1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "pp_debug.h"
25 #include "smumgr.h"
26 #include "smu7_dyn_defaults.h"
27 #include "smu73.h"
28 #include "smu_ucode_xfer_vi.h"
29 #include "fiji_smumgr.h"
30 #include "fiji_ppsmc.h"
31 #include "smu73_discrete.h"
32 #include "ppatomctrl.h"
33 #include "smu/smu_7_1_3_d.h"
34 #include "smu/smu_7_1_3_sh_mask.h"
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 #include "oss/oss_3_0_d.h"
38 #include "gca/gfx_8_0_d.h"
39 #include "bif/bif_5_0_d.h"
40 #include "bif/bif_5_0_sh_mask.h"
41 #include "dce/dce_10_0_d.h"
42 #include "dce/dce_10_0_sh_mask.h"
43 #include "hardwaremanager.h"
44 #include "cgs_common.h"
45 #include "atombios.h"
46 #include "pppcielanes.h"
47 #include "hwmgr.h"
48 #include "smu7_hwmgr.h"
49 
50 
51 #define AVFS_EN_MSB                                        1568
52 #define AVFS_EN_LSB                                        1568
53 
54 #define FIJI_SMC_SIZE 0x20000
55 
56 #define POWERTUNE_DEFAULT_SET_MAX    1
57 #define VDDC_VDDCI_DELTA            300
58 #define MC_CG_ARB_FREQ_F1           0x0b
59 
60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
62  */
63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64 				{600, 1050, 3, 0}, {600, 1050, 6, 1} };
65 
66 /* [FF, SS] type, [] 4 voltage ranges, and
67  * [Floor Freq, Boundary Freq, VID min , VID max]
68  */
69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70 	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71 	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
72 
73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
75  */
76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77 				{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
78 
79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
80 		/*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81 		{1,               0xF,             0xFD,
82 		/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83 		0x19,        5,               45}
84 };
85 
86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87 		/*  Min        Sclk       pcie     DeepSleep Activity  CgSpll      CgSpll    spllSpread  SpllSpread   CcPwr  CcPwr  Sclk   Display     Enabled     Enabled                       Voltage    Power */
88 		/* Voltage,  Frequency,  DpmLevel,  DivId,    Level,  FuncCntl3,  FuncCntl4,  Spectrum,   Spectrum2,  DynRm, DynRm1  Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89 		{ 0x3c0fd047, 0x30750000,   0x00,     0x03,   0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
90 		{ 0xa00fd047, 0x409c0000,   0x01,     0x04,   0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
91 		{ 0x0410d047, 0x50c30000,   0x01,     0x00,   0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000,   0,      0,   0x0e,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
92 		{ 0x6810d047, 0x60ea0000,   0x01,     0x00,   0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
93 		{ 0xcc10d047, 0xe8fd0000,   0x01,     0x00,   0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
94 		{ 0x3011d047, 0x70110100,   0x01,     0x00,   0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
95 		{ 0x9411d047, 0xf8240100,   0x01,     0x00,   0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
96 		{ 0xf811d047, 0x80380100,   0x01,     0x00,   0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000,   0,      0,   0x0c,   0x01,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 }
97 };
98 
fiji_start_smu_in_protection_mode(struct pp_hwmgr * hwmgr)99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
100 {
101 	int result = 0;
102 
103 	/* Wait for smc boot up */
104 	/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105 		RCU_UC_EVENTS, boot_seq_done, 0); */
106 
107 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
109 
110 	result = smu7_upload_smu_firmware_image(hwmgr);
111 	if (result)
112 		return result;
113 
114 	/* Clear status */
115 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116 			ixSMU_STATUS, 0);
117 
118 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120 
121 	/* De-assert reset */
122 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124 
125 	/* Wait for ROM firmware to initialize interrupt hendler */
126 	/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127 			SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
128 
129 	/* Set SMU Auto Start */
130 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
131 			SMU_INPUT_DATA, AUTO_START, 1);
132 
133 	/* Clear firmware interrupt enable flag */
134 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
135 			ixFIRMWARE_FLAGS, 0);
136 
137 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
138 			INTERRUPTS_ENABLED, 1);
139 
140 	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, 0x20000);
141 	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
142 	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
143 
144 	/* Wait for done bit to be set */
145 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
146 			SMU_STATUS, SMU_DONE, 0);
147 
148 	/* Check pass/failed indicator */
149 	if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
150 			SMU_STATUS, SMU_PASS) != 1) {
151 		PP_ASSERT_WITH_CODE(false,
152 				"SMU Firmware start failed!", return -1);
153 	}
154 
155 	/* Wait for firmware to initialize */
156 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
157 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
158 
159 	return result;
160 }
161 
fiji_start_smu_in_non_protection_mode(struct pp_hwmgr * hwmgr)162 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
163 {
164 	int result = 0;
165 
166 	/* wait for smc boot up */
167 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
168 			RCU_UC_EVENTS, boot_seq_done, 0);
169 
170 	/* Clear firmware interrupt enable flag */
171 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
172 			ixFIRMWARE_FLAGS, 0);
173 
174 	/* Assert reset */
175 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
176 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
177 
178 	result = smu7_upload_smu_firmware_image(hwmgr);
179 	if (result)
180 		return result;
181 
182 	/* Set smc instruct start point at 0x0 */
183 	smu7_program_jump_on_start(hwmgr);
184 
185 	/* Enable clock */
186 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
187 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
188 
189 	/* De-assert reset */
190 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
191 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
192 
193 	/* Wait for firmware to initialize */
194 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
195 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
196 
197 	return result;
198 }
199 
fiji_start_avfs_btc(struct pp_hwmgr * hwmgr)200 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
201 {
202 	int result = 0;
203 	struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
204 
205 	if (0 != smu_data->avfs_btc_param) {
206 		if (0 != smu7_send_msg_to_smc_with_parameter(hwmgr,
207 				PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param)) {
208 			pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
209 			result = -EINVAL;
210 		}
211 	}
212 	/* Soft-Reset to reset the engine before loading uCode */
213 	 /* halt */
214 	cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
215 	/* reset everything */
216 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
217 	/* clear reset */
218 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
219 
220 	return result;
221 }
222 
fiji_setup_graphics_level_structure(struct pp_hwmgr * hwmgr)223 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
224 {
225 	int32_t vr_config;
226 	uint32_t table_start;
227 	uint32_t level_addr, vr_config_addr;
228 	uint32_t level_size = sizeof(avfs_graphics_level);
229 
230 	PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
231 			SMU7_FIRMWARE_HEADER_LOCATION +
232 			offsetof(SMU73_Firmware_Header, DpmTable),
233 			&table_start, 0x40000),
234 			"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
235 			"communicate starting address of DPM table",
236 			return -1;);
237 
238 	/* Default value for vr_config =
239 	 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
240 	vr_config = 0x01000500;   /* Real value:0x50001 */
241 
242 	vr_config_addr = table_start +
243 			offsetof(SMU73_Discrete_DpmTable, VRConfig);
244 
245 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
246 			(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
247 			"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
248 			"vr_config value over to SMC",
249 			return -1;);
250 
251 	level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
252 
253 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
254 			(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
255 			"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
256 			return -1;);
257 
258 	return 0;
259 }
260 
fiji_avfs_event_mgr(struct pp_hwmgr * hwmgr)261 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
262 {
263 	if (!hwmgr->avfs_supported)
264 		return 0;
265 
266 	PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
267 			"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
268 			" table over to SMU",
269 			return -EINVAL);
270 	PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
271 			"[AVFS][fiji_avfs_event_mgr] Could not setup "
272 			"Pwr Virus for AVFS ",
273 			return -EINVAL);
274 	PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
275 			"[AVFS][fiji_avfs_event_mgr] Failure at "
276 			"fiji_start_avfs_btc. AVFS Disabled",
277 			return -EINVAL);
278 
279 	return 0;
280 }
281 
fiji_start_smu(struct pp_hwmgr * hwmgr)282 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
283 {
284 	int result = 0;
285 	struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
286 
287 	/* Only start SMC if SMC RAM is not running */
288 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
289 		/* Check if SMU is running in protected mode */
290 		if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
291 				CGS_IND_REG__SMC,
292 				SMU_FIRMWARE, SMU_MODE)) {
293 			result = fiji_start_smu_in_non_protection_mode(hwmgr);
294 			if (result)
295 				return result;
296 		} else {
297 			result = fiji_start_smu_in_protection_mode(hwmgr);
298 			if (result)
299 				return result;
300 		}
301 		if (fiji_avfs_event_mgr(hwmgr))
302 			hwmgr->avfs_supported = false;
303 	}
304 
305 	/* Setup SoftRegsStart here for register lookup in case
306 	 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
307 	 */
308 	smu7_read_smc_sram_dword(hwmgr,
309 			SMU7_FIRMWARE_HEADER_LOCATION +
310 			offsetof(SMU73_Firmware_Header, SoftRegisters),
311 			&(priv->smu7_data.soft_regs_start), 0x40000);
312 
313 	result = smu7_request_smu_load_fw(hwmgr);
314 
315 	return result;
316 }
317 
fiji_is_hw_avfs_present(struct pp_hwmgr * hwmgr)318 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
319 {
320 
321 	uint32_t efuse = 0;
322 	uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
323 
324 	if (!hwmgr->not_vf)
325 		return false;
326 
327 	if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
328 			mask, &efuse)) {
329 		if (efuse)
330 			return true;
331 	}
332 	return false;
333 }
334 
fiji_smu_init(struct pp_hwmgr * hwmgr)335 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
336 {
337 	struct fiji_smumgr *fiji_priv = NULL;
338 
339 	fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
340 
341 	if (fiji_priv == NULL)
342 		return -ENOMEM;
343 
344 	hwmgr->smu_backend = fiji_priv;
345 
346 	if (smu7_init(hwmgr)) {
347 		kfree(fiji_priv);
348 		return -EINVAL;
349 	}
350 
351 	return 0;
352 }
353 
fiji_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_ppt_v1_clock_voltage_dependency_table * dep_table,uint32_t clock,uint32_t * voltage,uint32_t * mvdd)354 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
355 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
356 		uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
357 {
358 	uint32_t i;
359 	uint16_t vddci;
360 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
361 	*voltage = *mvdd = 0;
362 
363 
364 	/* clock - voltage dependency table is empty table */
365 	if (dep_table->count == 0)
366 		return -EINVAL;
367 
368 	for (i = 0; i < dep_table->count; i++) {
369 		/* find first sclk bigger than request */
370 		if (dep_table->entries[i].clk >= clock) {
371 			*voltage |= (dep_table->entries[i].vddc *
372 					VOLTAGE_SCALE) << VDDC_SHIFT;
373 			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
374 				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
375 						VOLTAGE_SCALE) << VDDCI_SHIFT;
376 			else if (dep_table->entries[i].vddci)
377 				*voltage |= (dep_table->entries[i].vddci *
378 						VOLTAGE_SCALE) << VDDCI_SHIFT;
379 			else {
380 				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
381 						(dep_table->entries[i].vddc -
382 								VDDC_VDDCI_DELTA));
383 				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
384 			}
385 
386 			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
387 				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
388 					VOLTAGE_SCALE;
389 			else if (dep_table->entries[i].mvdd)
390 				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
391 					VOLTAGE_SCALE;
392 
393 			*voltage |= 1 << PHASES_SHIFT;
394 			return 0;
395 		}
396 	}
397 
398 	/* sclk is bigger than max sclk in the dependence table */
399 	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
400 
401 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
402 		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
403 				VOLTAGE_SCALE) << VDDCI_SHIFT;
404 	else if (dep_table->entries[i-1].vddci) {
405 		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
406 				(dep_table->entries[i].vddc -
407 						VDDC_VDDCI_DELTA));
408 		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
409 	}
410 
411 	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
412 		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
413 	else if (dep_table->entries[i].mvdd)
414 		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
415 
416 	return 0;
417 }
418 
419 
scale_fan_gain_settings(uint16_t raw_setting)420 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
421 {
422 	uint32_t tmp;
423 	tmp = raw_setting * 4096 / 100;
424 	return (uint16_t)tmp;
425 }
426 
get_scl_sda_value(uint8_t line,uint8_t * scl,uint8_t * sda)427 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
428 {
429 	switch (line) {
430 	case SMU7_I2CLineID_DDC1:
431 		*scl = SMU7_I2C_DDC1CLK;
432 		*sda = SMU7_I2C_DDC1DATA;
433 		break;
434 	case SMU7_I2CLineID_DDC2:
435 		*scl = SMU7_I2C_DDC2CLK;
436 		*sda = SMU7_I2C_DDC2DATA;
437 		break;
438 	case SMU7_I2CLineID_DDC3:
439 		*scl = SMU7_I2C_DDC3CLK;
440 		*sda = SMU7_I2C_DDC3DATA;
441 		break;
442 	case SMU7_I2CLineID_DDC4:
443 		*scl = SMU7_I2C_DDC4CLK;
444 		*sda = SMU7_I2C_DDC4DATA;
445 		break;
446 	case SMU7_I2CLineID_DDC5:
447 		*scl = SMU7_I2C_DDC5CLK;
448 		*sda = SMU7_I2C_DDC5DATA;
449 		break;
450 	case SMU7_I2CLineID_DDC6:
451 		*scl = SMU7_I2C_DDC6CLK;
452 		*sda = SMU7_I2C_DDC6DATA;
453 		break;
454 	case SMU7_I2CLineID_SCLSDA:
455 		*scl = SMU7_I2C_SCL;
456 		*sda = SMU7_I2C_SDA;
457 		break;
458 	case SMU7_I2CLineID_DDCVGA:
459 		*scl = SMU7_I2C_DDCVGACLK;
460 		*sda = SMU7_I2C_DDCVGADATA;
461 		break;
462 	default:
463 		*scl = 0;
464 		*sda = 0;
465 		break;
466 	}
467 }
468 
fiji_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)469 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
470 {
471 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
472 	struct phm_ppt_v1_information *table_info =
473 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
474 
475 	if (table_info &&
476 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
477 			table_info->cac_dtp_table->usPowerTuneDataSetID)
478 		smu_data->power_tune_defaults =
479 				&fiji_power_tune_data_set_array
480 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
481 	else
482 		smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
483 
484 }
485 
fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)486 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
487 {
488 
489 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
490 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
491 
492 	SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
493 
494 	struct phm_ppt_v1_information *table_info =
495 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
496 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
497 	struct pp_advance_fan_control_parameters *fan_table =
498 			&hwmgr->thermal_controller.advanceFanControlParameters;
499 	uint8_t uc_scl, uc_sda;
500 
501 	/* TDP number of fraction bits are changed from 8 to 7 for Fiji
502 	 * as requested by SMC team
503 	 */
504 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
505 			(uint16_t)(cac_dtp_table->usTDP * 128));
506 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
507 			(uint16_t)(cac_dtp_table->usTDP * 128));
508 
509 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
510 			"Target Operating Temp is out of Range!",
511 			);
512 
513 	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
514 	dpm_table->GpuTjHyst = 8;
515 
516 	dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
517 
518 	/* The following are for new Fiji Multi-input fan/thermal control */
519 	dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
520 			cac_dtp_table->usTargetOperatingTemp * 256);
521 	dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
522 			cac_dtp_table->usTemperatureLimitHotspot * 256);
523 	dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
524 			cac_dtp_table->usTemperatureLimitLiquid1 * 256);
525 	dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
526 			cac_dtp_table->usTemperatureLimitLiquid2 * 256);
527 	dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
528 			cac_dtp_table->usTemperatureLimitVrVddc * 256);
529 	dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
530 			cac_dtp_table->usTemperatureLimitVrMvdd * 256);
531 	dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
532 			cac_dtp_table->usTemperatureLimitPlx * 256);
533 
534 	dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
535 			scale_fan_gain_settings(fan_table->usFanGainEdge));
536 	dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
537 			scale_fan_gain_settings(fan_table->usFanGainHotspot));
538 	dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
539 			scale_fan_gain_settings(fan_table->usFanGainLiquid));
540 	dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
541 			scale_fan_gain_settings(fan_table->usFanGainVrVddc));
542 	dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
543 			scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
544 	dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
545 			scale_fan_gain_settings(fan_table->usFanGainPlx));
546 	dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
547 			scale_fan_gain_settings(fan_table->usFanGainHbm));
548 
549 	dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
550 	dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
551 	dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
552 	dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
553 
554 	get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
555 	dpm_table->Liquid_I2C_LineSCL = uc_scl;
556 	dpm_table->Liquid_I2C_LineSDA = uc_sda;
557 
558 	get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
559 	dpm_table->Vr_I2C_LineSCL = uc_scl;
560 	dpm_table->Vr_I2C_LineSDA = uc_sda;
561 
562 	get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
563 	dpm_table->Plx_I2C_LineSCL = uc_scl;
564 	dpm_table->Plx_I2C_LineSDA = uc_sda;
565 
566 	return 0;
567 }
568 
569 
fiji_populate_svi_load_line(struct pp_hwmgr * hwmgr)570 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
571 {
572 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
573 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
574 
575 	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
576 	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
577 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
578 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
579 
580 	return 0;
581 }
582 
583 
fiji_populate_tdc_limit(struct pp_hwmgr * hwmgr)584 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
585 {
586 	uint16_t tdc_limit;
587 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
588 	struct phm_ppt_v1_information *table_info =
589 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
590 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
591 
592 	/* TDC number of fraction bits are changed from 8 to 7
593 	 * for Fiji as requested by SMC team
594 	 */
595 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
596 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
597 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
598 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
599 			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
600 	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
601 
602 	return 0;
603 }
604 
fiji_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)605 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
606 {
607 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
608 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
609 	uint32_t temp;
610 
611 	if (smu7_read_smc_sram_dword(hwmgr,
612 			fuse_table_offset +
613 			offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
614 			(uint32_t *)&temp, SMC_RAM_END))
615 		PP_ASSERT_WITH_CODE(false,
616 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
617 				return -EINVAL);
618 	else {
619 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
620 		smu_data->power_tune_table.LPMLTemperatureMin =
621 				(uint8_t)((temp >> 16) & 0xff);
622 		smu_data->power_tune_table.LPMLTemperatureMax =
623 				(uint8_t)((temp >> 8) & 0xff);
624 		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
625 	}
626 	return 0;
627 }
628 
fiji_populate_temperature_scaler(struct pp_hwmgr * hwmgr)629 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
630 {
631 	int i;
632 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
633 
634 	/* Currently not used. Set all to zero. */
635 	for (i = 0; i < 16; i++)
636 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
637 
638 	return 0;
639 }
640 
fiji_populate_fuzzy_fan(struct pp_hwmgr * hwmgr)641 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
642 {
643 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
644 
645 	if ((hwmgr->thermal_controller.advanceFanControlParameters.
646 			usFanOutputSensitivity & (1 << 15)) ||
647 			0 == hwmgr->thermal_controller.advanceFanControlParameters.
648 			usFanOutputSensitivity)
649 		hwmgr->thermal_controller.advanceFanControlParameters.
650 		usFanOutputSensitivity = hwmgr->thermal_controller.
651 			advanceFanControlParameters.usDefaultFanOutputSensitivity;
652 
653 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
654 			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
655 					advanceFanControlParameters.usFanOutputSensitivity);
656 	return 0;
657 }
658 
fiji_populate_gnb_lpml(struct pp_hwmgr * hwmgr)659 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
660 {
661 	int i;
662 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
663 
664 	/* Currently not used. Set all to zero. */
665 	for (i = 0; i < 16; i++)
666 		smu_data->power_tune_table.GnbLPML[i] = 0;
667 
668 	return 0;
669 }
670 
fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)671 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
672 {
673 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
674 	struct phm_ppt_v1_information *table_info =
675 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
676 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
677 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
678 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
679 
680 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
681 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
682 
683 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
684 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
685 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
686 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
687 
688 	return 0;
689 }
690 
fiji_populate_pm_fuses(struct pp_hwmgr * hwmgr)691 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
692 {
693 	uint32_t pm_fuse_table_offset;
694 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
695 
696 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
697 			PHM_PlatformCaps_PowerContainment)) {
698 		if (smu7_read_smc_sram_dword(hwmgr,
699 				SMU7_FIRMWARE_HEADER_LOCATION +
700 				offsetof(SMU73_Firmware_Header, PmFuseTable),
701 				&pm_fuse_table_offset, SMC_RAM_END))
702 			PP_ASSERT_WITH_CODE(false,
703 					"Attempt to get pm_fuse_table_offset Failed!",
704 					return -EINVAL);
705 
706 		/* DW6 */
707 		if (fiji_populate_svi_load_line(hwmgr))
708 			PP_ASSERT_WITH_CODE(false,
709 					"Attempt to populate SviLoadLine Failed!",
710 					return -EINVAL);
711 		/* DW7 */
712 		if (fiji_populate_tdc_limit(hwmgr))
713 			PP_ASSERT_WITH_CODE(false,
714 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
715 		/* DW8 */
716 		if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
717 			PP_ASSERT_WITH_CODE(false,
718 					"Attempt to populate TdcWaterfallCtl, "
719 					"LPMLTemperature Min and Max Failed!",
720 					return -EINVAL);
721 
722 		/* DW9-DW12 */
723 		if (0 != fiji_populate_temperature_scaler(hwmgr))
724 			PP_ASSERT_WITH_CODE(false,
725 					"Attempt to populate LPMLTemperatureScaler Failed!",
726 					return -EINVAL);
727 
728 		/* DW13-DW14 */
729 		if (fiji_populate_fuzzy_fan(hwmgr))
730 			PP_ASSERT_WITH_CODE(false,
731 					"Attempt to populate Fuzzy Fan Control parameters Failed!",
732 					return -EINVAL);
733 
734 		/* DW15-DW18 */
735 		if (fiji_populate_gnb_lpml(hwmgr))
736 			PP_ASSERT_WITH_CODE(false,
737 					"Attempt to populate GnbLPML Failed!",
738 					return -EINVAL);
739 
740 		/* DW20 */
741 		if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
742 			PP_ASSERT_WITH_CODE(false,
743 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
744 					"Sidd Failed!", return -EINVAL);
745 
746 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
747 				(uint8_t *)&smu_data->power_tune_table,
748 				sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
749 			PP_ASSERT_WITH_CODE(false,
750 					"Attempt to download PmFuseTable Failed!",
751 					return -EINVAL);
752 	}
753 	return 0;
754 }
755 
fiji_populate_cac_table(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)756 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
757 		struct SMU73_Discrete_DpmTable *table)
758 {
759 	uint32_t count;
760 	uint8_t index;
761 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
762 	struct phm_ppt_v1_information *table_info =
763 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
764 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
765 			table_info->vddc_lookup_table;
766 	/* tables is already swapped, so in order to use the value from it,
767 	 * we need to swap it back.
768 	 * We are populating vddc CAC data to BapmVddc table
769 	 * in split and merged mode
770 	 */
771 
772 	for (count = 0; count < lookup_table->count; count++) {
773 		index = phm_get_voltage_index(lookup_table,
774 				data->vddc_voltage_table.entries[count].value);
775 		table->BapmVddcVidLoSidd[count] =
776 			convert_to_vid(lookup_table->entries[index].us_cac_low);
777 		table->BapmVddcVidHiSidd[count] =
778 			convert_to_vid(lookup_table->entries[index].us_cac_high);
779 	}
780 
781 	return 0;
782 }
783 
fiji_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)784 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
785 		struct SMU73_Discrete_DpmTable *table)
786 {
787 	int result;
788 
789 	result = fiji_populate_cac_table(hwmgr, table);
790 	PP_ASSERT_WITH_CODE(0 == result,
791 			"can not populate CAC voltage tables to SMC",
792 			return -EINVAL);
793 
794 	return 0;
795 }
796 
fiji_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_Ulv * state)797 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
798 		struct SMU73_Discrete_Ulv *state)
799 {
800 	int result = 0;
801 
802 	struct phm_ppt_v1_information *table_info =
803 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
804 
805 	state->CcPwrDynRm = 0;
806 	state->CcPwrDynRm1 = 0;
807 
808 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
809 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
810 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
811 
812 	state->VddcPhase = 1;
813 
814 	if (!result) {
815 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
816 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
817 		CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
818 	}
819 	return result;
820 }
821 
fiji_populate_ulv_state(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)822 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
823 		struct SMU73_Discrete_DpmTable *table)
824 {
825 	return fiji_populate_ulv_level(hwmgr, &table->Ulv);
826 }
827 
fiji_populate_smc_link_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)828 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
829 		struct SMU73_Discrete_DpmTable *table)
830 {
831 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
832 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
833 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
834 	int i;
835 
836 	/* Index (dpm_table->pcie_speed_table.count)
837 	 * is reserved for PCIE boot level. */
838 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
839 		table->LinkLevel[i].PcieGenSpeed  =
840 				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
841 		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
842 				dpm_table->pcie_speed_table.dpm_levels[i].param1);
843 		table->LinkLevel[i].EnabledForActivity = 1;
844 		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
845 		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
846 		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
847 	}
848 
849 	smu_data->smc_state_table.LinkLevelCount =
850 			(uint8_t)dpm_table->pcie_speed_table.count;
851 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
852 			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
853 
854 	return 0;
855 }
856 
fiji_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_GraphicsLevel * sclk)857 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
858 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
859 {
860 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
861 	struct pp_atomctrl_clock_dividers_vi dividers;
862 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
863 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
864 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
865 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
866 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
867 	uint32_t ref_clock;
868 	uint32_t ref_divider;
869 	uint32_t fbdiv;
870 	int result;
871 
872 	/* get the engine clock dividers for this clock value */
873 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
874 
875 	PP_ASSERT_WITH_CODE(result == 0,
876 			"Error retrieving Engine Clock dividers from VBIOS.",
877 			return result);
878 
879 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
880 	ref_clock = atomctrl_get_reference_clock(hwmgr);
881 	ref_divider = 1 + dividers.uc_pll_ref_div;
882 
883 	/* low 14 bits is fraction and high 12 bits is divider */
884 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
885 
886 	/* SPLL_FUNC_CNTL setup */
887 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
888 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
889 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
890 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
891 
892 	/* SPLL_FUNC_CNTL_3 setup*/
893 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
894 			SPLL_FB_DIV, fbdiv);
895 
896 	/* set to use fractional accumulation*/
897 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
898 			SPLL_DITHEN, 1);
899 
900 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
901 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
902 		struct pp_atomctrl_internal_ss_info ssInfo;
903 
904 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
905 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
906 				vco_freq, &ssInfo)) {
907 			/*
908 			 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
909 			 * ss_info.speed_spectrum_rate -- in unit of khz
910 			 *
911 			 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
912 			 */
913 			uint32_t clk_s = ref_clock * 5 /
914 					(ref_divider * ssInfo.speed_spectrum_rate);
915 			/* clkv = 2 * D * fbdiv / NS */
916 			uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
917 					fbdiv / (clk_s * 10000);
918 
919 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
920 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
921 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
922 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
923 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
924 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
925 		}
926 	}
927 
928 	sclk->SclkFrequency        = clock;
929 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
930 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
931 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
932 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
933 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
934 
935 	return 0;
936 }
937 
fiji_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_GraphicsLevel * level)938 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
939 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
940 {
941 	int result;
942 	/* PP_Clocks minClocks; */
943 	uint32_t threshold, mvdd;
944 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
945 	struct phm_ppt_v1_information *table_info =
946 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
947 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
948 
949 	result = fiji_calculate_sclk_params(hwmgr, clock, level);
950 
951 	if (hwmgr->od_enabled)
952 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
953 	else
954 		vdd_dep_table = table_info->vdd_dep_on_sclk;
955 
956 	/* populate graphics levels */
957 	result = fiji_get_dependency_volt_by_clk(hwmgr,
958 			vdd_dep_table, clock,
959 			(uint32_t *)(&level->MinVoltage), &mvdd);
960 	PP_ASSERT_WITH_CODE((0 == result),
961 			"can not find VDDC voltage value for "
962 			"VDDC engine clock dependency table",
963 			return result);
964 
965 	level->SclkFrequency = clock;
966 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
967 	level->CcPwrDynRm = 0;
968 	level->CcPwrDynRm1 = 0;
969 	level->EnabledForActivity = 0;
970 	level->EnabledForThrottle = 1;
971 	level->UpHyst = data->current_profile_setting.sclk_up_hyst;
972 	level->DownHyst = data->current_profile_setting.sclk_down_hyst;
973 	level->VoltageDownHyst = 0;
974 	level->PowerThrottle = 0;
975 
976 	threshold = clock * data->fast_watermark_threshold / 100;
977 
978 	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
979 
980 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
981 		level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
982 								hwmgr->display_config->min_core_set_clock_in_sr);
983 
984 
985 	/* Default to slow, highest DPM level will be
986 	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
987 	 */
988 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
989 
990 	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
991 	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
992 	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
993 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
994 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
995 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
996 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
997 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
998 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
999 
1000 	return 0;
1001 }
1002 
fiji_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)1003 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1004 {
1005 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1006 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1007 
1008 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1009 	struct phm_ppt_v1_information *table_info =
1010 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1011 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1012 	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1013 	int result = 0;
1014 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1015 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1016 	uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1017 			SMU73_MAX_LEVELS_GRAPHICS;
1018 	struct SMU73_Discrete_GraphicsLevel *levels =
1019 			smu_data->smc_state_table.GraphicsLevel;
1020 	uint32_t i, max_entry;
1021 	uint8_t hightest_pcie_level_enabled = 0,
1022 			lowest_pcie_level_enabled = 0,
1023 			mid_pcie_level_enabled = 0,
1024 			count = 0;
1025 
1026 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
1027 		result = fiji_populate_single_graphic_level(hwmgr,
1028 				dpm_table->sclk_table.dpm_levels[i].value,
1029 				&levels[i]);
1030 		if (result)
1031 			return result;
1032 
1033 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1034 		if (i > 1)
1035 			levels[i].DeepSleepDivId = 0;
1036 	}
1037 
1038 	/* Only enable level 0 for now.*/
1039 	levels[0].EnabledForActivity = 1;
1040 
1041 	/* set highest level watermark to high */
1042 	levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1043 			PPSMC_DISPLAY_WATERMARK_HIGH;
1044 
1045 	smu_data->smc_state_table.GraphicsDpmLevelCount =
1046 			(uint8_t)dpm_table->sclk_table.count;
1047 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1048 			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1049 
1050 	if (pcie_table != NULL) {
1051 		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1052 				"There must be 1 or more PCIE levels defined in PPTable.",
1053 				return -EINVAL);
1054 		max_entry = pcie_entry_cnt - 1;
1055 		for (i = 0; i < dpm_table->sclk_table.count; i++)
1056 			levels[i].pcieDpmLevel =
1057 					(uint8_t) ((i < max_entry) ? i : max_entry);
1058 	} else {
1059 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1060 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1061 						(1 << (hightest_pcie_level_enabled + 1))) != 0))
1062 			hightest_pcie_level_enabled++;
1063 
1064 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1065 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1066 						(1 << lowest_pcie_level_enabled)) == 0))
1067 			lowest_pcie_level_enabled++;
1068 
1069 		while ((count < hightest_pcie_level_enabled) &&
1070 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1071 						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1072 			count++;
1073 
1074 		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1075 				hightest_pcie_level_enabled ?
1076 						(lowest_pcie_level_enabled + 1 + count) :
1077 						hightest_pcie_level_enabled;
1078 
1079 		/* set pcieDpmLevel to hightest_pcie_level_enabled */
1080 		for (i = 2; i < dpm_table->sclk_table.count; i++)
1081 			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1082 
1083 		/* set pcieDpmLevel to lowest_pcie_level_enabled */
1084 		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1085 
1086 		/* set pcieDpmLevel to mid_pcie_level_enabled */
1087 		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1088 	}
1089 	/* level count will send to smc once at init smc table and never change */
1090 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1091 			(uint32_t)array_size, SMC_RAM_END);
1092 
1093 	return result;
1094 }
1095 
1096 
1097 /**
1098  * MCLK Frequency Ratio
1099  * SEQ_CG_RESP  Bit[31:24] - 0x0
1100  * Bit[27:24] \96 DDR3 Frequency ratio
1101  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
1102  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
1103  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
1104  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
1105  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
1106  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
1107  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
1108  * 400 < 0x7 <= 450MHz,       800 < 0xF
1109  */
fiji_get_mclk_frequency_ratio(uint32_t mem_clock)1110 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1111 {
1112 	if (mem_clock <= 10000)
1113 		return 0x0;
1114 	if (mem_clock <= 15000)
1115 		return 0x1;
1116 	if (mem_clock <= 20000)
1117 		return 0x2;
1118 	if (mem_clock <= 25000)
1119 		return 0x3;
1120 	if (mem_clock <= 30000)
1121 		return 0x4;
1122 	if (mem_clock <= 35000)
1123 		return 0x5;
1124 	if (mem_clock <= 40000)
1125 		return 0x6;
1126 	if (mem_clock <= 45000)
1127 		return 0x7;
1128 	if (mem_clock <= 50000)
1129 		return 0x8;
1130 	if (mem_clock <= 55000)
1131 		return 0x9;
1132 	if (mem_clock <= 60000)
1133 		return 0xa;
1134 	if (mem_clock <= 65000)
1135 		return 0xb;
1136 	if (mem_clock <= 70000)
1137 		return 0xc;
1138 	if (mem_clock <= 75000)
1139 		return 0xd;
1140 	if (mem_clock <= 80000)
1141 		return 0xe;
1142 	/* mem_clock > 800MHz */
1143 	return 0xf;
1144 }
1145 
fiji_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_MemoryLevel * mclk)1146 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1147     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1148 {
1149 	struct pp_atomctrl_memory_clock_param mem_param;
1150 	int result;
1151 
1152 	result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1153 	PP_ASSERT_WITH_CODE((0 == result),
1154 			"Failed to get Memory PLL Dividers.",
1155 			);
1156 
1157 	/* Save the result data to outpupt memory level structure */
1158 	mclk->MclkFrequency   = clock;
1159 	mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
1160 	mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
1161 
1162 	return result;
1163 }
1164 
fiji_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU73_Discrete_MemoryLevel * mem_level)1165 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1166 		uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1167 {
1168 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1169 	struct phm_ppt_v1_information *table_info =
1170 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1171 	int result = 0;
1172 	uint32_t mclk_stutter_mode_threshold = 60000;
1173 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1174 
1175 	if (hwmgr->od_enabled)
1176 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1177 	else
1178 		vdd_dep_table = table_info->vdd_dep_on_mclk;
1179 
1180 	if (vdd_dep_table) {
1181 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1182 				vdd_dep_table, clock,
1183 				(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1184 		PP_ASSERT_WITH_CODE((0 == result),
1185 				"can not find MinVddc voltage value from memory "
1186 				"VDDC voltage dependency table", return result);
1187 	}
1188 
1189 	mem_level->EnabledForThrottle = 1;
1190 	mem_level->EnabledForActivity = 0;
1191 	mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1192 	mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1193 	mem_level->VoltageDownHyst = 0;
1194 	mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1195 	mem_level->StutterEnable = false;
1196 
1197 	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1198 
1199 	/* enable stutter mode if all the follow condition applied
1200 	 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1201 	 * &(data->DisplayTiming.numExistingDisplays));
1202 	 */
1203 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1204 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1205 
1206 	if (mclk_stutter_mode_threshold &&
1207 		(clock <= mclk_stutter_mode_threshold) &&
1208 		(!data->is_uvd_enabled) &&
1209 		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1210 				STUTTER_ENABLE) & 0x1))
1211 		mem_level->StutterEnable = true;
1212 
1213 	result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1214 	if (!result) {
1215 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1216 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1217 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1218 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1219 	}
1220 	return result;
1221 }
1222 
fiji_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1223 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1224 {
1225 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1226 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1227 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1228 	int result;
1229 	/* populate MCLK dpm table to SMU7 */
1230 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1231 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1232 	uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1233 			SMU73_MAX_LEVELS_MEMORY;
1234 	struct SMU73_Discrete_MemoryLevel *levels =
1235 			smu_data->smc_state_table.MemoryLevel;
1236 	uint32_t i;
1237 
1238 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1239 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1240 				"can not populate memory level as memory clock is zero",
1241 				return -EINVAL);
1242 		result = fiji_populate_single_memory_level(hwmgr,
1243 				dpm_table->mclk_table.dpm_levels[i].value,
1244 				&levels[i]);
1245 		if (result)
1246 			return result;
1247 	}
1248 
1249 	/* Only enable level 0 for now. */
1250 	levels[0].EnabledForActivity = 1;
1251 
1252 	/* in order to prevent MC activity from stutter mode to push DPM up.
1253 	 * the UVD change complements this by putting the MCLK in
1254 	 * a higher state by default such that we are not effected by
1255 	 * up threshold or and MCLK DPM latency.
1256 	 */
1257 	levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1258 	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1259 
1260 	smu_data->smc_state_table.MemoryDpmLevelCount =
1261 			(uint8_t)dpm_table->mclk_table.count;
1262 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1263 			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1264 	/* set highest level watermark to high */
1265 	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1266 			PPSMC_DISPLAY_WATERMARK_HIGH;
1267 
1268 	/* level count will send to smc once at init smc table and never change */
1269 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1270 			(uint32_t)array_size, SMC_RAM_END);
1271 
1272 	return result;
1273 }
1274 
fiji_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMIO_Pattern * smio_pat)1275 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1276 		uint32_t mclk, SMIO_Pattern *smio_pat)
1277 {
1278 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1279 	struct phm_ppt_v1_information *table_info =
1280 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1281 	uint32_t i = 0;
1282 
1283 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1284 		/* find mvdd value which clock is more than request */
1285 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1286 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1287 				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1288 				break;
1289 			}
1290 		}
1291 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1292 				"MVDD Voltage is outside the supported range.",
1293 				return -EINVAL);
1294 	} else
1295 		return -EINVAL;
1296 
1297 	return 0;
1298 }
1299 
fiji_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU73_Discrete_DpmTable * table)1300 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1301 		SMU73_Discrete_DpmTable *table)
1302 {
1303 	int result = 0;
1304 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1305 	struct phm_ppt_v1_information *table_info =
1306 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1307 	struct pp_atomctrl_clock_dividers_vi dividers;
1308 	SMIO_Pattern vol_level;
1309 	uint32_t mvdd;
1310 	uint16_t us_mvdd;
1311 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1312 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1313 
1314 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1315 
1316 	if (!data->sclk_dpm_key_disabled) {
1317 		/* Get MinVoltage and Frequency from DPM0,
1318 		 * already converted to SMC_UL */
1319 		table->ACPILevel.SclkFrequency =
1320 				data->dpm_table.sclk_table.dpm_levels[0].value;
1321 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1322 				table_info->vdd_dep_on_sclk,
1323 				table->ACPILevel.SclkFrequency,
1324 				(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1325 		PP_ASSERT_WITH_CODE((0 == result),
1326 				"Cannot find ACPI VDDC voltage value " \
1327 				"in Clock Dependency Table",
1328 				);
1329 	} else {
1330 		table->ACPILevel.SclkFrequency =
1331 				data->vbios_boot_state.sclk_bootup_value;
1332 		table->ACPILevel.MinVoltage =
1333 				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1334 	}
1335 
1336 	/* get the engine clock dividers for this clock value */
1337 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1338 			table->ACPILevel.SclkFrequency,  &dividers);
1339 	PP_ASSERT_WITH_CODE(result == 0,
1340 			"Error retrieving Engine Clock dividers from VBIOS.",
1341 			return result);
1342 
1343 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1344 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1345 	table->ACPILevel.DeepSleepDivId = 0;
1346 
1347 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1348 			SPLL_PWRON, 0);
1349 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1350 			SPLL_RESET, 1);
1351 	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1352 			SCLK_MUX_SEL, 4);
1353 
1354 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1355 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1356 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1357 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1358 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1359 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1360 	table->ACPILevel.CcPwrDynRm = 0;
1361 	table->ACPILevel.CcPwrDynRm1 = 0;
1362 
1363 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1364 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1365 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1366 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1367 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1368 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1369 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1370 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1371 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1372 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1373 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1374 
1375 	if (!data->mclk_dpm_key_disabled) {
1376 		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1377 		table->MemoryACPILevel.MclkFrequency =
1378 				data->dpm_table.mclk_table.dpm_levels[0].value;
1379 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1380 				table_info->vdd_dep_on_mclk,
1381 				table->MemoryACPILevel.MclkFrequency,
1382 			(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1383 		PP_ASSERT_WITH_CODE((0 == result),
1384 				"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1385 				);
1386 	} else {
1387 		table->MemoryACPILevel.MclkFrequency =
1388 				data->vbios_boot_state.mclk_bootup_value;
1389 		table->MemoryACPILevel.MinVoltage =
1390 				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1391 	}
1392 
1393 	us_mvdd = 0;
1394 	if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1395 			(data->mclk_dpm_key_disabled))
1396 		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1397 	else {
1398 		if (!fiji_populate_mvdd_value(hwmgr,
1399 				data->dpm_table.mclk_table.dpm_levels[0].value,
1400 				&vol_level))
1401 			us_mvdd = vol_level.Voltage;
1402 	}
1403 
1404 	table->MemoryACPILevel.MinMvdd =
1405 			PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1406 
1407 	table->MemoryACPILevel.EnabledForThrottle = 0;
1408 	table->MemoryACPILevel.EnabledForActivity = 0;
1409 	table->MemoryACPILevel.UpHyst = 0;
1410 	table->MemoryACPILevel.DownHyst = 100;
1411 	table->MemoryACPILevel.VoltageDownHyst = 0;
1412 	table->MemoryACPILevel.ActivityLevel =
1413 			PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1414 
1415 	table->MemoryACPILevel.StutterEnable = false;
1416 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1417 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1418 
1419 	return result;
1420 }
1421 
fiji_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU73_Discrete_DpmTable * table)1422 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1423 		SMU73_Discrete_DpmTable *table)
1424 {
1425 	int result = -EINVAL;
1426 	uint8_t count;
1427 	struct pp_atomctrl_clock_dividers_vi dividers;
1428 	struct phm_ppt_v1_information *table_info =
1429 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1430 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1431 			table_info->mm_dep_table;
1432 
1433 	table->VceLevelCount = (uint8_t)(mm_table->count);
1434 	table->VceBootLevel = 0;
1435 
1436 	for (count = 0; count < table->VceLevelCount; count++) {
1437 		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1438 		table->VceLevel[count].MinVoltage = 0;
1439 		table->VceLevel[count].MinVoltage |=
1440 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1441 		table->VceLevel[count].MinVoltage |=
1442 				((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1443 						VOLTAGE_SCALE) << VDDCI_SHIFT;
1444 		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1445 
1446 		/*retrieve divider value for VBIOS */
1447 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1448 				table->VceLevel[count].Frequency, &dividers);
1449 		PP_ASSERT_WITH_CODE((0 == result),
1450 				"can not find divide id for VCE engine clock",
1451 				return result);
1452 
1453 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1454 
1455 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1456 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1457 	}
1458 	return result;
1459 }
1460 
fiji_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU73_Discrete_DpmTable * table)1461 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1462 		SMU73_Discrete_DpmTable *table)
1463 {
1464 	int result = -EINVAL;
1465 	uint8_t count;
1466 	struct pp_atomctrl_clock_dividers_vi dividers;
1467 	struct phm_ppt_v1_information *table_info =
1468 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1469 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1470 			table_info->mm_dep_table;
1471 
1472 	table->AcpLevelCount = (uint8_t)(mm_table->count);
1473 	table->AcpBootLevel = 0;
1474 
1475 	for (count = 0; count < table->AcpLevelCount; count++) {
1476 		table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1477 		table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1478 				VOLTAGE_SCALE) << VDDC_SHIFT;
1479 		table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1480 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1481 		table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1482 
1483 		/* retrieve divider value for VBIOS */
1484 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1485 				table->AcpLevel[count].Frequency, &dividers);
1486 		PP_ASSERT_WITH_CODE((0 == result),
1487 				"can not find divide id for engine clock", return result);
1488 
1489 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1490 
1491 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1492 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1493 	}
1494 	return result;
1495 }
1496 
fiji_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,int32_t eng_clock,int32_t mem_clock,struct SMU73_Discrete_MCArbDramTimingTableEntry * arb_regs)1497 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1498 		int32_t eng_clock, int32_t mem_clock,
1499 		struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1500 {
1501 	uint32_t dram_timing;
1502 	uint32_t dram_timing2;
1503 	uint32_t burstTime;
1504 	ULONG state, trrds, trrdl;
1505 	int result;
1506 
1507 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1508 			eng_clock, mem_clock);
1509 	PP_ASSERT_WITH_CODE(result == 0,
1510 			"Error calling VBIOS to set DRAM_TIMING.", return result);
1511 
1512 	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1513 	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1514 	burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1515 
1516 	state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
1517 	trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1518 	trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1519 
1520 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1521 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1522 	arb_regs->McArbBurstTime   = (uint8_t)burstTime;
1523 	arb_regs->TRRDS            = (uint8_t)trrds;
1524 	arb_regs->TRRDL            = (uint8_t)trrdl;
1525 
1526 	return 0;
1527 }
1528 
fiji_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1529 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1530 {
1531 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1532 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1533 	struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1534 	uint32_t i, j;
1535 	int result = 0;
1536 
1537 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1538 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1539 			result = fiji_populate_memory_timing_parameters(hwmgr,
1540 					data->dpm_table.sclk_table.dpm_levels[i].value,
1541 					data->dpm_table.mclk_table.dpm_levels[j].value,
1542 					&arb_regs.entries[i][j]);
1543 			if (result)
1544 				break;
1545 		}
1546 	}
1547 
1548 	if (!result)
1549 		result = smu7_copy_bytes_to_smc(
1550 				hwmgr,
1551 				smu_data->smu7_data.arb_table_start,
1552 				(uint8_t *)&arb_regs,
1553 				sizeof(SMU73_Discrete_MCArbDramTimingTable),
1554 				SMC_RAM_END);
1555 	return result;
1556 }
1557 
fiji_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)1558 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1559 		struct SMU73_Discrete_DpmTable *table)
1560 {
1561 	int result = -EINVAL;
1562 	uint8_t count;
1563 	struct pp_atomctrl_clock_dividers_vi dividers;
1564 	struct phm_ppt_v1_information *table_info =
1565 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1566 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1567 			table_info->mm_dep_table;
1568 
1569 	table->UvdLevelCount = (uint8_t)(mm_table->count);
1570 	table->UvdBootLevel = 0;
1571 
1572 	for (count = 0; count < table->UvdLevelCount; count++) {
1573 		table->UvdLevel[count].MinVoltage = 0;
1574 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1575 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1576 		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1577 				VOLTAGE_SCALE) << VDDC_SHIFT;
1578 		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1579 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1580 		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1581 
1582 		/* retrieve divider value for VBIOS */
1583 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1584 				table->UvdLevel[count].VclkFrequency, &dividers);
1585 		PP_ASSERT_WITH_CODE((0 == result),
1586 				"can not find divide id for Vclk clock", return result);
1587 
1588 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1589 
1590 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1591 				table->UvdLevel[count].DclkFrequency, &dividers);
1592 		PP_ASSERT_WITH_CODE((0 == result),
1593 				"can not find divide id for Dclk clock", return result);
1594 
1595 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1596 
1597 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1598 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1599 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1600 
1601 	}
1602 	return result;
1603 }
1604 
fiji_populate_smc_boot_level(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)1605 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1606 		struct SMU73_Discrete_DpmTable *table)
1607 {
1608 	int result = 0;
1609 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1610 
1611 	table->GraphicsBootLevel = 0;
1612 	table->MemoryBootLevel = 0;
1613 
1614 	/* find boot level from dpm table */
1615 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1616 			data->vbios_boot_state.sclk_bootup_value,
1617 			(uint32_t *)&(table->GraphicsBootLevel));
1618 
1619 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1620 			data->vbios_boot_state.mclk_bootup_value,
1621 			(uint32_t *)&(table->MemoryBootLevel));
1622 
1623 	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1624 			VOLTAGE_SCALE;
1625 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1626 			VOLTAGE_SCALE;
1627 	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1628 			VOLTAGE_SCALE;
1629 
1630 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1631 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1632 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1633 
1634 	return 0;
1635 }
1636 
fiji_populate_smc_initailial_state(struct pp_hwmgr * hwmgr)1637 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1638 {
1639 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1640 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1641 	struct phm_ppt_v1_information *table_info =
1642 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1643 	uint8_t count, level;
1644 
1645 	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1646 	for (level = 0; level < count; level++) {
1647 		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1648 				data->vbios_boot_state.sclk_bootup_value) {
1649 			smu_data->smc_state_table.GraphicsBootLevel = level;
1650 			break;
1651 		}
1652 	}
1653 
1654 	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1655 	for (level = 0; level < count; level++) {
1656 		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1657 				data->vbios_boot_state.mclk_bootup_value) {
1658 			smu_data->smc_state_table.MemoryBootLevel = level;
1659 			break;
1660 		}
1661 	}
1662 
1663 	return 0;
1664 }
1665 
fiji_populate_clock_stretcher_data_table(struct pp_hwmgr * hwmgr)1666 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1667 {
1668 	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1669 			volt_with_cks, value;
1670 	uint16_t clock_freq_u16;
1671 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1672 	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1673 			volt_offset = 0;
1674 	struct phm_ppt_v1_information *table_info =
1675 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1676 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1677 			table_info->vdd_dep_on_sclk;
1678 
1679 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1680 
1681 	/* Read SMU_Eefuse to read and calculate RO and determine
1682 	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1683 	 */
1684 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1685 			ixSMU_EFUSE_0 + (146 * 4));
1686 	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1687 			ixSMU_EFUSE_0 + (148 * 4));
1688 	efuse &= 0xFF000000;
1689 	efuse = efuse >> 24;
1690 	efuse2 &= 0xF;
1691 
1692 	if (efuse2 == 1)
1693 		ro = (2300 - 1350) * efuse / 255 + 1350;
1694 	else
1695 		ro = (2500 - 1000) * efuse / 255 + 1000;
1696 
1697 	if (ro >= 1660)
1698 		type = 0;
1699 	else
1700 		type = 1;
1701 
1702 	/* Populate Stretch amount */
1703 	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1704 
1705 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1706 	for (i = 0; i < sclk_table->count; i++) {
1707 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1708 				sclk_table->entries[i].cks_enable << i;
1709 		volt_without_cks = (uint32_t)((14041 *
1710 			(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1711 			(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1712 		volt_with_cks = (uint32_t)((13946 *
1713 			(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1714 			(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1715 		if (volt_without_cks >= volt_with_cks)
1716 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1717 					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1718 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1719 	}
1720 
1721 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1722 			STRETCH_ENABLE, 0x0);
1723 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1724 			masterReset, 0x1);
1725 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1726 			staticEnable, 0x1);
1727 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1728 			masterReset, 0x0);
1729 
1730 	/* Populate CKS Lookup Table */
1731 	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1732 		stretch_amount2 = 0;
1733 	else if (stretch_amount == 3 || stretch_amount == 4)
1734 		stretch_amount2 = 1;
1735 	else {
1736 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1737 				PHM_PlatformCaps_ClockStretcher);
1738 		PP_ASSERT_WITH_CODE(false,
1739 				"Stretch Amount in PPTable not supported",
1740 				return -EINVAL);
1741 	}
1742 
1743 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1744 			ixPWR_CKS_CNTL);
1745 	value &= 0xFFC2FF87;
1746 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1747 			fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1748 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1749 			fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1750 	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1751 			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1752 			SclkFrequency) / 100);
1753 	if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1754 			clock_freq_u16 &&
1755 	    fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1756 			clock_freq_u16) {
1757 		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1758 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1759 		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1760 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1761 		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1762 		value |= (fiji_clock_stretch_amount_conversion
1763 				[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1764 				 [stretch_amount]) << 3;
1765 	}
1766 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1767 			CKS_LOOKUPTableEntry[0].minFreq);
1768 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1769 			CKS_LOOKUPTableEntry[0].maxFreq);
1770 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1771 			fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1772 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1773 			(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1774 
1775 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1776 			ixPWR_CKS_CNTL, value);
1777 
1778 	/* Populate DDT Lookup Table */
1779 	for (i = 0; i < 4; i++) {
1780 		/* Assign the minimum and maximum VID stored
1781 		 * in the last row of Clock Stretcher Voltage Table.
1782 		 */
1783 		smu_data->smc_state_table.ClockStretcherDataTable.
1784 		ClockStretcherDataTableEntry[i].minVID =
1785 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1786 		smu_data->smc_state_table.ClockStretcherDataTable.
1787 		ClockStretcherDataTableEntry[i].maxVID =
1788 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1789 		/* Loop through each SCLK and check the frequency
1790 		 * to see if it lies within the frequency for clock stretcher.
1791 		 */
1792 		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1793 			cks_setting = 0;
1794 			clock_freq = PP_SMC_TO_HOST_UL(
1795 					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1796 			/* Check the allowed frequency against the sclk level[j].
1797 			 *  Sclk's endianness has already been converted,
1798 			 *  and it's in 10Khz unit,
1799 			 *  as opposed to Data table, which is in Mhz unit.
1800 			 */
1801 			if (clock_freq >=
1802 					(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1803 				cks_setting |= 0x2;
1804 				if (clock_freq <
1805 						(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1806 					cks_setting |= 0x1;
1807 			}
1808 			smu_data->smc_state_table.ClockStretcherDataTable.
1809 			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1810 		}
1811 		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1812 				ClockStretcherDataTable.
1813 				ClockStretcherDataTableEntry[i].setting);
1814 	}
1815 
1816 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1817 	value &= 0xFFFFFFFE;
1818 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1819 
1820 	return 0;
1821 }
1822 
fiji_populate_vr_config(struct pp_hwmgr * hwmgr,struct SMU73_Discrete_DpmTable * table)1823 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1824 		struct SMU73_Discrete_DpmTable *table)
1825 {
1826 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1827 	uint16_t config;
1828 
1829 	config = VR_MERGED_WITH_VDDC;
1830 	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1831 
1832 	/* Set Vddc Voltage Controller */
1833 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1834 		config = VR_SVI2_PLANE_1;
1835 		table->VRConfig |= config;
1836 	} else {
1837 		PP_ASSERT_WITH_CODE(false,
1838 				"VDDC should be on SVI2 control in merged mode!",
1839 				);
1840 	}
1841 	/* Set Vddci Voltage Controller */
1842 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1843 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1844 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1845 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1846 		config = VR_SMIO_PATTERN_1;
1847 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1848 	} else {
1849 		config = VR_STATIC_VOLTAGE;
1850 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1851 	}
1852 	/* Set Mvdd Voltage Controller */
1853 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1854 		config = VR_SVI2_PLANE_2;
1855 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1856 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1857 		config = VR_SMIO_PATTERN_2;
1858 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1859 	} else {
1860 		config = VR_STATIC_VOLTAGE;
1861 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1862 	}
1863 
1864 	return 0;
1865 }
1866 
fiji_init_arb_table_index(struct pp_hwmgr * hwmgr)1867 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1868 {
1869 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1870 	uint32_t tmp;
1871 	int result;
1872 
1873 	/* This is a read-modify-write on the first byte of the ARB table.
1874 	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1875 	 * is the field 'current'.
1876 	 * This solution is ugly, but we never write the whole table only
1877 	 * individual fields in it.
1878 	 * In reality this field should not be in that structure
1879 	 * but in a soft register.
1880 	 */
1881 	result = smu7_read_smc_sram_dword(hwmgr,
1882 			smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1883 
1884 	if (result)
1885 		return result;
1886 
1887 	tmp &= 0x00FFFFFF;
1888 	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1889 
1890 	return smu7_write_smc_sram_dword(hwmgr,
1891 			smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
1892 }
1893 
fiji_setup_dpm_led_config(struct pp_hwmgr * hwmgr)1894 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1895 {
1896 	pp_atomctrl_voltage_table param_led_dpm;
1897 	int result = 0;
1898 	u32 mask = 0;
1899 
1900 	result = atomctrl_get_voltage_table_v3(hwmgr,
1901 					       VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1902 					       &param_led_dpm);
1903 	if (result == 0) {
1904 		int i, j;
1905 		u32 tmp = param_led_dpm.mask_low;
1906 
1907 		for (i = 0, j = 0; i < 32; i++) {
1908 			if (tmp & 1) {
1909 				mask |= (i << (8 * j));
1910 				if (++j >= 3)
1911 					break;
1912 			}
1913 			tmp >>= 1;
1914 		}
1915 	}
1916 	if (mask)
1917 		smum_send_msg_to_smc_with_parameter(hwmgr,
1918 						    PPSMC_MSG_LedConfig,
1919 						    mask);
1920 	return 0;
1921 }
1922 
fiji_init_smc_table(struct pp_hwmgr * hwmgr)1923 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1924 {
1925 	int result;
1926 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1927 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1928 	struct phm_ppt_v1_information *table_info =
1929 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1930 	struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1931 	uint8_t i;
1932 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1933 
1934 	fiji_initialize_power_tune_defaults(hwmgr);
1935 
1936 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1937 		fiji_populate_smc_voltage_tables(hwmgr, table);
1938 
1939 	table->SystemFlags = 0;
1940 
1941 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1942 			PHM_PlatformCaps_AutomaticDCTransition))
1943 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1944 
1945 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1946 			PHM_PlatformCaps_StepVddc))
1947 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1948 
1949 	if (data->is_memory_gddr5)
1950 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1951 
1952 	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1953 		result = fiji_populate_ulv_state(hwmgr, table);
1954 		PP_ASSERT_WITH_CODE(0 == result,
1955 				"Failed to initialize ULV state!", return result);
1956 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1957 				ixCG_ULV_PARAMETER, 0x40035);
1958 	}
1959 
1960 	result = fiji_populate_smc_link_level(hwmgr, table);
1961 	PP_ASSERT_WITH_CODE(0 == result,
1962 			"Failed to initialize Link Level!", return result);
1963 
1964 	result = fiji_populate_all_graphic_levels(hwmgr);
1965 	PP_ASSERT_WITH_CODE(0 == result,
1966 			"Failed to initialize Graphics Level!", return result);
1967 
1968 	result = fiji_populate_all_memory_levels(hwmgr);
1969 	PP_ASSERT_WITH_CODE(0 == result,
1970 			"Failed to initialize Memory Level!", return result);
1971 
1972 	result = fiji_populate_smc_acpi_level(hwmgr, table);
1973 	PP_ASSERT_WITH_CODE(0 == result,
1974 			"Failed to initialize ACPI Level!", return result);
1975 
1976 	result = fiji_populate_smc_vce_level(hwmgr, table);
1977 	PP_ASSERT_WITH_CODE(0 == result,
1978 			"Failed to initialize VCE Level!", return result);
1979 
1980 	result = fiji_populate_smc_acp_level(hwmgr, table);
1981 	PP_ASSERT_WITH_CODE(0 == result,
1982 			"Failed to initialize ACP Level!", return result);
1983 
1984 	/* Since only the initial state is completely set up at this point
1985 	 * (the other states are just copies of the boot state) we only
1986 	 * need to populate the  ARB settings for the initial state.
1987 	 */
1988 	result = fiji_program_memory_timing_parameters(hwmgr);
1989 	PP_ASSERT_WITH_CODE(0 == result,
1990 			"Failed to Write ARB settings for the initial state.", return result);
1991 
1992 	result = fiji_populate_smc_uvd_level(hwmgr, table);
1993 	PP_ASSERT_WITH_CODE(0 == result,
1994 			"Failed to initialize UVD Level!", return result);
1995 
1996 	result = fiji_populate_smc_boot_level(hwmgr, table);
1997 	PP_ASSERT_WITH_CODE(0 == result,
1998 			"Failed to initialize Boot Level!", return result);
1999 
2000 	result = fiji_populate_smc_initailial_state(hwmgr);
2001 	PP_ASSERT_WITH_CODE(0 == result,
2002 			"Failed to initialize Boot State!", return result);
2003 
2004 	result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2005 	PP_ASSERT_WITH_CODE(0 == result,
2006 			"Failed to populate BAPM Parameters!", return result);
2007 
2008 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2009 			PHM_PlatformCaps_ClockStretcher)) {
2010 		result = fiji_populate_clock_stretcher_data_table(hwmgr);
2011 		PP_ASSERT_WITH_CODE(0 == result,
2012 				"Failed to populate Clock Stretcher Data Table!",
2013 				return result);
2014 	}
2015 
2016 	table->GraphicsVoltageChangeEnable  = 1;
2017 	table->GraphicsThermThrottleEnable  = 1;
2018 	table->GraphicsInterval = 1;
2019 	table->VoltageInterval  = 1;
2020 	table->ThermalInterval  = 1;
2021 	table->TemperatureLimitHigh =
2022 			table_info->cac_dtp_table->usTargetOperatingTemp *
2023 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2024 	table->TemperatureLimitLow  =
2025 			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2026 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2027 	table->MemoryVoltageChangeEnable = 1;
2028 	table->MemoryInterval = 1;
2029 	table->VoltageResponseTime = 0;
2030 	table->PhaseResponseTime = 0;
2031 	table->MemoryThermThrottleEnable = 1;
2032 	table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
2033 	table->PCIeGenInterval = 1;
2034 	table->VRConfig = 0;
2035 
2036 	result = fiji_populate_vr_config(hwmgr, table);
2037 	PP_ASSERT_WITH_CODE(0 == result,
2038 			"Failed to populate VRConfig setting!", return result);
2039 	data->vr_config = table->VRConfig;
2040 	table->ThermGpio = 17;
2041 	table->SclkStepSize = 0x4000;
2042 
2043 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2044 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2045 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2046 				PHM_PlatformCaps_RegulatorHot);
2047 	} else {
2048 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2049 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2050 				PHM_PlatformCaps_RegulatorHot);
2051 	}
2052 
2053 	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2054 			&gpio_pin)) {
2055 		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2056 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2057 				PHM_PlatformCaps_AutomaticDCTransition);
2058 	} else {
2059 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2060 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2061 				PHM_PlatformCaps_AutomaticDCTransition);
2062 	}
2063 
2064 	/* Thermal Output GPIO */
2065 	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2066 			&gpio_pin)) {
2067 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2068 				PHM_PlatformCaps_ThermalOutGPIO);
2069 
2070 		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2071 
2072 		/* For porlarity read GPIOPAD_A with assigned Gpio pin
2073 		 * since VBIOS will program this register to set 'inactive state',
2074 		 * driver can then determine 'active state' from this and
2075 		 * program SMU with correct polarity
2076 		 */
2077 		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2078 				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2079 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2080 
2081 		/* if required, combine VRHot/PCC with thermal out GPIO */
2082 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2083 				PHM_PlatformCaps_RegulatorHot) &&
2084 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2085 					PHM_PlatformCaps_CombinePCCWithThermalSignal))
2086 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2087 	} else {
2088 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2089 				PHM_PlatformCaps_ThermalOutGPIO);
2090 		table->ThermOutGpio = 17;
2091 		table->ThermOutPolarity = 1;
2092 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2093 	}
2094 
2095 	for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2096 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2097 
2098 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2099 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2100 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2101 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2102 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2103 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2104 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2105 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2106 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2107 
2108 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2109 	result = smu7_copy_bytes_to_smc(hwmgr,
2110 			smu_data->smu7_data.dpm_table_start +
2111 			offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2112 			(uint8_t *)&(table->SystemFlags),
2113 			sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2114 			SMC_RAM_END);
2115 	PP_ASSERT_WITH_CODE(0 == result,
2116 			"Failed to upload dpm data to SMC memory!", return result);
2117 
2118 	result = fiji_init_arb_table_index(hwmgr);
2119 	PP_ASSERT_WITH_CODE(0 == result,
2120 			"Failed to upload arb data to SMC memory!", return result);
2121 
2122 	result = fiji_populate_pm_fuses(hwmgr);
2123 	PP_ASSERT_WITH_CODE(0 == result,
2124 			"Failed to  populate PM fuses to SMC memory!", return result);
2125 
2126 	result = fiji_setup_dpm_led_config(hwmgr);
2127 	PP_ASSERT_WITH_CODE(0 == result,
2128 			    "Failed to setup dpm led config", return result);
2129 
2130 	return 0;
2131 }
2132 
fiji_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2133 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2134 {
2135 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2136 
2137 	SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2138 	uint32_t duty100;
2139 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2140 	uint16_t fdo_min, slope1, slope2;
2141 	uint32_t reference_clock;
2142 	int res;
2143 	uint64_t tmp64;
2144 
2145 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2146 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2147 			PHM_PlatformCaps_MicrocodeFanControl);
2148 		return 0;
2149 	}
2150 
2151 	if (smu_data->smu7_data.fan_table_start == 0) {
2152 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2153 				PHM_PlatformCaps_MicrocodeFanControl);
2154 		return 0;
2155 	}
2156 
2157 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2158 			CG_FDO_CTRL1, FMAX_DUTY100);
2159 
2160 	if (duty100 == 0) {
2161 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2162 				PHM_PlatformCaps_MicrocodeFanControl);
2163 		return 0;
2164 	}
2165 
2166 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2167 			usPWMMin * duty100;
2168 	do_div(tmp64, 10000);
2169 	fdo_min = (uint16_t)tmp64;
2170 
2171 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2172 			hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2173 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2174 			hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2175 
2176 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2177 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2178 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2179 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2180 
2181 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2182 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2183 
2184 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2185 			thermal_controller.advanceFanControlParameters.usTMin) / 100);
2186 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2187 			thermal_controller.advanceFanControlParameters.usTMed) / 100);
2188 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2189 			thermal_controller.advanceFanControlParameters.usTMax) / 100);
2190 
2191 	fan_table.Slope1 = cpu_to_be16(slope1);
2192 	fan_table.Slope2 = cpu_to_be16(slope2);
2193 
2194 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2195 
2196 	fan_table.HystDown = cpu_to_be16(hwmgr->
2197 			thermal_controller.advanceFanControlParameters.ucTHyst);
2198 
2199 	fan_table.HystUp = cpu_to_be16(1);
2200 
2201 	fan_table.HystSlope = cpu_to_be16(1);
2202 
2203 	fan_table.TempRespLim = cpu_to_be16(5);
2204 
2205 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2206 
2207 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2208 			thermal_controller.advanceFanControlParameters.ulCycleDelay *
2209 			reference_clock) / 1600);
2210 
2211 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2212 
2213 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2214 			hwmgr->device, CGS_IND_REG__SMC,
2215 			CG_MULT_THERMAL_CTRL, TEMP_SEL);
2216 
2217 	res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2218 			(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2219 			SMC_RAM_END);
2220 
2221 	if (!res && hwmgr->thermal_controller.
2222 			advanceFanControlParameters.ucMinimumPWMLimit)
2223 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
2224 				PPSMC_MSG_SetFanMinPwm,
2225 				hwmgr->thermal_controller.
2226 				advanceFanControlParameters.ucMinimumPWMLimit);
2227 
2228 	if (!res && hwmgr->thermal_controller.
2229 			advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2230 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
2231 				PPSMC_MSG_SetFanSclkTarget,
2232 				hwmgr->thermal_controller.
2233 				advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
2234 
2235 	if (res)
2236 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2237 				PHM_PlatformCaps_MicrocodeFanControl);
2238 
2239 	return 0;
2240 }
2241 
2242 
fiji_thermal_avfs_enable(struct pp_hwmgr * hwmgr)2243 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2244 {
2245 	if (!hwmgr->avfs_supported)
2246 		return 0;
2247 
2248 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2249 
2250 	return 0;
2251 }
2252 
fiji_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2253 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2254 {
2255 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2256 
2257 	if (data->need_update_smu7_dpm_table &
2258 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2259 		return fiji_program_memory_timing_parameters(hwmgr);
2260 
2261 	return 0;
2262 }
2263 
fiji_update_sclk_threshold(struct pp_hwmgr * hwmgr)2264 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2265 {
2266 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2267 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2268 
2269 	int result = 0;
2270 	uint32_t low_sclk_interrupt_threshold = 0;
2271 
2272 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2273 			PHM_PlatformCaps_SclkThrottleLowNotification)
2274 		&& (data->low_sclk_interrupt_threshold != 0)) {
2275 		low_sclk_interrupt_threshold =
2276 				data->low_sclk_interrupt_threshold;
2277 
2278 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2279 
2280 		result = smu7_copy_bytes_to_smc(
2281 				hwmgr,
2282 				smu_data->smu7_data.dpm_table_start +
2283 				offsetof(SMU73_Discrete_DpmTable,
2284 					LowSclkInterruptThreshold),
2285 				(uint8_t *)&low_sclk_interrupt_threshold,
2286 				sizeof(uint32_t),
2287 				SMC_RAM_END);
2288 	}
2289 	result = fiji_program_mem_timing_parameters(hwmgr);
2290 	PP_ASSERT_WITH_CODE((result == 0),
2291 			"Failed to program memory timing parameters!",
2292 			);
2293 	return result;
2294 }
2295 
fiji_get_offsetof(uint32_t type,uint32_t member)2296 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2297 {
2298 	switch (type) {
2299 	case SMU_SoftRegisters:
2300 		switch (member) {
2301 		case HandshakeDisables:
2302 			return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2303 		case VoltageChangeTimeout:
2304 			return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2305 		case AverageGraphicsActivity:
2306 			return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2307 		case AverageMemoryActivity:
2308 			return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
2309 		case PreVBlankGap:
2310 			return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2311 		case VBlankTimeout:
2312 			return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2313 		case UcodeLoadStatus:
2314 			return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2315 		case DRAM_LOG_ADDR_H:
2316 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2317 		case DRAM_LOG_ADDR_L:
2318 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2319 		case DRAM_LOG_PHY_ADDR_H:
2320 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2321 		case DRAM_LOG_PHY_ADDR_L:
2322 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2323 		case DRAM_LOG_BUFF_SIZE:
2324 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2325 		}
2326 		break;
2327 	case SMU_Discrete_DpmTable:
2328 		switch (member) {
2329 		case UvdBootLevel:
2330 			return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2331 		case VceBootLevel:
2332 			return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2333 		case LowSclkInterruptThreshold:
2334 			return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2335 		}
2336 		break;
2337 	}
2338 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2339 	return 0;
2340 }
2341 
fiji_get_mac_definition(uint32_t value)2342 static uint32_t fiji_get_mac_definition(uint32_t value)
2343 {
2344 	switch (value) {
2345 	case SMU_MAX_LEVELS_GRAPHICS:
2346 		return SMU73_MAX_LEVELS_GRAPHICS;
2347 	case SMU_MAX_LEVELS_MEMORY:
2348 		return SMU73_MAX_LEVELS_MEMORY;
2349 	case SMU_MAX_LEVELS_LINK:
2350 		return SMU73_MAX_LEVELS_LINK;
2351 	case SMU_MAX_ENTRIES_SMIO:
2352 		return SMU73_MAX_ENTRIES_SMIO;
2353 	case SMU_MAX_LEVELS_VDDC:
2354 		return SMU73_MAX_LEVELS_VDDC;
2355 	case SMU_MAX_LEVELS_VDDGFX:
2356 		return SMU73_MAX_LEVELS_VDDGFX;
2357 	case SMU_MAX_LEVELS_VDDCI:
2358 		return SMU73_MAX_LEVELS_VDDCI;
2359 	case SMU_MAX_LEVELS_MVDD:
2360 		return SMU73_MAX_LEVELS_MVDD;
2361 	}
2362 
2363 	pr_warn("can't get the mac of %x\n", value);
2364 	return 0;
2365 }
2366 
2367 
fiji_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2368 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2369 {
2370 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2371 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2372 	struct phm_ppt_v1_information *table_info =
2373 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2374 
2375 	smu_data->smc_state_table.UvdBootLevel = 0;
2376 	if (table_info->mm_dep_table->count > 0)
2377 		smu_data->smc_state_table.UvdBootLevel =
2378 				(uint8_t) (table_info->mm_dep_table->count - 1);
2379 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2380 						UvdBootLevel);
2381 	mm_boot_level_offset /= 4;
2382 	mm_boot_level_offset *= 4;
2383 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2384 			CGS_IND_REG__SMC, mm_boot_level_offset);
2385 	mm_boot_level_value &= 0x00FFFFFF;
2386 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2387 	cgs_write_ind_register(hwmgr->device,
2388 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2389 
2390 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2391 			PHM_PlatformCaps_UVDDPM) ||
2392 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2393 			PHM_PlatformCaps_StablePState))
2394 		smum_send_msg_to_smc_with_parameter(hwmgr,
2395 				PPSMC_MSG_UVDDPM_SetEnabledMask,
2396 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
2397 	return 0;
2398 }
2399 
fiji_update_vce_smc_table(struct pp_hwmgr * hwmgr)2400 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2401 {
2402 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2403 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2404 	struct phm_ppt_v1_information *table_info =
2405 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2406 
2407 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2408 					PHM_PlatformCaps_StablePState))
2409 		smu_data->smc_state_table.VceBootLevel =
2410 			(uint8_t) (table_info->mm_dep_table->count - 1);
2411 	else
2412 		smu_data->smc_state_table.VceBootLevel = 0;
2413 
2414 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2415 					offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2416 	mm_boot_level_offset /= 4;
2417 	mm_boot_level_offset *= 4;
2418 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2419 			CGS_IND_REG__SMC, mm_boot_level_offset);
2420 	mm_boot_level_value &= 0xFF00FFFF;
2421 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2422 	cgs_write_ind_register(hwmgr->device,
2423 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2424 
2425 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2426 		smum_send_msg_to_smc_with_parameter(hwmgr,
2427 				PPSMC_MSG_VCEDPM_SetEnabledMask,
2428 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
2429 	return 0;
2430 }
2431 
fiji_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2432 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2433 {
2434 	switch (type) {
2435 	case SMU_UVD_TABLE:
2436 		fiji_update_uvd_smc_table(hwmgr);
2437 		break;
2438 	case SMU_VCE_TABLE:
2439 		fiji_update_vce_smc_table(hwmgr);
2440 		break;
2441 	default:
2442 		break;
2443 	}
2444 	return 0;
2445 }
2446 
fiji_process_firmware_header(struct pp_hwmgr * hwmgr)2447 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2448 {
2449 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2450 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2451 	uint32_t tmp;
2452 	int result;
2453 	bool error = false;
2454 
2455 	result = smu7_read_smc_sram_dword(hwmgr,
2456 			SMU7_FIRMWARE_HEADER_LOCATION +
2457 			offsetof(SMU73_Firmware_Header, DpmTable),
2458 			&tmp, SMC_RAM_END);
2459 
2460 	if (0 == result)
2461 		smu_data->smu7_data.dpm_table_start = tmp;
2462 
2463 	error |= (0 != result);
2464 
2465 	result = smu7_read_smc_sram_dword(hwmgr,
2466 			SMU7_FIRMWARE_HEADER_LOCATION +
2467 			offsetof(SMU73_Firmware_Header, SoftRegisters),
2468 			&tmp, SMC_RAM_END);
2469 
2470 	if (!result) {
2471 		data->soft_regs_start = tmp;
2472 		smu_data->smu7_data.soft_regs_start = tmp;
2473 	}
2474 
2475 	error |= (0 != result);
2476 
2477 	result = smu7_read_smc_sram_dword(hwmgr,
2478 			SMU7_FIRMWARE_HEADER_LOCATION +
2479 			offsetof(SMU73_Firmware_Header, mcRegisterTable),
2480 			&tmp, SMC_RAM_END);
2481 
2482 	if (!result)
2483 		smu_data->smu7_data.mc_reg_table_start = tmp;
2484 
2485 	result = smu7_read_smc_sram_dword(hwmgr,
2486 			SMU7_FIRMWARE_HEADER_LOCATION +
2487 			offsetof(SMU73_Firmware_Header, FanTable),
2488 			&tmp, SMC_RAM_END);
2489 
2490 	if (!result)
2491 		smu_data->smu7_data.fan_table_start = tmp;
2492 
2493 	error |= (0 != result);
2494 
2495 	result = smu7_read_smc_sram_dword(hwmgr,
2496 			SMU7_FIRMWARE_HEADER_LOCATION +
2497 			offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2498 			&tmp, SMC_RAM_END);
2499 
2500 	if (!result)
2501 		smu_data->smu7_data.arb_table_start = tmp;
2502 
2503 	error |= (0 != result);
2504 
2505 	result = smu7_read_smc_sram_dword(hwmgr,
2506 			SMU7_FIRMWARE_HEADER_LOCATION +
2507 			offsetof(SMU73_Firmware_Header, Version),
2508 			&tmp, SMC_RAM_END);
2509 
2510 	if (!result)
2511 		hwmgr->microcode_version_info.SMC = tmp;
2512 
2513 	error |= (0 != result);
2514 
2515 	return error ? -1 : 0;
2516 }
2517 
fiji_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2518 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2519 {
2520 
2521 	/* Program additional LP registers
2522 	 * that are no longer programmed by VBIOS
2523 	 */
2524 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2525 			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2526 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2527 			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2528 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2529 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2530 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2531 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2532 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2533 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2534 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2535 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2536 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2537 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2538 
2539 	return 0;
2540 }
2541 
fiji_is_dpm_running(struct pp_hwmgr * hwmgr)2542 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2543 {
2544 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2545 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2546 			? true : false;
2547 }
2548 
fiji_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)2549 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2550 				void *profile_setting)
2551 {
2552 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2553 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2554 			(hwmgr->smu_backend);
2555 	struct profile_mode_setting *setting;
2556 	struct SMU73_Discrete_GraphicsLevel *levels =
2557 			smu_data->smc_state_table.GraphicsLevel;
2558 	uint32_t array = smu_data->smu7_data.dpm_table_start +
2559 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2560 
2561 	uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2562 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2563 	struct SMU73_Discrete_MemoryLevel *mclk_levels =
2564 			smu_data->smc_state_table.MemoryLevel;
2565 	uint32_t i;
2566 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2567 
2568 	if (profile_setting == NULL)
2569 		return -EINVAL;
2570 
2571 	setting = (struct profile_mode_setting *)profile_setting;
2572 
2573 	if (setting->bupdate_sclk) {
2574 		if (!data->sclk_dpm_key_disabled)
2575 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2576 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2577 			if (levels[i].ActivityLevel !=
2578 				cpu_to_be16(setting->sclk_activity)) {
2579 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2580 
2581 				clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2582 						+ offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2583 				offset = clk_activity_offset & ~0x3;
2584 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2585 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2586 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2587 
2588 			}
2589 			if (levels[i].UpHyst != setting->sclk_up_hyst ||
2590 				levels[i].DownHyst != setting->sclk_down_hyst) {
2591 				levels[i].UpHyst = setting->sclk_up_hyst;
2592 				levels[i].DownHyst = setting->sclk_down_hyst;
2593 				up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2594 						+ offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2595 				down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2596 						+ offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2597 				offset = up_hyst_offset & ~0x3;
2598 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2599 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2600 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2601 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2602 			}
2603 		}
2604 		if (!data->sclk_dpm_key_disabled)
2605 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2606 	}
2607 
2608 	if (setting->bupdate_mclk) {
2609 		if (!data->mclk_dpm_key_disabled)
2610 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2611 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2612 			if (mclk_levels[i].ActivityLevel !=
2613 				cpu_to_be16(setting->mclk_activity)) {
2614 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2615 
2616 				clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2617 						+ offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2618 				offset = clk_activity_offset & ~0x3;
2619 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2620 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2621 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2622 
2623 			}
2624 			if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2625 				mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2626 				mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2627 				mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2628 				up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2629 						+ offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2630 				down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2631 						+ offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2632 				offset = up_hyst_offset & ~0x3;
2633 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2634 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2635 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2636 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2637 			}
2638 		}
2639 		if (!data->mclk_dpm_key_disabled)
2640 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2641 	}
2642 	return 0;
2643 }
2644 
2645 const struct pp_smumgr_func fiji_smu_funcs = {
2646 	.name = "fiji_smu",
2647 	.smu_init = &fiji_smu_init,
2648 	.smu_fini = &smu7_smu_fini,
2649 	.start_smu = &fiji_start_smu,
2650 	.check_fw_load_finish = &smu7_check_fw_load_finish,
2651 	.request_smu_load_fw = &smu7_reload_firmware,
2652 	.request_smu_load_specific_fw = NULL,
2653 	.send_msg_to_smc = &smu7_send_msg_to_smc,
2654 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2655 	.download_pptable_settings = NULL,
2656 	.upload_pptable_settings = NULL,
2657 	.update_smc_table = fiji_update_smc_table,
2658 	.get_offsetof = fiji_get_offsetof,
2659 	.process_firmware_header = fiji_process_firmware_header,
2660 	.init_smc_table = fiji_init_smc_table,
2661 	.update_sclk_threshold = fiji_update_sclk_threshold,
2662 	.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2663 	.thermal_avfs_enable = fiji_thermal_avfs_enable,
2664 	.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2665 	.populate_all_memory_levels = fiji_populate_all_memory_levels,
2666 	.get_mac_definition = fiji_get_mac_definition,
2667 	.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2668 	.is_dpm_running = fiji_is_dpm_running,
2669 	.is_hw_avfs_present = fiji_is_hw_avfs_present,
2670 	.update_dpm_settings = fiji_update_dpm_settings,
2671 };
2672