1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 
36 int write_inode_now(struct inode *, int sync);
37 int filemap_fdatawrite(struct address_space *);
38 int filemap_flush(struct address_space *);
39 int filemap_fdatawait_keep_errors(struct address_space *mapping);
40 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
41 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
42 		loff_t start_byte, loff_t end_byte);
43 
filemap_fdatawait(struct address_space * mapping)44 static inline int filemap_fdatawait(struct address_space *mapping)
45 {
46 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
47 }
48 
49 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
50 int filemap_write_and_wait_range(struct address_space *mapping,
51 		loff_t lstart, loff_t lend);
52 int __filemap_fdatawrite_range(struct address_space *mapping,
53 		loff_t start, loff_t end, int sync_mode);
54 int filemap_fdatawrite_range(struct address_space *mapping,
55 		loff_t start, loff_t end);
56 int filemap_check_errors(struct address_space *mapping);
57 void __filemap_set_wb_err(struct address_space *mapping, int err);
58 int filemap_fdatawrite_wbc(struct address_space *mapping,
59 			   struct writeback_control *wbc);
60 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
61 
filemap_write_and_wait(struct address_space * mapping)62 static inline int filemap_write_and_wait(struct address_space *mapping)
63 {
64 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
65 }
66 
67 /**
68  * filemap_set_wb_err - set a writeback error on an address_space
69  * @mapping: mapping in which to set writeback error
70  * @err: error to be set in mapping
71  *
72  * When writeback fails in some way, we must record that error so that
73  * userspace can be informed when fsync and the like are called.  We endeavor
74  * to report errors on any file that was open at the time of the error.  Some
75  * internal callers also need to know when writeback errors have occurred.
76  *
77  * When a writeback error occurs, most filesystems will want to call
78  * filemap_set_wb_err to record the error in the mapping so that it will be
79  * automatically reported whenever fsync is called on the file.
80  */
filemap_set_wb_err(struct address_space * mapping,int err)81 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
82 {
83 	/* Fastpath for common case of no error */
84 	if (unlikely(err))
85 		__filemap_set_wb_err(mapping, err);
86 }
87 
88 /**
89  * filemap_check_wb_err - has an error occurred since the mark was sampled?
90  * @mapping: mapping to check for writeback errors
91  * @since: previously-sampled errseq_t
92  *
93  * Grab the errseq_t value from the mapping, and see if it has changed "since"
94  * the given value was sampled.
95  *
96  * If it has then report the latest error set, otherwise return 0.
97  */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)98 static inline int filemap_check_wb_err(struct address_space *mapping,
99 					errseq_t since)
100 {
101 	return errseq_check(&mapping->wb_err, since);
102 }
103 
104 /**
105  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
106  * @mapping: mapping to be sampled
107  *
108  * Writeback errors are always reported relative to a particular sample point
109  * in the past. This function provides those sample points.
110  */
filemap_sample_wb_err(struct address_space * mapping)111 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
112 {
113 	return errseq_sample(&mapping->wb_err);
114 }
115 
116 /**
117  * file_sample_sb_err - sample the current errseq_t to test for later errors
118  * @file: file pointer to be sampled
119  *
120  * Grab the most current superblock-level errseq_t value for the given
121  * struct file.
122  */
file_sample_sb_err(struct file * file)123 static inline errseq_t file_sample_sb_err(struct file *file)
124 {
125 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
126 }
127 
128 /*
129  * Flush file data before changing attributes.  Caller must hold any locks
130  * required to prevent further writes to this file until we're done setting
131  * flags.
132  */
inode_drain_writes(struct inode * inode)133 static inline int inode_drain_writes(struct inode *inode)
134 {
135 	inode_dio_wait(inode);
136 	return filemap_write_and_wait(inode->i_mapping);
137 }
138 
mapping_empty(struct address_space * mapping)139 static inline bool mapping_empty(struct address_space *mapping)
140 {
141 	return xa_empty(&mapping->i_pages);
142 }
143 
144 /*
145  * mapping_shrinkable - test if page cache state allows inode reclaim
146  * @mapping: the page cache mapping
147  *
148  * This checks the mapping's cache state for the pupose of inode
149  * reclaim and LRU management.
150  *
151  * The caller is expected to hold the i_lock, but is not required to
152  * hold the i_pages lock, which usually protects cache state. That's
153  * because the i_lock and the list_lru lock that protect the inode and
154  * its LRU state don't nest inside the irq-safe i_pages lock.
155  *
156  * Cache deletions are performed under the i_lock, which ensures that
157  * when an inode goes empty, it will reliably get queued on the LRU.
158  *
159  * Cache additions do not acquire the i_lock and may race with this
160  * check, in which case we'll report the inode as shrinkable when it
161  * has cache pages. This is okay: the shrinker also checks the
162  * refcount and the referenced bit, which will be elevated or set in
163  * the process of adding new cache pages to an inode.
164  */
mapping_shrinkable(struct address_space * mapping)165 static inline bool mapping_shrinkable(struct address_space *mapping)
166 {
167 	void *head;
168 
169 	/*
170 	 * On highmem systems, there could be lowmem pressure from the
171 	 * inodes before there is highmem pressure from the page
172 	 * cache. Make inodes shrinkable regardless of cache state.
173 	 */
174 	if (IS_ENABLED(CONFIG_HIGHMEM))
175 		return true;
176 
177 	/* Cache completely empty? Shrink away. */
178 	head = rcu_access_pointer(mapping->i_pages.xa_head);
179 	if (!head)
180 		return true;
181 
182 	/*
183 	 * The xarray stores single offset-0 entries directly in the
184 	 * head pointer, which allows non-resident page cache entries
185 	 * to escape the shadow shrinker's list of xarray nodes. The
186 	 * inode shrinker needs to pick them up under memory pressure.
187 	 */
188 	if (!xa_is_node(head) && xa_is_value(head))
189 		return true;
190 
191 	return false;
192 }
193 
194 /*
195  * Bits in mapping->flags.
196  */
197 enum mapping_flags {
198 	AS_EIO		= 0,	/* IO error on async write */
199 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
200 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
201 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
202 	AS_EXITING	= 4, 	/* final truncate in progress */
203 	/* writeback related tags are not used */
204 	AS_NO_WRITEBACK_TAGS = 5,
205 	AS_LARGE_FOLIO_SUPPORT = 6,
206 	AS_RELEASE_ALWAYS,	/* Call ->release_folio(), even if no private data */
207 };
208 
209 /**
210  * mapping_set_error - record a writeback error in the address_space
211  * @mapping: the mapping in which an error should be set
212  * @error: the error to set in the mapping
213  *
214  * When writeback fails in some way, we must record that error so that
215  * userspace can be informed when fsync and the like are called.  We endeavor
216  * to report errors on any file that was open at the time of the error.  Some
217  * internal callers also need to know when writeback errors have occurred.
218  *
219  * When a writeback error occurs, most filesystems will want to call
220  * mapping_set_error to record the error in the mapping so that it can be
221  * reported when the application calls fsync(2).
222  */
mapping_set_error(struct address_space * mapping,int error)223 static inline void mapping_set_error(struct address_space *mapping, int error)
224 {
225 	if (likely(!error))
226 		return;
227 
228 	/* Record in wb_err for checkers using errseq_t based tracking */
229 	__filemap_set_wb_err(mapping, error);
230 
231 	/* Record it in superblock */
232 	if (mapping->host)
233 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
234 
235 	/* Record it in flags for now, for legacy callers */
236 	if (error == -ENOSPC)
237 		set_bit(AS_ENOSPC, &mapping->flags);
238 	else
239 		set_bit(AS_EIO, &mapping->flags);
240 }
241 
mapping_set_unevictable(struct address_space * mapping)242 static inline void mapping_set_unevictable(struct address_space *mapping)
243 {
244 	set_bit(AS_UNEVICTABLE, &mapping->flags);
245 }
246 
mapping_clear_unevictable(struct address_space * mapping)247 static inline void mapping_clear_unevictable(struct address_space *mapping)
248 {
249 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
250 }
251 
mapping_unevictable(struct address_space * mapping)252 static inline bool mapping_unevictable(struct address_space *mapping)
253 {
254 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
255 }
256 
mapping_set_exiting(struct address_space * mapping)257 static inline void mapping_set_exiting(struct address_space *mapping)
258 {
259 	set_bit(AS_EXITING, &mapping->flags);
260 }
261 
mapping_exiting(struct address_space * mapping)262 static inline int mapping_exiting(struct address_space *mapping)
263 {
264 	return test_bit(AS_EXITING, &mapping->flags);
265 }
266 
mapping_set_no_writeback_tags(struct address_space * mapping)267 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
268 {
269 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
270 }
271 
mapping_use_writeback_tags(struct address_space * mapping)272 static inline int mapping_use_writeback_tags(struct address_space *mapping)
273 {
274 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
275 }
276 
mapping_release_always(const struct address_space * mapping)277 static inline bool mapping_release_always(const struct address_space *mapping)
278 {
279 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
280 }
281 
mapping_set_release_always(struct address_space * mapping)282 static inline void mapping_set_release_always(struct address_space *mapping)
283 {
284 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
285 }
286 
mapping_clear_release_always(struct address_space * mapping)287 static inline void mapping_clear_release_always(struct address_space *mapping)
288 {
289 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
290 }
291 
mapping_gfp_mask(struct address_space * mapping)292 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
293 {
294 	return mapping->gfp_mask;
295 }
296 
297 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)298 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
299 		gfp_t gfp_mask)
300 {
301 	return mapping_gfp_mask(mapping) & gfp_mask;
302 }
303 
304 /*
305  * This is non-atomic.  Only to be used before the mapping is activated.
306  * Probably needs a barrier...
307  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)308 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
309 {
310 	m->gfp_mask = mask;
311 }
312 
313 /**
314  * mapping_set_large_folios() - Indicate the file supports large folios.
315  * @mapping: The file.
316  *
317  * The filesystem should call this function in its inode constructor to
318  * indicate that the VFS can use large folios to cache the contents of
319  * the file.
320  *
321  * Context: This should not be called while the inode is active as it
322  * is non-atomic.
323  */
mapping_set_large_folios(struct address_space * mapping)324 static inline void mapping_set_large_folios(struct address_space *mapping)
325 {
326 	__set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
327 }
328 
329 /*
330  * Large folio support currently depends on THP.  These dependencies are
331  * being worked on but are not yet fixed.
332  */
mapping_large_folio_support(struct address_space * mapping)333 static inline bool mapping_large_folio_support(struct address_space *mapping)
334 {
335 	return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
336 		test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
337 }
338 
filemap_nr_thps(struct address_space * mapping)339 static inline int filemap_nr_thps(struct address_space *mapping)
340 {
341 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
342 	return atomic_read(&mapping->nr_thps);
343 #else
344 	return 0;
345 #endif
346 }
347 
filemap_nr_thps_inc(struct address_space * mapping)348 static inline void filemap_nr_thps_inc(struct address_space *mapping)
349 {
350 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
351 	if (!mapping_large_folio_support(mapping))
352 		atomic_inc(&mapping->nr_thps);
353 #else
354 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
355 #endif
356 }
357 
filemap_nr_thps_dec(struct address_space * mapping)358 static inline void filemap_nr_thps_dec(struct address_space *mapping)
359 {
360 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
361 	if (!mapping_large_folio_support(mapping))
362 		atomic_dec(&mapping->nr_thps);
363 #else
364 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
365 #endif
366 }
367 
368 struct address_space *page_mapping(struct page *);
369 struct address_space *folio_mapping(struct folio *);
370 struct address_space *swapcache_mapping(struct folio *);
371 
372 /**
373  * folio_file_mapping - Find the mapping this folio belongs to.
374  * @folio: The folio.
375  *
376  * For folios which are in the page cache, return the mapping that this
377  * page belongs to.  Folios in the swap cache return the mapping of the
378  * swap file or swap device where the data is stored.  This is different
379  * from the mapping returned by folio_mapping().  The only reason to
380  * use it is if, like NFS, you return 0 from ->activate_swapfile.
381  *
382  * Do not call this for folios which aren't in the page cache or swap cache.
383  */
folio_file_mapping(struct folio * folio)384 static inline struct address_space *folio_file_mapping(struct folio *folio)
385 {
386 	if (unlikely(folio_test_swapcache(folio)))
387 		return swapcache_mapping(folio);
388 
389 	return folio->mapping;
390 }
391 
392 /**
393  * folio_flush_mapping - Find the file mapping this folio belongs to.
394  * @folio: The folio.
395  *
396  * For folios which are in the page cache, return the mapping that this
397  * page belongs to.  Anonymous folios return NULL, even if they're in
398  * the swap cache.  Other kinds of folio also return NULL.
399  *
400  * This is ONLY used by architecture cache flushing code.  If you aren't
401  * writing cache flushing code, you want either folio_mapping() or
402  * folio_file_mapping().
403  */
folio_flush_mapping(struct folio * folio)404 static inline struct address_space *folio_flush_mapping(struct folio *folio)
405 {
406 	if (unlikely(folio_test_swapcache(folio)))
407 		return NULL;
408 
409 	return folio_mapping(folio);
410 }
411 
page_file_mapping(struct page * page)412 static inline struct address_space *page_file_mapping(struct page *page)
413 {
414 	return folio_file_mapping(page_folio(page));
415 }
416 
417 /**
418  * folio_inode - Get the host inode for this folio.
419  * @folio: The folio.
420  *
421  * For folios which are in the page cache, return the inode that this folio
422  * belongs to.
423  *
424  * Do not call this for folios which aren't in the page cache.
425  */
folio_inode(struct folio * folio)426 static inline struct inode *folio_inode(struct folio *folio)
427 {
428 	return folio->mapping->host;
429 }
430 
431 /**
432  * folio_attach_private - Attach private data to a folio.
433  * @folio: Folio to attach data to.
434  * @data: Data to attach to folio.
435  *
436  * Attaching private data to a folio increments the page's reference count.
437  * The data must be detached before the folio will be freed.
438  */
folio_attach_private(struct folio * folio,void * data)439 static inline void folio_attach_private(struct folio *folio, void *data)
440 {
441 	folio_get(folio);
442 	folio->private = data;
443 	folio_set_private(folio);
444 }
445 
446 /**
447  * folio_change_private - Change private data on a folio.
448  * @folio: Folio to change the data on.
449  * @data: Data to set on the folio.
450  *
451  * Change the private data attached to a folio and return the old
452  * data.  The page must previously have had data attached and the data
453  * must be detached before the folio will be freed.
454  *
455  * Return: Data that was previously attached to the folio.
456  */
folio_change_private(struct folio * folio,void * data)457 static inline void *folio_change_private(struct folio *folio, void *data)
458 {
459 	void *old = folio_get_private(folio);
460 
461 	folio->private = data;
462 	return old;
463 }
464 
465 /**
466  * folio_detach_private - Detach private data from a folio.
467  * @folio: Folio to detach data from.
468  *
469  * Removes the data that was previously attached to the folio and decrements
470  * the refcount on the page.
471  *
472  * Return: Data that was attached to the folio.
473  */
folio_detach_private(struct folio * folio)474 static inline void *folio_detach_private(struct folio *folio)
475 {
476 	void *data = folio_get_private(folio);
477 
478 	if (!folio_test_private(folio))
479 		return NULL;
480 	folio_clear_private(folio);
481 	folio->private = NULL;
482 	folio_put(folio);
483 
484 	return data;
485 }
486 
attach_page_private(struct page * page,void * data)487 static inline void attach_page_private(struct page *page, void *data)
488 {
489 	folio_attach_private(page_folio(page), data);
490 }
491 
detach_page_private(struct page * page)492 static inline void *detach_page_private(struct page *page)
493 {
494 	return folio_detach_private(page_folio(page));
495 }
496 
497 /*
498  * There are some parts of the kernel which assume that PMD entries
499  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
500  * limit the maximum allocation order to PMD size.  I'm not aware of any
501  * assumptions about maximum order if THP are disabled, but 8 seems like
502  * a good order (that's 1MB if you're using 4kB pages)
503  */
504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
505 #define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
506 #else
507 #define MAX_PAGECACHE_ORDER	8
508 #endif
509 
510 #ifdef CONFIG_NUMA
511 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
512 #else
filemap_alloc_folio(gfp_t gfp,unsigned int order)513 static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
514 {
515 	return folio_alloc(gfp, order);
516 }
517 #endif
518 
__page_cache_alloc(gfp_t gfp)519 static inline struct page *__page_cache_alloc(gfp_t gfp)
520 {
521 	return &filemap_alloc_folio(gfp, 0)->page;
522 }
523 
page_cache_alloc(struct address_space * x)524 static inline struct page *page_cache_alloc(struct address_space *x)
525 {
526 	return __page_cache_alloc(mapping_gfp_mask(x));
527 }
528 
readahead_gfp_mask(struct address_space * x)529 static inline gfp_t readahead_gfp_mask(struct address_space *x)
530 {
531 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
532 }
533 
534 typedef int filler_t(struct file *, struct folio *);
535 
536 pgoff_t page_cache_next_miss(struct address_space *mapping,
537 			     pgoff_t index, unsigned long max_scan);
538 pgoff_t page_cache_prev_miss(struct address_space *mapping,
539 			     pgoff_t index, unsigned long max_scan);
540 
541 /**
542  * typedef fgf_t - Flags for getting folios from the page cache.
543  *
544  * Most users of the page cache will not need to use these flags;
545  * there are convenience functions such as filemap_get_folio() and
546  * filemap_lock_folio().  For users which need more control over exactly
547  * what is done with the folios, these flags to __filemap_get_folio()
548  * are available.
549  *
550  * * %FGP_ACCESSED - The folio will be marked accessed.
551  * * %FGP_LOCK - The folio is returned locked.
552  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
553  *   added to the page cache and the VM's LRU list.  The folio is
554  *   returned locked.
555  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
556  *   folio is already in cache.  If the folio was allocated, unlock it
557  *   before returning so the caller can do the same dance.
558  * * %FGP_WRITE - The folio will be written to by the caller.
559  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
560  * * %FGP_NOWAIT - Don't block on the folio lock.
561  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
562  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
563  *   implementation.
564  */
565 typedef unsigned int __bitwise fgf_t;
566 
567 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
568 #define FGP_LOCK		((__force fgf_t)0x00000002)
569 #define FGP_CREAT		((__force fgf_t)0x00000004)
570 #define FGP_WRITE		((__force fgf_t)0x00000008)
571 #define FGP_NOFS		((__force fgf_t)0x00000010)
572 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
573 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
574 #define FGP_STABLE		((__force fgf_t)0x00000080)
575 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
576 
577 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
578 
579 /**
580  * fgf_set_order - Encode a length in the fgf_t flags.
581  * @size: The suggested size of the folio to create.
582  *
583  * The caller of __filemap_get_folio() can use this to suggest a preferred
584  * size for the folio that is created.  If there is already a folio at
585  * the index, it will be returned, no matter what its size.  If a folio
586  * is freshly created, it may be of a different size than requested
587  * due to alignment constraints, memory pressure, or the presence of
588  * other folios at nearby indices.
589  */
fgf_set_order(size_t size)590 static inline fgf_t fgf_set_order(size_t size)
591 {
592 	unsigned int shift = ilog2(size);
593 
594 	if (shift <= PAGE_SHIFT)
595 		return 0;
596 	return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
597 }
598 
599 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
600 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
601 		fgf_t fgp_flags, gfp_t gfp);
602 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
603 		fgf_t fgp_flags, gfp_t gfp);
604 
605 /**
606  * filemap_get_folio - Find and get a folio.
607  * @mapping: The address_space to search.
608  * @index: The page index.
609  *
610  * Looks up the page cache entry at @mapping & @index.  If a folio is
611  * present, it is returned with an increased refcount.
612  *
613  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
614  * this index.  Will not return a shadow, swap or DAX entry.
615  */
filemap_get_folio(struct address_space * mapping,pgoff_t index)616 static inline struct folio *filemap_get_folio(struct address_space *mapping,
617 					pgoff_t index)
618 {
619 	return __filemap_get_folio(mapping, index, 0, 0);
620 }
621 
622 /**
623  * filemap_lock_folio - Find and lock a folio.
624  * @mapping: The address_space to search.
625  * @index: The page index.
626  *
627  * Looks up the page cache entry at @mapping & @index.  If a folio is
628  * present, it is returned locked with an increased refcount.
629  *
630  * Context: May sleep.
631  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
632  * this index.  Will not return a shadow, swap or DAX entry.
633  */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)634 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
635 					pgoff_t index)
636 {
637 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
638 }
639 
640 /**
641  * filemap_grab_folio - grab a folio from the page cache
642  * @mapping: The address space to search
643  * @index: The page index
644  *
645  * Looks up the page cache entry at @mapping & @index. If no folio is found,
646  * a new folio is created. The folio is locked, marked as accessed, and
647  * returned.
648  *
649  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
650  * and failed to create a folio.
651  */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)652 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
653 					pgoff_t index)
654 {
655 	return __filemap_get_folio(mapping, index,
656 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
657 			mapping_gfp_mask(mapping));
658 }
659 
660 /**
661  * find_get_page - find and get a page reference
662  * @mapping: the address_space to search
663  * @offset: the page index
664  *
665  * Looks up the page cache slot at @mapping & @offset.  If there is a
666  * page cache page, it is returned with an increased refcount.
667  *
668  * Otherwise, %NULL is returned.
669  */
find_get_page(struct address_space * mapping,pgoff_t offset)670 static inline struct page *find_get_page(struct address_space *mapping,
671 					pgoff_t offset)
672 {
673 	return pagecache_get_page(mapping, offset, 0, 0);
674 }
675 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)676 static inline struct page *find_get_page_flags(struct address_space *mapping,
677 					pgoff_t offset, fgf_t fgp_flags)
678 {
679 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
680 }
681 
682 /**
683  * find_lock_page - locate, pin and lock a pagecache page
684  * @mapping: the address_space to search
685  * @index: the page index
686  *
687  * Looks up the page cache entry at @mapping & @index.  If there is a
688  * page cache page, it is returned locked and with an increased
689  * refcount.
690  *
691  * Context: May sleep.
692  * Return: A struct page or %NULL if there is no page in the cache for this
693  * index.
694  */
find_lock_page(struct address_space * mapping,pgoff_t index)695 static inline struct page *find_lock_page(struct address_space *mapping,
696 					pgoff_t index)
697 {
698 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
699 }
700 
701 /**
702  * find_or_create_page - locate or add a pagecache page
703  * @mapping: the page's address_space
704  * @index: the page's index into the mapping
705  * @gfp_mask: page allocation mode
706  *
707  * Looks up the page cache slot at @mapping & @offset.  If there is a
708  * page cache page, it is returned locked and with an increased
709  * refcount.
710  *
711  * If the page is not present, a new page is allocated using @gfp_mask
712  * and added to the page cache and the VM's LRU list.  The page is
713  * returned locked and with an increased refcount.
714  *
715  * On memory exhaustion, %NULL is returned.
716  *
717  * find_or_create_page() may sleep, even if @gfp_flags specifies an
718  * atomic allocation!
719  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)720 static inline struct page *find_or_create_page(struct address_space *mapping,
721 					pgoff_t index, gfp_t gfp_mask)
722 {
723 	return pagecache_get_page(mapping, index,
724 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
725 					gfp_mask);
726 }
727 
728 /**
729  * grab_cache_page_nowait - returns locked page at given index in given cache
730  * @mapping: target address_space
731  * @index: the page index
732  *
733  * Same as grab_cache_page(), but do not wait if the page is unavailable.
734  * This is intended for speculative data generators, where the data can
735  * be regenerated if the page couldn't be grabbed.  This routine should
736  * be safe to call while holding the lock for another page.
737  *
738  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
739  * and deadlock against the caller's locked page.
740  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)741 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
742 				pgoff_t index)
743 {
744 	return pagecache_get_page(mapping, index,
745 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
746 			mapping_gfp_mask(mapping));
747 }
748 
749 #define swapcache_index(folio)	__page_file_index(&(folio)->page)
750 
751 /**
752  * folio_index - File index of a folio.
753  * @folio: The folio.
754  *
755  * For a folio which is either in the page cache or the swap cache,
756  * return its index within the address_space it belongs to.  If you know
757  * the page is definitely in the page cache, you can look at the folio's
758  * index directly.
759  *
760  * Return: The index (offset in units of pages) of a folio in its file.
761  */
folio_index(struct folio * folio)762 static inline pgoff_t folio_index(struct folio *folio)
763 {
764         if (unlikely(folio_test_swapcache(folio)))
765                 return swapcache_index(folio);
766         return folio->index;
767 }
768 
769 /**
770  * folio_next_index - Get the index of the next folio.
771  * @folio: The current folio.
772  *
773  * Return: The index of the folio which follows this folio in the file.
774  */
folio_next_index(struct folio * folio)775 static inline pgoff_t folio_next_index(struct folio *folio)
776 {
777 	return folio->index + folio_nr_pages(folio);
778 }
779 
780 /**
781  * folio_file_page - The page for a particular index.
782  * @folio: The folio which contains this index.
783  * @index: The index we want to look up.
784  *
785  * Sometimes after looking up a folio in the page cache, we need to
786  * obtain the specific page for an index (eg a page fault).
787  *
788  * Return: The page containing the file data for this index.
789  */
folio_file_page(struct folio * folio,pgoff_t index)790 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
791 {
792 	/* HugeTLBfs indexes the page cache in units of hpage_size */
793 	if (folio_test_hugetlb(folio))
794 		return &folio->page;
795 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
796 }
797 
798 /**
799  * folio_contains - Does this folio contain this index?
800  * @folio: The folio.
801  * @index: The page index within the file.
802  *
803  * Context: The caller should have the page locked in order to prevent
804  * (eg) shmem from moving the page between the page cache and swap cache
805  * and changing its index in the middle of the operation.
806  * Return: true or false.
807  */
folio_contains(struct folio * folio,pgoff_t index)808 static inline bool folio_contains(struct folio *folio, pgoff_t index)
809 {
810 	/* HugeTLBfs indexes the page cache in units of hpage_size */
811 	if (folio_test_hugetlb(folio))
812 		return folio->index == index;
813 	return index - folio_index(folio) < folio_nr_pages(folio);
814 }
815 
816 /*
817  * Given the page we found in the page cache, return the page corresponding
818  * to this index in the file
819  */
find_subpage(struct page * head,pgoff_t index)820 static inline struct page *find_subpage(struct page *head, pgoff_t index)
821 {
822 	/* HugeTLBfs wants the head page regardless */
823 	if (PageHuge(head))
824 		return head;
825 
826 	return head + (index & (thp_nr_pages(head) - 1));
827 }
828 
829 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
830 		pgoff_t end, struct folio_batch *fbatch);
831 unsigned filemap_get_folios_contig(struct address_space *mapping,
832 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
833 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
834 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
835 
836 struct page *grab_cache_page_write_begin(struct address_space *mapping,
837 			pgoff_t index);
838 
839 /*
840  * Returns locked page at given index in given cache, creating it if needed.
841  */
grab_cache_page(struct address_space * mapping,pgoff_t index)842 static inline struct page *grab_cache_page(struct address_space *mapping,
843 								pgoff_t index)
844 {
845 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
846 }
847 
848 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
849 		filler_t *filler, struct file *file);
850 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
851 		gfp_t flags);
852 struct page *read_cache_page(struct address_space *, pgoff_t index,
853 		filler_t *filler, struct file *file);
854 extern struct page * read_cache_page_gfp(struct address_space *mapping,
855 				pgoff_t index, gfp_t gfp_mask);
856 
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)857 static inline struct page *read_mapping_page(struct address_space *mapping,
858 				pgoff_t index, struct file *file)
859 {
860 	return read_cache_page(mapping, index, NULL, file);
861 }
862 
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)863 static inline struct folio *read_mapping_folio(struct address_space *mapping,
864 				pgoff_t index, struct file *file)
865 {
866 	return read_cache_folio(mapping, index, NULL, file);
867 }
868 
869 /*
870  * Get index of the page within radix-tree (but not for hugetlb pages).
871  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
872  */
page_to_index(struct page * page)873 static inline pgoff_t page_to_index(struct page *page)
874 {
875 	struct page *head;
876 
877 	if (likely(!PageTransTail(page)))
878 		return page->index;
879 
880 	head = compound_head(page);
881 	/*
882 	 *  We don't initialize ->index for tail pages: calculate based on
883 	 *  head page
884 	 */
885 	return head->index + page - head;
886 }
887 
888 extern pgoff_t hugetlb_basepage_index(struct page *page);
889 
890 /*
891  * Get the offset in PAGE_SIZE (even for hugetlb pages).
892  * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
893  */
page_to_pgoff(struct page * page)894 static inline pgoff_t page_to_pgoff(struct page *page)
895 {
896 	if (unlikely(PageHuge(page)))
897 		return hugetlb_basepage_index(page);
898 	return page_to_index(page);
899 }
900 
901 /*
902  * Return byte-offset into filesystem object for page.
903  */
page_offset(struct page * page)904 static inline loff_t page_offset(struct page *page)
905 {
906 	return ((loff_t)page->index) << PAGE_SHIFT;
907 }
908 
page_file_offset(struct page * page)909 static inline loff_t page_file_offset(struct page *page)
910 {
911 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
912 }
913 
914 /**
915  * folio_pos - Returns the byte position of this folio in its file.
916  * @folio: The folio.
917  */
folio_pos(struct folio * folio)918 static inline loff_t folio_pos(struct folio *folio)
919 {
920 	return page_offset(&folio->page);
921 }
922 
923 /**
924  * folio_file_pos - Returns the byte position of this folio in its file.
925  * @folio: The folio.
926  *
927  * This differs from folio_pos() for folios which belong to a swap file.
928  * NFS is the only filesystem today which needs to use folio_file_pos().
929  */
folio_file_pos(struct folio * folio)930 static inline loff_t folio_file_pos(struct folio *folio)
931 {
932 	return page_file_offset(&folio->page);
933 }
934 
935 /*
936  * Get the offset in PAGE_SIZE (even for hugetlb folios).
937  * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
938  */
folio_pgoff(struct folio * folio)939 static inline pgoff_t folio_pgoff(struct folio *folio)
940 {
941 	if (unlikely(folio_test_hugetlb(folio)))
942 		return hugetlb_basepage_index(&folio->page);
943 	return folio->index;
944 }
945 
946 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
947 				     unsigned long address);
948 
linear_page_index(struct vm_area_struct * vma,unsigned long address)949 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
950 					unsigned long address)
951 {
952 	pgoff_t pgoff;
953 	if (unlikely(is_vm_hugetlb_page(vma)))
954 		return linear_hugepage_index(vma, address);
955 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
956 	pgoff += vma->vm_pgoff;
957 	return pgoff;
958 }
959 
960 struct wait_page_key {
961 	struct folio *folio;
962 	int bit_nr;
963 	int page_match;
964 };
965 
966 struct wait_page_queue {
967 	struct folio *folio;
968 	int bit_nr;
969 	wait_queue_entry_t wait;
970 };
971 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)972 static inline bool wake_page_match(struct wait_page_queue *wait_page,
973 				  struct wait_page_key *key)
974 {
975 	if (wait_page->folio != key->folio)
976 	       return false;
977 	key->page_match = 1;
978 
979 	if (wait_page->bit_nr != key->bit_nr)
980 		return false;
981 
982 	return true;
983 }
984 
985 void __folio_lock(struct folio *folio);
986 int __folio_lock_killable(struct folio *folio);
987 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
988 void unlock_page(struct page *page);
989 void folio_unlock(struct folio *folio);
990 
991 /**
992  * folio_trylock() - Attempt to lock a folio.
993  * @folio: The folio to attempt to lock.
994  *
995  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
996  * when the locks are being taken in the wrong order, or if making
997  * progress through a batch of folios is more important than processing
998  * them in order).  Usually folio_lock() is the correct function to call.
999  *
1000  * Context: Any context.
1001  * Return: Whether the lock was successfully acquired.
1002  */
folio_trylock(struct folio * folio)1003 static inline bool folio_trylock(struct folio *folio)
1004 {
1005 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1006 }
1007 
1008 /*
1009  * Return true if the page was successfully locked
1010  */
trylock_page(struct page * page)1011 static inline int trylock_page(struct page *page)
1012 {
1013 	return folio_trylock(page_folio(page));
1014 }
1015 
1016 /**
1017  * folio_lock() - Lock this folio.
1018  * @folio: The folio to lock.
1019  *
1020  * The folio lock protects against many things, probably more than it
1021  * should.  It is primarily held while a folio is being brought uptodate,
1022  * either from its backing file or from swap.  It is also held while a
1023  * folio is being truncated from its address_space, so holding the lock
1024  * is sufficient to keep folio->mapping stable.
1025  *
1026  * The folio lock is also held while write() is modifying the page to
1027  * provide POSIX atomicity guarantees (as long as the write does not
1028  * cross a page boundary).  Other modifications to the data in the folio
1029  * do not hold the folio lock and can race with writes, eg DMA and stores
1030  * to mapped pages.
1031  *
1032  * Context: May sleep.  If you need to acquire the locks of two or
1033  * more folios, they must be in order of ascending index, if they are
1034  * in the same address_space.  If they are in different address_spaces,
1035  * acquire the lock of the folio which belongs to the address_space which
1036  * has the lowest address in memory first.
1037  */
folio_lock(struct folio * folio)1038 static inline void folio_lock(struct folio *folio)
1039 {
1040 	might_sleep();
1041 	if (!folio_trylock(folio))
1042 		__folio_lock(folio);
1043 }
1044 
1045 /**
1046  * lock_page() - Lock the folio containing this page.
1047  * @page: The page to lock.
1048  *
1049  * See folio_lock() for a description of what the lock protects.
1050  * This is a legacy function and new code should probably use folio_lock()
1051  * instead.
1052  *
1053  * Context: May sleep.  Pages in the same folio share a lock, so do not
1054  * attempt to lock two pages which share a folio.
1055  */
lock_page(struct page * page)1056 static inline void lock_page(struct page *page)
1057 {
1058 	struct folio *folio;
1059 	might_sleep();
1060 
1061 	folio = page_folio(page);
1062 	if (!folio_trylock(folio))
1063 		__folio_lock(folio);
1064 }
1065 
1066 /**
1067  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1068  * @folio: The folio to lock.
1069  *
1070  * Attempts to lock the folio, like folio_lock(), except that the sleep
1071  * to acquire the lock is interruptible by a fatal signal.
1072  *
1073  * Context: May sleep; see folio_lock().
1074  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1075  */
folio_lock_killable(struct folio * folio)1076 static inline int folio_lock_killable(struct folio *folio)
1077 {
1078 	might_sleep();
1079 	if (!folio_trylock(folio))
1080 		return __folio_lock_killable(folio);
1081 	return 0;
1082 }
1083 
1084 /*
1085  * folio_lock_or_retry - Lock the folio, unless this would block and the
1086  * caller indicated that it can handle a retry.
1087  *
1088  * Return value and mmap_lock implications depend on flags; see
1089  * __folio_lock_or_retry().
1090  */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1091 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1092 					     struct vm_fault *vmf)
1093 {
1094 	might_sleep();
1095 	if (!folio_trylock(folio))
1096 		return __folio_lock_or_retry(folio, vmf);
1097 	return 0;
1098 }
1099 
1100 /*
1101  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1102  * and should not be used directly.
1103  */
1104 void folio_wait_bit(struct folio *folio, int bit_nr);
1105 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1106 
1107 /*
1108  * Wait for a folio to be unlocked.
1109  *
1110  * This must be called with the caller "holding" the folio,
1111  * ie with increased folio reference count so that the folio won't
1112  * go away during the wait.
1113  */
folio_wait_locked(struct folio * folio)1114 static inline void folio_wait_locked(struct folio *folio)
1115 {
1116 	if (folio_test_locked(folio))
1117 		folio_wait_bit(folio, PG_locked);
1118 }
1119 
folio_wait_locked_killable(struct folio * folio)1120 static inline int folio_wait_locked_killable(struct folio *folio)
1121 {
1122 	if (!folio_test_locked(folio))
1123 		return 0;
1124 	return folio_wait_bit_killable(folio, PG_locked);
1125 }
1126 
wait_on_page_locked(struct page * page)1127 static inline void wait_on_page_locked(struct page *page)
1128 {
1129 	folio_wait_locked(page_folio(page));
1130 }
1131 
1132 void wait_on_page_writeback(struct page *page);
1133 void folio_wait_writeback(struct folio *folio);
1134 int folio_wait_writeback_killable(struct folio *folio);
1135 void end_page_writeback(struct page *page);
1136 void folio_end_writeback(struct folio *folio);
1137 void wait_for_stable_page(struct page *page);
1138 void folio_wait_stable(struct folio *folio);
1139 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)1140 static inline void __set_page_dirty(struct page *page,
1141 		struct address_space *mapping, int warn)
1142 {
1143 	__folio_mark_dirty(page_folio(page), mapping, warn);
1144 }
1145 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1146 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1147 static inline void folio_cancel_dirty(struct folio *folio)
1148 {
1149 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1150 	if (folio_test_dirty(folio))
1151 		__folio_cancel_dirty(folio);
1152 }
1153 bool folio_clear_dirty_for_io(struct folio *folio);
1154 bool clear_page_dirty_for_io(struct page *page);
1155 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1156 int __set_page_dirty_nobuffers(struct page *page);
1157 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1158 
1159 #ifdef CONFIG_MIGRATION
1160 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1161 		struct folio *src, enum migrate_mode mode);
1162 #else
1163 #define filemap_migrate_folio NULL
1164 #endif
1165 void folio_end_private_2(struct folio *folio);
1166 void folio_wait_private_2(struct folio *folio);
1167 int folio_wait_private_2_killable(struct folio *folio);
1168 
1169 /*
1170  * Add an arbitrary waiter to a page's wait queue
1171  */
1172 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1173 
1174 /*
1175  * Fault in userspace address range.
1176  */
1177 size_t fault_in_writeable(char __user *uaddr, size_t size);
1178 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1179 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1180 size_t fault_in_readable(const char __user *uaddr, size_t size);
1181 
1182 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1183 		pgoff_t index, gfp_t gfp);
1184 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1185 		pgoff_t index, gfp_t gfp);
1186 void filemap_remove_folio(struct folio *folio);
1187 void __filemap_remove_folio(struct folio *folio, void *shadow);
1188 void replace_page_cache_folio(struct folio *old, struct folio *new);
1189 void delete_from_page_cache_batch(struct address_space *mapping,
1190 				  struct folio_batch *fbatch);
1191 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1192 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1193 		int whence);
1194 
1195 /* Must be non-static for BPF error injection */
1196 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1197 		pgoff_t index, gfp_t gfp, void **shadowp);
1198 
1199 bool filemap_range_has_writeback(struct address_space *mapping,
1200 				 loff_t start_byte, loff_t end_byte);
1201 
1202 /**
1203  * filemap_range_needs_writeback - check if range potentially needs writeback
1204  * @mapping:           address space within which to check
1205  * @start_byte:        offset in bytes where the range starts
1206  * @end_byte:          offset in bytes where the range ends (inclusive)
1207  *
1208  * Find at least one page in the range supplied, usually used to check if
1209  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1210  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1211  * filemap_write_and_wait_range() before proceeding.
1212  *
1213  * Return: %true if the caller should do filemap_write_and_wait_range() before
1214  * doing O_DIRECT to a page in this range, %false otherwise.
1215  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1216 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1217 						 loff_t start_byte,
1218 						 loff_t end_byte)
1219 {
1220 	if (!mapping->nrpages)
1221 		return false;
1222 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1223 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1224 		return false;
1225 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1226 }
1227 
1228 /**
1229  * struct readahead_control - Describes a readahead request.
1230  *
1231  * A readahead request is for consecutive pages.  Filesystems which
1232  * implement the ->readahead method should call readahead_page() or
1233  * readahead_page_batch() in a loop and attempt to start I/O against
1234  * each page in the request.
1235  *
1236  * Most of the fields in this struct are private and should be accessed
1237  * by the functions below.
1238  *
1239  * @file: The file, used primarily by network filesystems for authentication.
1240  *	  May be NULL if invoked internally by the filesystem.
1241  * @mapping: Readahead this filesystem object.
1242  * @ra: File readahead state.  May be NULL.
1243  */
1244 struct readahead_control {
1245 	struct file *file;
1246 	struct address_space *mapping;
1247 	struct file_ra_state *ra;
1248 /* private: use the readahead_* accessors instead */
1249 	pgoff_t _index;
1250 	unsigned int _nr_pages;
1251 	unsigned int _batch_count;
1252 	bool _workingset;
1253 	unsigned long _pflags;
1254 };
1255 
1256 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1257 	struct readahead_control ractl = {				\
1258 		.file = f,						\
1259 		.mapping = m,						\
1260 		.ra = r,						\
1261 		._index = i,						\
1262 	}
1263 
1264 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1265 
1266 void page_cache_ra_unbounded(struct readahead_control *,
1267 		unsigned long nr_to_read, unsigned long lookahead_count);
1268 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1269 void page_cache_async_ra(struct readahead_control *, struct folio *,
1270 		unsigned long req_count);
1271 void readahead_expand(struct readahead_control *ractl,
1272 		      loff_t new_start, size_t new_len);
1273 
1274 /**
1275  * page_cache_sync_readahead - generic file readahead
1276  * @mapping: address_space which holds the pagecache and I/O vectors
1277  * @ra: file_ra_state which holds the readahead state
1278  * @file: Used by the filesystem for authentication.
1279  * @index: Index of first page to be read.
1280  * @req_count: Total number of pages being read by the caller.
1281  *
1282  * page_cache_sync_readahead() should be called when a cache miss happened:
1283  * it will submit the read.  The readahead logic may decide to piggyback more
1284  * pages onto the read request if access patterns suggest it will improve
1285  * performance.
1286  */
1287 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1288 void page_cache_sync_readahead(struct address_space *mapping,
1289 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1290 		unsigned long req_count)
1291 {
1292 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1293 	page_cache_sync_ra(&ractl, req_count);
1294 }
1295 
1296 /**
1297  * page_cache_async_readahead - file readahead for marked pages
1298  * @mapping: address_space which holds the pagecache and I/O vectors
1299  * @ra: file_ra_state which holds the readahead state
1300  * @file: Used by the filesystem for authentication.
1301  * @folio: The folio at @index which triggered the readahead call.
1302  * @index: Index of first page to be read.
1303  * @req_count: Total number of pages being read by the caller.
1304  *
1305  * page_cache_async_readahead() should be called when a page is used which
1306  * is marked as PageReadahead; this is a marker to suggest that the application
1307  * has used up enough of the readahead window that we should start pulling in
1308  * more pages.
1309  */
1310 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,pgoff_t index,unsigned long req_count)1311 void page_cache_async_readahead(struct address_space *mapping,
1312 		struct file_ra_state *ra, struct file *file,
1313 		struct folio *folio, pgoff_t index, unsigned long req_count)
1314 {
1315 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1316 	page_cache_async_ra(&ractl, folio, req_count);
1317 }
1318 
__readahead_folio(struct readahead_control * ractl)1319 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1320 {
1321 	struct folio *folio;
1322 
1323 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1324 	ractl->_nr_pages -= ractl->_batch_count;
1325 	ractl->_index += ractl->_batch_count;
1326 
1327 	if (!ractl->_nr_pages) {
1328 		ractl->_batch_count = 0;
1329 		return NULL;
1330 	}
1331 
1332 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1333 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1334 	ractl->_batch_count = folio_nr_pages(folio);
1335 
1336 	return folio;
1337 }
1338 
1339 /**
1340  * readahead_page - Get the next page to read.
1341  * @ractl: The current readahead request.
1342  *
1343  * Context: The page is locked and has an elevated refcount.  The caller
1344  * should decreases the refcount once the page has been submitted for I/O
1345  * and unlock the page once all I/O to that page has completed.
1346  * Return: A pointer to the next page, or %NULL if we are done.
1347  */
readahead_page(struct readahead_control * ractl)1348 static inline struct page *readahead_page(struct readahead_control *ractl)
1349 {
1350 	struct folio *folio = __readahead_folio(ractl);
1351 
1352 	return &folio->page;
1353 }
1354 
1355 /**
1356  * readahead_folio - Get the next folio to read.
1357  * @ractl: The current readahead request.
1358  *
1359  * Context: The folio is locked.  The caller should unlock the folio once
1360  * all I/O to that folio has completed.
1361  * Return: A pointer to the next folio, or %NULL if we are done.
1362  */
readahead_folio(struct readahead_control * ractl)1363 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1364 {
1365 	struct folio *folio = __readahead_folio(ractl);
1366 
1367 	if (folio)
1368 		folio_put(folio);
1369 	return folio;
1370 }
1371 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1372 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1373 		struct page **array, unsigned int array_sz)
1374 {
1375 	unsigned int i = 0;
1376 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1377 	struct page *page;
1378 
1379 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1380 	rac->_nr_pages -= rac->_batch_count;
1381 	rac->_index += rac->_batch_count;
1382 	rac->_batch_count = 0;
1383 
1384 	xas_set(&xas, rac->_index);
1385 	rcu_read_lock();
1386 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1387 		if (xas_retry(&xas, page))
1388 			continue;
1389 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1390 		VM_BUG_ON_PAGE(PageTail(page), page);
1391 		array[i++] = page;
1392 		rac->_batch_count += thp_nr_pages(page);
1393 		if (i == array_sz)
1394 			break;
1395 	}
1396 	rcu_read_unlock();
1397 
1398 	return i;
1399 }
1400 
1401 /**
1402  * readahead_page_batch - Get a batch of pages to read.
1403  * @rac: The current readahead request.
1404  * @array: An array of pointers to struct page.
1405  *
1406  * Context: The pages are locked and have an elevated refcount.  The caller
1407  * should decreases the refcount once the page has been submitted for I/O
1408  * and unlock the page once all I/O to that page has completed.
1409  * Return: The number of pages placed in the array.  0 indicates the request
1410  * is complete.
1411  */
1412 #define readahead_page_batch(rac, array)				\
1413 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1414 
1415 /**
1416  * readahead_pos - The byte offset into the file of this readahead request.
1417  * @rac: The readahead request.
1418  */
readahead_pos(struct readahead_control * rac)1419 static inline loff_t readahead_pos(struct readahead_control *rac)
1420 {
1421 	return (loff_t)rac->_index * PAGE_SIZE;
1422 }
1423 
1424 /**
1425  * readahead_length - The number of bytes in this readahead request.
1426  * @rac: The readahead request.
1427  */
readahead_length(struct readahead_control * rac)1428 static inline size_t readahead_length(struct readahead_control *rac)
1429 {
1430 	return rac->_nr_pages * PAGE_SIZE;
1431 }
1432 
1433 /**
1434  * readahead_index - The index of the first page in this readahead request.
1435  * @rac: The readahead request.
1436  */
readahead_index(struct readahead_control * rac)1437 static inline pgoff_t readahead_index(struct readahead_control *rac)
1438 {
1439 	return rac->_index;
1440 }
1441 
1442 /**
1443  * readahead_count - The number of pages in this readahead request.
1444  * @rac: The readahead request.
1445  */
readahead_count(struct readahead_control * rac)1446 static inline unsigned int readahead_count(struct readahead_control *rac)
1447 {
1448 	return rac->_nr_pages;
1449 }
1450 
1451 /**
1452  * readahead_batch_length - The number of bytes in the current batch.
1453  * @rac: The readahead request.
1454  */
readahead_batch_length(struct readahead_control * rac)1455 static inline size_t readahead_batch_length(struct readahead_control *rac)
1456 {
1457 	return rac->_batch_count * PAGE_SIZE;
1458 }
1459 
dir_pages(struct inode * inode)1460 static inline unsigned long dir_pages(struct inode *inode)
1461 {
1462 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1463 			       PAGE_SHIFT;
1464 }
1465 
1466 /**
1467  * folio_mkwrite_check_truncate - check if folio was truncated
1468  * @folio: the folio to check
1469  * @inode: the inode to check the folio against
1470  *
1471  * Return: the number of bytes in the folio up to EOF,
1472  * or -EFAULT if the folio was truncated.
1473  */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1474 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1475 					      struct inode *inode)
1476 {
1477 	loff_t size = i_size_read(inode);
1478 	pgoff_t index = size >> PAGE_SHIFT;
1479 	size_t offset = offset_in_folio(folio, size);
1480 
1481 	if (!folio->mapping)
1482 		return -EFAULT;
1483 
1484 	/* folio is wholly inside EOF */
1485 	if (folio_next_index(folio) - 1 < index)
1486 		return folio_size(folio);
1487 	/* folio is wholly past EOF */
1488 	if (folio->index > index || !offset)
1489 		return -EFAULT;
1490 	/* folio is partially inside EOF */
1491 	return offset;
1492 }
1493 
1494 /**
1495  * page_mkwrite_check_truncate - check if page was truncated
1496  * @page: the page to check
1497  * @inode: the inode to check the page against
1498  *
1499  * Returns the number of bytes in the page up to EOF,
1500  * or -EFAULT if the page was truncated.
1501  */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1502 static inline int page_mkwrite_check_truncate(struct page *page,
1503 					      struct inode *inode)
1504 {
1505 	loff_t size = i_size_read(inode);
1506 	pgoff_t index = size >> PAGE_SHIFT;
1507 	int offset = offset_in_page(size);
1508 
1509 	if (page->mapping != inode->i_mapping)
1510 		return -EFAULT;
1511 
1512 	/* page is wholly inside EOF */
1513 	if (page->index < index)
1514 		return PAGE_SIZE;
1515 	/* page is wholly past EOF */
1516 	if (page->index > index || !offset)
1517 		return -EFAULT;
1518 	/* page is partially inside EOF */
1519 	return offset;
1520 }
1521 
1522 /**
1523  * i_blocks_per_folio - How many blocks fit in this folio.
1524  * @inode: The inode which contains the blocks.
1525  * @folio: The folio.
1526  *
1527  * If the block size is larger than the size of this folio, return zero.
1528  *
1529  * Context: The caller should hold a refcount on the folio to prevent it
1530  * from being split.
1531  * Return: The number of filesystem blocks covered by this folio.
1532  */
1533 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1534 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1535 {
1536 	return folio_size(folio) >> inode->i_blkbits;
1537 }
1538 
1539 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1540 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1541 {
1542 	return i_blocks_per_folio(inode, page_folio(page));
1543 }
1544 #endif /* _LINUX_PAGEMAP_H */
1545