1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for sunxi SD/MMC host controllers
4 * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
5 * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
6 * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
7 * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
8 * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
9 * (C) Copyright 2017 Sootech SA
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk/sunxi-ng.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/core.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/sdio.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/module.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/reset.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39
40 /* register offset definitions */
41 #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
42 #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
43 #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
44 #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
45 #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
46 #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
47 #define SDXC_REG_CMDR (0x18) /* SMC Command Register */
48 #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
49 #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
50 #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
51 #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
52 #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
53 #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
54 #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
55 #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
56 #define SDXC_REG_STAS (0x3C) /* SMC Status Register */
57 #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
58 #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
59 #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
60 #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
61 #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
62 #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
63 #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
64 #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
65 #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
66 #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
67 #define SDXC_REG_CHDA (0x90)
68 #define SDXC_REG_CBDA (0x94)
69
70 /* New registers introduced in A64 */
71 #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
72 #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
73 #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
74 #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
75 #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
76
77 #define mmc_readl(host, reg) \
78 readl((host)->reg_base + SDXC_##reg)
79 #define mmc_writel(host, reg, value) \
80 writel((value), (host)->reg_base + SDXC_##reg)
81
82 /* global control register bits */
83 #define SDXC_SOFT_RESET BIT(0)
84 #define SDXC_FIFO_RESET BIT(1)
85 #define SDXC_DMA_RESET BIT(2)
86 #define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
87 #define SDXC_DMA_ENABLE_BIT BIT(5)
88 #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
89 #define SDXC_POSEDGE_LATCH_DATA BIT(9)
90 #define SDXC_DDR_MODE BIT(10)
91 #define SDXC_MEMORY_ACCESS_DONE BIT(29)
92 #define SDXC_ACCESS_DONE_DIRECT BIT(30)
93 #define SDXC_ACCESS_BY_AHB BIT(31)
94 #define SDXC_ACCESS_BY_DMA (0 << 31)
95 #define SDXC_HARDWARE_RESET \
96 (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
97
98 /* clock control bits */
99 #define SDXC_MASK_DATA0 BIT(31)
100 #define SDXC_CARD_CLOCK_ON BIT(16)
101 #define SDXC_LOW_POWER_ON BIT(17)
102
103 /* bus width */
104 #define SDXC_WIDTH1 0
105 #define SDXC_WIDTH4 1
106 #define SDXC_WIDTH8 2
107
108 /* smc command bits */
109 #define SDXC_RESP_EXPIRE BIT(6)
110 #define SDXC_LONG_RESPONSE BIT(7)
111 #define SDXC_CHECK_RESPONSE_CRC BIT(8)
112 #define SDXC_DATA_EXPIRE BIT(9)
113 #define SDXC_WRITE BIT(10)
114 #define SDXC_SEQUENCE_MODE BIT(11)
115 #define SDXC_SEND_AUTO_STOP BIT(12)
116 #define SDXC_WAIT_PRE_OVER BIT(13)
117 #define SDXC_STOP_ABORT_CMD BIT(14)
118 #define SDXC_SEND_INIT_SEQUENCE BIT(15)
119 #define SDXC_UPCLK_ONLY BIT(21)
120 #define SDXC_READ_CEATA_DEV BIT(22)
121 #define SDXC_CCS_EXPIRE BIT(23)
122 #define SDXC_ENABLE_BIT_BOOT BIT(24)
123 #define SDXC_ALT_BOOT_OPTIONS BIT(25)
124 #define SDXC_BOOT_ACK_EXPIRE BIT(26)
125 #define SDXC_BOOT_ABORT BIT(27)
126 #define SDXC_VOLTAGE_SWITCH BIT(28)
127 #define SDXC_USE_HOLD_REGISTER BIT(29)
128 #define SDXC_START BIT(31)
129
130 /* interrupt bits */
131 #define SDXC_RESP_ERROR BIT(1)
132 #define SDXC_COMMAND_DONE BIT(2)
133 #define SDXC_DATA_OVER BIT(3)
134 #define SDXC_TX_DATA_REQUEST BIT(4)
135 #define SDXC_RX_DATA_REQUEST BIT(5)
136 #define SDXC_RESP_CRC_ERROR BIT(6)
137 #define SDXC_DATA_CRC_ERROR BIT(7)
138 #define SDXC_RESP_TIMEOUT BIT(8)
139 #define SDXC_DATA_TIMEOUT BIT(9)
140 #define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
141 #define SDXC_FIFO_RUN_ERROR BIT(11)
142 #define SDXC_HARD_WARE_LOCKED BIT(12)
143 #define SDXC_START_BIT_ERROR BIT(13)
144 #define SDXC_AUTO_COMMAND_DONE BIT(14)
145 #define SDXC_END_BIT_ERROR BIT(15)
146 #define SDXC_SDIO_INTERRUPT BIT(16)
147 #define SDXC_CARD_INSERT BIT(30)
148 #define SDXC_CARD_REMOVE BIT(31)
149 #define SDXC_INTERRUPT_ERROR_BIT \
150 (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
151 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
152 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
153 #define SDXC_INTERRUPT_DONE_BIT \
154 (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
155 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
156
157 /* status */
158 #define SDXC_RXWL_FLAG BIT(0)
159 #define SDXC_TXWL_FLAG BIT(1)
160 #define SDXC_FIFO_EMPTY BIT(2)
161 #define SDXC_FIFO_FULL BIT(3)
162 #define SDXC_CARD_PRESENT BIT(8)
163 #define SDXC_CARD_DATA_BUSY BIT(9)
164 #define SDXC_DATA_FSM_BUSY BIT(10)
165 #define SDXC_DMA_REQUEST BIT(31)
166 #define SDXC_FIFO_SIZE 16
167
168 /* Function select */
169 #define SDXC_CEATA_ON (0xceaa << 16)
170 #define SDXC_SEND_IRQ_RESPONSE BIT(0)
171 #define SDXC_SDIO_READ_WAIT BIT(1)
172 #define SDXC_ABORT_READ_DATA BIT(2)
173 #define SDXC_SEND_CCSD BIT(8)
174 #define SDXC_SEND_AUTO_STOPCCSD BIT(9)
175 #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
176
177 /* IDMA controller bus mod bit field */
178 #define SDXC_IDMAC_SOFT_RESET BIT(0)
179 #define SDXC_IDMAC_FIX_BURST BIT(1)
180 #define SDXC_IDMAC_IDMA_ON BIT(7)
181 #define SDXC_IDMAC_REFETCH_DES BIT(31)
182
183 /* IDMA status bit field */
184 #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
185 #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
186 #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
187 #define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
188 #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
189 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
190 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
191 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
192 #define SDXC_IDMAC_IDLE (0 << 13)
193 #define SDXC_IDMAC_SUSPEND (1 << 13)
194 #define SDXC_IDMAC_DESC_READ (2 << 13)
195 #define SDXC_IDMAC_DESC_CHECK (3 << 13)
196 #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
197 #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
198 #define SDXC_IDMAC_READ (6 << 13)
199 #define SDXC_IDMAC_WRITE (7 << 13)
200 #define SDXC_IDMAC_DESC_CLOSE (8 << 13)
201
202 /*
203 * If the idma-des-size-bits of property is ie 13, bufsize bits are:
204 * Bits 0-12: buf1 size
205 * Bits 13-25: buf2 size
206 * Bits 26-31: not used
207 * Since we only ever set buf1 size, we can simply store it directly.
208 */
209 #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
210 #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
211 #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
212 #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
213 #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
214 #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
215 #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
216
217 #define SDXC_CLK_400K 0
218 #define SDXC_CLK_25M 1
219 #define SDXC_CLK_50M 2
220 #define SDXC_CLK_50M_DDR 3
221 #define SDXC_CLK_50M_DDR_8BIT 4
222
223 #define SDXC_2X_TIMING_MODE BIT(31)
224
225 #define SDXC_CAL_START BIT(15)
226 #define SDXC_CAL_DONE BIT(14)
227 #define SDXC_CAL_DL_SHIFT 8
228 #define SDXC_CAL_DL_SW_EN BIT(7)
229 #define SDXC_CAL_DL_SW_SHIFT 0
230 #define SDXC_CAL_DL_MASK 0x3f
231
232 #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
233
234 struct sunxi_mmc_clk_delay {
235 u32 output;
236 u32 sample;
237 };
238
239 struct sunxi_idma_des {
240 __le32 config;
241 __le32 buf_size;
242 __le32 buf_addr_ptr1;
243 __le32 buf_addr_ptr2;
244 };
245
246 struct sunxi_mmc_cfg {
247 u32 idma_des_size_bits;
248 u32 idma_des_shift;
249 const struct sunxi_mmc_clk_delay *clk_delays;
250
251 /* does the IP block support autocalibration? */
252 bool can_calibrate;
253
254 /* Does DATA0 needs to be masked while the clock is updated */
255 bool mask_data0;
256
257 /*
258 * hardware only supports new timing mode, either due to lack of
259 * a mode switch in the clock controller, or the mmc controller
260 * is permanently configured in the new timing mode, without the
261 * NTSR mode switch.
262 */
263 bool needs_new_timings;
264
265 /* clock hardware can switch between old and new timing modes */
266 bool ccu_has_timings_switch;
267 };
268
269 struct sunxi_mmc_host {
270 struct device *dev;
271 struct mmc_host *mmc;
272 struct reset_control *reset;
273 const struct sunxi_mmc_cfg *cfg;
274
275 /* IO mapping base */
276 void __iomem *reg_base;
277
278 /* clock management */
279 struct clk *clk_ahb;
280 struct clk *clk_mmc;
281 struct clk *clk_sample;
282 struct clk *clk_output;
283
284 /* irq */
285 spinlock_t lock;
286 int irq;
287 u32 int_sum;
288 u32 sdio_imask;
289
290 /* dma */
291 dma_addr_t sg_dma;
292 void *sg_cpu;
293 bool wait_dma;
294
295 struct mmc_request *mrq;
296 struct mmc_request *manual_stop_mrq;
297 int ferror;
298
299 /* vqmmc */
300 bool vqmmc_enabled;
301
302 /* timings */
303 bool use_new_timings;
304 };
305
sunxi_mmc_reset_host(struct sunxi_mmc_host * host)306 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
307 {
308 unsigned long expire = jiffies + msecs_to_jiffies(250);
309 u32 rval;
310
311 mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
312 do {
313 rval = mmc_readl(host, REG_GCTRL);
314 } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
315
316 if (rval & SDXC_HARDWARE_RESET) {
317 dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
318 return -EIO;
319 }
320
321 return 0;
322 }
323
sunxi_mmc_init_host(struct sunxi_mmc_host * host)324 static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
325 {
326 u32 rval;
327
328 if (sunxi_mmc_reset_host(host))
329 return -EIO;
330
331 /*
332 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
333 *
334 * TODO: sun9i has a larger FIFO and supports higher trigger values
335 */
336 mmc_writel(host, REG_FTRGL, 0x20070008);
337 /* Maximum timeout value */
338 mmc_writel(host, REG_TMOUT, 0xffffffff);
339 /* Unmask SDIO interrupt if needed */
340 mmc_writel(host, REG_IMASK, host->sdio_imask);
341 /* Clear all pending interrupts */
342 mmc_writel(host, REG_RINTR, 0xffffffff);
343 /* Debug register? undocumented */
344 mmc_writel(host, REG_DBGC, 0xdeb);
345 /* Enable CEATA support */
346 mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
347 /* Set DMA descriptor list base address */
348 mmc_writel(host, REG_DLBA, host->sg_dma >> host->cfg->idma_des_shift);
349
350 rval = mmc_readl(host, REG_GCTRL);
351 rval |= SDXC_INTERRUPT_ENABLE_BIT;
352 /* Undocumented, but found in Allwinner code */
353 rval &= ~SDXC_ACCESS_DONE_DIRECT;
354 mmc_writel(host, REG_GCTRL, rval);
355
356 return 0;
357 }
358
sunxi_mmc_init_idma_des(struct sunxi_mmc_host * host,struct mmc_data * data)359 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
360 struct mmc_data *data)
361 {
362 struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
363 dma_addr_t next_desc = host->sg_dma;
364 int i, max_len = (1 << host->cfg->idma_des_size_bits);
365
366 for (i = 0; i < data->sg_len; i++) {
367 pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
368 SDXC_IDMAC_DES0_OWN |
369 SDXC_IDMAC_DES0_DIC);
370
371 if (data->sg[i].length == max_len)
372 pdes[i].buf_size = 0; /* 0 == max_len */
373 else
374 pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
375
376 next_desc += sizeof(struct sunxi_idma_des);
377 pdes[i].buf_addr_ptr1 =
378 cpu_to_le32(sg_dma_address(&data->sg[i]) >>
379 host->cfg->idma_des_shift);
380 pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc >>
381 host->cfg->idma_des_shift);
382 }
383
384 pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
385 pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
386 SDXC_IDMAC_DES0_ER);
387 pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
388 pdes[i - 1].buf_addr_ptr2 = 0;
389
390 /*
391 * Avoid the io-store starting the idmac hitting io-mem before the
392 * descriptors hit the main-mem.
393 */
394 wmb();
395 }
396
sunxi_mmc_map_dma(struct sunxi_mmc_host * host,struct mmc_data * data)397 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
398 struct mmc_data *data)
399 {
400 u32 i, dma_len;
401 struct scatterlist *sg;
402
403 dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
404 mmc_get_dma_dir(data));
405 if (dma_len == 0) {
406 dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
407 return -ENOMEM;
408 }
409
410 for_each_sg(data->sg, sg, data->sg_len, i) {
411 if (sg->offset & 3 || sg->length & 3) {
412 dev_err(mmc_dev(host->mmc),
413 "unaligned scatterlist: os %x length %d\n",
414 sg->offset, sg->length);
415 return -EINVAL;
416 }
417 }
418
419 return 0;
420 }
421
sunxi_mmc_start_dma(struct sunxi_mmc_host * host,struct mmc_data * data)422 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
423 struct mmc_data *data)
424 {
425 u32 rval;
426
427 sunxi_mmc_init_idma_des(host, data);
428
429 rval = mmc_readl(host, REG_GCTRL);
430 rval |= SDXC_DMA_ENABLE_BIT;
431 mmc_writel(host, REG_GCTRL, rval);
432 rval |= SDXC_DMA_RESET;
433 mmc_writel(host, REG_GCTRL, rval);
434
435 mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
436
437 if (!(data->flags & MMC_DATA_WRITE))
438 mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
439
440 mmc_writel(host, REG_DMAC,
441 SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
442 }
443
sunxi_mmc_send_manual_stop(struct sunxi_mmc_host * host,struct mmc_request * req)444 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
445 struct mmc_request *req)
446 {
447 u32 arg, cmd_val, ri;
448 unsigned long expire = jiffies + msecs_to_jiffies(1000);
449
450 cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
451 SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
452
453 if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
454 cmd_val |= SD_IO_RW_DIRECT;
455 arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
456 ((req->cmd->arg >> 28) & 0x7);
457 } else {
458 cmd_val |= MMC_STOP_TRANSMISSION;
459 arg = 0;
460 }
461
462 mmc_writel(host, REG_CARG, arg);
463 mmc_writel(host, REG_CMDR, cmd_val);
464
465 do {
466 ri = mmc_readl(host, REG_RINTR);
467 } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
468 time_before(jiffies, expire));
469
470 if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
471 dev_err(mmc_dev(host->mmc), "send stop command failed\n");
472 if (req->stop)
473 req->stop->resp[0] = -ETIMEDOUT;
474 } else {
475 if (req->stop)
476 req->stop->resp[0] = mmc_readl(host, REG_RESP0);
477 }
478
479 mmc_writel(host, REG_RINTR, 0xffff);
480 }
481
sunxi_mmc_dump_errinfo(struct sunxi_mmc_host * host)482 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
483 {
484 struct mmc_command *cmd = host->mrq->cmd;
485 struct mmc_data *data = host->mrq->data;
486
487 /* For some cmds timeout is normal with sd/mmc cards */
488 if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
489 SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
490 cmd->opcode == SD_IO_RW_DIRECT))
491 return;
492
493 dev_dbg(mmc_dev(host->mmc),
494 "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
495 host->mmc->index, cmd->opcode,
496 data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
497 host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
498 host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
499 host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
500 host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
501 host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
502 host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
503 host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
504 host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
505 host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
506 );
507 }
508
509 /* Called in interrupt context! */
sunxi_mmc_finalize_request(struct sunxi_mmc_host * host)510 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
511 {
512 struct mmc_request *mrq = host->mrq;
513 struct mmc_data *data = mrq->data;
514 u32 rval;
515
516 mmc_writel(host, REG_IMASK, host->sdio_imask);
517 mmc_writel(host, REG_IDIE, 0);
518
519 if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
520 sunxi_mmc_dump_errinfo(host);
521 mrq->cmd->error = -ETIMEDOUT;
522
523 if (data) {
524 data->error = -ETIMEDOUT;
525 host->manual_stop_mrq = mrq;
526 }
527
528 if (mrq->stop)
529 mrq->stop->error = -ETIMEDOUT;
530 } else {
531 if (mrq->cmd->flags & MMC_RSP_136) {
532 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
533 mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
534 mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
535 mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
536 } else {
537 mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
538 }
539
540 if (data)
541 data->bytes_xfered = data->blocks * data->blksz;
542 }
543
544 if (data) {
545 mmc_writel(host, REG_IDST, 0x337);
546 mmc_writel(host, REG_DMAC, 0);
547 rval = mmc_readl(host, REG_GCTRL);
548 rval |= SDXC_DMA_RESET;
549 mmc_writel(host, REG_GCTRL, rval);
550 rval &= ~SDXC_DMA_ENABLE_BIT;
551 mmc_writel(host, REG_GCTRL, rval);
552 rval |= SDXC_FIFO_RESET;
553 mmc_writel(host, REG_GCTRL, rval);
554 dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
555 mmc_get_dma_dir(data));
556 }
557
558 mmc_writel(host, REG_RINTR, 0xffff);
559
560 host->mrq = NULL;
561 host->int_sum = 0;
562 host->wait_dma = false;
563
564 return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
565 }
566
sunxi_mmc_irq(int irq,void * dev_id)567 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
568 {
569 struct sunxi_mmc_host *host = dev_id;
570 struct mmc_request *mrq;
571 u32 msk_int, idma_int;
572 bool finalize = false;
573 bool sdio_int = false;
574 irqreturn_t ret = IRQ_HANDLED;
575
576 spin_lock(&host->lock);
577
578 idma_int = mmc_readl(host, REG_IDST);
579 msk_int = mmc_readl(host, REG_MISTA);
580
581 dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
582 host->mrq, msk_int, idma_int);
583
584 mrq = host->mrq;
585 if (mrq) {
586 if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
587 host->wait_dma = false;
588
589 host->int_sum |= msk_int;
590
591 /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
592 if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
593 !(host->int_sum & SDXC_COMMAND_DONE))
594 mmc_writel(host, REG_IMASK,
595 host->sdio_imask | SDXC_COMMAND_DONE);
596 /* Don't wait for dma on error */
597 else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
598 finalize = true;
599 else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
600 !host->wait_dma)
601 finalize = true;
602 }
603
604 if (msk_int & SDXC_SDIO_INTERRUPT)
605 sdio_int = true;
606
607 mmc_writel(host, REG_RINTR, msk_int);
608 mmc_writel(host, REG_IDST, idma_int);
609
610 if (finalize)
611 ret = sunxi_mmc_finalize_request(host);
612
613 spin_unlock(&host->lock);
614
615 if (finalize && ret == IRQ_HANDLED)
616 mmc_request_done(host->mmc, mrq);
617
618 if (sdio_int)
619 mmc_signal_sdio_irq(host->mmc);
620
621 return ret;
622 }
623
sunxi_mmc_handle_manual_stop(int irq,void * dev_id)624 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
625 {
626 struct sunxi_mmc_host *host = dev_id;
627 struct mmc_request *mrq;
628 unsigned long iflags;
629
630 spin_lock_irqsave(&host->lock, iflags);
631 mrq = host->manual_stop_mrq;
632 spin_unlock_irqrestore(&host->lock, iflags);
633
634 if (!mrq) {
635 dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
636 return IRQ_HANDLED;
637 }
638
639 dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
640
641 /*
642 * We will never have more than one outstanding request,
643 * and we do not complete the request until after
644 * we've cleared host->manual_stop_mrq so we do not need to
645 * spin lock this function.
646 * Additionally we have wait states within this function
647 * so having it in a lock is a very bad idea.
648 */
649 sunxi_mmc_send_manual_stop(host, mrq);
650
651 spin_lock_irqsave(&host->lock, iflags);
652 host->manual_stop_mrq = NULL;
653 spin_unlock_irqrestore(&host->lock, iflags);
654
655 mmc_request_done(host->mmc, mrq);
656
657 return IRQ_HANDLED;
658 }
659
sunxi_mmc_oclk_onoff(struct sunxi_mmc_host * host,u32 oclk_en)660 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
661 {
662 unsigned long expire = jiffies + msecs_to_jiffies(750);
663 u32 rval;
664
665 dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
666 oclk_en ? "en" : "dis");
667
668 rval = mmc_readl(host, REG_CLKCR);
669 rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
670
671 if (oclk_en)
672 rval |= SDXC_CARD_CLOCK_ON;
673 if (host->cfg->mask_data0)
674 rval |= SDXC_MASK_DATA0;
675
676 mmc_writel(host, REG_CLKCR, rval);
677
678 rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
679 mmc_writel(host, REG_CMDR, rval);
680
681 do {
682 rval = mmc_readl(host, REG_CMDR);
683 } while (time_before(jiffies, expire) && (rval & SDXC_START));
684
685 /* clear irq status bits set by the command */
686 mmc_writel(host, REG_RINTR,
687 mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
688
689 if (rval & SDXC_START) {
690 dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
691 return -EIO;
692 }
693
694 if (host->cfg->mask_data0) {
695 rval = mmc_readl(host, REG_CLKCR);
696 mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
697 }
698
699 return 0;
700 }
701
sunxi_mmc_calibrate(struct sunxi_mmc_host * host,int reg_off)702 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
703 {
704 if (!host->cfg->can_calibrate)
705 return 0;
706
707 /*
708 * FIXME:
709 * This is not clear how the calibration is supposed to work
710 * yet. The best rate have been obtained by simply setting the
711 * delay to 0, as Allwinner does in its BSP.
712 *
713 * The only mode that doesn't have such a delay is HS400, that
714 * is in itself a TODO.
715 */
716 writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
717
718 return 0;
719 }
720
sunxi_mmc_clk_set_phase(struct sunxi_mmc_host * host,struct mmc_ios * ios,u32 rate)721 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
722 struct mmc_ios *ios, u32 rate)
723 {
724 int index;
725
726 /* clk controller delays not used under new timings mode */
727 if (host->use_new_timings)
728 return 0;
729
730 /* some old controllers don't support delays */
731 if (!host->cfg->clk_delays)
732 return 0;
733
734 /* determine delays */
735 if (rate <= 400000) {
736 index = SDXC_CLK_400K;
737 } else if (rate <= 25000000) {
738 index = SDXC_CLK_25M;
739 } else if (rate <= 52000000) {
740 if (ios->timing != MMC_TIMING_UHS_DDR50 &&
741 ios->timing != MMC_TIMING_MMC_DDR52) {
742 index = SDXC_CLK_50M;
743 } else if (ios->bus_width == MMC_BUS_WIDTH_8) {
744 index = SDXC_CLK_50M_DDR_8BIT;
745 } else {
746 index = SDXC_CLK_50M_DDR;
747 }
748 } else {
749 dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
750 return -EINVAL;
751 }
752
753 clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
754 clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
755
756 return 0;
757 }
758
sunxi_mmc_clk_set_rate(struct sunxi_mmc_host * host,struct mmc_ios * ios)759 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
760 struct mmc_ios *ios)
761 {
762 struct mmc_host *mmc = host->mmc;
763 long rate;
764 u32 rval, clock = ios->clock, div = 1;
765 int ret;
766
767 ret = sunxi_mmc_oclk_onoff(host, 0);
768 if (ret)
769 return ret;
770
771 /* Our clock is gated now */
772 mmc->actual_clock = 0;
773
774 if (!ios->clock)
775 return 0;
776
777 /*
778 * Under the old timing mode, 8 bit DDR requires the module
779 * clock to be double the card clock. Under the new timing
780 * mode, all DDR modes require a doubled module clock.
781 *
782 * We currently only support the standard MMC DDR52 mode.
783 * This block should be updated once support for other DDR
784 * modes is added.
785 */
786 if (ios->timing == MMC_TIMING_MMC_DDR52 &&
787 (host->use_new_timings ||
788 ios->bus_width == MMC_BUS_WIDTH_8)) {
789 div = 2;
790 clock <<= 1;
791 }
792
793 if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
794 ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
795 if (ret) {
796 dev_err(mmc_dev(mmc),
797 "error setting new timing mode\n");
798 return ret;
799 }
800 }
801
802 rate = clk_round_rate(host->clk_mmc, clock);
803 if (rate < 0) {
804 dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
805 clock, rate);
806 return rate;
807 }
808 dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
809 clock, rate);
810
811 /* setting clock rate */
812 ret = clk_set_rate(host->clk_mmc, rate);
813 if (ret) {
814 dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
815 rate, ret);
816 return ret;
817 }
818
819 /* set internal divider */
820 rval = mmc_readl(host, REG_CLKCR);
821 rval &= ~0xff;
822 rval |= div - 1;
823 mmc_writel(host, REG_CLKCR, rval);
824
825 /* update card clock rate to account for internal divider */
826 rate /= div;
827
828 /*
829 * Configure the controller to use the new timing mode if needed.
830 * On controllers that only support the new timing mode, such as
831 * the eMMC controller on the A64, this register does not exist,
832 * and any writes to it are ignored.
833 */
834 if (host->use_new_timings) {
835 /* Don't touch the delay bits */
836 rval = mmc_readl(host, REG_SD_NTSR);
837 rval |= SDXC_2X_TIMING_MODE;
838 mmc_writel(host, REG_SD_NTSR, rval);
839 }
840
841 /* sunxi_mmc_clk_set_phase expects the actual card clock rate */
842 ret = sunxi_mmc_clk_set_phase(host, ios, rate);
843 if (ret)
844 return ret;
845
846 ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
847 if (ret)
848 return ret;
849
850 /*
851 * FIXME:
852 *
853 * In HS400 we'll also need to calibrate the data strobe
854 * signal. This should only happen on the MMC2 controller (at
855 * least on the A64).
856 */
857
858 ret = sunxi_mmc_oclk_onoff(host, 1);
859 if (ret)
860 return ret;
861
862 /* And we just enabled our clock back */
863 mmc->actual_clock = rate;
864
865 return 0;
866 }
867
sunxi_mmc_set_bus_width(struct sunxi_mmc_host * host,unsigned char width)868 static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
869 unsigned char width)
870 {
871 switch (width) {
872 case MMC_BUS_WIDTH_1:
873 mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
874 break;
875 case MMC_BUS_WIDTH_4:
876 mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
877 break;
878 case MMC_BUS_WIDTH_8:
879 mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
880 break;
881 }
882 }
883
sunxi_mmc_set_clk(struct sunxi_mmc_host * host,struct mmc_ios * ios)884 static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
885 {
886 u32 rval;
887
888 /* set ddr mode */
889 rval = mmc_readl(host, REG_GCTRL);
890 if (ios->timing == MMC_TIMING_UHS_DDR50 ||
891 ios->timing == MMC_TIMING_MMC_DDR52)
892 rval |= SDXC_DDR_MODE;
893 else
894 rval &= ~SDXC_DDR_MODE;
895 mmc_writel(host, REG_GCTRL, rval);
896
897 host->ferror = sunxi_mmc_clk_set_rate(host, ios);
898 /* Android code had a usleep_range(50000, 55000); here */
899 }
900
sunxi_mmc_card_power(struct sunxi_mmc_host * host,struct mmc_ios * ios)901 static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
902 struct mmc_ios *ios)
903 {
904 struct mmc_host *mmc = host->mmc;
905
906 switch (ios->power_mode) {
907 case MMC_POWER_UP:
908 dev_dbg(mmc_dev(mmc), "Powering card up\n");
909
910 if (!IS_ERR(mmc->supply.vmmc)) {
911 host->ferror = mmc_regulator_set_ocr(mmc,
912 mmc->supply.vmmc,
913 ios->vdd);
914 if (host->ferror)
915 return;
916 }
917
918 if (!IS_ERR(mmc->supply.vqmmc)) {
919 host->ferror = regulator_enable(mmc->supply.vqmmc);
920 if (host->ferror) {
921 dev_err(mmc_dev(mmc),
922 "failed to enable vqmmc\n");
923 return;
924 }
925 host->vqmmc_enabled = true;
926 }
927 break;
928
929 case MMC_POWER_OFF:
930 dev_dbg(mmc_dev(mmc), "Powering card off\n");
931
932 if (!IS_ERR(mmc->supply.vmmc))
933 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
934
935 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
936 regulator_disable(mmc->supply.vqmmc);
937
938 host->vqmmc_enabled = false;
939 break;
940
941 default:
942 dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
943 break;
944 }
945 }
946
sunxi_mmc_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)947 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
948 {
949 struct sunxi_mmc_host *host = mmc_priv(mmc);
950
951 sunxi_mmc_card_power(host, ios);
952 sunxi_mmc_set_bus_width(host, ios->bus_width);
953 sunxi_mmc_set_clk(host, ios);
954 }
955
sunxi_mmc_volt_switch(struct mmc_host * mmc,struct mmc_ios * ios)956 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
957 {
958 int ret;
959
960 /* vqmmc regulator is available */
961 if (!IS_ERR(mmc->supply.vqmmc)) {
962 ret = mmc_regulator_set_vqmmc(mmc, ios);
963 return ret < 0 ? ret : 0;
964 }
965
966 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */
967 if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
968 return 0;
969
970 return -EINVAL;
971 }
972
sunxi_mmc_enable_sdio_irq(struct mmc_host * mmc,int enable)973 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
974 {
975 struct sunxi_mmc_host *host = mmc_priv(mmc);
976 unsigned long flags;
977 u32 imask;
978
979 if (enable)
980 pm_runtime_get_noresume(host->dev);
981
982 spin_lock_irqsave(&host->lock, flags);
983
984 imask = mmc_readl(host, REG_IMASK);
985 if (enable) {
986 host->sdio_imask = SDXC_SDIO_INTERRUPT;
987 imask |= SDXC_SDIO_INTERRUPT;
988 } else {
989 host->sdio_imask = 0;
990 imask &= ~SDXC_SDIO_INTERRUPT;
991 }
992 mmc_writel(host, REG_IMASK, imask);
993 spin_unlock_irqrestore(&host->lock, flags);
994
995 if (!enable)
996 pm_runtime_put_noidle(host->mmc->parent);
997 }
998
sunxi_mmc_hw_reset(struct mmc_host * mmc)999 static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
1000 {
1001 struct sunxi_mmc_host *host = mmc_priv(mmc);
1002 mmc_writel(host, REG_HWRST, 0);
1003 udelay(10);
1004 mmc_writel(host, REG_HWRST, 1);
1005 udelay(300);
1006 }
1007
sunxi_mmc_request(struct mmc_host * mmc,struct mmc_request * mrq)1008 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
1009 {
1010 struct sunxi_mmc_host *host = mmc_priv(mmc);
1011 struct mmc_command *cmd = mrq->cmd;
1012 struct mmc_data *data = mrq->data;
1013 unsigned long iflags;
1014 u32 imask = SDXC_INTERRUPT_ERROR_BIT;
1015 u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
1016 bool wait_dma = host->wait_dma;
1017 int ret;
1018
1019 /* Check for set_ios errors (should never happen) */
1020 if (host->ferror) {
1021 mrq->cmd->error = host->ferror;
1022 mmc_request_done(mmc, mrq);
1023 return;
1024 }
1025
1026 if (data) {
1027 ret = sunxi_mmc_map_dma(host, data);
1028 if (ret < 0) {
1029 dev_err(mmc_dev(mmc), "map DMA failed\n");
1030 cmd->error = ret;
1031 data->error = ret;
1032 mmc_request_done(mmc, mrq);
1033 return;
1034 }
1035 }
1036
1037 if (cmd->opcode == MMC_GO_IDLE_STATE) {
1038 cmd_val |= SDXC_SEND_INIT_SEQUENCE;
1039 imask |= SDXC_COMMAND_DONE;
1040 }
1041
1042 if (cmd->flags & MMC_RSP_PRESENT) {
1043 cmd_val |= SDXC_RESP_EXPIRE;
1044 if (cmd->flags & MMC_RSP_136)
1045 cmd_val |= SDXC_LONG_RESPONSE;
1046 if (cmd->flags & MMC_RSP_CRC)
1047 cmd_val |= SDXC_CHECK_RESPONSE_CRC;
1048
1049 if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
1050 cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
1051
1052 if (cmd->data->stop) {
1053 imask |= SDXC_AUTO_COMMAND_DONE;
1054 cmd_val |= SDXC_SEND_AUTO_STOP;
1055 } else {
1056 imask |= SDXC_DATA_OVER;
1057 }
1058
1059 if (cmd->data->flags & MMC_DATA_WRITE)
1060 cmd_val |= SDXC_WRITE;
1061 else
1062 wait_dma = true;
1063 } else {
1064 imask |= SDXC_COMMAND_DONE;
1065 }
1066 } else {
1067 imask |= SDXC_COMMAND_DONE;
1068 }
1069
1070 dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1071 cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1072 mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1073
1074 spin_lock_irqsave(&host->lock, iflags);
1075
1076 if (host->mrq || host->manual_stop_mrq) {
1077 spin_unlock_irqrestore(&host->lock, iflags);
1078
1079 if (data)
1080 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1081 mmc_get_dma_dir(data));
1082
1083 dev_err(mmc_dev(mmc), "request already pending\n");
1084 mrq->cmd->error = -EBUSY;
1085 mmc_request_done(mmc, mrq);
1086 return;
1087 }
1088
1089 if (data) {
1090 mmc_writel(host, REG_BLKSZ, data->blksz);
1091 mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1092 sunxi_mmc_start_dma(host, data);
1093 }
1094
1095 host->mrq = mrq;
1096 host->wait_dma = wait_dma;
1097 mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1098 mmc_writel(host, REG_CARG, cmd->arg);
1099 mmc_writel(host, REG_CMDR, cmd_val);
1100
1101 spin_unlock_irqrestore(&host->lock, iflags);
1102 }
1103
sunxi_mmc_card_busy(struct mmc_host * mmc)1104 static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1105 {
1106 struct sunxi_mmc_host *host = mmc_priv(mmc);
1107
1108 return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1109 }
1110
1111 static const struct mmc_host_ops sunxi_mmc_ops = {
1112 .request = sunxi_mmc_request,
1113 .set_ios = sunxi_mmc_set_ios,
1114 .get_ro = mmc_gpio_get_ro,
1115 .get_cd = mmc_gpio_get_cd,
1116 .enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1117 .start_signal_voltage_switch = sunxi_mmc_volt_switch,
1118 .hw_reset = sunxi_mmc_hw_reset,
1119 .card_busy = sunxi_mmc_card_busy,
1120 };
1121
1122 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1123 [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
1124 [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
1125 [SDXC_CLK_50M] = { .output = 90, .sample = 120 },
1126 [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
1127 /* Value from A83T "new timing mode". Works but might not be right. */
1128 [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
1129 };
1130
1131 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1132 [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
1133 [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
1134 [SDXC_CLK_50M] = { .output = 150, .sample = 120 },
1135 [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
1136 [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
1137 };
1138
1139 static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1140 .idma_des_size_bits = 13,
1141 .clk_delays = NULL,
1142 .can_calibrate = false,
1143 };
1144
1145 static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1146 .idma_des_size_bits = 16,
1147 .clk_delays = NULL,
1148 .can_calibrate = false,
1149 };
1150
1151 static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1152 .idma_des_size_bits = 16,
1153 .clk_delays = sunxi_mmc_clk_delays,
1154 .can_calibrate = false,
1155 };
1156
1157 static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
1158 .idma_des_size_bits = 16,
1159 .clk_delays = sunxi_mmc_clk_delays,
1160 .can_calibrate = false,
1161 .ccu_has_timings_switch = true,
1162 };
1163
1164 static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1165 .idma_des_size_bits = 16,
1166 .clk_delays = sun9i_mmc_clk_delays,
1167 .can_calibrate = false,
1168 };
1169
1170 static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1171 .idma_des_size_bits = 16,
1172 .clk_delays = NULL,
1173 .can_calibrate = true,
1174 .mask_data0 = true,
1175 .needs_new_timings = true,
1176 };
1177
1178 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1179 .idma_des_size_bits = 13,
1180 .clk_delays = NULL,
1181 .can_calibrate = true,
1182 .needs_new_timings = true,
1183 };
1184
1185 static const struct sunxi_mmc_cfg sun50i_a100_cfg = {
1186 .idma_des_size_bits = 16,
1187 .idma_des_shift = 2,
1188 .clk_delays = NULL,
1189 .can_calibrate = true,
1190 .mask_data0 = true,
1191 .needs_new_timings = true,
1192 };
1193
1194 static const struct sunxi_mmc_cfg sun50i_a100_emmc_cfg = {
1195 .idma_des_size_bits = 13,
1196 .idma_des_shift = 2,
1197 .clk_delays = NULL,
1198 .can_calibrate = true,
1199 .needs_new_timings = true,
1200 };
1201
1202 static const struct of_device_id sunxi_mmc_of_match[] = {
1203 { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1204 { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1205 { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1206 { .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
1207 { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1208 { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1209 { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1210 { .compatible = "allwinner,sun50i-a100-mmc", .data = &sun50i_a100_cfg },
1211 { .compatible = "allwinner,sun50i-a100-emmc", .data = &sun50i_a100_emmc_cfg },
1212 { /* sentinel */ }
1213 };
1214 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1215
sunxi_mmc_enable(struct sunxi_mmc_host * host)1216 static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
1217 {
1218 int ret;
1219
1220 if (!IS_ERR(host->reset)) {
1221 ret = reset_control_reset(host->reset);
1222 if (ret) {
1223 dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
1224 ret);
1225 return ret;
1226 }
1227 }
1228
1229 ret = clk_prepare_enable(host->clk_ahb);
1230 if (ret) {
1231 dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
1232 goto error_assert_reset;
1233 }
1234
1235 ret = clk_prepare_enable(host->clk_mmc);
1236 if (ret) {
1237 dev_err(host->dev, "Enable mmc clk err %d\n", ret);
1238 goto error_disable_clk_ahb;
1239 }
1240
1241 ret = clk_prepare_enable(host->clk_output);
1242 if (ret) {
1243 dev_err(host->dev, "Enable output clk err %d\n", ret);
1244 goto error_disable_clk_mmc;
1245 }
1246
1247 ret = clk_prepare_enable(host->clk_sample);
1248 if (ret) {
1249 dev_err(host->dev, "Enable sample clk err %d\n", ret);
1250 goto error_disable_clk_output;
1251 }
1252
1253 /*
1254 * Sometimes the controller asserts the irq on boot for some reason,
1255 * make sure the controller is in a sane state before enabling irqs.
1256 */
1257 ret = sunxi_mmc_reset_host(host);
1258 if (ret)
1259 goto error_disable_clk_sample;
1260
1261 return 0;
1262
1263 error_disable_clk_sample:
1264 clk_disable_unprepare(host->clk_sample);
1265 error_disable_clk_output:
1266 clk_disable_unprepare(host->clk_output);
1267 error_disable_clk_mmc:
1268 clk_disable_unprepare(host->clk_mmc);
1269 error_disable_clk_ahb:
1270 clk_disable_unprepare(host->clk_ahb);
1271 error_assert_reset:
1272 if (!IS_ERR(host->reset))
1273 reset_control_assert(host->reset);
1274 return ret;
1275 }
1276
sunxi_mmc_disable(struct sunxi_mmc_host * host)1277 static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
1278 {
1279 sunxi_mmc_reset_host(host);
1280
1281 clk_disable_unprepare(host->clk_sample);
1282 clk_disable_unprepare(host->clk_output);
1283 clk_disable_unprepare(host->clk_mmc);
1284 clk_disable_unprepare(host->clk_ahb);
1285
1286 if (!IS_ERR(host->reset))
1287 reset_control_assert(host->reset);
1288 }
1289
sunxi_mmc_resource_request(struct sunxi_mmc_host * host,struct platform_device * pdev)1290 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1291 struct platform_device *pdev)
1292 {
1293 int ret;
1294
1295 host->cfg = of_device_get_match_data(&pdev->dev);
1296 if (!host->cfg)
1297 return -EINVAL;
1298
1299 ret = mmc_regulator_get_supply(host->mmc);
1300 if (ret)
1301 return ret;
1302
1303 host->reg_base = devm_platform_ioremap_resource(pdev, 0);
1304 if (IS_ERR(host->reg_base))
1305 return PTR_ERR(host->reg_base);
1306
1307 host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1308 if (IS_ERR(host->clk_ahb)) {
1309 dev_err(&pdev->dev, "Could not get ahb clock\n");
1310 return PTR_ERR(host->clk_ahb);
1311 }
1312
1313 host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1314 if (IS_ERR(host->clk_mmc)) {
1315 dev_err(&pdev->dev, "Could not get mmc clock\n");
1316 return PTR_ERR(host->clk_mmc);
1317 }
1318
1319 if (host->cfg->clk_delays) {
1320 host->clk_output = devm_clk_get(&pdev->dev, "output");
1321 if (IS_ERR(host->clk_output)) {
1322 dev_err(&pdev->dev, "Could not get output clock\n");
1323 return PTR_ERR(host->clk_output);
1324 }
1325
1326 host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1327 if (IS_ERR(host->clk_sample)) {
1328 dev_err(&pdev->dev, "Could not get sample clock\n");
1329 return PTR_ERR(host->clk_sample);
1330 }
1331 }
1332
1333 host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
1334 "ahb");
1335 if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1336 return PTR_ERR(host->reset);
1337
1338 ret = sunxi_mmc_enable(host);
1339 if (ret)
1340 return ret;
1341
1342 host->irq = platform_get_irq(pdev, 0);
1343 if (host->irq <= 0) {
1344 ret = -EINVAL;
1345 goto error_disable_mmc;
1346 }
1347
1348 return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1349 sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1350
1351 error_disable_mmc:
1352 sunxi_mmc_disable(host);
1353 return ret;
1354 }
1355
sunxi_mmc_probe(struct platform_device * pdev)1356 static int sunxi_mmc_probe(struct platform_device *pdev)
1357 {
1358 struct sunxi_mmc_host *host;
1359 struct mmc_host *mmc;
1360 int ret;
1361
1362 mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1363 if (!mmc) {
1364 dev_err(&pdev->dev, "mmc alloc host failed\n");
1365 return -ENOMEM;
1366 }
1367 platform_set_drvdata(pdev, mmc);
1368
1369 host = mmc_priv(mmc);
1370 host->dev = &pdev->dev;
1371 host->mmc = mmc;
1372 spin_lock_init(&host->lock);
1373
1374 ret = sunxi_mmc_resource_request(host, pdev);
1375 if (ret)
1376 goto error_free_host;
1377
1378 host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1379 &host->sg_dma, GFP_KERNEL);
1380 if (!host->sg_cpu) {
1381 dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1382 ret = -ENOMEM;
1383 goto error_free_host;
1384 }
1385
1386 if (host->cfg->ccu_has_timings_switch) {
1387 /*
1388 * Supports both old and new timing modes.
1389 * Try setting the clk to new timing mode.
1390 */
1391 sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
1392
1393 /* And check the result */
1394 ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
1395 if (ret < 0) {
1396 /*
1397 * For whatever reason we were not able to get
1398 * the current active mode. Default to old mode.
1399 */
1400 dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
1401 host->use_new_timings = false;
1402 } else {
1403 host->use_new_timings = !!ret;
1404 }
1405 } else if (host->cfg->needs_new_timings) {
1406 /* Supports new timing mode only */
1407 host->use_new_timings = true;
1408 }
1409
1410 mmc->ops = &sunxi_mmc_ops;
1411 mmc->max_blk_count = 8192;
1412 mmc->max_blk_size = 4096;
1413 mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
1414 mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
1415 mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
1416 /* 400kHz ~ 52MHz */
1417 mmc->f_min = 400000;
1418 mmc->f_max = 52000000;
1419 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1420 MMC_CAP_SDIO_IRQ;
1421
1422 /*
1423 * Some H5 devices do not have signal traces precise enough to
1424 * use HS DDR mode for their eMMC chips.
1425 *
1426 * We still enable HS DDR modes for all the other controller
1427 * variants that support them.
1428 */
1429 if ((host->cfg->clk_delays || host->use_new_timings) &&
1430 !of_device_is_compatible(pdev->dev.of_node,
1431 "allwinner,sun50i-h5-emmc"))
1432 mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
1433
1434 ret = mmc_of_parse(mmc);
1435 if (ret)
1436 goto error_free_dma;
1437
1438 /*
1439 * If we don't support delay chains in the SoC, we can't use any
1440 * of the higher speed modes. Mask them out in case the device
1441 * tree specifies the properties for them, which gets added to
1442 * the caps by mmc_of_parse() above.
1443 */
1444 if (!(host->cfg->clk_delays || host->use_new_timings)) {
1445 mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
1446 MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
1447 mmc->caps2 &= ~MMC_CAP2_HS200;
1448 }
1449
1450 /* TODO: This driver doesn't support HS400 mode yet */
1451 mmc->caps2 &= ~MMC_CAP2_HS400;
1452
1453 ret = sunxi_mmc_init_host(host);
1454 if (ret)
1455 goto error_free_dma;
1456
1457 pm_runtime_set_active(&pdev->dev);
1458 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1459 pm_runtime_use_autosuspend(&pdev->dev);
1460 pm_runtime_enable(&pdev->dev);
1461
1462 ret = mmc_add_host(mmc);
1463 if (ret)
1464 goto error_free_dma;
1465
1466 dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
1467 mmc->max_req_size >> 10,
1468 host->use_new_timings ? ", uses new timings mode" : "");
1469
1470 return 0;
1471
1472 error_free_dma:
1473 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1474 error_free_host:
1475 mmc_free_host(mmc);
1476 return ret;
1477 }
1478
sunxi_mmc_remove(struct platform_device * pdev)1479 static int sunxi_mmc_remove(struct platform_device *pdev)
1480 {
1481 struct mmc_host *mmc = platform_get_drvdata(pdev);
1482 struct sunxi_mmc_host *host = mmc_priv(mmc);
1483
1484 mmc_remove_host(mmc);
1485 pm_runtime_force_suspend(&pdev->dev);
1486 disable_irq(host->irq);
1487 sunxi_mmc_disable(host);
1488 dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1489 mmc_free_host(mmc);
1490
1491 return 0;
1492 }
1493
1494 #ifdef CONFIG_PM
sunxi_mmc_runtime_resume(struct device * dev)1495 static int sunxi_mmc_runtime_resume(struct device *dev)
1496 {
1497 struct mmc_host *mmc = dev_get_drvdata(dev);
1498 struct sunxi_mmc_host *host = mmc_priv(mmc);
1499 int ret;
1500
1501 ret = sunxi_mmc_enable(host);
1502 if (ret)
1503 return ret;
1504
1505 sunxi_mmc_init_host(host);
1506 sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
1507 sunxi_mmc_set_clk(host, &mmc->ios);
1508 enable_irq(host->irq);
1509
1510 return 0;
1511 }
1512
sunxi_mmc_runtime_suspend(struct device * dev)1513 static int sunxi_mmc_runtime_suspend(struct device *dev)
1514 {
1515 struct mmc_host *mmc = dev_get_drvdata(dev);
1516 struct sunxi_mmc_host *host = mmc_priv(mmc);
1517
1518 /*
1519 * When clocks are off, it's possible receiving
1520 * fake interrupts, which will stall the system.
1521 * Disabling the irq will prevent this.
1522 */
1523 disable_irq(host->irq);
1524 sunxi_mmc_reset_host(host);
1525 sunxi_mmc_disable(host);
1526
1527 return 0;
1528 }
1529 #endif
1530
1531 static const struct dev_pm_ops sunxi_mmc_pm_ops = {
1532 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1533 pm_runtime_force_resume)
1534 SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
1535 sunxi_mmc_runtime_resume,
1536 NULL)
1537 };
1538
1539 static struct platform_driver sunxi_mmc_driver = {
1540 .driver = {
1541 .name = "sunxi-mmc",
1542 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1543 .of_match_table = sunxi_mmc_of_match,
1544 .pm = &sunxi_mmc_pm_ops,
1545 },
1546 .probe = sunxi_mmc_probe,
1547 .remove = sunxi_mmc_remove,
1548 };
1549 module_platform_driver(sunxi_mmc_driver);
1550
1551 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1552 MODULE_LICENSE("GPL v2");
1553 MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
1554 MODULE_ALIAS("platform:sunxi-mmc");
1555