1 /*
2 * FILS AEAD for (Re)Association Request/Response frames
3 * Copyright 2016, Qualcomm Atheros, Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <crypto/aes.h>
11 #include <crypto/algapi.h>
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14
15 #include "ieee80211_i.h"
16 #include "aes_cmac.h"
17 #include "fils_aead.h"
18
gf_mulx(u8 * pad)19 static void gf_mulx(u8 *pad)
20 {
21 u64 a = get_unaligned_be64(pad);
22 u64 b = get_unaligned_be64(pad + 8);
23
24 put_unaligned_be64((a << 1) | (b >> 63), pad);
25 put_unaligned_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0), pad + 8);
26 }
27
aes_s2v(struct crypto_shash * tfm,size_t num_elem,const u8 * addr[],size_t len[],u8 * v)28 static int aes_s2v(struct crypto_shash *tfm,
29 size_t num_elem, const u8 *addr[], size_t len[], u8 *v)
30 {
31 u8 d[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE] = {};
32 SHASH_DESC_ON_STACK(desc, tfm);
33 size_t i;
34
35 desc->tfm = tfm;
36
37 /* D = AES-CMAC(K, <zero>) */
38 crypto_shash_digest(desc, tmp, AES_BLOCK_SIZE, d);
39
40 for (i = 0; i < num_elem - 1; i++) {
41 /* D = dbl(D) xor AES_CMAC(K, Si) */
42 gf_mulx(d); /* dbl */
43 crypto_shash_digest(desc, addr[i], len[i], tmp);
44 crypto_xor(d, tmp, AES_BLOCK_SIZE);
45 }
46
47 crypto_shash_init(desc);
48
49 if (len[i] >= AES_BLOCK_SIZE) {
50 /* len(Sn) >= 128 */
51 /* T = Sn xorend D */
52 crypto_shash_update(desc, addr[i], len[i] - AES_BLOCK_SIZE);
53 crypto_xor(d, addr[i] + len[i] - AES_BLOCK_SIZE,
54 AES_BLOCK_SIZE);
55 } else {
56 /* len(Sn) < 128 */
57 /* T = dbl(D) xor pad(Sn) */
58 gf_mulx(d); /* dbl */
59 crypto_xor(d, addr[i], len[i]);
60 d[len[i]] ^= 0x80;
61 }
62 /* V = AES-CMAC(K, T) */
63 crypto_shash_finup(desc, d, AES_BLOCK_SIZE, v);
64
65 return 0;
66 }
67
68 /* Note: addr[] and len[] needs to have one extra slot at the end. */
aes_siv_encrypt(const u8 * key,size_t key_len,const u8 * plain,size_t plain_len,size_t num_elem,const u8 * addr[],size_t len[],u8 * out)69 static int aes_siv_encrypt(const u8 *key, size_t key_len,
70 const u8 *plain, size_t plain_len,
71 size_t num_elem, const u8 *addr[],
72 size_t len[], u8 *out)
73 {
74 u8 v[AES_BLOCK_SIZE];
75 struct crypto_shash *tfm;
76 struct crypto_skcipher *tfm2;
77 struct skcipher_request *req;
78 int res;
79 struct scatterlist src[1], dst[1];
80 u8 *tmp;
81
82 key_len /= 2; /* S2V key || CTR key */
83
84 addr[num_elem] = plain;
85 len[num_elem] = plain_len;
86 num_elem++;
87
88 /* S2V */
89
90 tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
91 if (IS_ERR(tfm))
92 return PTR_ERR(tfm);
93 /* K1 for S2V */
94 res = crypto_shash_setkey(tfm, key, key_len);
95 if (!res)
96 res = aes_s2v(tfm, num_elem, addr, len, v);
97 crypto_free_shash(tfm);
98 if (res)
99 return res;
100
101 /* Use a temporary buffer of the plaintext to handle need for
102 * overwriting this during AES-CTR.
103 */
104 tmp = kmemdup(plain, plain_len, GFP_KERNEL);
105 if (!tmp)
106 return -ENOMEM;
107
108 /* IV for CTR before encrypted data */
109 memcpy(out, v, AES_BLOCK_SIZE);
110
111 /* Synthetic IV to be used as the initial counter in CTR:
112 * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)
113 */
114 v[8] &= 0x7f;
115 v[12] &= 0x7f;
116
117 /* CTR */
118
119 tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
120 if (IS_ERR(tfm2)) {
121 kfree(tmp);
122 return PTR_ERR(tfm2);
123 }
124 /* K2 for CTR */
125 res = crypto_skcipher_setkey(tfm2, key + key_len, key_len);
126 if (res)
127 goto fail;
128
129 req = skcipher_request_alloc(tfm2, GFP_KERNEL);
130 if (!req) {
131 res = -ENOMEM;
132 goto fail;
133 }
134
135 sg_init_one(src, tmp, plain_len);
136 sg_init_one(dst, out + AES_BLOCK_SIZE, plain_len);
137 skcipher_request_set_crypt(req, src, dst, plain_len, v);
138 res = crypto_skcipher_encrypt(req);
139 skcipher_request_free(req);
140 fail:
141 kfree(tmp);
142 crypto_free_skcipher(tfm2);
143 return res;
144 }
145
146 /* Note: addr[] and len[] needs to have one extra slot at the end. */
aes_siv_decrypt(const u8 * key,size_t key_len,const u8 * iv_crypt,size_t iv_c_len,size_t num_elem,const u8 * addr[],size_t len[],u8 * out)147 static int aes_siv_decrypt(const u8 *key, size_t key_len,
148 const u8 *iv_crypt, size_t iv_c_len,
149 size_t num_elem, const u8 *addr[], size_t len[],
150 u8 *out)
151 {
152 struct crypto_shash *tfm;
153 struct crypto_skcipher *tfm2;
154 struct skcipher_request *req;
155 struct scatterlist src[1], dst[1];
156 size_t crypt_len;
157 int res;
158 u8 frame_iv[AES_BLOCK_SIZE], iv[AES_BLOCK_SIZE];
159 u8 check[AES_BLOCK_SIZE];
160
161 crypt_len = iv_c_len - AES_BLOCK_SIZE;
162 key_len /= 2; /* S2V key || CTR key */
163 addr[num_elem] = out;
164 len[num_elem] = crypt_len;
165 num_elem++;
166
167 memcpy(iv, iv_crypt, AES_BLOCK_SIZE);
168 memcpy(frame_iv, iv_crypt, AES_BLOCK_SIZE);
169
170 /* Synthetic IV to be used as the initial counter in CTR:
171 * Q = V bitand (1^64 || 0^1 || 1^31 || 0^1 || 1^31)
172 */
173 iv[8] &= 0x7f;
174 iv[12] &= 0x7f;
175
176 /* CTR */
177
178 tfm2 = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC);
179 if (IS_ERR(tfm2))
180 return PTR_ERR(tfm2);
181 /* K2 for CTR */
182 res = crypto_skcipher_setkey(tfm2, key + key_len, key_len);
183 if (res) {
184 crypto_free_skcipher(tfm2);
185 return res;
186 }
187
188 req = skcipher_request_alloc(tfm2, GFP_KERNEL);
189 if (!req) {
190 crypto_free_skcipher(tfm2);
191 return -ENOMEM;
192 }
193
194 sg_init_one(src, iv_crypt + AES_BLOCK_SIZE, crypt_len);
195 sg_init_one(dst, out, crypt_len);
196 skcipher_request_set_crypt(req, src, dst, crypt_len, iv);
197 res = crypto_skcipher_decrypt(req);
198 skcipher_request_free(req);
199 crypto_free_skcipher(tfm2);
200 if (res)
201 return res;
202
203 /* S2V */
204
205 tfm = crypto_alloc_shash("cmac(aes)", 0, 0);
206 if (IS_ERR(tfm))
207 return PTR_ERR(tfm);
208 /* K1 for S2V */
209 res = crypto_shash_setkey(tfm, key, key_len);
210 if (!res)
211 res = aes_s2v(tfm, num_elem, addr, len, check);
212 crypto_free_shash(tfm);
213 if (res)
214 return res;
215 if (memcmp(check, frame_iv, AES_BLOCK_SIZE) != 0)
216 return -EINVAL;
217 return 0;
218 }
219
fils_encrypt_assoc_req(struct sk_buff * skb,struct ieee80211_mgd_assoc_data * assoc_data)220 int fils_encrypt_assoc_req(struct sk_buff *skb,
221 struct ieee80211_mgd_assoc_data *assoc_data)
222 {
223 struct ieee80211_mgmt *mgmt = (void *)skb->data;
224 u8 *capab, *ies, *encr;
225 const u8 *addr[5 + 1], *session;
226 size_t len[5 + 1];
227 size_t crypt_len;
228
229 if (ieee80211_is_reassoc_req(mgmt->frame_control)) {
230 capab = (u8 *)&mgmt->u.reassoc_req.capab_info;
231 ies = mgmt->u.reassoc_req.variable;
232 } else {
233 capab = (u8 *)&mgmt->u.assoc_req.capab_info;
234 ies = mgmt->u.assoc_req.variable;
235 }
236
237 session = cfg80211_find_ext_ie(WLAN_EID_EXT_FILS_SESSION,
238 ies, skb->data + skb->len - ies);
239 if (!session || session[1] != 1 + 8)
240 return -EINVAL;
241 /* encrypt after FILS Session element */
242 encr = (u8 *)session + 2 + 1 + 8;
243
244 /* AES-SIV AAD vectors */
245
246 /* The STA's MAC address */
247 addr[0] = mgmt->sa;
248 len[0] = ETH_ALEN;
249 /* The AP's BSSID */
250 addr[1] = mgmt->da;
251 len[1] = ETH_ALEN;
252 /* The STA's nonce */
253 addr[2] = assoc_data->fils_nonces;
254 len[2] = FILS_NONCE_LEN;
255 /* The AP's nonce */
256 addr[3] = &assoc_data->fils_nonces[FILS_NONCE_LEN];
257 len[3] = FILS_NONCE_LEN;
258 /* The (Re)Association Request frame from the Capability Information
259 * field to the FILS Session element (both inclusive).
260 */
261 addr[4] = capab;
262 len[4] = encr - capab;
263
264 crypt_len = skb->data + skb->len - encr;
265 skb_put(skb, AES_BLOCK_SIZE);
266 return aes_siv_encrypt(assoc_data->fils_kek, assoc_data->fils_kek_len,
267 encr, crypt_len, 5, addr, len, encr);
268 }
269
fils_decrypt_assoc_resp(struct ieee80211_sub_if_data * sdata,u8 * frame,size_t * frame_len,struct ieee80211_mgd_assoc_data * assoc_data)270 int fils_decrypt_assoc_resp(struct ieee80211_sub_if_data *sdata,
271 u8 *frame, size_t *frame_len,
272 struct ieee80211_mgd_assoc_data *assoc_data)
273 {
274 struct ieee80211_mgmt *mgmt = (void *)frame;
275 u8 *capab, *ies, *encr;
276 const u8 *addr[5 + 1], *session;
277 size_t len[5 + 1];
278 int res;
279 size_t crypt_len;
280
281 if (*frame_len < 24 + 6)
282 return -EINVAL;
283
284 capab = (u8 *)&mgmt->u.assoc_resp.capab_info;
285 ies = mgmt->u.assoc_resp.variable;
286 session = cfg80211_find_ext_ie(WLAN_EID_EXT_FILS_SESSION,
287 ies, frame + *frame_len - ies);
288 if (!session || session[1] != 1 + 8) {
289 mlme_dbg(sdata,
290 "No (valid) FILS Session element in (Re)Association Response frame from %pM",
291 mgmt->sa);
292 return -EINVAL;
293 }
294 /* decrypt after FILS Session element */
295 encr = (u8 *)session + 2 + 1 + 8;
296
297 /* AES-SIV AAD vectors */
298
299 /* The AP's BSSID */
300 addr[0] = mgmt->sa;
301 len[0] = ETH_ALEN;
302 /* The STA's MAC address */
303 addr[1] = mgmt->da;
304 len[1] = ETH_ALEN;
305 /* The AP's nonce */
306 addr[2] = &assoc_data->fils_nonces[FILS_NONCE_LEN];
307 len[2] = FILS_NONCE_LEN;
308 /* The STA's nonce */
309 addr[3] = assoc_data->fils_nonces;
310 len[3] = FILS_NONCE_LEN;
311 /* The (Re)Association Response frame from the Capability Information
312 * field to the FILS Session element (both inclusive).
313 */
314 addr[4] = capab;
315 len[4] = encr - capab;
316
317 crypt_len = frame + *frame_len - encr;
318 if (crypt_len < AES_BLOCK_SIZE) {
319 mlme_dbg(sdata,
320 "Not enough room for AES-SIV data after FILS Session element in (Re)Association Response frame from %pM",
321 mgmt->sa);
322 return -EINVAL;
323 }
324 res = aes_siv_decrypt(assoc_data->fils_kek, assoc_data->fils_kek_len,
325 encr, crypt_len, 5, addr, len, encr);
326 if (res != 0) {
327 mlme_dbg(sdata,
328 "AES-SIV decryption of (Re)Association Response frame from %pM failed",
329 mgmt->sa);
330 return res;
331 }
332 *frame_len -= AES_BLOCK_SIZE;
333 return 0;
334 }
335