ANLinkPartnerAbility));
749
750 if (chip_tbl[hmp->chip_id].flags & CanHaveMII) {
751 int phy, phy_idx = 0;
752 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
753 int mii_status = mdio_read(dev, phy, MII_BMSR);
754 if (mii_status != 0xffff &&
755 mii_status != 0x0000) {
756 hmp->phys[phy_idx++] = phy;
757 hmp->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
758 printk(KERN_INFO "%s: MII PHY found at address %d, status "
759 "0x%4.4x advertising %4.4x.\n",
760 dev->name, phy, mii_status, hmp->mii_if.advertising);
761 }
762 }
763 hmp->mii_cnt = phy_idx;
764 if (hmp->mii_cnt > 0)
765 hmp->mii_if.phy_id = hmp->phys[0];
766 else
767 memset(&hmp->mii_if, 0, sizeof(hmp->mii_if));
768 }
769 /* Configure gigabit autonegotiation. */
770 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
771 writew(0x08e0, ioaddr + ANAdvertise); /* Set our advertise word. */
772 writew(0x1000, ioaddr + ANCtrl); /* Enable negotiation */
773
774 card_idx++;
775 return 0;
776
777 err_out_unmap_rx:
778 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, hmp->rx_ring,
779 hmp->rx_ring_dma);
780 err_out_unmap_tx:
781 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, hmp->tx_ring,
782 hmp->tx_ring_dma);
783 err_out_cleardev:
784 free_netdev (dev);
785 err_out_iounmap:
786 iounmap(ioaddr);
787 err_out_release:
788 pci_release_regions(pdev);
789 err_out:
790 return ret;
791 }
792
read_eeprom(void __iomem * ioaddr,int location)793 static int read_eeprom(void __iomem *ioaddr, int location)
794 {
795 int bogus_cnt = 1000;
796
797 /* We should check busy first - per docs -KDU */
798 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
799 writew(location, ioaddr + EEAddr);
800 writeb(0x02, ioaddr + EECmdStatus);
801 bogus_cnt = 1000;
802 while ((readb(ioaddr + EECmdStatus) & 0x40) && --bogus_cnt > 0);
803 if (hamachi_debug > 5)
804 printk(" EEPROM status is %2.2x after %d ticks.\n",
805 (int)readb(ioaddr + EECmdStatus), 1000- bogus_cnt);
806 return readb(ioaddr + EEData);
807 }
808
809 /* MII Managemen Data I/O accesses.
810 These routines assume the MDIO controller is idle, and do not exit until
811 the command is finished. */
812
mdio_read(struct net_device * dev,int phy_id,int location)813 static int mdio_read(struct net_device *dev, int phy_id, int location)
814 {
815 struct hamachi_private *hmp = netdev_priv(dev);
816 void __iomem *ioaddr = hmp->base;
817 int i;
818
819 /* We should check busy first - per docs -KDU */
820 for (i = 10000; i >= 0; i--)
821 if ((readw(ioaddr + MII_Status) & 1) == 0)
822 break;
823 writew((phy_id<<8) + location, ioaddr + MII_Addr);
824 writew(0x0001, ioaddr + MII_Cmd);
825 for (i = 10000; i >= 0; i--)
826 if ((readw(ioaddr + MII_Status) & 1) == 0)
827 break;
828 return readw(ioaddr + MII_Rd_Data);
829 }
830
mdio_write(struct net_device * dev,int phy_id,int location,int value)831 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
832 {
833 struct hamachi_private *hmp = netdev_priv(dev);
834 void __iomem *ioaddr = hmp->base;
835 int i;
836
837 /* We should check busy first - per docs -KDU */
838 for (i = 10000; i >= 0; i--)
839 if ((readw(ioaddr + MII_Status) & 1) == 0)
840 break;
841 writew((phy_id<<8) + location, ioaddr + MII_Addr);
842 writew(value, ioaddr + MII_Wr_Data);
843
844 /* Wait for the command to finish. */
845 for (i = 10000; i >= 0; i--)
846 if ((readw(ioaddr + MII_Status) & 1) == 0)
847 break;
848 }
849
850
hamachi_open(struct net_device * dev)851 static int hamachi_open(struct net_device *dev)
852 {
853 struct hamachi_private *hmp = netdev_priv(dev);
854 void __iomem *ioaddr = hmp->base;
855 int i;
856 u32 rx_int_var, tx_int_var;
857 u16 fifo_info;
858
859 i = request_irq(hmp->pci_dev->irq, hamachi_interrupt, IRQF_SHARED,
860 dev->name, dev);
861 if (i)
862 return i;
863
864 hamachi_init_ring(dev);
865
866 #if ADDRLEN == 64
867 /* writellll anyone ? */
868 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
869 writel(hmp->rx_ring_dma >> 32, ioaddr + RxPtr + 4);
870 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
871 writel(hmp->tx_ring_dma >> 32, ioaddr + TxPtr + 4);
872 #else
873 writel(hmp->rx_ring_dma, ioaddr + RxPtr);
874 writel(hmp->tx_ring_dma, ioaddr + TxPtr);
875 #endif
876
877 /* TODO: It would make sense to organize this as words since the card
878 * documentation does. -KDU
879 */
880 for (i = 0; i < 6; i++)
881 writeb(dev->dev_addr[i], ioaddr + StationAddr + i);
882
883 /* Initialize other registers: with so many this eventually this will
884 converted to an offset/value list. */
885
886 /* Configure the FIFO */
887 fifo_info = (readw(ioaddr + GPIO) & 0x00C0) >> 6;
888 switch (fifo_info){
889 case 0 :
890 /* No FIFO */
891 writew(0x0000, ioaddr + FIFOcfg);
892 break;
893 case 1 :
894 /* Configure the FIFO for 512K external, 16K used for Tx. */
895 writew(0x0028, ioaddr + FIFOcfg);
896 break;
897 case 2 :
898 /* Configure the FIFO for 1024 external, 32K used for Tx. */
899 writew(0x004C, ioaddr + FIFOcfg);
900 break;
901 case 3 :
902 /* Configure the FIFO for 2048 external, 32K used for Tx. */
903 writew(0x006C, ioaddr + FIFOcfg);
904 break;
905 default :
906 printk(KERN_WARNING "%s: Unsupported external memory config!\n",
907 dev->name);
908 /* Default to no FIFO */
909 writew(0x0000, ioaddr + FIFOcfg);
910 break;
911 }
912
913 if (dev->if_port == 0)
914 dev->if_port = hmp->default_port;
915
916
917 /* Setting the Rx mode will start the Rx process. */
918 /* If someone didn't choose a duplex, default to full-duplex */
919 if (hmp->duplex_lock != 1)
920 hmp->mii_if.full_duplex = 1;
921
922 /* always 1, takes no more time to do it */
923 writew(0x0001, ioaddr + RxChecksum);
924 writew(0x0000, ioaddr + TxChecksum);
925 writew(0x8000, ioaddr + MACCnfg); /* Soft reset the MAC */
926 writew(0x215F, ioaddr + MACCnfg);
927 writew(0x000C, ioaddr + FrameGap0);
928 /* WHAT?!?!? Why isn't this documented somewhere? -KDU */
929 writew(0x1018, ioaddr + FrameGap1);
930 /* Why do we enable receives/transmits here? -KDU */
931 writew(0x0780, ioaddr + MACCnfg2); /* Upper 16 bits control LEDs. */
932 /* Enable automatic generation of flow control frames, period 0xffff. */
933 writel(0x0030FFFF, ioaddr + FlowCtrl);
934 writew(MAX_FRAME_SIZE, ioaddr + MaxFrameSize); /* dev->mtu+14 ??? */
935
936 /* Enable legacy links. */
937 writew(0x0400, ioaddr + ANXchngCtrl); /* Enable legacy links. */
938 /* Initial Link LED to blinking red. */
939 writeb(0x03, ioaddr + LEDCtrl);
940
941 /* Configure interrupt mitigation. This has a great effect on
942 performance, so systems tuning should start here!. */
943
944 rx_int_var = hmp->rx_int_var;
945 tx_int_var = hmp->tx_int_var;
946
947 if (hamachi_debug > 1) {
948 printk("max_tx_latency: %d, max_tx_gap: %d, min_tx_pkt: %d\n",
949 tx_int_var & 0x00ff, (tx_int_var & 0x00ff00) >> 8,
950 (tx_int_var & 0x00ff0000) >> 16);
951 printk("max_rx_latency: %d, max_rx_gap: %d, min_rx_pkt: %d\n",
952 rx_int_var & 0x00ff, (rx_int_var & 0x00ff00) >> 8,
953 (rx_int_var & 0x00ff0000) >> 16);
954 printk("rx_int_var: %x, tx_int_var: %x\n", rx_int_var, tx_int_var);
955 }
956
957 writel(tx_int_var, ioaddr + TxIntrCtrl);
958 writel(rx_int_var, ioaddr + RxIntrCtrl);
959
960 set_rx_mode(dev);
961
962 netif_start_queue(dev);
963
964 /* Enable interrupts by setting the interrupt mask. */
965 writel(0x80878787, ioaddr + InterruptEnable);
966 writew(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
967
968 /* Configure and start the DMA channels. */
969 /* Burst sizes are in the low three bits: size = 4<<(val&7) */
970 #if ADDRLEN == 64
971 writew(0x005D, ioaddr + RxDMACtrl); /* 128 dword bursts */
972 writew(0x005D, ioaddr + TxDMACtrl);
973 #else
974 writew(0x001D, ioaddr + RxDMACtrl);
975 writew(0x001D, ioaddr + TxDMACtrl);
976 #endif
977 writew(0x0001, ioaddr + RxCmd);
978
979 if (hamachi_debug > 2) {
980 printk(KERN_DEBUG "%s: Done hamachi_open(), status: Rx %x Tx %x.\n",
981 dev->name, readw(ioaddr + RxStatus), readw(ioaddr + TxStatus));
982 }
983 /* Set the timer to check for link beat. */
984 timer_setup(&hmp->timer, hamachi_timer, 0);
985 hmp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */
986 add_timer(&hmp->timer);
987
988 return 0;
989 }
990
hamachi_tx(struct net_device * dev)991 static inline int hamachi_tx(struct net_device *dev)
992 {
993 struct hamachi_private *hmp = netdev_priv(dev);
994
995 /* Update the dirty pointer until we find an entry that is
996 still owned by the card */
997 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++) {
998 int entry = hmp->dirty_tx % TX_RING_SIZE;
999 struct sk_buff *skb;
1000
1001 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1002 break;
1003 /* Free the original skb. */
1004 skb = hmp->tx_skbuff[entry];
1005 if (skb) {
1006 dma_unmap_single(&hmp->pci_dev->dev,
1007 leXX_to_cpu(hmp->tx_ring[entry].addr),
1008 skb->len, DMA_TO_DEVICE);
1009 dev_kfree_skb(skb);
1010 hmp->tx_skbuff[entry] = NULL;
1011 }
1012 hmp->tx_ring[entry].status_n_length = 0;
1013 if (entry >= TX_RING_SIZE-1)
1014 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1015 cpu_to_le32(DescEndRing);
1016 dev->stats.tx_packets++;
1017 }
1018
1019 return 0;
1020 }
1021
hamachi_timer(struct timer_list * t)1022 static void hamachi_timer(struct timer_list *t)
1023 {
1024 struct hamachi_private *hmp = from_timer(hmp, t, timer);
1025 struct net_device *dev = hmp->mii_if.dev;
1026 void __iomem *ioaddr = hmp->base;
1027 int next_tick = 10*HZ;
1028
1029 if (hamachi_debug > 2) {
1030 printk(KERN_INFO "%s: Hamachi Autonegotiation status %4.4x, LPA "
1031 "%4.4x.\n", dev->name, readw(ioaddr + ANStatus),
1032 readw(ioaddr + ANLinkPartnerAbility));
1033 printk(KERN_INFO "%s: Autonegotiation regs %4.4x %4.4x %4.4x "
1034 "%4.4x %4.4x %4.4x.\n", dev->name,
1035 readw(ioaddr + 0x0e0),
1036 readw(ioaddr + 0x0e2),
1037 readw(ioaddr + 0x0e4),
1038 readw(ioaddr + 0x0e6),
1039 readw(ioaddr + 0x0e8),
1040 readw(ioaddr + 0x0eA));
1041 }
1042 /* We could do something here... nah. */
1043 hmp->timer.expires = RUN_AT(next_tick);
1044 add_timer(&hmp->timer);
1045 }
1046
hamachi_tx_timeout(struct net_device * dev,unsigned int txqueue)1047 static void hamachi_tx_timeout(struct net_device *dev, unsigned int txqueue)
1048 {
1049 int i;
1050 struct hamachi_private *hmp = netdev_priv(dev);
1051 void __iomem *ioaddr = hmp->base;
1052
1053 printk(KERN_WARNING "%s: Hamachi transmit timed out, status %8.8x,"
1054 " resetting...\n", dev->name, (int)readw(ioaddr + TxStatus));
1055
1056 {
1057 printk(KERN_DEBUG " Rx ring %p: ", hmp->rx_ring);
1058 for (i = 0; i < RX_RING_SIZE; i++)
1059 printk(KERN_CONT " %8.8x",
1060 le32_to_cpu(hmp->rx_ring[i].status_n_length));
1061 printk(KERN_CONT "\n");
1062 printk(KERN_DEBUG" Tx ring %p: ", hmp->tx_ring);
1063 for (i = 0; i < TX_RING_SIZE; i++)
1064 printk(KERN_CONT " %4.4x",
1065 le32_to_cpu(hmp->tx_ring[i].status_n_length));
1066 printk(KERN_CONT "\n");
1067 }
1068
1069 /* Reinit the hardware and make sure the Rx and Tx processes
1070 are up and running.
1071 */
1072 dev->if_port = 0;
1073 /* The right way to do Reset. -KDU
1074 * -Clear OWN bit in all Rx/Tx descriptors
1075 * -Wait 50 uS for channels to go idle
1076 * -Turn off MAC receiver
1077 * -Issue Reset
1078 */
1079
1080 for (i = 0; i < RX_RING_SIZE; i++)
1081 hmp->rx_ring[i].status_n_length &= cpu_to_le32(~DescOwn);
1082
1083 /* Presume that all packets in the Tx queue are gone if we have to
1084 * re-init the hardware.
1085 */
1086 for (i = 0; i < TX_RING_SIZE; i++){
1087 struct sk_buff *skb;
1088
1089 if (i >= TX_RING_SIZE - 1)
1090 hmp->tx_ring[i].status_n_length =
1091 cpu_to_le32(DescEndRing) |
1092 (hmp->tx_ring[i].status_n_length &
1093 cpu_to_le32(0x0000ffff));
1094 else
1095 hmp->tx_ring[i].status_n_length &= cpu_to_le32(0x0000ffff);
1096 skb = hmp->tx_skbuff[i];
1097 if (skb){
1098 dma_unmap_single(&hmp->pci_dev->dev,
1099 leXX_to_cpu(hmp->tx_ring[i].addr),
1100 skb->len, DMA_TO_DEVICE);
1101 dev_kfree_skb(skb);
1102 hmp->tx_skbuff[i] = NULL;
1103 }
1104 }
1105
1106 udelay(60); /* Sleep 60 us just for safety sake */
1107 writew(0x0002, ioaddr + RxCmd); /* STOP Rx */
1108
1109 writeb(0x01, ioaddr + ChipReset); /* Reinit the hardware */
1110
1111 hmp->tx_full = 0;
1112 hmp->cur_rx = hmp->cur_tx = 0;
1113 hmp->dirty_rx = hmp->dirty_tx = 0;
1114 /* Rx packets are also presumed lost; however, we need to make sure a
1115 * ring of buffers is in tact. -KDU
1116 */
1117 for (i = 0; i < RX_RING_SIZE; i++){
1118 struct sk_buff *skb = hmp->rx_skbuff[i];
1119
1120 if (skb){
1121 dma_unmap_single(&hmp->pci_dev->dev,
1122 leXX_to_cpu(hmp->rx_ring[i].addr),
1123 hmp->rx_buf_sz, DMA_FROM_DEVICE);
1124 dev_kfree_skb(skb);
1125 hmp->rx_skbuff[i] = NULL;
1126 }
1127 }
1128 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1129 for (i = 0; i < RX_RING_SIZE; i++) {
1130 struct sk_buff *skb;
1131
1132 skb = netdev_alloc_skb_ip_align(dev, hmp->rx_buf_sz);
1133 hmp->rx_skbuff[i] = skb;
1134 if (skb == NULL)
1135 break;
1136
1137 hmp->rx_ring[i].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev,
1138 skb->data,
1139 hmp->rx_buf_sz,
1140 DMA_FROM_DEVICE));
1141 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1142 DescEndPacket | DescIntr | (hmp->rx_buf_sz - 2));
1143 }
1144 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1145 /* Mark the last entry as wrapping the ring. */
1146 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1147
1148 /* Trigger an immediate transmit demand. */
1149 netif_trans_update(dev); /* prevent tx timeout */
1150 dev->stats.tx_errors++;
1151
1152 /* Restart the chip's Tx/Rx processes . */
1153 writew(0x0002, ioaddr + TxCmd); /* STOP Tx */
1154 writew(0x0001, ioaddr + TxCmd); /* START Tx */
1155 writew(0x0001, ioaddr + RxCmd); /* START Rx */
1156
1157 netif_wake_queue(dev);
1158 }
1159
1160
1161 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
hamachi_init_ring(struct net_device * dev)1162 static void hamachi_init_ring(struct net_device *dev)
1163 {
1164 struct hamachi_private *hmp = netdev_priv(dev);
1165 int i;
1166
1167 hmp->tx_full = 0;
1168 hmp->cur_rx = hmp->cur_tx = 0;
1169 hmp->dirty_rx = hmp->dirty_tx = 0;
1170
1171 /* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1172 * card needs room to do 8 byte alignment, +2 so we can reserve
1173 * the first 2 bytes, and +16 gets room for the status word from the
1174 * card. -KDU
1175 */
1176 hmp->rx_buf_sz = (dev->mtu <= 1492 ? PKT_BUF_SZ :
1177 (((dev->mtu+26+7) & ~7) + 16));
1178
1179 /* Initialize all Rx descriptors. */
1180 for (i = 0; i < RX_RING_SIZE; i++) {
1181 hmp->rx_ring[i].status_n_length = 0;
1182 hmp->rx_skbuff[i] = NULL;
1183 }
1184 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1185 for (i = 0; i < RX_RING_SIZE; i++) {
1186 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2);
1187 hmp->rx_skbuff[i] = skb;
1188 if (skb == NULL)
1189 break;
1190 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1191 hmp->rx_ring[i].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev,
1192 skb->data,
1193 hmp->rx_buf_sz,
1194 DMA_FROM_DEVICE));
1195 /* -2 because it doesn't REALLY have that first 2 bytes -KDU */
1196 hmp->rx_ring[i].status_n_length = cpu_to_le32(DescOwn |
1197 DescEndPacket | DescIntr | (hmp->rx_buf_sz -2));
1198 }
1199 hmp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1200 hmp->rx_ring[RX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1201
1202 for (i = 0; i < TX_RING_SIZE; i++) {
1203 hmp->tx_skbuff[i] = NULL;
1204 hmp->tx_ring[i].status_n_length = 0;
1205 }
1206 /* Mark the last entry of the ring */
1207 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |= cpu_to_le32(DescEndRing);
1208 }
1209
1210
hamachi_start_xmit(struct sk_buff * skb,struct net_device * dev)1211 static netdev_tx_t hamachi_start_xmit(struct sk_buff *skb,
1212 struct net_device *dev)
1213 {
1214 struct hamachi_private *hmp = netdev_priv(dev);
1215 unsigned entry;
1216 u16 status;
1217
1218 /* Ok, now make sure that the queue has space before trying to
1219 add another skbuff. if we return non-zero the scheduler
1220 should interpret this as a queue full and requeue the buffer
1221 for later.
1222 */
1223 if (hmp->tx_full) {
1224 /* We should NEVER reach this point -KDU */
1225 printk(KERN_WARNING "%s: Hamachi transmit queue full at slot %d.\n",dev->name, hmp->cur_tx);
1226
1227 /* Wake the potentially-idle transmit channel. */
1228 /* If we don't need to read status, DON'T -KDU */
1229 status=readw(hmp->base + TxStatus);
1230 if( !(status & 0x0001) || (status & 0x0002))
1231 writew(0x0001, hmp->base + TxCmd);
1232 return NETDEV_TX_BUSY;
1233 }
1234
1235 /* Caution: the write order is important here, set the field
1236 with the "ownership" bits last. */
1237
1238 /* Calculate the next Tx descriptor entry. */
1239 entry = hmp->cur_tx % TX_RING_SIZE;
1240
1241 hmp->tx_skbuff[entry] = skb;
1242
1243 hmp->tx_ring[entry].addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev,
1244 skb->data,
1245 skb->len,
1246 DMA_TO_DEVICE));
1247
1248 /* Hmmmm, could probably put a DescIntr on these, but the way
1249 the driver is currently coded makes Tx interrupts unnecessary
1250 since the clearing of the Tx ring is handled by the start_xmit
1251 routine. This organization helps mitigate the interrupts a
1252 bit and probably renders the max_tx_latency param useless.
1253
1254 Update: Putting a DescIntr bit on all of the descriptors and
1255 mitigating interrupt frequency with the tx_min_pkt parameter. -KDU
1256 */
1257 if (entry >= TX_RING_SIZE-1) /* Wrap ring */
1258 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1259 DescEndPacket | DescEndRing | DescIntr | skb->len);
1260 else
1261 hmp->tx_ring[entry].status_n_length = cpu_to_le32(DescOwn |
1262 DescEndPacket | DescIntr | skb->len);
1263 hmp->cur_tx++;
1264
1265 /* Non-x86 Todo: explicitly flush cache lines here. */
1266
1267 /* Wake the potentially-idle transmit channel. */
1268 /* If we don't need to read status, DON'T -KDU */
1269 status=readw(hmp->base + TxStatus);
1270 if( !(status & 0x0001) || (status & 0x0002))
1271 writew(0x0001, hmp->base + TxCmd);
1272
1273 /* Immediately before returning, let's clear as many entries as we can. */
1274 hamachi_tx(dev);
1275
1276 /* We should kick the bottom half here, since we are not accepting
1277 * interrupts with every packet. i.e. realize that Gigabit ethernet
1278 * can transmit faster than ordinary machines can load packets;
1279 * hence, any packet that got put off because we were in the transmit
1280 * routine should IMMEDIATELY get a chance to be re-queued. -KDU
1281 */
1282 if ((hmp->cur_tx - hmp->dirty_tx) < (TX_RING_SIZE - 4))
1283 netif_wake_queue(dev); /* Typical path */
1284 else {
1285 hmp->tx_full = 1;
1286 netif_stop_queue(dev);
1287 }
1288
1289 if (hamachi_debug > 4) {
1290 printk(KERN_DEBUG "%s: Hamachi transmit frame #%d queued in slot %d.\n",
1291 dev->name, hmp->cur_tx, entry);
1292 }
1293 return NETDEV_TX_OK;
1294 }
1295
1296 /* The interrupt handler does all of the Rx thread work and cleans up
1297 after the Tx thread. */
hamachi_interrupt(int irq,void * dev_instance)1298 static irqreturn_t hamachi_interrupt(int irq, void *dev_instance)
1299 {
1300 struct net_device *dev = dev_instance;
1301 struct hamachi_private *hmp = netdev_priv(dev);
1302 void __iomem *ioaddr = hmp->base;
1303 long boguscnt = max_interrupt_work;
1304 int handled = 0;
1305
1306 #ifndef final_version /* Can never occur. */
1307 if (dev == NULL) {
1308 printk (KERN_ERR "hamachi_interrupt(): irq %d for unknown device.\n", irq);
1309 return IRQ_NONE;
1310 }
1311 #endif
1312
1313 spin_lock(&hmp->lock);
1314
1315 do {
1316 u32 intr_status = readl(ioaddr + InterruptClear);
1317
1318 if (hamachi_debug > 4)
1319 printk(KERN_DEBUG "%s: Hamachi interrupt, status %4.4x.\n",
1320 dev->name, intr_status);
1321
1322 if (intr_status == 0)
1323 break;
1324
1325 handled = 1;
1326
1327 if (intr_status & IntrRxDone)
1328 hamachi_rx(dev);
1329
1330 if (intr_status & IntrTxDone){
1331 /* This code should RARELY need to execute. After all, this is
1332 * a gigabit link, it should consume packets as fast as we put
1333 * them in AND we clear the Tx ring in hamachi_start_xmit().
1334 */
1335 if (hmp->tx_full){
1336 for (; hmp->cur_tx - hmp->dirty_tx > 0; hmp->dirty_tx++){
1337 int entry = hmp->dirty_tx % TX_RING_SIZE;
1338 struct sk_buff *skb;
1339
1340 if (hmp->tx_ring[entry].status_n_length & cpu_to_le32(DescOwn))
1341 break;
1342 skb = hmp->tx_skbuff[entry];
1343 /* Free the original skb. */
1344 if (skb){
1345 dma_unmap_single(&hmp->pci_dev->dev,
1346 leXX_to_cpu(hmp->tx_ring[entry].addr),
1347 skb->len,
1348 DMA_TO_DEVICE);
1349 dev_consume_skb_irq(skb);
1350 hmp->tx_skbuff[entry] = NULL;
1351 }
1352 hmp->tx_ring[entry].status_n_length = 0;
1353 if (entry >= TX_RING_SIZE-1)
1354 hmp->tx_ring[TX_RING_SIZE-1].status_n_length |=
1355 cpu_to_le32(DescEndRing);
1356 dev->stats.tx_packets++;
1357 }
1358 if (hmp->cur_tx - hmp->dirty_tx < TX_RING_SIZE - 4){
1359 /* The ring is no longer full */
1360 hmp->tx_full = 0;
1361 netif_wake_queue(dev);
1362 }
1363 } else {
1364 netif_wake_queue(dev);
1365 }
1366 }
1367
1368
1369 /* Abnormal error summary/uncommon events handlers. */
1370 if (intr_status &
1371 (IntrTxPCIFault | IntrTxPCIErr | IntrRxPCIFault | IntrRxPCIErr |
1372 LinkChange | NegotiationChange | StatsMax))
1373 hamachi_error(dev, intr_status);
1374
1375 if (--boguscnt < 0) {
1376 printk(KERN_WARNING "%s: Too much work at interrupt, status=0x%4.4x.\n",
1377 dev->name, intr_status);
1378 break;
1379 }
1380 } while (1);
1381
1382 if (hamachi_debug > 3)
1383 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1384 dev->name, readl(ioaddr + IntrStatus));
1385
1386 #ifndef final_version
1387 /* Code that should never be run! Perhaps remove after testing.. */
1388 {
1389 static int stopit = 10;
1390 if (dev->start == 0 && --stopit < 0) {
1391 printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n",
1392 dev->name);
1393 free_irq(irq, dev);
1394 }
1395 }
1396 #endif
1397
1398 spin_unlock(&hmp->lock);
1399 return IRQ_RETVAL(handled);
1400 }
1401
1402 /* This routine is logically part of the interrupt handler, but separated
1403 for clarity and better register allocation. */
hamachi_rx(struct net_device * dev)1404 static int hamachi_rx(struct net_device *dev)
1405 {
1406 struct hamachi_private *hmp = netdev_priv(dev);
1407 int entry = hmp->cur_rx % RX_RING_SIZE;
1408 int boguscnt = (hmp->dirty_rx + RX_RING_SIZE) - hmp->cur_rx;
1409
1410 if (hamachi_debug > 4) {
1411 printk(KERN_DEBUG " In hamachi_rx(), entry %d status %4.4x.\n",
1412 entry, hmp->rx_ring[entry].status_n_length);
1413 }
1414
1415 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1416 while (1) {
1417 struct hamachi_desc *desc = &(hmp->rx_ring[entry]);
1418 u32 desc_status = le32_to_cpu(desc->status_n_length);
1419 u16 data_size = desc_status; /* Implicit truncate */
1420 u8 *buf_addr;
1421 s32 frame_status;
1422
1423 if (desc_status & DescOwn)
1424 break;
1425 dma_sync_single_for_cpu(&hmp->pci_dev->dev,
1426 leXX_to_cpu(desc->addr),
1427 hmp->rx_buf_sz, DMA_FROM_DEVICE);
1428 buf_addr = (u8 *) hmp->rx_skbuff[entry]->data;
1429 frame_status = get_unaligned_le32(&(buf_addr[data_size - 12]));
1430 if (hamachi_debug > 4)
1431 printk(KERN_DEBUG " hamachi_rx() status was %8.8x.\n",
1432 frame_status);
1433 if (--boguscnt < 0)
1434 break;
1435 if ( ! (desc_status & DescEndPacket)) {
1436 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1437 "multiple buffers, entry %#x length %d status %4.4x!\n",
1438 dev->name, hmp->cur_rx, data_size, desc_status);
1439 printk(KERN_WARNING "%s: Oversized Ethernet frame %p vs %p.\n",
1440 dev->name, desc, &hmp->rx_ring[hmp->cur_rx % RX_RING_SIZE]);
1441 printk(KERN_WARNING "%s: Oversized Ethernet frame -- next status %x/%x last status %x.\n",
1442 dev->name,
1443 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0xffff0000,
1444 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx+1) % RX_RING_SIZE].status_n_length) & 0x0000ffff,
1445 le32_to_cpu(hmp->rx_ring[(hmp->cur_rx-1) % RX_RING_SIZE].status_n_length));
1446 dev->stats.rx_length_errors++;
1447 } /* else Omit for prototype errata??? */
1448 if (frame_status & 0x00380000) {
1449 /* There was an error. */
1450 if (hamachi_debug > 2)
1451 printk(KERN_DEBUG " hamachi_rx() Rx error was %8.8x.\n",
1452 frame_status);
1453 dev->stats.rx_errors++;
1454 if (frame_status & 0x00600000)
1455 dev->stats.rx_length_errors++;
1456 if (frame_status & 0x00080000)
1457 dev->stats.rx_frame_errors++;
1458 if (frame_status & 0x00100000)
1459 dev->stats.rx_crc_errors++;
1460 if (frame_status < 0)
1461 dev->stats.rx_dropped++;
1462 } else {
1463 struct sk_buff *skb;
1464 /* Omit CRC */
1465 u16 pkt_len = (frame_status & 0x07ff) - 4;
1466 #ifdef RX_CHECKSUM
1467 u32 pfck = *(u32 *) &buf_addr[data_size - 8];
1468 #endif
1469
1470
1471 #ifndef final_version
1472 if (hamachi_debug > 4)
1473 printk(KERN_DEBUG " hamachi_rx() normal Rx pkt length %d"
1474 " of %d, bogus_cnt %d.\n",
1475 pkt_len, data_size, boguscnt);
1476 if (hamachi_debug > 5)
1477 printk(KERN_DEBUG"%s: rx status %8.8x %8.8x %8.8x %8.8x %8.8x.\n",
1478 dev->name,
1479 *(s32*)&(buf_addr[data_size - 20]),
1480 *(s32*)&(buf_addr[data_size - 16]),
1481 *(s32*)&(buf_addr[data_size - 12]),
1482 *(s32*)&(buf_addr[data_size - 8]),
1483 *(s32*)&(buf_addr[data_size - 4]));
1484 #endif
1485 /* Check if the packet is long enough to accept without copying
1486 to a minimally-sized skbuff. */
1487 if (pkt_len < rx_copybreak &&
1488 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1489 #ifdef RX_CHECKSUM
1490 printk(KERN_ERR "%s: rx_copybreak non-zero "
1491 "not good with RX_CHECKSUM\n", dev->name);
1492 #endif
1493 skb_reserve(skb, 2); /* 16 byte align the IP header */
1494 dma_sync_single_for_cpu(&hmp->pci_dev->dev,
1495 leXX_to_cpu(hmp->rx_ring[entry].addr),
1496 hmp->rx_buf_sz,
1497 DMA_FROM_DEVICE);
1498 /* Call copy + cksum if available. */
1499 #if 1 || USE_IP_COPYSUM
1500 skb_copy_to_linear_data(skb,
1501 hmp->rx_skbuff[entry]->data, pkt_len);
1502 skb_put(skb, pkt_len);
1503 #else
1504 skb_put_data(skb, hmp->rx_ring_dma
1505 + entry*sizeof(*desc), pkt_len);
1506 #endif
1507 dma_sync_single_for_device(&hmp->pci_dev->dev,
1508 leXX_to_cpu(hmp->rx_ring[entry].addr),
1509 hmp->rx_buf_sz,
1510 DMA_FROM_DEVICE);
1511 } else {
1512 dma_unmap_single(&hmp->pci_dev->dev,
1513 leXX_to_cpu(hmp->rx_ring[entry].addr),
1514 hmp->rx_buf_sz,
1515 DMA_FROM_DEVICE);
1516 skb_put(skb = hmp->rx_skbuff[entry], pkt_len);
1517 hmp->rx_skbuff[entry] = NULL;
1518 }
1519 skb->protocol = eth_type_trans(skb, dev);
1520
1521
1522 #ifdef RX_CHECKSUM
1523 /* TCP or UDP on ipv4, DIX encoding */
1524 if (pfck>>24 == 0x91 || pfck>>24 == 0x51) {
1525 struct iphdr *ih = (struct iphdr *) skb->data;
1526 /* Check that IP packet is at least 46 bytes, otherwise,
1527 * there may be pad bytes included in the hardware checksum.
1528 * This wouldn't happen if everyone padded with 0.
1529 */
1530 if (ntohs(ih->tot_len) >= 46){
1531 /* don't worry about frags */
1532 if (!(ih->frag_off & cpu_to_be16(IP_MF|IP_OFFSET))) {
1533 u32 inv = *(u32 *) &buf_addr[data_size - 16];
1534 u32 *p = (u32 *) &buf_addr[data_size - 20];
1535 register u32 crc, p_r, p_r1;
1536
1537 if (inv & 4) {
1538 inv &= ~4;
1539 --p;
1540 }
1541 p_r = *p;
1542 p_r1 = *(p-1);
1543 switch (inv) {
1544 case 0:
1545 crc = (p_r & 0xffff) + (p_r >> 16);
1546 break;
1547 case 1:
1548 crc = (p_r >> 16) + (p_r & 0xffff)
1549 + (p_r1 >> 16 & 0xff00);
1550 break;
1551 case 2:
1552 crc = p_r + (p_r1 >> 16);
1553 break;
1554 case 3:
1555 crc = p_r + (p_r1 & 0xff00) + (p_r1 >> 16);
1556 break;
1557 default: /*NOTREACHED*/ crc = 0;
1558 }
1559 if (crc & 0xffff0000) {
1560 crc &= 0xffff;
1561 ++crc;
1562 }
1563 /* tcp/udp will add in pseudo */
1564 skb->csum = ntohs(pfck & 0xffff);
1565 if (skb->csum > crc)
1566 skb->csum -= crc;
1567 else
1568 skb->csum += (~crc & 0xffff);
1569 /*
1570 * could do the pseudo myself and return
1571 * CHECKSUM_UNNECESSARY
1572 */
1573 skb->ip_summed = CHECKSUM_COMPLETE;
1574 }
1575 }
1576 }
1577 #endif /* RX_CHECKSUM */
1578
1579 netif_rx(skb);
1580 dev->stats.rx_packets++;
1581 }
1582 entry = (++hmp->cur_rx) % RX_RING_SIZE;
1583 }
1584
1585 /* Refill the Rx ring buffers. */
1586 for (; hmp->cur_rx - hmp->dirty_rx > 0; hmp->dirty_rx++) {
1587 struct hamachi_desc *desc;
1588
1589 entry = hmp->dirty_rx % RX_RING_SIZE;
1590 desc = &(hmp->rx_ring[entry]);
1591 if (hmp->rx_skbuff[entry] == NULL) {
1592 struct sk_buff *skb = netdev_alloc_skb(dev, hmp->rx_buf_sz + 2);
1593
1594 hmp->rx_skbuff[entry] = skb;
1595 if (skb == NULL)
1596 break; /* Better luck next round. */
1597 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1598 desc->addr = cpu_to_leXX(dma_map_single(&hmp->pci_dev->dev,
1599 skb->data,
1600 hmp->rx_buf_sz,
1601 DMA_FROM_DEVICE));
1602 }
1603 desc->status_n_length = cpu_to_le32(hmp->rx_buf_sz);
1604 if (entry >= RX_RING_SIZE-1)
1605 desc->status_n_length |= cpu_to_le32(DescOwn |
1606 DescEndPacket | DescEndRing | DescIntr);
1607 else
1608 desc->status_n_length |= cpu_to_le32(DescOwn |
1609 DescEndPacket | DescIntr);
1610 }
1611
1612 /* Restart Rx engine if stopped. */
1613 /* If we don't need to check status, don't. -KDU */
1614 if (readw(hmp->base + RxStatus) & 0x0002)
1615 writew(0x0001, hmp->base + RxCmd);
1616
1617 return 0;
1618 }
1619
1620 /* This is more properly named "uncommon interrupt events", as it covers more
1621 than just errors. */
hamachi_error(struct net_device * dev,int intr_status)1622 static void hamachi_error(struct net_device *dev, int intr_status)
1623 {
1624 struct hamachi_private *hmp = netdev_priv(dev);
1625 void __iomem *ioaddr = hmp->base;
1626
1627 if (intr_status & (LinkChange|NegotiationChange)) {
1628 if (hamachi_debug > 1)
1629 printk(KERN_INFO "%s: Link changed: AutoNegotiation Ctrl"
1630 " %4.4x, Status %4.4x %4.4x Intr status %4.4x.\n",
1631 dev->name, readw(ioaddr + 0x0E0), readw(ioaddr + 0x0E2),
1632 readw(ioaddr + ANLinkPartnerAbility),
1633 readl(ioaddr + IntrStatus));
1634 if (readw(ioaddr + ANStatus) & 0x20)
1635 writeb(0x01, ioaddr + LEDCtrl);
1636 else
1637 writeb(0x03, ioaddr + LEDCtrl);
1638 }
1639 if (intr_status & StatsMax) {
1640 hamachi_get_stats(dev);
1641 /* Read the overflow bits to clear. */
1642 readl(ioaddr + 0x370);
1643 readl(ioaddr + 0x3F0);
1644 }
1645 if ((intr_status & ~(LinkChange|StatsMax|NegotiationChange|IntrRxDone|IntrTxDone)) &&
1646 hamachi_debug)
1647 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1648 dev->name, intr_status);
1649 /* Hmmmmm, it's not clear how to recover from PCI faults. */
1650 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1651 dev->stats.tx_fifo_errors++;
1652 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1653 dev->stats.rx_fifo_errors++;
1654 }
1655
hamachi_close(struct net_device * dev)1656 static int hamachi_close(struct net_device *dev)
1657 {
1658 struct hamachi_private *hmp = netdev_priv(dev);
1659 void __iomem *ioaddr = hmp->base;
1660 struct sk_buff *skb;
1661 int i;
1662
1663 netif_stop_queue(dev);
1664
1665 if (hamachi_debug > 1) {
1666 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x Rx %4.4x Int %2.2x.\n",
1667 dev->name, readw(ioaddr + TxStatus),
1668 readw(ioaddr + RxStatus), readl(ioaddr + IntrStatus));
1669 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1670 dev->name, hmp->cur_tx, hmp->dirty_tx, hmp->cur_rx, hmp->dirty_rx);
1671 }
1672
1673 /* Disable interrupts by clearing the interrupt mask. */
1674 writel(0x0000, ioaddr + InterruptEnable);
1675
1676 /* Stop the chip's Tx and Rx processes. */
1677 writel(2, ioaddr + RxCmd);
1678 writew(2, ioaddr + TxCmd);
1679
1680 #ifdef __i386__
1681 if (hamachi_debug > 2) {
1682 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1683 (int)hmp->tx_ring_dma);
1684 for (i = 0; i < TX_RING_SIZE; i++)
1685 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x.\n",
1686 readl(ioaddr + TxCurPtr) == (long)&hmp->tx_ring[i] ? '>' : ' ',
1687 i, hmp->tx_ring[i].status_n_length, hmp->tx_ring[i].addr);
1688 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1689 (int)hmp->rx_ring_dma);
1690 for (i = 0; i < RX_RING_SIZE; i++) {
1691 printk(KERN_DEBUG " %c #%d desc. %4.4x %8.8x\n",
1692 readl(ioaddr + RxCurPtr) == (long)&hmp->rx_ring[i] ? '>' : ' ',
1693 i, hmp->rx_ring[i].status_n_length, hmp->rx_ring[i].addr);
1694 if (hamachi_debug > 6) {
1695 if (*(u8*)hmp->rx_skbuff[i]->data != 0x69) {
1696 u16 *addr = (u16 *)
1697 hmp->rx_skbuff[i]->data;
1698 int j;
1699 printk(KERN_DEBUG "Addr: ");
1700 for (j = 0; j < 0x50; j++)
1701 printk(" %4.4x", addr[j]);
1702 printk("\n");
1703 }
1704 }
1705 }
1706 }
1707 #endif /* __i386__ debugging only */
1708
1709 free_irq(hmp->pci_dev->irq, dev);
1710
1711 del_timer_sync(&hmp->timer);
1712
1713 /* Free all the skbuffs in the Rx queue. */
1714 for (i = 0; i < RX_RING_SIZE; i++) {
1715 skb = hmp->rx_skbuff[i];
1716 hmp->rx_ring[i].status_n_length = 0;
1717 if (skb) {
1718 dma_unmap_single(&hmp->pci_dev->dev,
1719 leXX_to_cpu(hmp->rx_ring[i].addr),
1720 hmp->rx_buf_sz, DMA_FROM_DEVICE);
1721 dev_kfree_skb(skb);
1722 hmp->rx_skbuff[i] = NULL;
1723 }
1724 hmp->rx_ring[i].addr = cpu_to_leXX(0xBADF00D0); /* An invalid address. */
1725 }
1726 for (i = 0; i < TX_RING_SIZE; i++) {
1727 skb = hmp->tx_skbuff[i];
1728 if (skb) {
1729 dma_unmap_single(&hmp->pci_dev->dev,
1730 leXX_to_cpu(hmp->tx_ring[i].addr),
1731 skb->len, DMA_TO_DEVICE);
1732 dev_kfree_skb(skb);
1733 hmp->tx_skbuff[i] = NULL;
1734 }
1735 }
1736
1737 writeb(0x00, ioaddr + LEDCtrl);
1738
1739 return 0;
1740 }
1741
hamachi_get_stats(struct net_device * dev)1742 static struct net_device_stats *hamachi_get_stats(struct net_device *dev)
1743 {
1744 struct hamachi_private *hmp = netdev_priv(dev);
1745 void __iomem *ioaddr = hmp->base;
1746
1747 /* We should lock this segment of code for SMP eventually, although
1748 the vulnerability window is very small and statistics are
1749 non-critical. */
1750 /* Ok, what goes here? This appears to be stuck at 21 packets
1751 according to ifconfig. It does get incremented in hamachi_tx(),
1752 so I think I'll comment it out here and see if better things
1753 happen.
1754 */
1755 /* dev->stats.tx_packets = readl(ioaddr + 0x000); */
1756
1757 /* Total Uni+Brd+Multi */
1758 dev->stats.rx_bytes = readl(ioaddr + 0x330);
1759 /* Total Uni+Brd+Multi */
1760 dev->stats.tx_bytes = readl(ioaddr + 0x3B0);
1761 /* Multicast Rx */
1762 dev->stats.multicast = readl(ioaddr + 0x320);
1763
1764 /* Over+Undersized */
1765 dev->stats.rx_length_errors = readl(ioaddr + 0x368);
1766 /* Jabber */
1767 dev->stats.rx_over_errors = readl(ioaddr + 0x35C);
1768 /* Jabber */
1769 dev->stats.rx_crc_errors = readl(ioaddr + 0x360);
1770 /* Symbol Errs */
1771 dev->stats.rx_frame_errors = readl(ioaddr + 0x364);
1772 /* Dropped */
1773 dev->stats.rx_missed_errors = readl(ioaddr + 0x36C);
1774
1775 return &dev->stats;
1776 }
1777
set_rx_mode(struct net_device * dev)1778 static void set_rx_mode(struct net_device *dev)
1779 {
1780 struct hamachi_private *hmp = netdev_priv(dev);
1781 void __iomem *ioaddr = hmp->base;
1782
1783 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1784 writew(0x000F, ioaddr + AddrMode);
1785 } else if ((netdev_mc_count(dev) > 63) || (dev->flags & IFF_ALLMULTI)) {
1786 /* Too many to match, or accept all multicasts. */
1787 writew(0x000B, ioaddr + AddrMode);
1788 } else if (!netdev_mc_empty(dev)) { /* Must use the CAM filter. */
1789 struct netdev_hw_addr *ha;
1790 int i = 0;
1791
1792 netdev_for_each_mc_addr(ha, dev) {
1793 writel(*(u32 *)(ha->addr), ioaddr + 0x100 + i*8);
1794 writel(0x20000 | (*(u16 *)&ha->addr[4]),
1795 ioaddr + 0x104 + i*8);
1796 i++;
1797 }
1798 /* Clear remaining entries. */
1799 for (; i < 64; i++)
1800 writel(0, ioaddr + 0x104 + i*8);
1801 writew(0x0003, ioaddr + AddrMode);
1802 } else { /* Normal, unicast/broadcast-only mode. */
1803 writew(0x0001, ioaddr + AddrMode);
1804 }
1805 }
1806
check_if_running(struct net_device * dev)1807 static int check_if_running(struct net_device *dev)
1808 {
1809 if (!netif_running(dev))
1810 return -EINVAL;
1811 return 0;
1812 }
1813
hamachi_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1814 static void hamachi_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1815 {
1816 struct hamachi_private *np = netdev_priv(dev);
1817
1818 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1819 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1820 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1821 }
1822
hamachi_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1823 static int hamachi_get_link_ksettings(struct net_device *dev,
1824 struct ethtool_link_ksettings *cmd)
1825 {
1826 struct hamachi_private *np = netdev_priv(dev);
1827 spin_lock_irq(&np->lock);
1828 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1829 spin_unlock_irq(&np->lock);
1830 return 0;
1831 }
1832
hamachi_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1833 static int hamachi_set_link_ksettings(struct net_device *dev,
1834 const struct ethtool_link_ksettings *cmd)
1835 {
1836 struct hamachi_private *np = netdev_priv(dev);
1837 int res;
1838 spin_lock_irq(&np->lock);
1839 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1840 spin_unlock_irq(&np->lock);
1841 return res;
1842 }
1843
hamachi_nway_reset(struct net_device * dev)1844 static int hamachi_nway_reset(struct net_device *dev)
1845 {
1846 struct hamachi_private *np = netdev_priv(dev);
1847 return mii_nway_restart(&np->mii_if);
1848 }
1849
hamachi_get_link(struct net_device * dev)1850 static u32 hamachi_get_link(struct net_device *dev)
1851 {
1852 struct hamachi_private *np = netdev_priv(dev);
1853 return mii_link_ok(&np->mii_if);
1854 }
1855
1856 static const struct ethtool_ops ethtool_ops = {
1857 .begin = check_if_running,
1858 .get_drvinfo = hamachi_get_drvinfo,
1859 .nway_reset = hamachi_nway_reset,
1860 .get_link = hamachi_get_link,
1861 .get_link_ksettings = hamachi_get_link_ksettings,
1862 .set_link_ksettings = hamachi_set_link_ksettings,
1863 };
1864
1865 static const struct ethtool_ops ethtool_ops_no_mii = {
1866 .begin = check_if_running,
1867 .get_drvinfo = hamachi_get_drvinfo,
1868 };
1869
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1870 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1871 {
1872 struct hamachi_private *np = netdev_priv(dev);
1873 struct mii_ioctl_data *data = if_mii(rq);
1874 int rc;
1875
1876 if (!netif_running(dev))
1877 return -EINVAL;
1878
1879 if (cmd == (SIOCDEVPRIVATE+3)) { /* set rx,tx intr params */
1880 u32 *d = (u32 *)&rq->ifr_ifru;
1881 /* Should add this check here or an ordinary user can do nasty
1882 * things. -KDU
1883 *
1884 * TODO: Shut down the Rx and Tx engines while doing this.
1885 */
1886 if (!capable(CAP_NET_ADMIN))
1887 return -EPERM;
1888 writel(d[0], np->base + TxIntrCtrl);
1889 writel(d[1], np->base + RxIntrCtrl);
1890 printk(KERN_NOTICE "%s: tx %08x, rx %08x intr\n", dev->name,
1891 (u32) readl(np->base + TxIntrCtrl),
1892 (u32) readl(np->base + RxIntrCtrl));
1893 rc = 0;
1894 }
1895
1896 else {
1897 spin_lock_irq(&np->lock);
1898 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1899 spin_unlock_irq(&np->lock);
1900 }
1901
1902 return rc;
1903 }
1904
1905
hamachi_remove_one(struct pci_dev * pdev)1906 static void hamachi_remove_one(struct pci_dev *pdev)
1907 {
1908 struct net_device *dev = pci_get_drvdata(pdev);
1909
1910 if (dev) {
1911 struct hamachi_private *hmp = netdev_priv(dev);
1912
1913 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, hmp->rx_ring,
1914 hmp->rx_ring_dma);
1915 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, hmp->tx_ring,
1916 hmp->tx_ring_dma);
1917 unregister_netdev(dev);
1918 iounmap(hmp->base);
1919 free_netdev(dev);
1920 pci_release_regions(pdev);
1921 }
1922 }
1923
1924 static const struct pci_device_id hamachi_pci_tbl[] = {
1925 { 0x1318, 0x0911, PCI_ANY_ID, PCI_ANY_ID, },
1926 { 0, }
1927 };
1928 MODULE_DEVICE_TABLE(pci, hamachi_pci_tbl);
1929
1930 static struct pci_driver hamachi_driver = {
1931 .name = DRV_NAME,
1932 .id_table = hamachi_pci_tbl,
1933 .probe = hamachi_init_one,
1934 .remove = hamachi_remove_one,
1935 };
1936
hamachi_init(void)1937 static int __init hamachi_init (void)
1938 {
1939 /* when a module, this is printed whether or not devices are found in probe */
1940 #ifdef MODULE
1941 printk(version);
1942 #endif
1943 return pci_register_driver(&hamachi_driver);
1944 }
1945
hamachi_exit(void)1946 static void __exit hamachi_exit (void)
1947 {
1948 pci_unregister_driver(&hamachi_driver);
1949 }
1950
1951
1952 module_init(hamachi_init);
1953 module_exit(hamachi_exit);
1954