1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct pagevec;
20 
21 /*
22  * Bits in mapping->flags.
23  */
24 enum mapping_flags {
25 	AS_EIO		= 0,	/* IO error on async write */
26 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
27 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
28 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
29 	AS_EXITING	= 4, 	/* final truncate in progress */
30 	/* writeback related tags are not used */
31 	AS_NO_WRITEBACK_TAGS = 5,
32 };
33 
34 /**
35  * mapping_set_error - record a writeback error in the address_space
36  * @mapping - the mapping in which an error should be set
37  * @error - the error to set in the mapping
38  *
39  * When writeback fails in some way, we must record that error so that
40  * userspace can be informed when fsync and the like are called.  We endeavor
41  * to report errors on any file that was open at the time of the error.  Some
42  * internal callers also need to know when writeback errors have occurred.
43  *
44  * When a writeback error occurs, most filesystems will want to call
45  * mapping_set_error to record the error in the mapping so that it can be
46  * reported when the application calls fsync(2).
47  */
mapping_set_error(struct address_space * mapping,int error)48 static inline void mapping_set_error(struct address_space *mapping, int error)
49 {
50 	if (likely(!error))
51 		return;
52 
53 	/* Record in wb_err for checkers using errseq_t based tracking */
54 	filemap_set_wb_err(mapping, error);
55 
56 	/* Record it in flags for now, for legacy callers */
57 	if (error == -ENOSPC)
58 		set_bit(AS_ENOSPC, &mapping->flags);
59 	else
60 		set_bit(AS_EIO, &mapping->flags);
61 }
62 
mapping_set_unevictable(struct address_space * mapping)63 static inline void mapping_set_unevictable(struct address_space *mapping)
64 {
65 	set_bit(AS_UNEVICTABLE, &mapping->flags);
66 }
67 
mapping_clear_unevictable(struct address_space * mapping)68 static inline void mapping_clear_unevictable(struct address_space *mapping)
69 {
70 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
71 }
72 
mapping_unevictable(struct address_space * mapping)73 static inline int mapping_unevictable(struct address_space *mapping)
74 {
75 	if (mapping)
76 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
77 	return !!mapping;
78 }
79 
mapping_set_exiting(struct address_space * mapping)80 static inline void mapping_set_exiting(struct address_space *mapping)
81 {
82 	set_bit(AS_EXITING, &mapping->flags);
83 }
84 
mapping_exiting(struct address_space * mapping)85 static inline int mapping_exiting(struct address_space *mapping)
86 {
87 	return test_bit(AS_EXITING, &mapping->flags);
88 }
89 
mapping_set_no_writeback_tags(struct address_space * mapping)90 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
91 {
92 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
93 }
94 
mapping_use_writeback_tags(struct address_space * mapping)95 static inline int mapping_use_writeback_tags(struct address_space *mapping)
96 {
97 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
98 }
99 
mapping_gfp_mask(struct address_space * mapping)100 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
101 {
102 	return mapping->gfp_mask;
103 }
104 
105 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)106 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
107 		gfp_t gfp_mask)
108 {
109 	return mapping_gfp_mask(mapping) & gfp_mask;
110 }
111 
112 /*
113  * This is non-atomic.  Only to be used before the mapping is activated.
114  * Probably needs a barrier...
115  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)116 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
117 {
118 	m->gfp_mask = mask;
119 }
120 
121 void release_pages(struct page **pages, int nr);
122 
123 /*
124  * speculatively take a reference to a page.
125  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
126  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
127  *
128  * This function must be called inside the same rcu_read_lock() section as has
129  * been used to lookup the page in the pagecache radix-tree (or page table):
130  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
131  *
132  * Unless an RCU grace period has passed, the count of all pages coming out
133  * of the allocator must be considered unstable. page_count may return higher
134  * than expected, and put_page must be able to do the right thing when the
135  * page has been finished with, no matter what it is subsequently allocated
136  * for (because put_page is what is used here to drop an invalid speculative
137  * reference).
138  *
139  * This is the interesting part of the lockless pagecache (and lockless
140  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
141  * has the following pattern:
142  * 1. find page in radix tree
143  * 2. conditionally increment refcount
144  * 3. check the page is still in pagecache (if no, goto 1)
145  *
146  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
147  * following (with the i_pages lock held):
148  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
149  * B. remove page from pagecache
150  * C. free the page
151  *
152  * There are 2 critical interleavings that matter:
153  * - 2 runs before A: in this case, A sees elevated refcount and bails out
154  * - A runs before 2: in this case, 2 sees zero refcount and retries;
155  *   subsequently, B will complete and 1 will find no page, causing the
156  *   lookup to return NULL.
157  *
158  * It is possible that between 1 and 2, the page is removed then the exact same
159  * page is inserted into the same position in pagecache. That's OK: the
160  * old find_get_page using a lock could equally have run before or after
161  * such a re-insertion, depending on order that locks are granted.
162  *
163  * Lookups racing against pagecache insertion isn't a big problem: either 1
164  * will find the page or it will not. Likewise, the old find_get_page could run
165  * either before the insertion or afterwards, depending on timing.
166  */
__page_cache_add_speculative(struct page * page,int count)167 static inline int __page_cache_add_speculative(struct page *page, int count)
168 {
169 #ifdef CONFIG_TINY_RCU
170 # ifdef CONFIG_PREEMPT_COUNT
171 	VM_BUG_ON(!in_atomic() && !irqs_disabled());
172 # endif
173 	/*
174 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
175 	 * this for us.
176 	 *
177 	 * Pagecache won't be truncated from interrupt context, so if we have
178 	 * found a page in the radix tree here, we have pinned its refcount by
179 	 * disabling preempt, and hence no need for the "speculative get" that
180 	 * SMP requires.
181 	 */
182 	VM_BUG_ON_PAGE(page_count(page) == 0, page);
183 	page_ref_add(page, count);
184 
185 #else
186 	if (unlikely(!page_ref_add_unless(page, count, 0))) {
187 		/*
188 		 * Either the page has been freed, or will be freed.
189 		 * In either case, retry here and the caller should
190 		 * do the right thing (see comments above).
191 		 */
192 		return 0;
193 	}
194 #endif
195 	VM_BUG_ON_PAGE(PageTail(page), page);
196 
197 	return 1;
198 }
199 
page_cache_get_speculative(struct page * page)200 static inline int page_cache_get_speculative(struct page *page)
201 {
202 	return __page_cache_add_speculative(page, 1);
203 }
204 
page_cache_add_speculative(struct page * page,int count)205 static inline int page_cache_add_speculative(struct page *page, int count)
206 {
207 	return __page_cache_add_speculative(page, count);
208 }
209 
210 #ifdef CONFIG_NUMA
211 extern struct page *__page_cache_alloc(gfp_t gfp);
212 #else
__page_cache_alloc(gfp_t gfp)213 static inline struct page *__page_cache_alloc(gfp_t gfp)
214 {
215 	return alloc_pages(gfp, 0);
216 }
217 #endif
218 
page_cache_alloc(struct address_space * x)219 static inline struct page *page_cache_alloc(struct address_space *x)
220 {
221 	return __page_cache_alloc(mapping_gfp_mask(x));
222 }
223 
readahead_gfp_mask(struct address_space * x)224 static inline gfp_t readahead_gfp_mask(struct address_space *x)
225 {
226 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
227 }
228 
229 typedef int filler_t(void *, struct page *);
230 
231 pgoff_t page_cache_next_miss(struct address_space *mapping,
232 			     pgoff_t index, unsigned long max_scan);
233 pgoff_t page_cache_prev_miss(struct address_space *mapping,
234 			     pgoff_t index, unsigned long max_scan);
235 
236 #define FGP_ACCESSED		0x00000001
237 #define FGP_LOCK		0x00000002
238 #define FGP_CREAT		0x00000004
239 #define FGP_WRITE		0x00000008
240 #define FGP_NOFS		0x00000010
241 #define FGP_NOWAIT		0x00000020
242 #define FGP_FOR_MMAP		0x00000040
243 
244 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
245 		int fgp_flags, gfp_t cache_gfp_mask);
246 
247 /**
248  * find_get_page - find and get a page reference
249  * @mapping: the address_space to search
250  * @offset: the page index
251  *
252  * Looks up the page cache slot at @mapping & @offset.  If there is a
253  * page cache page, it is returned with an increased refcount.
254  *
255  * Otherwise, %NULL is returned.
256  */
find_get_page(struct address_space * mapping,pgoff_t offset)257 static inline struct page *find_get_page(struct address_space *mapping,
258 					pgoff_t offset)
259 {
260 	return pagecache_get_page(mapping, offset, 0, 0);
261 }
262 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)263 static inline struct page *find_get_page_flags(struct address_space *mapping,
264 					pgoff_t offset, int fgp_flags)
265 {
266 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
267 }
268 
269 /**
270  * find_lock_page - locate, pin and lock a pagecache page
271  * @mapping: the address_space to search
272  * @offset: the page index
273  *
274  * Looks up the page cache slot at @mapping & @offset.  If there is a
275  * page cache page, it is returned locked and with an increased
276  * refcount.
277  *
278  * Otherwise, %NULL is returned.
279  *
280  * find_lock_page() may sleep.
281  */
find_lock_page(struct address_space * mapping,pgoff_t offset)282 static inline struct page *find_lock_page(struct address_space *mapping,
283 					pgoff_t offset)
284 {
285 	return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
286 }
287 
288 /**
289  * find_or_create_page - locate or add a pagecache page
290  * @mapping: the page's address_space
291  * @index: the page's index into the mapping
292  * @gfp_mask: page allocation mode
293  *
294  * Looks up the page cache slot at @mapping & @offset.  If there is a
295  * page cache page, it is returned locked and with an increased
296  * refcount.
297  *
298  * If the page is not present, a new page is allocated using @gfp_mask
299  * and added to the page cache and the VM's LRU list.  The page is
300  * returned locked and with an increased refcount.
301  *
302  * On memory exhaustion, %NULL is returned.
303  *
304  * find_or_create_page() may sleep, even if @gfp_flags specifies an
305  * atomic allocation!
306  */
find_or_create_page(struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)307 static inline struct page *find_or_create_page(struct address_space *mapping,
308 					pgoff_t offset, gfp_t gfp_mask)
309 {
310 	return pagecache_get_page(mapping, offset,
311 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
312 					gfp_mask);
313 }
314 
315 /**
316  * grab_cache_page_nowait - returns locked page at given index in given cache
317  * @mapping: target address_space
318  * @index: the page index
319  *
320  * Same as grab_cache_page(), but do not wait if the page is unavailable.
321  * This is intended for speculative data generators, where the data can
322  * be regenerated if the page couldn't be grabbed.  This routine should
323  * be safe to call while holding the lock for another page.
324  *
325  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
326  * and deadlock against the caller's locked page.
327  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)328 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
329 				pgoff_t index)
330 {
331 	return pagecache_get_page(mapping, index,
332 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
333 			mapping_gfp_mask(mapping));
334 }
335 
find_subpage(struct page * page,pgoff_t offset)336 static inline struct page *find_subpage(struct page *page, pgoff_t offset)
337 {
338 	if (PageHuge(page))
339 		return page;
340 
341 	VM_BUG_ON_PAGE(PageTail(page), page);
342 
343 	return page + (offset & (compound_nr(page) - 1));
344 }
345 
346 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
347 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
348 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
349 			  unsigned int nr_entries, struct page **entries,
350 			  pgoff_t *indices);
351 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
352 			pgoff_t end, unsigned int nr_pages,
353 			struct page **pages);
find_get_pages(struct address_space * mapping,pgoff_t * start,unsigned int nr_pages,struct page ** pages)354 static inline unsigned find_get_pages(struct address_space *mapping,
355 			pgoff_t *start, unsigned int nr_pages,
356 			struct page **pages)
357 {
358 	return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
359 				    pages);
360 }
361 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
362 			       unsigned int nr_pages, struct page **pages);
363 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
364 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
365 			struct page **pages);
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)366 static inline unsigned find_get_pages_tag(struct address_space *mapping,
367 			pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
368 			struct page **pages)
369 {
370 	return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
371 					nr_pages, pages);
372 }
373 
374 struct page *grab_cache_page_write_begin(struct address_space *mapping,
375 			pgoff_t index, unsigned flags);
376 
377 /*
378  * Returns locked page at given index in given cache, creating it if needed.
379  */
grab_cache_page(struct address_space * mapping,pgoff_t index)380 static inline struct page *grab_cache_page(struct address_space *mapping,
381 								pgoff_t index)
382 {
383 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
384 }
385 
386 extern struct page * read_cache_page(struct address_space *mapping,
387 				pgoff_t index, filler_t *filler, void *data);
388 extern struct page * read_cache_page_gfp(struct address_space *mapping,
389 				pgoff_t index, gfp_t gfp_mask);
390 extern int read_cache_pages(struct address_space *mapping,
391 		struct list_head *pages, filler_t *filler, void *data);
392 
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)393 static inline struct page *read_mapping_page(struct address_space *mapping,
394 				pgoff_t index, void *data)
395 {
396 	return read_cache_page(mapping, index, NULL, data);
397 }
398 
399 /*
400  * Get index of the page with in radix-tree
401  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
402  */
page_to_index(struct page * page)403 static inline pgoff_t page_to_index(struct page *page)
404 {
405 	pgoff_t pgoff;
406 
407 	if (likely(!PageTransTail(page)))
408 		return page->index;
409 
410 	/*
411 	 *  We don't initialize ->index for tail pages: calculate based on
412 	 *  head page
413 	 */
414 	pgoff = compound_head(page)->index;
415 	pgoff += page - compound_head(page);
416 	return pgoff;
417 }
418 
419 /*
420  * Get the offset in PAGE_SIZE.
421  * (TODO: hugepage should have ->index in PAGE_SIZE)
422  */
page_to_pgoff(struct page * page)423 static inline pgoff_t page_to_pgoff(struct page *page)
424 {
425 	if (unlikely(PageHeadHuge(page)))
426 		return page->index << compound_order(page);
427 
428 	return page_to_index(page);
429 }
430 
431 /*
432  * Return byte-offset into filesystem object for page.
433  */
page_offset(struct page * page)434 static inline loff_t page_offset(struct page *page)
435 {
436 	return ((loff_t)page->index) << PAGE_SHIFT;
437 }
438 
page_file_offset(struct page * page)439 static inline loff_t page_file_offset(struct page *page)
440 {
441 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
442 }
443 
444 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
445 				     unsigned long address);
446 
linear_page_index(struct vm_area_struct * vma,unsigned long address)447 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
448 					unsigned long address)
449 {
450 	pgoff_t pgoff;
451 	if (unlikely(is_vm_hugetlb_page(vma)))
452 		return linear_hugepage_index(vma, address);
453 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
454 	pgoff += vma->vm_pgoff;
455 	return pgoff;
456 }
457 
458 extern void __lock_page(struct page *page);
459 extern int __lock_page_killable(struct page *page);
460 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
461 				unsigned int flags);
462 extern void unlock_page(struct page *page);
463 
464 /*
465  * Return true if the page was successfully locked
466  */
trylock_page(struct page * page)467 static inline int trylock_page(struct page *page)
468 {
469 	page = compound_head(page);
470 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
471 }
472 
473 /*
474  * lock_page may only be called if we have the page's inode pinned.
475  */
lock_page(struct page * page)476 static inline void lock_page(struct page *page)
477 {
478 	might_sleep();
479 	if (!trylock_page(page))
480 		__lock_page(page);
481 }
482 
483 /*
484  * lock_page_killable is like lock_page but can be interrupted by fatal
485  * signals.  It returns 0 if it locked the page and -EINTR if it was
486  * killed while waiting.
487  */
lock_page_killable(struct page * page)488 static inline int lock_page_killable(struct page *page)
489 {
490 	might_sleep();
491 	if (!trylock_page(page))
492 		return __lock_page_killable(page);
493 	return 0;
494 }
495 
496 /*
497  * lock_page_or_retry - Lock the page, unless this would block and the
498  * caller indicated that it can handle a retry.
499  *
500  * Return value and mmap_sem implications depend on flags; see
501  * __lock_page_or_retry().
502  */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)503 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
504 				     unsigned int flags)
505 {
506 	might_sleep();
507 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
508 }
509 
510 /*
511  * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
512  * and should not be used directly.
513  */
514 extern void wait_on_page_bit(struct page *page, int bit_nr);
515 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
516 
517 /*
518  * Wait for a page to be unlocked.
519  *
520  * This must be called with the caller "holding" the page,
521  * ie with increased "page->count" so that the page won't
522  * go away during the wait..
523  */
wait_on_page_locked(struct page * page)524 static inline void wait_on_page_locked(struct page *page)
525 {
526 	if (PageLocked(page))
527 		wait_on_page_bit(compound_head(page), PG_locked);
528 }
529 
wait_on_page_locked_killable(struct page * page)530 static inline int wait_on_page_locked_killable(struct page *page)
531 {
532 	if (!PageLocked(page))
533 		return 0;
534 	return wait_on_page_bit_killable(compound_head(page), PG_locked);
535 }
536 
537 extern void put_and_wait_on_page_locked(struct page *page);
538 
539 void wait_on_page_writeback(struct page *page);
540 extern void end_page_writeback(struct page *page);
541 void wait_for_stable_page(struct page *page);
542 
543 void page_endio(struct page *page, bool is_write, int err);
544 
545 /*
546  * Add an arbitrary waiter to a page's wait queue
547  */
548 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
549 
550 /*
551  * Fault everything in given userspace address range in.
552  */
fault_in_pages_writeable(char __user * uaddr,int size)553 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
554 {
555 	char __user *end = uaddr + size - 1;
556 
557 	if (unlikely(size == 0))
558 		return 0;
559 
560 	if (unlikely(uaddr > end))
561 		return -EFAULT;
562 	/*
563 	 * Writing zeroes into userspace here is OK, because we know that if
564 	 * the zero gets there, we'll be overwriting it.
565 	 */
566 	do {
567 		if (unlikely(__put_user(0, uaddr) != 0))
568 			return -EFAULT;
569 		uaddr += PAGE_SIZE;
570 	} while (uaddr <= end);
571 
572 	/* Check whether the range spilled into the next page. */
573 	if (((unsigned long)uaddr & PAGE_MASK) ==
574 			((unsigned long)end & PAGE_MASK))
575 		return __put_user(0, end);
576 
577 	return 0;
578 }
579 
fault_in_pages_readable(const char __user * uaddr,int size)580 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
581 {
582 	volatile char c;
583 	const char __user *end = uaddr + size - 1;
584 
585 	if (unlikely(size == 0))
586 		return 0;
587 
588 	if (unlikely(uaddr > end))
589 		return -EFAULT;
590 
591 	do {
592 		if (unlikely(__get_user(c, uaddr) != 0))
593 			return -EFAULT;
594 		uaddr += PAGE_SIZE;
595 	} while (uaddr <= end);
596 
597 	/* Check whether the range spilled into the next page. */
598 	if (((unsigned long)uaddr & PAGE_MASK) ==
599 			((unsigned long)end & PAGE_MASK)) {
600 		return __get_user(c, end);
601 	}
602 
603 	(void)c;
604 	return 0;
605 }
606 
607 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
608 				pgoff_t index, gfp_t gfp_mask);
609 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
610 				pgoff_t index, gfp_t gfp_mask);
611 extern void delete_from_page_cache(struct page *page);
612 extern void __delete_from_page_cache(struct page *page, void *shadow);
613 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
614 void delete_from_page_cache_batch(struct address_space *mapping,
615 				  struct pagevec *pvec);
616 
617 /*
618  * Like add_to_page_cache_locked, but used to add newly allocated pages:
619  * the page is new, so we can just run __SetPageLocked() against it.
620  */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)621 static inline int add_to_page_cache(struct page *page,
622 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
623 {
624 	int error;
625 
626 	__SetPageLocked(page);
627 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
628 	if (unlikely(error))
629 		__ClearPageLocked(page);
630 	return error;
631 }
632 
dir_pages(struct inode * inode)633 static inline unsigned long dir_pages(struct inode *inode)
634 {
635 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
636 			       PAGE_SHIFT;
637 }
638 
639 #endif /* _LINUX_PAGEMAP_H */
640