1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
__reverse_ulong(unsigned char * str)33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
__reverse_ffs(unsigned long word)52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
f2fs_need_SSR(struct f2fs_sb_info * sbi)169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (f2fs_lfs_mode(sbi))
176 return false;
177 if (sbi->gc_mode == GC_URGENT_HIGH)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
f2fs_register_inmem_page(struct inode * inode,struct page * page)186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 struct inmem_pages *new;
189
190 set_page_private_atomic(page);
191
192 new = f2fs_kmem_cache_alloc(inmem_entry_slab,
193 GFP_NOFS, true, NULL);
194
195 /* add atomic page indices to the list */
196 new->page = page;
197 INIT_LIST_HEAD(&new->list);
198
199 /* increase reference count with clean state */
200 get_page(page);
201 mutex_lock(&F2FS_I(inode)->inmem_lock);
202 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
203 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
204 mutex_unlock(&F2FS_I(inode)->inmem_lock);
205
206 trace_f2fs_register_inmem_page(page, INMEM);
207 }
208
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)209 static int __revoke_inmem_pages(struct inode *inode,
210 struct list_head *head, bool drop, bool recover,
211 bool trylock)
212 {
213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 struct inmem_pages *cur, *tmp;
215 int err = 0;
216
217 list_for_each_entry_safe(cur, tmp, head, list) {
218 struct page *page = cur->page;
219
220 if (drop)
221 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
222
223 if (trylock) {
224 /*
225 * to avoid deadlock in between page lock and
226 * inmem_lock.
227 */
228 if (!trylock_page(page))
229 continue;
230 } else {
231 lock_page(page);
232 }
233
234 f2fs_wait_on_page_writeback(page, DATA, true, true);
235
236 if (recover) {
237 struct dnode_of_data dn;
238 struct node_info ni;
239
240 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
241 retry:
242 set_new_dnode(&dn, inode, NULL, NULL, 0);
243 err = f2fs_get_dnode_of_data(&dn, page->index,
244 LOOKUP_NODE);
245 if (err) {
246 if (err == -ENOMEM) {
247 congestion_wait(BLK_RW_ASYNC,
248 DEFAULT_IO_TIMEOUT);
249 cond_resched();
250 goto retry;
251 }
252 err = -EAGAIN;
253 goto next;
254 }
255
256 err = f2fs_get_node_info(sbi, dn.nid, &ni);
257 if (err) {
258 f2fs_put_dnode(&dn);
259 return err;
260 }
261
262 if (cur->old_addr == NEW_ADDR) {
263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 } else
266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 cur->old_addr, ni.version, true, true);
268 f2fs_put_dnode(&dn);
269 }
270 next:
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop || recover) {
273 ClearPageUptodate(page);
274 clear_page_private_gcing(page);
275 }
276 detach_page_private(page);
277 set_page_private(page, 0);
278 f2fs_put_page(page, 1);
279
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 }
284 return err;
285 }
286
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 struct inode *inode;
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
294 next:
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 return;
299 }
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
302 if (inode)
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306 if (inode) {
307 if (gc_failure) {
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 goto skip;
310 }
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
313 skip:
314 iput(inode);
315 }
316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 cond_resched();
318 if (gc_failure) {
319 if (++looped >= count)
320 return;
321 }
322 goto next;
323 }
324
f2fs_drop_inmem_pages(struct inode * inode)325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 struct f2fs_inode_info *fi = F2FS_I(inode);
329
330 do {
331 mutex_lock(&fi->inmem_lock);
332 if (list_empty(&fi->inmem_pages)) {
333 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
334
335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 if (!list_empty(&fi->inmem_ilist))
337 list_del_init(&fi->inmem_ilist);
338 if (f2fs_is_atomic_file(inode)) {
339 clear_inode_flag(inode, FI_ATOMIC_FILE);
340 sbi->atomic_files--;
341 }
342 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
343
344 mutex_unlock(&fi->inmem_lock);
345 break;
346 }
347 __revoke_inmem_pages(inode, &fi->inmem_pages,
348 true, false, true);
349 mutex_unlock(&fi->inmem_lock);
350 } while (1);
351 }
352
f2fs_drop_inmem_page(struct inode * inode,struct page * page)353 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
354 {
355 struct f2fs_inode_info *fi = F2FS_I(inode);
356 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
357 struct list_head *head = &fi->inmem_pages;
358 struct inmem_pages *cur = NULL;
359
360 f2fs_bug_on(sbi, !page_private_atomic(page));
361
362 mutex_lock(&fi->inmem_lock);
363 list_for_each_entry(cur, head, list) {
364 if (cur->page == page)
365 break;
366 }
367
368 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
369 list_del(&cur->list);
370 mutex_unlock(&fi->inmem_lock);
371
372 dec_page_count(sbi, F2FS_INMEM_PAGES);
373 kmem_cache_free(inmem_entry_slab, cur);
374
375 ClearPageUptodate(page);
376 clear_page_private_atomic(page);
377 f2fs_put_page(page, 0);
378
379 detach_page_private(page);
380 set_page_private(page, 0);
381
382 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
383 }
384
__f2fs_commit_inmem_pages(struct inode * inode)385 static int __f2fs_commit_inmem_pages(struct inode *inode)
386 {
387 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
388 struct f2fs_inode_info *fi = F2FS_I(inode);
389 struct inmem_pages *cur, *tmp;
390 struct f2fs_io_info fio = {
391 .sbi = sbi,
392 .ino = inode->i_ino,
393 .type = DATA,
394 .op = REQ_OP_WRITE,
395 .op_flags = REQ_SYNC | REQ_PRIO,
396 .io_type = FS_DATA_IO,
397 };
398 struct list_head revoke_list;
399 bool submit_bio = false;
400 int err = 0;
401
402 INIT_LIST_HEAD(&revoke_list);
403
404 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
405 struct page *page = cur->page;
406
407 lock_page(page);
408 if (page->mapping == inode->i_mapping) {
409 trace_f2fs_commit_inmem_page(page, INMEM);
410
411 f2fs_wait_on_page_writeback(page, DATA, true, true);
412
413 set_page_dirty(page);
414 if (clear_page_dirty_for_io(page)) {
415 inode_dec_dirty_pages(inode);
416 f2fs_remove_dirty_inode(inode);
417 }
418 retry:
419 fio.page = page;
420 fio.old_blkaddr = NULL_ADDR;
421 fio.encrypted_page = NULL;
422 fio.need_lock = LOCK_DONE;
423 err = f2fs_do_write_data_page(&fio);
424 if (err) {
425 if (err == -ENOMEM) {
426 congestion_wait(BLK_RW_ASYNC,
427 DEFAULT_IO_TIMEOUT);
428 cond_resched();
429 goto retry;
430 }
431 unlock_page(page);
432 break;
433 }
434 /* record old blkaddr for revoking */
435 cur->old_addr = fio.old_blkaddr;
436 submit_bio = true;
437 }
438 unlock_page(page);
439 list_move_tail(&cur->list, &revoke_list);
440 }
441
442 if (submit_bio)
443 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
444
445 if (err) {
446 /*
447 * try to revoke all committed pages, but still we could fail
448 * due to no memory or other reason, if that happened, EAGAIN
449 * will be returned, which means in such case, transaction is
450 * already not integrity, caller should use journal to do the
451 * recovery or rewrite & commit last transaction. For other
452 * error number, revoking was done by filesystem itself.
453 */
454 err = __revoke_inmem_pages(inode, &revoke_list,
455 false, true, false);
456
457 /* drop all uncommitted pages */
458 __revoke_inmem_pages(inode, &fi->inmem_pages,
459 true, false, false);
460 } else {
461 __revoke_inmem_pages(inode, &revoke_list,
462 false, false, false);
463 }
464
465 return err;
466 }
467
f2fs_commit_inmem_pages(struct inode * inode)468 int f2fs_commit_inmem_pages(struct inode *inode)
469 {
470 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
471 struct f2fs_inode_info *fi = F2FS_I(inode);
472 int err;
473
474 f2fs_balance_fs(sbi, true);
475
476 down_write(&fi->i_gc_rwsem[WRITE]);
477
478 f2fs_lock_op(sbi);
479 set_inode_flag(inode, FI_ATOMIC_COMMIT);
480
481 mutex_lock(&fi->inmem_lock);
482 err = __f2fs_commit_inmem_pages(inode);
483 mutex_unlock(&fi->inmem_lock);
484
485 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
486
487 f2fs_unlock_op(sbi);
488 up_write(&fi->i_gc_rwsem[WRITE]);
489
490 return err;
491 }
492
493 /*
494 * This function balances dirty node and dentry pages.
495 * In addition, it controls garbage collection.
496 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)497 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
498 {
499 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
500 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
501 f2fs_stop_checkpoint(sbi, false);
502 }
503
504 /* balance_fs_bg is able to be pending */
505 if (need && excess_cached_nats(sbi))
506 f2fs_balance_fs_bg(sbi, false);
507
508 if (!f2fs_is_checkpoint_ready(sbi))
509 return;
510
511 /*
512 * We should do GC or end up with checkpoint, if there are so many dirty
513 * dir/node pages without enough free segments.
514 */
515 if (has_not_enough_free_secs(sbi, 0, 0)) {
516 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
517 sbi->gc_thread->f2fs_gc_task) {
518 DEFINE_WAIT(wait);
519
520 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
521 TASK_UNINTERRUPTIBLE);
522 wake_up(&sbi->gc_thread->gc_wait_queue_head);
523 io_schedule();
524 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
525 } else {
526 down_write(&sbi->gc_lock);
527 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
528 }
529 }
530 }
531
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)532 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
533 {
534 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
535 return;
536
537 /* try to shrink extent cache when there is no enough memory */
538 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
539 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
540
541 /* check the # of cached NAT entries */
542 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
543 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
544
545 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
546 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
547 else
548 f2fs_build_free_nids(sbi, false, false);
549
550 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
551 excess_prefree_segs(sbi))
552 goto do_sync;
553
554 /* there is background inflight IO or foreground operation recently */
555 if (is_inflight_io(sbi, REQ_TIME) ||
556 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
557 return;
558
559 /* exceed periodical checkpoint timeout threshold */
560 if (f2fs_time_over(sbi, CP_TIME))
561 goto do_sync;
562
563 /* checkpoint is the only way to shrink partial cached entries */
564 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
565 f2fs_available_free_memory(sbi, INO_ENTRIES))
566 return;
567
568 do_sync:
569 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
570 struct blk_plug plug;
571
572 mutex_lock(&sbi->flush_lock);
573
574 blk_start_plug(&plug);
575 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
576 blk_finish_plug(&plug);
577
578 mutex_unlock(&sbi->flush_lock);
579 }
580 f2fs_sync_fs(sbi->sb, true);
581 stat_inc_bg_cp_count(sbi->stat_info);
582 }
583
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)584 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
585 struct block_device *bdev)
586 {
587 int ret = blkdev_issue_flush(bdev);
588
589 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
590 test_opt(sbi, FLUSH_MERGE), ret);
591 return ret;
592 }
593
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)594 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
595 {
596 int ret = 0;
597 int i;
598
599 if (!f2fs_is_multi_device(sbi))
600 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
601
602 for (i = 0; i < sbi->s_ndevs; i++) {
603 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
604 continue;
605 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
606 if (ret)
607 break;
608 }
609 return ret;
610 }
611
issue_flush_thread(void * data)612 static int issue_flush_thread(void *data)
613 {
614 struct f2fs_sb_info *sbi = data;
615 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
616 wait_queue_head_t *q = &fcc->flush_wait_queue;
617 repeat:
618 if (kthread_should_stop())
619 return 0;
620
621 if (!llist_empty(&fcc->issue_list)) {
622 struct flush_cmd *cmd, *next;
623 int ret;
624
625 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
626 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
627
628 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
629
630 ret = submit_flush_wait(sbi, cmd->ino);
631 atomic_inc(&fcc->issued_flush);
632
633 llist_for_each_entry_safe(cmd, next,
634 fcc->dispatch_list, llnode) {
635 cmd->ret = ret;
636 complete(&cmd->wait);
637 }
638 fcc->dispatch_list = NULL;
639 }
640
641 wait_event_interruptible(*q,
642 kthread_should_stop() || !llist_empty(&fcc->issue_list));
643 goto repeat;
644 }
645
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)646 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
649 struct flush_cmd cmd;
650 int ret;
651
652 if (test_opt(sbi, NOBARRIER))
653 return 0;
654
655 if (!test_opt(sbi, FLUSH_MERGE)) {
656 atomic_inc(&fcc->queued_flush);
657 ret = submit_flush_wait(sbi, ino);
658 atomic_dec(&fcc->queued_flush);
659 atomic_inc(&fcc->issued_flush);
660 return ret;
661 }
662
663 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
664 f2fs_is_multi_device(sbi)) {
665 ret = submit_flush_wait(sbi, ino);
666 atomic_dec(&fcc->queued_flush);
667
668 atomic_inc(&fcc->issued_flush);
669 return ret;
670 }
671
672 cmd.ino = ino;
673 init_completion(&cmd.wait);
674
675 llist_add(&cmd.llnode, &fcc->issue_list);
676
677 /*
678 * update issue_list before we wake up issue_flush thread, this
679 * smp_mb() pairs with another barrier in ___wait_event(), see
680 * more details in comments of waitqueue_active().
681 */
682 smp_mb();
683
684 if (waitqueue_active(&fcc->flush_wait_queue))
685 wake_up(&fcc->flush_wait_queue);
686
687 if (fcc->f2fs_issue_flush) {
688 wait_for_completion(&cmd.wait);
689 atomic_dec(&fcc->queued_flush);
690 } else {
691 struct llist_node *list;
692
693 list = llist_del_all(&fcc->issue_list);
694 if (!list) {
695 wait_for_completion(&cmd.wait);
696 atomic_dec(&fcc->queued_flush);
697 } else {
698 struct flush_cmd *tmp, *next;
699
700 ret = submit_flush_wait(sbi, ino);
701
702 llist_for_each_entry_safe(tmp, next, list, llnode) {
703 if (tmp == &cmd) {
704 cmd.ret = ret;
705 atomic_dec(&fcc->queued_flush);
706 continue;
707 }
708 tmp->ret = ret;
709 complete(&tmp->wait);
710 }
711 }
712 }
713
714 return cmd.ret;
715 }
716
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)717 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
718 {
719 dev_t dev = sbi->sb->s_bdev->bd_dev;
720 struct flush_cmd_control *fcc;
721 int err = 0;
722
723 if (SM_I(sbi)->fcc_info) {
724 fcc = SM_I(sbi)->fcc_info;
725 if (fcc->f2fs_issue_flush)
726 return err;
727 goto init_thread;
728 }
729
730 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
731 if (!fcc)
732 return -ENOMEM;
733 atomic_set(&fcc->issued_flush, 0);
734 atomic_set(&fcc->queued_flush, 0);
735 init_waitqueue_head(&fcc->flush_wait_queue);
736 init_llist_head(&fcc->issue_list);
737 SM_I(sbi)->fcc_info = fcc;
738 if (!test_opt(sbi, FLUSH_MERGE))
739 return err;
740
741 init_thread:
742 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
743 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
744 if (IS_ERR(fcc->f2fs_issue_flush)) {
745 err = PTR_ERR(fcc->f2fs_issue_flush);
746 kfree(fcc);
747 SM_I(sbi)->fcc_info = NULL;
748 return err;
749 }
750
751 return err;
752 }
753
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)754 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
755 {
756 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
757
758 if (fcc && fcc->f2fs_issue_flush) {
759 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
760
761 fcc->f2fs_issue_flush = NULL;
762 kthread_stop(flush_thread);
763 }
764 if (free) {
765 kfree(fcc);
766 SM_I(sbi)->fcc_info = NULL;
767 }
768 }
769
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)770 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
771 {
772 int ret = 0, i;
773
774 if (!f2fs_is_multi_device(sbi))
775 return 0;
776
777 if (test_opt(sbi, NOBARRIER))
778 return 0;
779
780 for (i = 1; i < sbi->s_ndevs; i++) {
781 int count = DEFAULT_RETRY_IO_COUNT;
782
783 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
784 continue;
785
786 do {
787 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
788 if (ret)
789 congestion_wait(BLK_RW_ASYNC,
790 DEFAULT_IO_TIMEOUT);
791 } while (ret && --count);
792
793 if (ret) {
794 f2fs_stop_checkpoint(sbi, false);
795 break;
796 }
797
798 spin_lock(&sbi->dev_lock);
799 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
800 spin_unlock(&sbi->dev_lock);
801 }
802
803 return ret;
804 }
805
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)806 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
807 enum dirty_type dirty_type)
808 {
809 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
810
811 /* need not be added */
812 if (IS_CURSEG(sbi, segno))
813 return;
814
815 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
816 dirty_i->nr_dirty[dirty_type]++;
817
818 if (dirty_type == DIRTY) {
819 struct seg_entry *sentry = get_seg_entry(sbi, segno);
820 enum dirty_type t = sentry->type;
821
822 if (unlikely(t >= DIRTY)) {
823 f2fs_bug_on(sbi, 1);
824 return;
825 }
826 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
827 dirty_i->nr_dirty[t]++;
828
829 if (__is_large_section(sbi)) {
830 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
831 block_t valid_blocks =
832 get_valid_blocks(sbi, segno, true);
833
834 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
835 valid_blocks == BLKS_PER_SEC(sbi)));
836
837 if (!IS_CURSEC(sbi, secno))
838 set_bit(secno, dirty_i->dirty_secmap);
839 }
840 }
841 }
842
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)843 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
844 enum dirty_type dirty_type)
845 {
846 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
847 block_t valid_blocks;
848
849 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
850 dirty_i->nr_dirty[dirty_type]--;
851
852 if (dirty_type == DIRTY) {
853 struct seg_entry *sentry = get_seg_entry(sbi, segno);
854 enum dirty_type t = sentry->type;
855
856 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
857 dirty_i->nr_dirty[t]--;
858
859 valid_blocks = get_valid_blocks(sbi, segno, true);
860 if (valid_blocks == 0) {
861 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
862 dirty_i->victim_secmap);
863 #ifdef CONFIG_F2FS_CHECK_FS
864 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
865 #endif
866 }
867 if (__is_large_section(sbi)) {
868 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
869
870 if (!valid_blocks ||
871 valid_blocks == BLKS_PER_SEC(sbi)) {
872 clear_bit(secno, dirty_i->dirty_secmap);
873 return;
874 }
875
876 if (!IS_CURSEC(sbi, secno))
877 set_bit(secno, dirty_i->dirty_secmap);
878 }
879 }
880 }
881
882 /*
883 * Should not occur error such as -ENOMEM.
884 * Adding dirty entry into seglist is not critical operation.
885 * If a given segment is one of current working segments, it won't be added.
886 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)887 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
888 {
889 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
890 unsigned short valid_blocks, ckpt_valid_blocks;
891 unsigned int usable_blocks;
892
893 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
894 return;
895
896 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
897 mutex_lock(&dirty_i->seglist_lock);
898
899 valid_blocks = get_valid_blocks(sbi, segno, false);
900 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
901
902 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
903 ckpt_valid_blocks == usable_blocks)) {
904 __locate_dirty_segment(sbi, segno, PRE);
905 __remove_dirty_segment(sbi, segno, DIRTY);
906 } else if (valid_blocks < usable_blocks) {
907 __locate_dirty_segment(sbi, segno, DIRTY);
908 } else {
909 /* Recovery routine with SSR needs this */
910 __remove_dirty_segment(sbi, segno, DIRTY);
911 }
912
913 mutex_unlock(&dirty_i->seglist_lock);
914 }
915
916 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)917 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
918 {
919 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
920 unsigned int segno;
921
922 mutex_lock(&dirty_i->seglist_lock);
923 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
924 if (get_valid_blocks(sbi, segno, false))
925 continue;
926 if (IS_CURSEG(sbi, segno))
927 continue;
928 __locate_dirty_segment(sbi, segno, PRE);
929 __remove_dirty_segment(sbi, segno, DIRTY);
930 }
931 mutex_unlock(&dirty_i->seglist_lock);
932 }
933
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)934 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
935 {
936 int ovp_hole_segs =
937 (overprovision_segments(sbi) - reserved_segments(sbi));
938 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
939 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
940 block_t holes[2] = {0, 0}; /* DATA and NODE */
941 block_t unusable;
942 struct seg_entry *se;
943 unsigned int segno;
944
945 mutex_lock(&dirty_i->seglist_lock);
946 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
947 se = get_seg_entry(sbi, segno);
948 if (IS_NODESEG(se->type))
949 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
950 se->valid_blocks;
951 else
952 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
953 se->valid_blocks;
954 }
955 mutex_unlock(&dirty_i->seglist_lock);
956
957 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
958 if (unusable > ovp_holes)
959 return unusable - ovp_holes;
960 return 0;
961 }
962
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)963 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
964 {
965 int ovp_hole_segs =
966 (overprovision_segments(sbi) - reserved_segments(sbi));
967 if (unusable > F2FS_OPTION(sbi).unusable_cap)
968 return -EAGAIN;
969 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
970 dirty_segments(sbi) > ovp_hole_segs)
971 return -EAGAIN;
972 return 0;
973 }
974
975 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)976 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
977 {
978 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
979 unsigned int segno = 0;
980
981 mutex_lock(&dirty_i->seglist_lock);
982 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
983 if (get_valid_blocks(sbi, segno, false))
984 continue;
985 if (get_ckpt_valid_blocks(sbi, segno, false))
986 continue;
987 mutex_unlock(&dirty_i->seglist_lock);
988 return segno;
989 }
990 mutex_unlock(&dirty_i->seglist_lock);
991 return NULL_SEGNO;
992 }
993
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)994 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
995 struct block_device *bdev, block_t lstart,
996 block_t start, block_t len)
997 {
998 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
999 struct list_head *pend_list;
1000 struct discard_cmd *dc;
1001
1002 f2fs_bug_on(sbi, !len);
1003
1004 pend_list = &dcc->pend_list[plist_idx(len)];
1005
1006 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1007 INIT_LIST_HEAD(&dc->list);
1008 dc->bdev = bdev;
1009 dc->lstart = lstart;
1010 dc->start = start;
1011 dc->len = len;
1012 dc->ref = 0;
1013 dc->state = D_PREP;
1014 dc->queued = 0;
1015 dc->error = 0;
1016 init_completion(&dc->wait);
1017 list_add_tail(&dc->list, pend_list);
1018 spin_lock_init(&dc->lock);
1019 dc->bio_ref = 0;
1020 atomic_inc(&dcc->discard_cmd_cnt);
1021 dcc->undiscard_blks += len;
1022
1023 return dc;
1024 }
1025
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)1026 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1027 struct block_device *bdev, block_t lstart,
1028 block_t start, block_t len,
1029 struct rb_node *parent, struct rb_node **p,
1030 bool leftmost)
1031 {
1032 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1033 struct discard_cmd *dc;
1034
1035 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1036
1037 rb_link_node(&dc->rb_node, parent, p);
1038 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1039
1040 return dc;
1041 }
1042
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1043 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1044 struct discard_cmd *dc)
1045 {
1046 if (dc->state == D_DONE)
1047 atomic_sub(dc->queued, &dcc->queued_discard);
1048
1049 list_del(&dc->list);
1050 rb_erase_cached(&dc->rb_node, &dcc->root);
1051 dcc->undiscard_blks -= dc->len;
1052
1053 kmem_cache_free(discard_cmd_slab, dc);
1054
1055 atomic_dec(&dcc->discard_cmd_cnt);
1056 }
1057
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1058 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1059 struct discard_cmd *dc)
1060 {
1061 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1062 unsigned long flags;
1063
1064 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1065
1066 spin_lock_irqsave(&dc->lock, flags);
1067 if (dc->bio_ref) {
1068 spin_unlock_irqrestore(&dc->lock, flags);
1069 return;
1070 }
1071 spin_unlock_irqrestore(&dc->lock, flags);
1072
1073 f2fs_bug_on(sbi, dc->ref);
1074
1075 if (dc->error == -EOPNOTSUPP)
1076 dc->error = 0;
1077
1078 if (dc->error)
1079 printk_ratelimited(
1080 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1081 KERN_INFO, sbi->sb->s_id,
1082 dc->lstart, dc->start, dc->len, dc->error);
1083 __detach_discard_cmd(dcc, dc);
1084 }
1085
f2fs_submit_discard_endio(struct bio * bio)1086 static void f2fs_submit_discard_endio(struct bio *bio)
1087 {
1088 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1089 unsigned long flags;
1090
1091 spin_lock_irqsave(&dc->lock, flags);
1092 if (!dc->error)
1093 dc->error = blk_status_to_errno(bio->bi_status);
1094 dc->bio_ref--;
1095 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1096 dc->state = D_DONE;
1097 complete_all(&dc->wait);
1098 }
1099 spin_unlock_irqrestore(&dc->lock, flags);
1100 bio_put(bio);
1101 }
1102
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1103 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1104 block_t start, block_t end)
1105 {
1106 #ifdef CONFIG_F2FS_CHECK_FS
1107 struct seg_entry *sentry;
1108 unsigned int segno;
1109 block_t blk = start;
1110 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1111 unsigned long *map;
1112
1113 while (blk < end) {
1114 segno = GET_SEGNO(sbi, blk);
1115 sentry = get_seg_entry(sbi, segno);
1116 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1117
1118 if (end < START_BLOCK(sbi, segno + 1))
1119 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1120 else
1121 size = max_blocks;
1122 map = (unsigned long *)(sentry->cur_valid_map);
1123 offset = __find_rev_next_bit(map, size, offset);
1124 f2fs_bug_on(sbi, offset != size);
1125 blk = START_BLOCK(sbi, segno + 1);
1126 }
1127 #endif
1128 }
1129
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1130 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1131 struct discard_policy *dpolicy,
1132 int discard_type, unsigned int granularity)
1133 {
1134 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1135
1136 /* common policy */
1137 dpolicy->type = discard_type;
1138 dpolicy->sync = true;
1139 dpolicy->ordered = false;
1140 dpolicy->granularity = granularity;
1141
1142 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1143 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1144 dpolicy->timeout = false;
1145
1146 if (discard_type == DPOLICY_BG) {
1147 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 dpolicy->io_aware = true;
1151 dpolicy->sync = false;
1152 dpolicy->ordered = true;
1153 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1154 dpolicy->granularity = 1;
1155 if (atomic_read(&dcc->discard_cmd_cnt))
1156 dpolicy->max_interval =
1157 DEF_MIN_DISCARD_ISSUE_TIME;
1158 }
1159 } else if (discard_type == DPOLICY_FORCE) {
1160 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1161 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1162 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1163 dpolicy->io_aware = false;
1164 } else if (discard_type == DPOLICY_FSTRIM) {
1165 dpolicy->io_aware = false;
1166 } else if (discard_type == DPOLICY_UMOUNT) {
1167 dpolicy->io_aware = false;
1168 /* we need to issue all to keep CP_TRIMMED_FLAG */
1169 dpolicy->granularity = 1;
1170 dpolicy->timeout = true;
1171 }
1172 }
1173
1174 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1175 struct block_device *bdev, block_t lstart,
1176 block_t start, block_t len);
1177 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1178 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1179 struct discard_policy *dpolicy,
1180 struct discard_cmd *dc,
1181 unsigned int *issued)
1182 {
1183 struct block_device *bdev = dc->bdev;
1184 struct request_queue *q = bdev_get_queue(bdev);
1185 unsigned int max_discard_blocks =
1186 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1187 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1189 &(dcc->fstrim_list) : &(dcc->wait_list);
1190 int flag = dpolicy->sync ? REQ_SYNC : 0;
1191 block_t lstart, start, len, total_len;
1192 int err = 0;
1193
1194 if (dc->state != D_PREP)
1195 return 0;
1196
1197 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1198 return 0;
1199
1200 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1201
1202 lstart = dc->lstart;
1203 start = dc->start;
1204 len = dc->len;
1205 total_len = len;
1206
1207 dc->len = 0;
1208
1209 while (total_len && *issued < dpolicy->max_requests && !err) {
1210 struct bio *bio = NULL;
1211 unsigned long flags;
1212 bool last = true;
1213
1214 if (len > max_discard_blocks) {
1215 len = max_discard_blocks;
1216 last = false;
1217 }
1218
1219 (*issued)++;
1220 if (*issued == dpolicy->max_requests)
1221 last = true;
1222
1223 dc->len += len;
1224
1225 if (time_to_inject(sbi, FAULT_DISCARD)) {
1226 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1227 err = -EIO;
1228 goto submit;
1229 }
1230 err = __blkdev_issue_discard(bdev,
1231 SECTOR_FROM_BLOCK(start),
1232 SECTOR_FROM_BLOCK(len),
1233 GFP_NOFS, 0, &bio);
1234 submit:
1235 if (err) {
1236 spin_lock_irqsave(&dc->lock, flags);
1237 if (dc->state == D_PARTIAL)
1238 dc->state = D_SUBMIT;
1239 spin_unlock_irqrestore(&dc->lock, flags);
1240
1241 break;
1242 }
1243
1244 f2fs_bug_on(sbi, !bio);
1245
1246 /*
1247 * should keep before submission to avoid D_DONE
1248 * right away
1249 */
1250 spin_lock_irqsave(&dc->lock, flags);
1251 if (last)
1252 dc->state = D_SUBMIT;
1253 else
1254 dc->state = D_PARTIAL;
1255 dc->bio_ref++;
1256 spin_unlock_irqrestore(&dc->lock, flags);
1257
1258 atomic_inc(&dcc->queued_discard);
1259 dc->queued++;
1260 list_move_tail(&dc->list, wait_list);
1261
1262 /* sanity check on discard range */
1263 __check_sit_bitmap(sbi, lstart, lstart + len);
1264
1265 bio->bi_private = dc;
1266 bio->bi_end_io = f2fs_submit_discard_endio;
1267 bio->bi_opf |= flag;
1268 submit_bio(bio);
1269
1270 atomic_inc(&dcc->issued_discard);
1271
1272 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1273
1274 lstart += len;
1275 start += len;
1276 total_len -= len;
1277 len = total_len;
1278 }
1279
1280 if (!err && len) {
1281 dcc->undiscard_blks -= len;
1282 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1283 }
1284 return err;
1285 }
1286
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1287 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1288 struct block_device *bdev, block_t lstart,
1289 block_t start, block_t len,
1290 struct rb_node **insert_p,
1291 struct rb_node *insert_parent)
1292 {
1293 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1294 struct rb_node **p;
1295 struct rb_node *parent = NULL;
1296 bool leftmost = true;
1297
1298 if (insert_p && insert_parent) {
1299 parent = insert_parent;
1300 p = insert_p;
1301 goto do_insert;
1302 }
1303
1304 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1305 lstart, &leftmost);
1306 do_insert:
1307 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1308 p, leftmost);
1309 }
1310
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1311 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1312 struct discard_cmd *dc)
1313 {
1314 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1315 }
1316
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1317 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1318 struct discard_cmd *dc, block_t blkaddr)
1319 {
1320 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1321 struct discard_info di = dc->di;
1322 bool modified = false;
1323
1324 if (dc->state == D_DONE || dc->len == 1) {
1325 __remove_discard_cmd(sbi, dc);
1326 return;
1327 }
1328
1329 dcc->undiscard_blks -= di.len;
1330
1331 if (blkaddr > di.lstart) {
1332 dc->len = blkaddr - dc->lstart;
1333 dcc->undiscard_blks += dc->len;
1334 __relocate_discard_cmd(dcc, dc);
1335 modified = true;
1336 }
1337
1338 if (blkaddr < di.lstart + di.len - 1) {
1339 if (modified) {
1340 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1341 di.start + blkaddr + 1 - di.lstart,
1342 di.lstart + di.len - 1 - blkaddr,
1343 NULL, NULL);
1344 } else {
1345 dc->lstart++;
1346 dc->len--;
1347 dc->start++;
1348 dcc->undiscard_blks += dc->len;
1349 __relocate_discard_cmd(dcc, dc);
1350 }
1351 }
1352 }
1353
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1354 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1355 struct block_device *bdev, block_t lstart,
1356 block_t start, block_t len)
1357 {
1358 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1359 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1360 struct discard_cmd *dc;
1361 struct discard_info di = {0};
1362 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1363 struct request_queue *q = bdev_get_queue(bdev);
1364 unsigned int max_discard_blocks =
1365 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1366 block_t end = lstart + len;
1367
1368 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1369 NULL, lstart,
1370 (struct rb_entry **)&prev_dc,
1371 (struct rb_entry **)&next_dc,
1372 &insert_p, &insert_parent, true, NULL);
1373 if (dc)
1374 prev_dc = dc;
1375
1376 if (!prev_dc) {
1377 di.lstart = lstart;
1378 di.len = next_dc ? next_dc->lstart - lstart : len;
1379 di.len = min(di.len, len);
1380 di.start = start;
1381 }
1382
1383 while (1) {
1384 struct rb_node *node;
1385 bool merged = false;
1386 struct discard_cmd *tdc = NULL;
1387
1388 if (prev_dc) {
1389 di.lstart = prev_dc->lstart + prev_dc->len;
1390 if (di.lstart < lstart)
1391 di.lstart = lstart;
1392 if (di.lstart >= end)
1393 break;
1394
1395 if (!next_dc || next_dc->lstart > end)
1396 di.len = end - di.lstart;
1397 else
1398 di.len = next_dc->lstart - di.lstart;
1399 di.start = start + di.lstart - lstart;
1400 }
1401
1402 if (!di.len)
1403 goto next;
1404
1405 if (prev_dc && prev_dc->state == D_PREP &&
1406 prev_dc->bdev == bdev &&
1407 __is_discard_back_mergeable(&di, &prev_dc->di,
1408 max_discard_blocks)) {
1409 prev_dc->di.len += di.len;
1410 dcc->undiscard_blks += di.len;
1411 __relocate_discard_cmd(dcc, prev_dc);
1412 di = prev_dc->di;
1413 tdc = prev_dc;
1414 merged = true;
1415 }
1416
1417 if (next_dc && next_dc->state == D_PREP &&
1418 next_dc->bdev == bdev &&
1419 __is_discard_front_mergeable(&di, &next_dc->di,
1420 max_discard_blocks)) {
1421 next_dc->di.lstart = di.lstart;
1422 next_dc->di.len += di.len;
1423 next_dc->di.start = di.start;
1424 dcc->undiscard_blks += di.len;
1425 __relocate_discard_cmd(dcc, next_dc);
1426 if (tdc)
1427 __remove_discard_cmd(sbi, tdc);
1428 merged = true;
1429 }
1430
1431 if (!merged) {
1432 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1433 di.len, NULL, NULL);
1434 }
1435 next:
1436 prev_dc = next_dc;
1437 if (!prev_dc)
1438 break;
1439
1440 node = rb_next(&prev_dc->rb_node);
1441 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1442 }
1443 }
1444
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1445 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1446 struct block_device *bdev, block_t blkstart, block_t blklen)
1447 {
1448 block_t lblkstart = blkstart;
1449
1450 if (!f2fs_bdev_support_discard(bdev))
1451 return 0;
1452
1453 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1454
1455 if (f2fs_is_multi_device(sbi)) {
1456 int devi = f2fs_target_device_index(sbi, blkstart);
1457
1458 blkstart -= FDEV(devi).start_blk;
1459 }
1460 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1461 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1462 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1463 return 0;
1464 }
1465
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1466 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1467 struct discard_policy *dpolicy)
1468 {
1469 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1470 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1471 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1472 struct discard_cmd *dc;
1473 struct blk_plug plug;
1474 unsigned int pos = dcc->next_pos;
1475 unsigned int issued = 0;
1476 bool io_interrupted = false;
1477
1478 mutex_lock(&dcc->cmd_lock);
1479 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1480 NULL, pos,
1481 (struct rb_entry **)&prev_dc,
1482 (struct rb_entry **)&next_dc,
1483 &insert_p, &insert_parent, true, NULL);
1484 if (!dc)
1485 dc = next_dc;
1486
1487 blk_start_plug(&plug);
1488
1489 while (dc) {
1490 struct rb_node *node;
1491 int err = 0;
1492
1493 if (dc->state != D_PREP)
1494 goto next;
1495
1496 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1497 io_interrupted = true;
1498 break;
1499 }
1500
1501 dcc->next_pos = dc->lstart + dc->len;
1502 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1503
1504 if (issued >= dpolicy->max_requests)
1505 break;
1506 next:
1507 node = rb_next(&dc->rb_node);
1508 if (err)
1509 __remove_discard_cmd(sbi, dc);
1510 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1511 }
1512
1513 blk_finish_plug(&plug);
1514
1515 if (!dc)
1516 dcc->next_pos = 0;
1517
1518 mutex_unlock(&dcc->cmd_lock);
1519
1520 if (!issued && io_interrupted)
1521 issued = -1;
1522
1523 return issued;
1524 }
1525 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1526 struct discard_policy *dpolicy);
1527
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1528 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1529 struct discard_policy *dpolicy)
1530 {
1531 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532 struct list_head *pend_list;
1533 struct discard_cmd *dc, *tmp;
1534 struct blk_plug plug;
1535 int i, issued;
1536 bool io_interrupted = false;
1537
1538 if (dpolicy->timeout)
1539 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1540
1541 retry:
1542 issued = 0;
1543 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1544 if (dpolicy->timeout &&
1545 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1546 break;
1547
1548 if (i + 1 < dpolicy->granularity)
1549 break;
1550
1551 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1552 return __issue_discard_cmd_orderly(sbi, dpolicy);
1553
1554 pend_list = &dcc->pend_list[i];
1555
1556 mutex_lock(&dcc->cmd_lock);
1557 if (list_empty(pend_list))
1558 goto next;
1559 if (unlikely(dcc->rbtree_check))
1560 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1561 &dcc->root, false));
1562 blk_start_plug(&plug);
1563 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1564 f2fs_bug_on(sbi, dc->state != D_PREP);
1565
1566 if (dpolicy->timeout &&
1567 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1568 break;
1569
1570 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1571 !is_idle(sbi, DISCARD_TIME)) {
1572 io_interrupted = true;
1573 break;
1574 }
1575
1576 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1577
1578 if (issued >= dpolicy->max_requests)
1579 break;
1580 }
1581 blk_finish_plug(&plug);
1582 next:
1583 mutex_unlock(&dcc->cmd_lock);
1584
1585 if (issued >= dpolicy->max_requests || io_interrupted)
1586 break;
1587 }
1588
1589 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1590 __wait_all_discard_cmd(sbi, dpolicy);
1591 goto retry;
1592 }
1593
1594 if (!issued && io_interrupted)
1595 issued = -1;
1596
1597 return issued;
1598 }
1599
__drop_discard_cmd(struct f2fs_sb_info * sbi)1600 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1601 {
1602 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1603 struct list_head *pend_list;
1604 struct discard_cmd *dc, *tmp;
1605 int i;
1606 bool dropped = false;
1607
1608 mutex_lock(&dcc->cmd_lock);
1609 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1610 pend_list = &dcc->pend_list[i];
1611 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1612 f2fs_bug_on(sbi, dc->state != D_PREP);
1613 __remove_discard_cmd(sbi, dc);
1614 dropped = true;
1615 }
1616 }
1617 mutex_unlock(&dcc->cmd_lock);
1618
1619 return dropped;
1620 }
1621
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1622 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1623 {
1624 __drop_discard_cmd(sbi);
1625 }
1626
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1627 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1628 struct discard_cmd *dc)
1629 {
1630 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1631 unsigned int len = 0;
1632
1633 wait_for_completion_io(&dc->wait);
1634 mutex_lock(&dcc->cmd_lock);
1635 f2fs_bug_on(sbi, dc->state != D_DONE);
1636 dc->ref--;
1637 if (!dc->ref) {
1638 if (!dc->error)
1639 len = dc->len;
1640 __remove_discard_cmd(sbi, dc);
1641 }
1642 mutex_unlock(&dcc->cmd_lock);
1643
1644 return len;
1645 }
1646
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1647 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1648 struct discard_policy *dpolicy,
1649 block_t start, block_t end)
1650 {
1651 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1652 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1653 &(dcc->fstrim_list) : &(dcc->wait_list);
1654 struct discard_cmd *dc, *tmp;
1655 bool need_wait;
1656 unsigned int trimmed = 0;
1657
1658 next:
1659 need_wait = false;
1660
1661 mutex_lock(&dcc->cmd_lock);
1662 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1663 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1664 continue;
1665 if (dc->len < dpolicy->granularity)
1666 continue;
1667 if (dc->state == D_DONE && !dc->ref) {
1668 wait_for_completion_io(&dc->wait);
1669 if (!dc->error)
1670 trimmed += dc->len;
1671 __remove_discard_cmd(sbi, dc);
1672 } else {
1673 dc->ref++;
1674 need_wait = true;
1675 break;
1676 }
1677 }
1678 mutex_unlock(&dcc->cmd_lock);
1679
1680 if (need_wait) {
1681 trimmed += __wait_one_discard_bio(sbi, dc);
1682 goto next;
1683 }
1684
1685 return trimmed;
1686 }
1687
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1688 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1689 struct discard_policy *dpolicy)
1690 {
1691 struct discard_policy dp;
1692 unsigned int discard_blks;
1693
1694 if (dpolicy)
1695 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1696
1697 /* wait all */
1698 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1699 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1700 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1701 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1702
1703 return discard_blks;
1704 }
1705
1706 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1707 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1708 {
1709 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1710 struct discard_cmd *dc;
1711 bool need_wait = false;
1712
1713 mutex_lock(&dcc->cmd_lock);
1714 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1715 NULL, blkaddr);
1716 if (dc) {
1717 if (dc->state == D_PREP) {
1718 __punch_discard_cmd(sbi, dc, blkaddr);
1719 } else {
1720 dc->ref++;
1721 need_wait = true;
1722 }
1723 }
1724 mutex_unlock(&dcc->cmd_lock);
1725
1726 if (need_wait)
1727 __wait_one_discard_bio(sbi, dc);
1728 }
1729
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1730 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1731 {
1732 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733
1734 if (dcc && dcc->f2fs_issue_discard) {
1735 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1736
1737 dcc->f2fs_issue_discard = NULL;
1738 kthread_stop(discard_thread);
1739 }
1740 }
1741
1742 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1743 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1744 {
1745 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1746 struct discard_policy dpolicy;
1747 bool dropped;
1748
1749 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1750 dcc->discard_granularity);
1751 __issue_discard_cmd(sbi, &dpolicy);
1752 dropped = __drop_discard_cmd(sbi);
1753
1754 /* just to make sure there is no pending discard commands */
1755 __wait_all_discard_cmd(sbi, NULL);
1756
1757 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1758 return dropped;
1759 }
1760
issue_discard_thread(void * data)1761 static int issue_discard_thread(void *data)
1762 {
1763 struct f2fs_sb_info *sbi = data;
1764 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1765 wait_queue_head_t *q = &dcc->discard_wait_queue;
1766 struct discard_policy dpolicy;
1767 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1768 int issued;
1769
1770 set_freezable();
1771
1772 do {
1773 if (sbi->gc_mode == GC_URGENT_HIGH ||
1774 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1775 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1776 else
1777 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1778 dcc->discard_granularity);
1779
1780 if (!atomic_read(&dcc->discard_cmd_cnt))
1781 wait_ms = dpolicy.max_interval;
1782
1783 wait_event_interruptible_timeout(*q,
1784 kthread_should_stop() || freezing(current) ||
1785 dcc->discard_wake,
1786 msecs_to_jiffies(wait_ms));
1787
1788 if (dcc->discard_wake)
1789 dcc->discard_wake = 0;
1790
1791 /* clean up pending candidates before going to sleep */
1792 if (atomic_read(&dcc->queued_discard))
1793 __wait_all_discard_cmd(sbi, NULL);
1794
1795 if (try_to_freeze())
1796 continue;
1797 if (f2fs_readonly(sbi->sb))
1798 continue;
1799 if (kthread_should_stop())
1800 return 0;
1801 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1802 wait_ms = dpolicy.max_interval;
1803 continue;
1804 }
1805 if (!atomic_read(&dcc->discard_cmd_cnt))
1806 continue;
1807
1808 sb_start_intwrite(sbi->sb);
1809
1810 issued = __issue_discard_cmd(sbi, &dpolicy);
1811 if (issued > 0) {
1812 __wait_all_discard_cmd(sbi, &dpolicy);
1813 wait_ms = dpolicy.min_interval;
1814 } else if (issued == -1) {
1815 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1816 if (!wait_ms)
1817 wait_ms = dpolicy.mid_interval;
1818 } else {
1819 wait_ms = dpolicy.max_interval;
1820 }
1821
1822 sb_end_intwrite(sbi->sb);
1823
1824 } while (!kthread_should_stop());
1825 return 0;
1826 }
1827
1828 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1829 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1830 struct block_device *bdev, block_t blkstart, block_t blklen)
1831 {
1832 sector_t sector, nr_sects;
1833 block_t lblkstart = blkstart;
1834 int devi = 0;
1835
1836 if (f2fs_is_multi_device(sbi)) {
1837 devi = f2fs_target_device_index(sbi, blkstart);
1838 if (blkstart < FDEV(devi).start_blk ||
1839 blkstart > FDEV(devi).end_blk) {
1840 f2fs_err(sbi, "Invalid block %x", blkstart);
1841 return -EIO;
1842 }
1843 blkstart -= FDEV(devi).start_blk;
1844 }
1845
1846 /* For sequential zones, reset the zone write pointer */
1847 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1848 sector = SECTOR_FROM_BLOCK(blkstart);
1849 nr_sects = SECTOR_FROM_BLOCK(blklen);
1850
1851 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1852 nr_sects != bdev_zone_sectors(bdev)) {
1853 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1854 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1855 blkstart, blklen);
1856 return -EIO;
1857 }
1858 trace_f2fs_issue_reset_zone(bdev, blkstart);
1859 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1860 sector, nr_sects, GFP_NOFS);
1861 }
1862
1863 /* For conventional zones, use regular discard if supported */
1864 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1865 }
1866 #endif
1867
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1868 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1869 struct block_device *bdev, block_t blkstart, block_t blklen)
1870 {
1871 #ifdef CONFIG_BLK_DEV_ZONED
1872 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1873 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1874 #endif
1875 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1876 }
1877
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1878 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1879 block_t blkstart, block_t blklen)
1880 {
1881 sector_t start = blkstart, len = 0;
1882 struct block_device *bdev;
1883 struct seg_entry *se;
1884 unsigned int offset;
1885 block_t i;
1886 int err = 0;
1887
1888 bdev = f2fs_target_device(sbi, blkstart, NULL);
1889
1890 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1891 if (i != start) {
1892 struct block_device *bdev2 =
1893 f2fs_target_device(sbi, i, NULL);
1894
1895 if (bdev2 != bdev) {
1896 err = __issue_discard_async(sbi, bdev,
1897 start, len);
1898 if (err)
1899 return err;
1900 bdev = bdev2;
1901 start = i;
1902 len = 0;
1903 }
1904 }
1905
1906 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1907 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1908
1909 if (f2fs_block_unit_discard(sbi) &&
1910 !f2fs_test_and_set_bit(offset, se->discard_map))
1911 sbi->discard_blks--;
1912 }
1913
1914 if (len)
1915 err = __issue_discard_async(sbi, bdev, start, len);
1916 return err;
1917 }
1918
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1919 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1920 bool check_only)
1921 {
1922 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1923 int max_blocks = sbi->blocks_per_seg;
1924 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1925 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1926 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1927 unsigned long *discard_map = (unsigned long *)se->discard_map;
1928 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1929 unsigned int start = 0, end = -1;
1930 bool force = (cpc->reason & CP_DISCARD);
1931 struct discard_entry *de = NULL;
1932 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1933 int i;
1934
1935 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1936 !f2fs_block_unit_discard(sbi))
1937 return false;
1938
1939 if (!force) {
1940 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1941 SM_I(sbi)->dcc_info->nr_discards >=
1942 SM_I(sbi)->dcc_info->max_discards)
1943 return false;
1944 }
1945
1946 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1947 for (i = 0; i < entries; i++)
1948 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1949 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1950
1951 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1952 SM_I(sbi)->dcc_info->max_discards) {
1953 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1954 if (start >= max_blocks)
1955 break;
1956
1957 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1958 if (force && start && end != max_blocks
1959 && (end - start) < cpc->trim_minlen)
1960 continue;
1961
1962 if (check_only)
1963 return true;
1964
1965 if (!de) {
1966 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1967 GFP_F2FS_ZERO, true, NULL);
1968 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1969 list_add_tail(&de->list, head);
1970 }
1971
1972 for (i = start; i < end; i++)
1973 __set_bit_le(i, (void *)de->discard_map);
1974
1975 SM_I(sbi)->dcc_info->nr_discards += end - start;
1976 }
1977 return false;
1978 }
1979
release_discard_addr(struct discard_entry * entry)1980 static void release_discard_addr(struct discard_entry *entry)
1981 {
1982 list_del(&entry->list);
1983 kmem_cache_free(discard_entry_slab, entry);
1984 }
1985
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1986 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1987 {
1988 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1989 struct discard_entry *entry, *this;
1990
1991 /* drop caches */
1992 list_for_each_entry_safe(entry, this, head, list)
1993 release_discard_addr(entry);
1994 }
1995
1996 /*
1997 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1998 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1999 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2000 {
2001 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 unsigned int segno;
2003
2004 mutex_lock(&dirty_i->seglist_lock);
2005 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2006 __set_test_and_free(sbi, segno, false);
2007 mutex_unlock(&dirty_i->seglist_lock);
2008 }
2009
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2010 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2011 struct cp_control *cpc)
2012 {
2013 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2014 struct list_head *head = &dcc->entry_list;
2015 struct discard_entry *entry, *this;
2016 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2017 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2018 unsigned int start = 0, end = -1;
2019 unsigned int secno, start_segno;
2020 bool force = (cpc->reason & CP_DISCARD);
2021 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2022 DISCARD_UNIT_SECTION;
2023
2024 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2025 section_alignment = true;
2026
2027 mutex_lock(&dirty_i->seglist_lock);
2028
2029 while (1) {
2030 int i;
2031
2032 if (section_alignment && end != -1)
2033 end--;
2034 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2035 if (start >= MAIN_SEGS(sbi))
2036 break;
2037 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2038 start + 1);
2039
2040 if (section_alignment) {
2041 start = rounddown(start, sbi->segs_per_sec);
2042 end = roundup(end, sbi->segs_per_sec);
2043 }
2044
2045 for (i = start; i < end; i++) {
2046 if (test_and_clear_bit(i, prefree_map))
2047 dirty_i->nr_dirty[PRE]--;
2048 }
2049
2050 if (!f2fs_realtime_discard_enable(sbi))
2051 continue;
2052
2053 if (force && start >= cpc->trim_start &&
2054 (end - 1) <= cpc->trim_end)
2055 continue;
2056
2057 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2058 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2059 (end - start) << sbi->log_blocks_per_seg);
2060 continue;
2061 }
2062 next:
2063 secno = GET_SEC_FROM_SEG(sbi, start);
2064 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2065 if (!IS_CURSEC(sbi, secno) &&
2066 !get_valid_blocks(sbi, start, true))
2067 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2068 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2069
2070 start = start_segno + sbi->segs_per_sec;
2071 if (start < end)
2072 goto next;
2073 else
2074 end = start - 1;
2075 }
2076 mutex_unlock(&dirty_i->seglist_lock);
2077
2078 if (!f2fs_block_unit_discard(sbi))
2079 goto wakeup;
2080
2081 /* send small discards */
2082 list_for_each_entry_safe(entry, this, head, list) {
2083 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2084 bool is_valid = test_bit_le(0, entry->discard_map);
2085
2086 find_next:
2087 if (is_valid) {
2088 next_pos = find_next_zero_bit_le(entry->discard_map,
2089 sbi->blocks_per_seg, cur_pos);
2090 len = next_pos - cur_pos;
2091
2092 if (f2fs_sb_has_blkzoned(sbi) ||
2093 (force && len < cpc->trim_minlen))
2094 goto skip;
2095
2096 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2097 len);
2098 total_len += len;
2099 } else {
2100 next_pos = find_next_bit_le(entry->discard_map,
2101 sbi->blocks_per_seg, cur_pos);
2102 }
2103 skip:
2104 cur_pos = next_pos;
2105 is_valid = !is_valid;
2106
2107 if (cur_pos < sbi->blocks_per_seg)
2108 goto find_next;
2109
2110 release_discard_addr(entry);
2111 dcc->nr_discards -= total_len;
2112 }
2113
2114 wakeup:
2115 wake_up_discard_thread(sbi, false);
2116 }
2117
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2118 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2119 {
2120 dev_t dev = sbi->sb->s_bdev->bd_dev;
2121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2122 int err = 0;
2123
2124 if (!f2fs_realtime_discard_enable(sbi))
2125 return 0;
2126
2127 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2128 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2129 if (IS_ERR(dcc->f2fs_issue_discard))
2130 err = PTR_ERR(dcc->f2fs_issue_discard);
2131
2132 return err;
2133 }
2134
create_discard_cmd_control(struct f2fs_sb_info * sbi)2135 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2136 {
2137 struct discard_cmd_control *dcc;
2138 int err = 0, i;
2139
2140 if (SM_I(sbi)->dcc_info) {
2141 dcc = SM_I(sbi)->dcc_info;
2142 goto init_thread;
2143 }
2144
2145 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2146 if (!dcc)
2147 return -ENOMEM;
2148
2149 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2150 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2151 dcc->discard_granularity = sbi->blocks_per_seg;
2152 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2153 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2154
2155 INIT_LIST_HEAD(&dcc->entry_list);
2156 for (i = 0; i < MAX_PLIST_NUM; i++)
2157 INIT_LIST_HEAD(&dcc->pend_list[i]);
2158 INIT_LIST_HEAD(&dcc->wait_list);
2159 INIT_LIST_HEAD(&dcc->fstrim_list);
2160 mutex_init(&dcc->cmd_lock);
2161 atomic_set(&dcc->issued_discard, 0);
2162 atomic_set(&dcc->queued_discard, 0);
2163 atomic_set(&dcc->discard_cmd_cnt, 0);
2164 dcc->nr_discards = 0;
2165 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2166 dcc->undiscard_blks = 0;
2167 dcc->next_pos = 0;
2168 dcc->root = RB_ROOT_CACHED;
2169 dcc->rbtree_check = false;
2170
2171 init_waitqueue_head(&dcc->discard_wait_queue);
2172 SM_I(sbi)->dcc_info = dcc;
2173 init_thread:
2174 err = f2fs_start_discard_thread(sbi);
2175 if (err) {
2176 kfree(dcc);
2177 SM_I(sbi)->dcc_info = NULL;
2178 }
2179
2180 return err;
2181 }
2182
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2183 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2184 {
2185 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2186
2187 if (!dcc)
2188 return;
2189
2190 f2fs_stop_discard_thread(sbi);
2191
2192 /*
2193 * Recovery can cache discard commands, so in error path of
2194 * fill_super(), it needs to give a chance to handle them.
2195 */
2196 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2197 f2fs_issue_discard_timeout(sbi);
2198
2199 kfree(dcc);
2200 SM_I(sbi)->dcc_info = NULL;
2201 }
2202
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2203 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2204 {
2205 struct sit_info *sit_i = SIT_I(sbi);
2206
2207 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2208 sit_i->dirty_sentries++;
2209 return false;
2210 }
2211
2212 return true;
2213 }
2214
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2215 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2216 unsigned int segno, int modified)
2217 {
2218 struct seg_entry *se = get_seg_entry(sbi, segno);
2219
2220 se->type = type;
2221 if (modified)
2222 __mark_sit_entry_dirty(sbi, segno);
2223 }
2224
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2225 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2226 block_t blkaddr)
2227 {
2228 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2229
2230 if (segno == NULL_SEGNO)
2231 return 0;
2232 return get_seg_entry(sbi, segno)->mtime;
2233 }
2234
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2235 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2236 unsigned long long old_mtime)
2237 {
2238 struct seg_entry *se;
2239 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2240 unsigned long long ctime = get_mtime(sbi, false);
2241 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2242
2243 if (segno == NULL_SEGNO)
2244 return;
2245
2246 se = get_seg_entry(sbi, segno);
2247
2248 if (!se->mtime)
2249 se->mtime = mtime;
2250 else
2251 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2252 se->valid_blocks + 1);
2253
2254 if (ctime > SIT_I(sbi)->max_mtime)
2255 SIT_I(sbi)->max_mtime = ctime;
2256 }
2257
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2258 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2259 {
2260 struct seg_entry *se;
2261 unsigned int segno, offset;
2262 long int new_vblocks;
2263 bool exist;
2264 #ifdef CONFIG_F2FS_CHECK_FS
2265 bool mir_exist;
2266 #endif
2267
2268 segno = GET_SEGNO(sbi, blkaddr);
2269
2270 se = get_seg_entry(sbi, segno);
2271 new_vblocks = se->valid_blocks + del;
2272 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2273
2274 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2275 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2276
2277 se->valid_blocks = new_vblocks;
2278
2279 /* Update valid block bitmap */
2280 if (del > 0) {
2281 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2282 #ifdef CONFIG_F2FS_CHECK_FS
2283 mir_exist = f2fs_test_and_set_bit(offset,
2284 se->cur_valid_map_mir);
2285 if (unlikely(exist != mir_exist)) {
2286 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2287 blkaddr, exist);
2288 f2fs_bug_on(sbi, 1);
2289 }
2290 #endif
2291 if (unlikely(exist)) {
2292 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2293 blkaddr);
2294 f2fs_bug_on(sbi, 1);
2295 se->valid_blocks--;
2296 del = 0;
2297 }
2298
2299 if (f2fs_block_unit_discard(sbi) &&
2300 !f2fs_test_and_set_bit(offset, se->discard_map))
2301 sbi->discard_blks--;
2302
2303 /*
2304 * SSR should never reuse block which is checkpointed
2305 * or newly invalidated.
2306 */
2307 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2308 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2309 se->ckpt_valid_blocks++;
2310 }
2311 } else {
2312 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2313 #ifdef CONFIG_F2FS_CHECK_FS
2314 mir_exist = f2fs_test_and_clear_bit(offset,
2315 se->cur_valid_map_mir);
2316 if (unlikely(exist != mir_exist)) {
2317 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2318 blkaddr, exist);
2319 f2fs_bug_on(sbi, 1);
2320 }
2321 #endif
2322 if (unlikely(!exist)) {
2323 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2324 blkaddr);
2325 f2fs_bug_on(sbi, 1);
2326 se->valid_blocks++;
2327 del = 0;
2328 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2329 /*
2330 * If checkpoints are off, we must not reuse data that
2331 * was used in the previous checkpoint. If it was used
2332 * before, we must track that to know how much space we
2333 * really have.
2334 */
2335 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2336 spin_lock(&sbi->stat_lock);
2337 sbi->unusable_block_count++;
2338 spin_unlock(&sbi->stat_lock);
2339 }
2340 }
2341
2342 if (f2fs_block_unit_discard(sbi) &&
2343 f2fs_test_and_clear_bit(offset, se->discard_map))
2344 sbi->discard_blks++;
2345 }
2346 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2347 se->ckpt_valid_blocks += del;
2348
2349 __mark_sit_entry_dirty(sbi, segno);
2350
2351 /* update total number of valid blocks to be written in ckpt area */
2352 SIT_I(sbi)->written_valid_blocks += del;
2353
2354 if (__is_large_section(sbi))
2355 get_sec_entry(sbi, segno)->valid_blocks += del;
2356 }
2357
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2358 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2359 {
2360 unsigned int segno = GET_SEGNO(sbi, addr);
2361 struct sit_info *sit_i = SIT_I(sbi);
2362
2363 f2fs_bug_on(sbi, addr == NULL_ADDR);
2364 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2365 return;
2366
2367 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2368 f2fs_invalidate_compress_page(sbi, addr);
2369
2370 /* add it into sit main buffer */
2371 down_write(&sit_i->sentry_lock);
2372
2373 update_segment_mtime(sbi, addr, 0);
2374 update_sit_entry(sbi, addr, -1);
2375
2376 /* add it into dirty seglist */
2377 locate_dirty_segment(sbi, segno);
2378
2379 up_write(&sit_i->sentry_lock);
2380 }
2381
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2382 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2383 {
2384 struct sit_info *sit_i = SIT_I(sbi);
2385 unsigned int segno, offset;
2386 struct seg_entry *se;
2387 bool is_cp = false;
2388
2389 if (!__is_valid_data_blkaddr(blkaddr))
2390 return true;
2391
2392 down_read(&sit_i->sentry_lock);
2393
2394 segno = GET_SEGNO(sbi, blkaddr);
2395 se = get_seg_entry(sbi, segno);
2396 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2397
2398 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2399 is_cp = true;
2400
2401 up_read(&sit_i->sentry_lock);
2402
2403 return is_cp;
2404 }
2405
2406 /*
2407 * This function should be resided under the curseg_mutex lock
2408 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2409 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2410 struct f2fs_summary *sum)
2411 {
2412 struct curseg_info *curseg = CURSEG_I(sbi, type);
2413 void *addr = curseg->sum_blk;
2414
2415 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2416 memcpy(addr, sum, sizeof(struct f2fs_summary));
2417 }
2418
2419 /*
2420 * Calculate the number of current summary pages for writing
2421 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2422 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2423 {
2424 int valid_sum_count = 0;
2425 int i, sum_in_page;
2426
2427 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2428 if (sbi->ckpt->alloc_type[i] == SSR)
2429 valid_sum_count += sbi->blocks_per_seg;
2430 else {
2431 if (for_ra)
2432 valid_sum_count += le16_to_cpu(
2433 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2434 else
2435 valid_sum_count += curseg_blkoff(sbi, i);
2436 }
2437 }
2438
2439 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2440 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2441 if (valid_sum_count <= sum_in_page)
2442 return 1;
2443 else if ((valid_sum_count - sum_in_page) <=
2444 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2445 return 2;
2446 return 3;
2447 }
2448
2449 /*
2450 * Caller should put this summary page
2451 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2452 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2453 {
2454 if (unlikely(f2fs_cp_error(sbi)))
2455 return ERR_PTR(-EIO);
2456 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2457 }
2458
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2459 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2460 void *src, block_t blk_addr)
2461 {
2462 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2463
2464 memcpy(page_address(page), src, PAGE_SIZE);
2465 set_page_dirty(page);
2466 f2fs_put_page(page, 1);
2467 }
2468
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2469 static void write_sum_page(struct f2fs_sb_info *sbi,
2470 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2471 {
2472 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2473 }
2474
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2475 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2476 int type, block_t blk_addr)
2477 {
2478 struct curseg_info *curseg = CURSEG_I(sbi, type);
2479 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2480 struct f2fs_summary_block *src = curseg->sum_blk;
2481 struct f2fs_summary_block *dst;
2482
2483 dst = (struct f2fs_summary_block *)page_address(page);
2484 memset(dst, 0, PAGE_SIZE);
2485
2486 mutex_lock(&curseg->curseg_mutex);
2487
2488 down_read(&curseg->journal_rwsem);
2489 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2490 up_read(&curseg->journal_rwsem);
2491
2492 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2493 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2494
2495 mutex_unlock(&curseg->curseg_mutex);
2496
2497 set_page_dirty(page);
2498 f2fs_put_page(page, 1);
2499 }
2500
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2501 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2502 struct curseg_info *curseg, int type)
2503 {
2504 unsigned int segno = curseg->segno + 1;
2505 struct free_segmap_info *free_i = FREE_I(sbi);
2506
2507 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2508 return !test_bit(segno, free_i->free_segmap);
2509 return 0;
2510 }
2511
2512 /*
2513 * Find a new segment from the free segments bitmap to right order
2514 * This function should be returned with success, otherwise BUG
2515 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2516 static void get_new_segment(struct f2fs_sb_info *sbi,
2517 unsigned int *newseg, bool new_sec, int dir)
2518 {
2519 struct free_segmap_info *free_i = FREE_I(sbi);
2520 unsigned int segno, secno, zoneno;
2521 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2522 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2523 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2524 unsigned int left_start = hint;
2525 bool init = true;
2526 int go_left = 0;
2527 int i;
2528
2529 spin_lock(&free_i->segmap_lock);
2530
2531 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2532 segno = find_next_zero_bit(free_i->free_segmap,
2533 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2534 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2535 goto got_it;
2536 }
2537 find_other_zone:
2538 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2539 if (secno >= MAIN_SECS(sbi)) {
2540 if (dir == ALLOC_RIGHT) {
2541 secno = find_next_zero_bit(free_i->free_secmap,
2542 MAIN_SECS(sbi), 0);
2543 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2544 } else {
2545 go_left = 1;
2546 left_start = hint - 1;
2547 }
2548 }
2549 if (go_left == 0)
2550 goto skip_left;
2551
2552 while (test_bit(left_start, free_i->free_secmap)) {
2553 if (left_start > 0) {
2554 left_start--;
2555 continue;
2556 }
2557 left_start = find_next_zero_bit(free_i->free_secmap,
2558 MAIN_SECS(sbi), 0);
2559 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2560 break;
2561 }
2562 secno = left_start;
2563 skip_left:
2564 segno = GET_SEG_FROM_SEC(sbi, secno);
2565 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2566
2567 /* give up on finding another zone */
2568 if (!init)
2569 goto got_it;
2570 if (sbi->secs_per_zone == 1)
2571 goto got_it;
2572 if (zoneno == old_zoneno)
2573 goto got_it;
2574 if (dir == ALLOC_LEFT) {
2575 if (!go_left && zoneno + 1 >= total_zones)
2576 goto got_it;
2577 if (go_left && zoneno == 0)
2578 goto got_it;
2579 }
2580 for (i = 0; i < NR_CURSEG_TYPE; i++)
2581 if (CURSEG_I(sbi, i)->zone == zoneno)
2582 break;
2583
2584 if (i < NR_CURSEG_TYPE) {
2585 /* zone is in user, try another */
2586 if (go_left)
2587 hint = zoneno * sbi->secs_per_zone - 1;
2588 else if (zoneno + 1 >= total_zones)
2589 hint = 0;
2590 else
2591 hint = (zoneno + 1) * sbi->secs_per_zone;
2592 init = false;
2593 goto find_other_zone;
2594 }
2595 got_it:
2596 /* set it as dirty segment in free segmap */
2597 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2598 __set_inuse(sbi, segno);
2599 *newseg = segno;
2600 spin_unlock(&free_i->segmap_lock);
2601 }
2602
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2603 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2604 {
2605 struct curseg_info *curseg = CURSEG_I(sbi, type);
2606 struct summary_footer *sum_footer;
2607 unsigned short seg_type = curseg->seg_type;
2608
2609 curseg->inited = true;
2610 curseg->segno = curseg->next_segno;
2611 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2612 curseg->next_blkoff = 0;
2613 curseg->next_segno = NULL_SEGNO;
2614
2615 sum_footer = &(curseg->sum_blk->footer);
2616 memset(sum_footer, 0, sizeof(struct summary_footer));
2617
2618 sanity_check_seg_type(sbi, seg_type);
2619
2620 if (IS_DATASEG(seg_type))
2621 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2622 if (IS_NODESEG(seg_type))
2623 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2624 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2625 }
2626
__get_next_segno(struct f2fs_sb_info * sbi,int type)2627 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2628 {
2629 struct curseg_info *curseg = CURSEG_I(sbi, type);
2630 unsigned short seg_type = curseg->seg_type;
2631
2632 sanity_check_seg_type(sbi, seg_type);
2633
2634 /* if segs_per_sec is large than 1, we need to keep original policy. */
2635 if (__is_large_section(sbi))
2636 return curseg->segno;
2637
2638 /* inmem log may not locate on any segment after mount */
2639 if (!curseg->inited)
2640 return 0;
2641
2642 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2643 return 0;
2644
2645 if (test_opt(sbi, NOHEAP) &&
2646 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2647 return 0;
2648
2649 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2650 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2651
2652 /* find segments from 0 to reuse freed segments */
2653 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2654 return 0;
2655
2656 return curseg->segno;
2657 }
2658
2659 /*
2660 * Allocate a current working segment.
2661 * This function always allocates a free segment in LFS manner.
2662 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2663 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2664 {
2665 struct curseg_info *curseg = CURSEG_I(sbi, type);
2666 unsigned short seg_type = curseg->seg_type;
2667 unsigned int segno = curseg->segno;
2668 int dir = ALLOC_LEFT;
2669
2670 if (curseg->inited)
2671 write_sum_page(sbi, curseg->sum_blk,
2672 GET_SUM_BLOCK(sbi, segno));
2673 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2674 dir = ALLOC_RIGHT;
2675
2676 if (test_opt(sbi, NOHEAP))
2677 dir = ALLOC_RIGHT;
2678
2679 segno = __get_next_segno(sbi, type);
2680 get_new_segment(sbi, &segno, new_sec, dir);
2681 curseg->next_segno = segno;
2682 reset_curseg(sbi, type, 1);
2683 curseg->alloc_type = LFS;
2684 }
2685
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2686 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2687 int segno, block_t start)
2688 {
2689 struct seg_entry *se = get_seg_entry(sbi, segno);
2690 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2691 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2692 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2693 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2694 int i;
2695
2696 for (i = 0; i < entries; i++)
2697 target_map[i] = ckpt_map[i] | cur_map[i];
2698
2699 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2700 }
2701
2702 /*
2703 * If a segment is written by LFS manner, next block offset is just obtained
2704 * by increasing the current block offset. However, if a segment is written by
2705 * SSR manner, next block offset obtained by calling __next_free_blkoff
2706 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2707 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2708 struct curseg_info *seg)
2709 {
2710 if (seg->alloc_type == SSR)
2711 seg->next_blkoff =
2712 __next_free_blkoff(sbi, seg->segno,
2713 seg->next_blkoff + 1);
2714 else
2715 seg->next_blkoff++;
2716 }
2717
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2718 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2719 {
2720 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2721 }
2722
2723 /*
2724 * This function always allocates a used segment(from dirty seglist) by SSR
2725 * manner, so it should recover the existing segment information of valid blocks
2726 */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2727 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2728 {
2729 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2730 struct curseg_info *curseg = CURSEG_I(sbi, type);
2731 unsigned int new_segno = curseg->next_segno;
2732 struct f2fs_summary_block *sum_node;
2733 struct page *sum_page;
2734
2735 if (flush)
2736 write_sum_page(sbi, curseg->sum_blk,
2737 GET_SUM_BLOCK(sbi, curseg->segno));
2738
2739 __set_test_and_inuse(sbi, new_segno);
2740
2741 mutex_lock(&dirty_i->seglist_lock);
2742 __remove_dirty_segment(sbi, new_segno, PRE);
2743 __remove_dirty_segment(sbi, new_segno, DIRTY);
2744 mutex_unlock(&dirty_i->seglist_lock);
2745
2746 reset_curseg(sbi, type, 1);
2747 curseg->alloc_type = SSR;
2748 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2749
2750 sum_page = f2fs_get_sum_page(sbi, new_segno);
2751 if (IS_ERR(sum_page)) {
2752 /* GC won't be able to use stale summary pages by cp_error */
2753 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2754 return;
2755 }
2756 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2757 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2758 f2fs_put_page(sum_page, 1);
2759 }
2760
2761 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2762 int alloc_mode, unsigned long long age);
2763
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2764 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2765 int target_type, int alloc_mode,
2766 unsigned long long age)
2767 {
2768 struct curseg_info *curseg = CURSEG_I(sbi, type);
2769
2770 curseg->seg_type = target_type;
2771
2772 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2773 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2774
2775 curseg->seg_type = se->type;
2776 change_curseg(sbi, type, true);
2777 } else {
2778 /* allocate cold segment by default */
2779 curseg->seg_type = CURSEG_COLD_DATA;
2780 new_curseg(sbi, type, true);
2781 }
2782 stat_inc_seg_type(sbi, curseg);
2783 }
2784
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2785 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2786 {
2787 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2788
2789 if (!sbi->am.atgc_enabled)
2790 return;
2791
2792 down_read(&SM_I(sbi)->curseg_lock);
2793
2794 mutex_lock(&curseg->curseg_mutex);
2795 down_write(&SIT_I(sbi)->sentry_lock);
2796
2797 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2798
2799 up_write(&SIT_I(sbi)->sentry_lock);
2800 mutex_unlock(&curseg->curseg_mutex);
2801
2802 up_read(&SM_I(sbi)->curseg_lock);
2803
2804 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2805 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2806 {
2807 __f2fs_init_atgc_curseg(sbi);
2808 }
2809
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2810 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2811 {
2812 struct curseg_info *curseg = CURSEG_I(sbi, type);
2813
2814 mutex_lock(&curseg->curseg_mutex);
2815 if (!curseg->inited)
2816 goto out;
2817
2818 if (get_valid_blocks(sbi, curseg->segno, false)) {
2819 write_sum_page(sbi, curseg->sum_blk,
2820 GET_SUM_BLOCK(sbi, curseg->segno));
2821 } else {
2822 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2823 __set_test_and_free(sbi, curseg->segno, true);
2824 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2825 }
2826 out:
2827 mutex_unlock(&curseg->curseg_mutex);
2828 }
2829
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2830 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2831 {
2832 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2833
2834 if (sbi->am.atgc_enabled)
2835 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2836 }
2837
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2838 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2839 {
2840 struct curseg_info *curseg = CURSEG_I(sbi, type);
2841
2842 mutex_lock(&curseg->curseg_mutex);
2843 if (!curseg->inited)
2844 goto out;
2845 if (get_valid_blocks(sbi, curseg->segno, false))
2846 goto out;
2847
2848 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2849 __set_test_and_inuse(sbi, curseg->segno);
2850 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2851 out:
2852 mutex_unlock(&curseg->curseg_mutex);
2853 }
2854
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2855 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2856 {
2857 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2858
2859 if (sbi->am.atgc_enabled)
2860 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2861 }
2862
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2863 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2864 int alloc_mode, unsigned long long age)
2865 {
2866 struct curseg_info *curseg = CURSEG_I(sbi, type);
2867 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2868 unsigned segno = NULL_SEGNO;
2869 unsigned short seg_type = curseg->seg_type;
2870 int i, cnt;
2871 bool reversed = false;
2872
2873 sanity_check_seg_type(sbi, seg_type);
2874
2875 /* f2fs_need_SSR() already forces to do this */
2876 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2877 curseg->next_segno = segno;
2878 return 1;
2879 }
2880
2881 /* For node segments, let's do SSR more intensively */
2882 if (IS_NODESEG(seg_type)) {
2883 if (seg_type >= CURSEG_WARM_NODE) {
2884 reversed = true;
2885 i = CURSEG_COLD_NODE;
2886 } else {
2887 i = CURSEG_HOT_NODE;
2888 }
2889 cnt = NR_CURSEG_NODE_TYPE;
2890 } else {
2891 if (seg_type >= CURSEG_WARM_DATA) {
2892 reversed = true;
2893 i = CURSEG_COLD_DATA;
2894 } else {
2895 i = CURSEG_HOT_DATA;
2896 }
2897 cnt = NR_CURSEG_DATA_TYPE;
2898 }
2899
2900 for (; cnt-- > 0; reversed ? i-- : i++) {
2901 if (i == seg_type)
2902 continue;
2903 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2904 curseg->next_segno = segno;
2905 return 1;
2906 }
2907 }
2908
2909 /* find valid_blocks=0 in dirty list */
2910 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2911 segno = get_free_segment(sbi);
2912 if (segno != NULL_SEGNO) {
2913 curseg->next_segno = segno;
2914 return 1;
2915 }
2916 }
2917 return 0;
2918 }
2919
2920 /*
2921 * flush out current segment and replace it with new segment
2922 * This function should be returned with success, otherwise BUG
2923 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2924 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2925 int type, bool force)
2926 {
2927 struct curseg_info *curseg = CURSEG_I(sbi, type);
2928
2929 if (force)
2930 new_curseg(sbi, type, true);
2931 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2932 curseg->seg_type == CURSEG_WARM_NODE)
2933 new_curseg(sbi, type, false);
2934 else if (curseg->alloc_type == LFS &&
2935 is_next_segment_free(sbi, curseg, type) &&
2936 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2937 new_curseg(sbi, type, false);
2938 else if (f2fs_need_SSR(sbi) &&
2939 get_ssr_segment(sbi, type, SSR, 0))
2940 change_curseg(sbi, type, true);
2941 else
2942 new_curseg(sbi, type, false);
2943
2944 stat_inc_seg_type(sbi, curseg);
2945 }
2946
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2947 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2948 unsigned int start, unsigned int end)
2949 {
2950 struct curseg_info *curseg = CURSEG_I(sbi, type);
2951 unsigned int segno;
2952
2953 down_read(&SM_I(sbi)->curseg_lock);
2954 mutex_lock(&curseg->curseg_mutex);
2955 down_write(&SIT_I(sbi)->sentry_lock);
2956
2957 segno = CURSEG_I(sbi, type)->segno;
2958 if (segno < start || segno > end)
2959 goto unlock;
2960
2961 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2962 change_curseg(sbi, type, true);
2963 else
2964 new_curseg(sbi, type, true);
2965
2966 stat_inc_seg_type(sbi, curseg);
2967
2968 locate_dirty_segment(sbi, segno);
2969 unlock:
2970 up_write(&SIT_I(sbi)->sentry_lock);
2971
2972 if (segno != curseg->segno)
2973 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2974 type, segno, curseg->segno);
2975
2976 mutex_unlock(&curseg->curseg_mutex);
2977 up_read(&SM_I(sbi)->curseg_lock);
2978 }
2979
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)2980 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2981 bool new_sec, bool force)
2982 {
2983 struct curseg_info *curseg = CURSEG_I(sbi, type);
2984 unsigned int old_segno;
2985
2986 if (!curseg->inited)
2987 goto alloc;
2988
2989 if (force || curseg->next_blkoff ||
2990 get_valid_blocks(sbi, curseg->segno, new_sec))
2991 goto alloc;
2992
2993 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2994 return;
2995 alloc:
2996 old_segno = curseg->segno;
2997 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2998 locate_dirty_segment(sbi, old_segno);
2999 }
3000
__allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3001 static void __allocate_new_section(struct f2fs_sb_info *sbi,
3002 int type, bool force)
3003 {
3004 __allocate_new_segment(sbi, type, true, force);
3005 }
3006
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)3007 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3008 {
3009 down_read(&SM_I(sbi)->curseg_lock);
3010 down_write(&SIT_I(sbi)->sentry_lock);
3011 __allocate_new_section(sbi, type, force);
3012 up_write(&SIT_I(sbi)->sentry_lock);
3013 up_read(&SM_I(sbi)->curseg_lock);
3014 }
3015
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3016 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3017 {
3018 int i;
3019
3020 down_read(&SM_I(sbi)->curseg_lock);
3021 down_write(&SIT_I(sbi)->sentry_lock);
3022 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3023 __allocate_new_segment(sbi, i, false, false);
3024 up_write(&SIT_I(sbi)->sentry_lock);
3025 up_read(&SM_I(sbi)->curseg_lock);
3026 }
3027
3028 static const struct segment_allocation default_salloc_ops = {
3029 .allocate_segment = allocate_segment_by_default,
3030 };
3031
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3032 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3033 struct cp_control *cpc)
3034 {
3035 __u64 trim_start = cpc->trim_start;
3036 bool has_candidate = false;
3037
3038 down_write(&SIT_I(sbi)->sentry_lock);
3039 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3040 if (add_discard_addrs(sbi, cpc, true)) {
3041 has_candidate = true;
3042 break;
3043 }
3044 }
3045 up_write(&SIT_I(sbi)->sentry_lock);
3046
3047 cpc->trim_start = trim_start;
3048 return has_candidate;
3049 }
3050
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3051 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3052 struct discard_policy *dpolicy,
3053 unsigned int start, unsigned int end)
3054 {
3055 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3056 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3057 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3058 struct discard_cmd *dc;
3059 struct blk_plug plug;
3060 int issued;
3061 unsigned int trimmed = 0;
3062
3063 next:
3064 issued = 0;
3065
3066 mutex_lock(&dcc->cmd_lock);
3067 if (unlikely(dcc->rbtree_check))
3068 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3069 &dcc->root, false));
3070
3071 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3072 NULL, start,
3073 (struct rb_entry **)&prev_dc,
3074 (struct rb_entry **)&next_dc,
3075 &insert_p, &insert_parent, true, NULL);
3076 if (!dc)
3077 dc = next_dc;
3078
3079 blk_start_plug(&plug);
3080
3081 while (dc && dc->lstart <= end) {
3082 struct rb_node *node;
3083 int err = 0;
3084
3085 if (dc->len < dpolicy->granularity)
3086 goto skip;
3087
3088 if (dc->state != D_PREP) {
3089 list_move_tail(&dc->list, &dcc->fstrim_list);
3090 goto skip;
3091 }
3092
3093 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3094
3095 if (issued >= dpolicy->max_requests) {
3096 start = dc->lstart + dc->len;
3097
3098 if (err)
3099 __remove_discard_cmd(sbi, dc);
3100
3101 blk_finish_plug(&plug);
3102 mutex_unlock(&dcc->cmd_lock);
3103 trimmed += __wait_all_discard_cmd(sbi, NULL);
3104 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3105 goto next;
3106 }
3107 skip:
3108 node = rb_next(&dc->rb_node);
3109 if (err)
3110 __remove_discard_cmd(sbi, dc);
3111 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3112
3113 if (fatal_signal_pending(current))
3114 break;
3115 }
3116
3117 blk_finish_plug(&plug);
3118 mutex_unlock(&dcc->cmd_lock);
3119
3120 return trimmed;
3121 }
3122
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3123 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3124 {
3125 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3126 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3127 unsigned int start_segno, end_segno;
3128 block_t start_block, end_block;
3129 struct cp_control cpc;
3130 struct discard_policy dpolicy;
3131 unsigned long long trimmed = 0;
3132 int err = 0;
3133 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3134
3135 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3136 return -EINVAL;
3137
3138 if (end < MAIN_BLKADDR(sbi))
3139 goto out;
3140
3141 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3142 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3143 return -EFSCORRUPTED;
3144 }
3145
3146 /* start/end segment number in main_area */
3147 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3148 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3149 GET_SEGNO(sbi, end);
3150 if (need_align) {
3151 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3152 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3153 }
3154
3155 cpc.reason = CP_DISCARD;
3156 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3157 cpc.trim_start = start_segno;
3158 cpc.trim_end = end_segno;
3159
3160 if (sbi->discard_blks == 0)
3161 goto out;
3162
3163 down_write(&sbi->gc_lock);
3164 err = f2fs_write_checkpoint(sbi, &cpc);
3165 up_write(&sbi->gc_lock);
3166 if (err)
3167 goto out;
3168
3169 /*
3170 * We filed discard candidates, but actually we don't need to wait for
3171 * all of them, since they'll be issued in idle time along with runtime
3172 * discard option. User configuration looks like using runtime discard
3173 * or periodic fstrim instead of it.
3174 */
3175 if (f2fs_realtime_discard_enable(sbi))
3176 goto out;
3177
3178 start_block = START_BLOCK(sbi, start_segno);
3179 end_block = START_BLOCK(sbi, end_segno + 1);
3180
3181 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3182 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3183 start_block, end_block);
3184
3185 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3186 start_block, end_block);
3187 out:
3188 if (!err)
3189 range->len = F2FS_BLK_TO_BYTES(trimmed);
3190 return err;
3191 }
3192
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3193 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3194 struct curseg_info *curseg)
3195 {
3196 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3197 curseg->segno);
3198 }
3199
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3200 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3201 {
3202 switch (hint) {
3203 case WRITE_LIFE_SHORT:
3204 return CURSEG_HOT_DATA;
3205 case WRITE_LIFE_EXTREME:
3206 return CURSEG_COLD_DATA;
3207 default:
3208 return CURSEG_WARM_DATA;
3209 }
3210 }
3211
3212 /* This returns write hints for each segment type. This hints will be
3213 * passed down to block layer. There are mapping tables which depend on
3214 * the mount option 'whint_mode'.
3215 *
3216 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3217 *
3218 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3219 *
3220 * User F2FS Block
3221 * ---- ---- -----
3222 * META WRITE_LIFE_NOT_SET
3223 * HOT_NODE "
3224 * WARM_NODE "
3225 * COLD_NODE "
3226 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3227 * extension list " "
3228 *
3229 * -- buffered io
3230 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3231 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3232 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3233 * WRITE_LIFE_NONE " "
3234 * WRITE_LIFE_MEDIUM " "
3235 * WRITE_LIFE_LONG " "
3236 *
3237 * -- direct io
3238 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3239 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3240 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3241 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3242 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3243 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3244 *
3245 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3246 *
3247 * User F2FS Block
3248 * ---- ---- -----
3249 * META WRITE_LIFE_MEDIUM;
3250 * HOT_NODE WRITE_LIFE_NOT_SET
3251 * WARM_NODE "
3252 * COLD_NODE WRITE_LIFE_NONE
3253 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3254 * extension list " "
3255 *
3256 * -- buffered io
3257 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3258 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3259 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3260 * WRITE_LIFE_NONE " "
3261 * WRITE_LIFE_MEDIUM " "
3262 * WRITE_LIFE_LONG " "
3263 *
3264 * -- direct io
3265 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3266 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3267 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3268 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3269 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3270 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3271 */
3272
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3273 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3274 enum page_type type, enum temp_type temp)
3275 {
3276 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3277 if (type == DATA) {
3278 if (temp == WARM)
3279 return WRITE_LIFE_NOT_SET;
3280 else if (temp == HOT)
3281 return WRITE_LIFE_SHORT;
3282 else if (temp == COLD)
3283 return WRITE_LIFE_EXTREME;
3284 } else {
3285 return WRITE_LIFE_NOT_SET;
3286 }
3287 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3288 if (type == DATA) {
3289 if (temp == WARM)
3290 return WRITE_LIFE_LONG;
3291 else if (temp == HOT)
3292 return WRITE_LIFE_SHORT;
3293 else if (temp == COLD)
3294 return WRITE_LIFE_EXTREME;
3295 } else if (type == NODE) {
3296 if (temp == WARM || temp == HOT)
3297 return WRITE_LIFE_NOT_SET;
3298 else if (temp == COLD)
3299 return WRITE_LIFE_NONE;
3300 } else if (type == META) {
3301 return WRITE_LIFE_MEDIUM;
3302 }
3303 }
3304 return WRITE_LIFE_NOT_SET;
3305 }
3306
__get_segment_type_2(struct f2fs_io_info * fio)3307 static int __get_segment_type_2(struct f2fs_io_info *fio)
3308 {
3309 if (fio->type == DATA)
3310 return CURSEG_HOT_DATA;
3311 else
3312 return CURSEG_HOT_NODE;
3313 }
3314
__get_segment_type_4(struct f2fs_io_info * fio)3315 static int __get_segment_type_4(struct f2fs_io_info *fio)
3316 {
3317 if (fio->type == DATA) {
3318 struct inode *inode = fio->page->mapping->host;
3319
3320 if (S_ISDIR(inode->i_mode))
3321 return CURSEG_HOT_DATA;
3322 else
3323 return CURSEG_COLD_DATA;
3324 } else {
3325 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3326 return CURSEG_WARM_NODE;
3327 else
3328 return CURSEG_COLD_NODE;
3329 }
3330 }
3331
__get_segment_type_6(struct f2fs_io_info * fio)3332 static int __get_segment_type_6(struct f2fs_io_info *fio)
3333 {
3334 if (fio->type == DATA) {
3335 struct inode *inode = fio->page->mapping->host;
3336
3337 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3338 return CURSEG_COLD_DATA_PINNED;
3339
3340 if (page_private_gcing(fio->page)) {
3341 if (fio->sbi->am.atgc_enabled &&
3342 (fio->io_type == FS_DATA_IO) &&
3343 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3344 return CURSEG_ALL_DATA_ATGC;
3345 else
3346 return CURSEG_COLD_DATA;
3347 }
3348 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3349 return CURSEG_COLD_DATA;
3350 if (file_is_hot(inode) ||
3351 is_inode_flag_set(inode, FI_HOT_DATA) ||
3352 f2fs_is_atomic_file(inode) ||
3353 f2fs_is_volatile_file(inode))
3354 return CURSEG_HOT_DATA;
3355 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3356 } else {
3357 if (IS_DNODE(fio->page))
3358 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3359 CURSEG_HOT_NODE;
3360 return CURSEG_COLD_NODE;
3361 }
3362 }
3363
__get_segment_type(struct f2fs_io_info * fio)3364 static int __get_segment_type(struct f2fs_io_info *fio)
3365 {
3366 int type = 0;
3367
3368 switch (F2FS_OPTION(fio->sbi).active_logs) {
3369 case 2:
3370 type = __get_segment_type_2(fio);
3371 break;
3372 case 4:
3373 type = __get_segment_type_4(fio);
3374 break;
3375 case 6:
3376 type = __get_segment_type_6(fio);
3377 break;
3378 default:
3379 f2fs_bug_on(fio->sbi, true);
3380 }
3381
3382 if (IS_HOT(type))
3383 fio->temp = HOT;
3384 else if (IS_WARM(type))
3385 fio->temp = WARM;
3386 else
3387 fio->temp = COLD;
3388 return type;
3389 }
3390
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3391 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3392 block_t old_blkaddr, block_t *new_blkaddr,
3393 struct f2fs_summary *sum, int type,
3394 struct f2fs_io_info *fio)
3395 {
3396 struct sit_info *sit_i = SIT_I(sbi);
3397 struct curseg_info *curseg = CURSEG_I(sbi, type);
3398 unsigned long long old_mtime;
3399 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3400 struct seg_entry *se = NULL;
3401
3402 down_read(&SM_I(sbi)->curseg_lock);
3403
3404 mutex_lock(&curseg->curseg_mutex);
3405 down_write(&sit_i->sentry_lock);
3406
3407 if (from_gc) {
3408 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3409 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3410 sanity_check_seg_type(sbi, se->type);
3411 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3412 }
3413 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3414
3415 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3416
3417 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3418
3419 /*
3420 * __add_sum_entry should be resided under the curseg_mutex
3421 * because, this function updates a summary entry in the
3422 * current summary block.
3423 */
3424 __add_sum_entry(sbi, type, sum);
3425
3426 __refresh_next_blkoff(sbi, curseg);
3427
3428 stat_inc_block_count(sbi, curseg);
3429
3430 if (from_gc) {
3431 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3432 } else {
3433 update_segment_mtime(sbi, old_blkaddr, 0);
3434 old_mtime = 0;
3435 }
3436 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3437
3438 /*
3439 * SIT information should be updated before segment allocation,
3440 * since SSR needs latest valid block information.
3441 */
3442 update_sit_entry(sbi, *new_blkaddr, 1);
3443 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3444 update_sit_entry(sbi, old_blkaddr, -1);
3445
3446 if (!__has_curseg_space(sbi, curseg)) {
3447 if (from_gc)
3448 get_atssr_segment(sbi, type, se->type,
3449 AT_SSR, se->mtime);
3450 else
3451 sit_i->s_ops->allocate_segment(sbi, type, false);
3452 }
3453 /*
3454 * segment dirty status should be updated after segment allocation,
3455 * so we just need to update status only one time after previous
3456 * segment being closed.
3457 */
3458 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3459 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3460
3461 up_write(&sit_i->sentry_lock);
3462
3463 if (page && IS_NODESEG(type)) {
3464 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3465
3466 f2fs_inode_chksum_set(sbi, page);
3467 }
3468
3469 if (fio) {
3470 struct f2fs_bio_info *io;
3471
3472 if (F2FS_IO_ALIGNED(sbi))
3473 fio->retry = false;
3474
3475 INIT_LIST_HEAD(&fio->list);
3476 fio->in_list = true;
3477 io = sbi->write_io[fio->type] + fio->temp;
3478 spin_lock(&io->io_lock);
3479 list_add_tail(&fio->list, &io->io_list);
3480 spin_unlock(&io->io_lock);
3481 }
3482
3483 mutex_unlock(&curseg->curseg_mutex);
3484
3485 up_read(&SM_I(sbi)->curseg_lock);
3486 }
3487
update_device_state(struct f2fs_io_info * fio)3488 static void update_device_state(struct f2fs_io_info *fio)
3489 {
3490 struct f2fs_sb_info *sbi = fio->sbi;
3491 unsigned int devidx;
3492
3493 if (!f2fs_is_multi_device(sbi))
3494 return;
3495
3496 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3497
3498 /* update device state for fsync */
3499 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3500
3501 /* update device state for checkpoint */
3502 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3503 spin_lock(&sbi->dev_lock);
3504 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3505 spin_unlock(&sbi->dev_lock);
3506 }
3507 }
3508
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3509 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3510 {
3511 int type = __get_segment_type(fio);
3512 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3513
3514 if (keep_order)
3515 down_read(&fio->sbi->io_order_lock);
3516 reallocate:
3517 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3518 &fio->new_blkaddr, sum, type, fio);
3519 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3520 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3521 fio->old_blkaddr, fio->old_blkaddr);
3522 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3523 }
3524
3525 /* writeout dirty page into bdev */
3526 f2fs_submit_page_write(fio);
3527 if (fio->retry) {
3528 fio->old_blkaddr = fio->new_blkaddr;
3529 goto reallocate;
3530 }
3531
3532 update_device_state(fio);
3533
3534 if (keep_order)
3535 up_read(&fio->sbi->io_order_lock);
3536 }
3537
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3538 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3539 enum iostat_type io_type)
3540 {
3541 struct f2fs_io_info fio = {
3542 .sbi = sbi,
3543 .type = META,
3544 .temp = HOT,
3545 .op = REQ_OP_WRITE,
3546 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3547 .old_blkaddr = page->index,
3548 .new_blkaddr = page->index,
3549 .page = page,
3550 .encrypted_page = NULL,
3551 .in_list = false,
3552 };
3553
3554 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3555 fio.op_flags &= ~REQ_META;
3556
3557 set_page_writeback(page);
3558 ClearPageError(page);
3559 f2fs_submit_page_write(&fio);
3560
3561 stat_inc_meta_count(sbi, page->index);
3562 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3563 }
3564
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3565 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3566 {
3567 struct f2fs_summary sum;
3568
3569 set_summary(&sum, nid, 0, 0);
3570 do_write_page(&sum, fio);
3571
3572 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3573 }
3574
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3575 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3576 struct f2fs_io_info *fio)
3577 {
3578 struct f2fs_sb_info *sbi = fio->sbi;
3579 struct f2fs_summary sum;
3580
3581 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3582 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3583 do_write_page(&sum, fio);
3584 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3585
3586 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3587 }
3588
f2fs_inplace_write_data(struct f2fs_io_info * fio)3589 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3590 {
3591 int err;
3592 struct f2fs_sb_info *sbi = fio->sbi;
3593 unsigned int segno;
3594
3595 fio->new_blkaddr = fio->old_blkaddr;
3596 /* i/o temperature is needed for passing down write hints */
3597 __get_segment_type(fio);
3598
3599 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3600
3601 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3602 set_sbi_flag(sbi, SBI_NEED_FSCK);
3603 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3604 __func__, segno);
3605 err = -EFSCORRUPTED;
3606 goto drop_bio;
3607 }
3608
3609 if (f2fs_cp_error(sbi)) {
3610 err = -EIO;
3611 goto drop_bio;
3612 }
3613
3614 stat_inc_inplace_blocks(fio->sbi);
3615
3616 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3617 err = f2fs_merge_page_bio(fio);
3618 else
3619 err = f2fs_submit_page_bio(fio);
3620 if (!err) {
3621 update_device_state(fio);
3622 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3623 }
3624
3625 return err;
3626 drop_bio:
3627 if (fio->bio && *(fio->bio)) {
3628 struct bio *bio = *(fio->bio);
3629
3630 bio->bi_status = BLK_STS_IOERR;
3631 bio_endio(bio);
3632 *(fio->bio) = NULL;
3633 }
3634 return err;
3635 }
3636
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3637 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3638 unsigned int segno)
3639 {
3640 int i;
3641
3642 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3643 if (CURSEG_I(sbi, i)->segno == segno)
3644 break;
3645 }
3646 return i;
3647 }
3648
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3649 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3650 block_t old_blkaddr, block_t new_blkaddr,
3651 bool recover_curseg, bool recover_newaddr,
3652 bool from_gc)
3653 {
3654 struct sit_info *sit_i = SIT_I(sbi);
3655 struct curseg_info *curseg;
3656 unsigned int segno, old_cursegno;
3657 struct seg_entry *se;
3658 int type;
3659 unsigned short old_blkoff;
3660 unsigned char old_alloc_type;
3661
3662 segno = GET_SEGNO(sbi, new_blkaddr);
3663 se = get_seg_entry(sbi, segno);
3664 type = se->type;
3665
3666 down_write(&SM_I(sbi)->curseg_lock);
3667
3668 if (!recover_curseg) {
3669 /* for recovery flow */
3670 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3671 if (old_blkaddr == NULL_ADDR)
3672 type = CURSEG_COLD_DATA;
3673 else
3674 type = CURSEG_WARM_DATA;
3675 }
3676 } else {
3677 if (IS_CURSEG(sbi, segno)) {
3678 /* se->type is volatile as SSR allocation */
3679 type = __f2fs_get_curseg(sbi, segno);
3680 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3681 } else {
3682 type = CURSEG_WARM_DATA;
3683 }
3684 }
3685
3686 f2fs_bug_on(sbi, !IS_DATASEG(type));
3687 curseg = CURSEG_I(sbi, type);
3688
3689 mutex_lock(&curseg->curseg_mutex);
3690 down_write(&sit_i->sentry_lock);
3691
3692 old_cursegno = curseg->segno;
3693 old_blkoff = curseg->next_blkoff;
3694 old_alloc_type = curseg->alloc_type;
3695
3696 /* change the current segment */
3697 if (segno != curseg->segno) {
3698 curseg->next_segno = segno;
3699 change_curseg(sbi, type, true);
3700 }
3701
3702 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3703 __add_sum_entry(sbi, type, sum);
3704
3705 if (!recover_curseg || recover_newaddr) {
3706 if (!from_gc)
3707 update_segment_mtime(sbi, new_blkaddr, 0);
3708 update_sit_entry(sbi, new_blkaddr, 1);
3709 }
3710 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3711 invalidate_mapping_pages(META_MAPPING(sbi),
3712 old_blkaddr, old_blkaddr);
3713 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3714 if (!from_gc)
3715 update_segment_mtime(sbi, old_blkaddr, 0);
3716 update_sit_entry(sbi, old_blkaddr, -1);
3717 }
3718
3719 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3720 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3721
3722 locate_dirty_segment(sbi, old_cursegno);
3723
3724 if (recover_curseg) {
3725 if (old_cursegno != curseg->segno) {
3726 curseg->next_segno = old_cursegno;
3727 change_curseg(sbi, type, true);
3728 }
3729 curseg->next_blkoff = old_blkoff;
3730 curseg->alloc_type = old_alloc_type;
3731 }
3732
3733 up_write(&sit_i->sentry_lock);
3734 mutex_unlock(&curseg->curseg_mutex);
3735 up_write(&SM_I(sbi)->curseg_lock);
3736 }
3737
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3738 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3739 block_t old_addr, block_t new_addr,
3740 unsigned char version, bool recover_curseg,
3741 bool recover_newaddr)
3742 {
3743 struct f2fs_summary sum;
3744
3745 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3746
3747 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3748 recover_curseg, recover_newaddr, false);
3749
3750 f2fs_update_data_blkaddr(dn, new_addr);
3751 }
3752
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3753 void f2fs_wait_on_page_writeback(struct page *page,
3754 enum page_type type, bool ordered, bool locked)
3755 {
3756 if (PageWriteback(page)) {
3757 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3758
3759 /* submit cached LFS IO */
3760 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3761 /* sbumit cached IPU IO */
3762 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3763 if (ordered) {
3764 wait_on_page_writeback(page);
3765 f2fs_bug_on(sbi, locked && PageWriteback(page));
3766 } else {
3767 wait_for_stable_page(page);
3768 }
3769 }
3770 }
3771
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3772 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3773 {
3774 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3775 struct page *cpage;
3776
3777 if (!f2fs_post_read_required(inode))
3778 return;
3779
3780 if (!__is_valid_data_blkaddr(blkaddr))
3781 return;
3782
3783 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3784 if (cpage) {
3785 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3786 f2fs_put_page(cpage, 1);
3787 }
3788 }
3789
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3790 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3791 block_t len)
3792 {
3793 block_t i;
3794
3795 for (i = 0; i < len; i++)
3796 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3797 }
3798
read_compacted_summaries(struct f2fs_sb_info * sbi)3799 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3800 {
3801 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3802 struct curseg_info *seg_i;
3803 unsigned char *kaddr;
3804 struct page *page;
3805 block_t start;
3806 int i, j, offset;
3807
3808 start = start_sum_block(sbi);
3809
3810 page = f2fs_get_meta_page(sbi, start++);
3811 if (IS_ERR(page))
3812 return PTR_ERR(page);
3813 kaddr = (unsigned char *)page_address(page);
3814
3815 /* Step 1: restore nat cache */
3816 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3817 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3818
3819 /* Step 2: restore sit cache */
3820 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3821 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3822 offset = 2 * SUM_JOURNAL_SIZE;
3823
3824 /* Step 3: restore summary entries */
3825 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3826 unsigned short blk_off;
3827 unsigned int segno;
3828
3829 seg_i = CURSEG_I(sbi, i);
3830 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3831 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3832 seg_i->next_segno = segno;
3833 reset_curseg(sbi, i, 0);
3834 seg_i->alloc_type = ckpt->alloc_type[i];
3835 seg_i->next_blkoff = blk_off;
3836
3837 if (seg_i->alloc_type == SSR)
3838 blk_off = sbi->blocks_per_seg;
3839
3840 for (j = 0; j < blk_off; j++) {
3841 struct f2fs_summary *s;
3842
3843 s = (struct f2fs_summary *)(kaddr + offset);
3844 seg_i->sum_blk->entries[j] = *s;
3845 offset += SUMMARY_SIZE;
3846 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3847 SUM_FOOTER_SIZE)
3848 continue;
3849
3850 f2fs_put_page(page, 1);
3851 page = NULL;
3852
3853 page = f2fs_get_meta_page(sbi, start++);
3854 if (IS_ERR(page))
3855 return PTR_ERR(page);
3856 kaddr = (unsigned char *)page_address(page);
3857 offset = 0;
3858 }
3859 }
3860 f2fs_put_page(page, 1);
3861 return 0;
3862 }
3863
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3864 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3865 {
3866 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3867 struct f2fs_summary_block *sum;
3868 struct curseg_info *curseg;
3869 struct page *new;
3870 unsigned short blk_off;
3871 unsigned int segno = 0;
3872 block_t blk_addr = 0;
3873 int err = 0;
3874
3875 /* get segment number and block addr */
3876 if (IS_DATASEG(type)) {
3877 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3878 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3879 CURSEG_HOT_DATA]);
3880 if (__exist_node_summaries(sbi))
3881 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3882 else
3883 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3884 } else {
3885 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3886 CURSEG_HOT_NODE]);
3887 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3888 CURSEG_HOT_NODE]);
3889 if (__exist_node_summaries(sbi))
3890 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3891 type - CURSEG_HOT_NODE);
3892 else
3893 blk_addr = GET_SUM_BLOCK(sbi, segno);
3894 }
3895
3896 new = f2fs_get_meta_page(sbi, blk_addr);
3897 if (IS_ERR(new))
3898 return PTR_ERR(new);
3899 sum = (struct f2fs_summary_block *)page_address(new);
3900
3901 if (IS_NODESEG(type)) {
3902 if (__exist_node_summaries(sbi)) {
3903 struct f2fs_summary *ns = &sum->entries[0];
3904 int i;
3905
3906 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3907 ns->version = 0;
3908 ns->ofs_in_node = 0;
3909 }
3910 } else {
3911 err = f2fs_restore_node_summary(sbi, segno, sum);
3912 if (err)
3913 goto out;
3914 }
3915 }
3916
3917 /* set uncompleted segment to curseg */
3918 curseg = CURSEG_I(sbi, type);
3919 mutex_lock(&curseg->curseg_mutex);
3920
3921 /* update journal info */
3922 down_write(&curseg->journal_rwsem);
3923 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3924 up_write(&curseg->journal_rwsem);
3925
3926 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3927 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3928 curseg->next_segno = segno;
3929 reset_curseg(sbi, type, 0);
3930 curseg->alloc_type = ckpt->alloc_type[type];
3931 curseg->next_blkoff = blk_off;
3932 mutex_unlock(&curseg->curseg_mutex);
3933 out:
3934 f2fs_put_page(new, 1);
3935 return err;
3936 }
3937
restore_curseg_summaries(struct f2fs_sb_info * sbi)3938 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3939 {
3940 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3941 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3942 int type = CURSEG_HOT_DATA;
3943 int err;
3944
3945 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3946 int npages = f2fs_npages_for_summary_flush(sbi, true);
3947
3948 if (npages >= 2)
3949 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3950 META_CP, true);
3951
3952 /* restore for compacted data summary */
3953 err = read_compacted_summaries(sbi);
3954 if (err)
3955 return err;
3956 type = CURSEG_HOT_NODE;
3957 }
3958
3959 if (__exist_node_summaries(sbi))
3960 f2fs_ra_meta_pages(sbi,
3961 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3962 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3963
3964 for (; type <= CURSEG_COLD_NODE; type++) {
3965 err = read_normal_summaries(sbi, type);
3966 if (err)
3967 return err;
3968 }
3969
3970 /* sanity check for summary blocks */
3971 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3972 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3973 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3974 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3975 return -EINVAL;
3976 }
3977
3978 return 0;
3979 }
3980
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3981 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3982 {
3983 struct page *page;
3984 unsigned char *kaddr;
3985 struct f2fs_summary *summary;
3986 struct curseg_info *seg_i;
3987 int written_size = 0;
3988 int i, j;
3989
3990 page = f2fs_grab_meta_page(sbi, blkaddr++);
3991 kaddr = (unsigned char *)page_address(page);
3992 memset(kaddr, 0, PAGE_SIZE);
3993
3994 /* Step 1: write nat cache */
3995 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3996 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3997 written_size += SUM_JOURNAL_SIZE;
3998
3999 /* Step 2: write sit cache */
4000 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4001 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4002 written_size += SUM_JOURNAL_SIZE;
4003
4004 /* Step 3: write summary entries */
4005 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4006 unsigned short blkoff;
4007
4008 seg_i = CURSEG_I(sbi, i);
4009 if (sbi->ckpt->alloc_type[i] == SSR)
4010 blkoff = sbi->blocks_per_seg;
4011 else
4012 blkoff = curseg_blkoff(sbi, i);
4013
4014 for (j = 0; j < blkoff; j++) {
4015 if (!page) {
4016 page = f2fs_grab_meta_page(sbi, blkaddr++);
4017 kaddr = (unsigned char *)page_address(page);
4018 memset(kaddr, 0, PAGE_SIZE);
4019 written_size = 0;
4020 }
4021 summary = (struct f2fs_summary *)(kaddr + written_size);
4022 *summary = seg_i->sum_blk->entries[j];
4023 written_size += SUMMARY_SIZE;
4024
4025 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4026 SUM_FOOTER_SIZE)
4027 continue;
4028
4029 set_page_dirty(page);
4030 f2fs_put_page(page, 1);
4031 page = NULL;
4032 }
4033 }
4034 if (page) {
4035 set_page_dirty(page);
4036 f2fs_put_page(page, 1);
4037 }
4038 }
4039
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4040 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4041 block_t blkaddr, int type)
4042 {
4043 int i, end;
4044
4045 if (IS_DATASEG(type))
4046 end = type + NR_CURSEG_DATA_TYPE;
4047 else
4048 end = type + NR_CURSEG_NODE_TYPE;
4049
4050 for (i = type; i < end; i++)
4051 write_current_sum_page(sbi, i, blkaddr + (i - type));
4052 }
4053
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4054 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4055 {
4056 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4057 write_compacted_summaries(sbi, start_blk);
4058 else
4059 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4060 }
4061
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4062 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4063 {
4064 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4065 }
4066
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4067 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4068 unsigned int val, int alloc)
4069 {
4070 int i;
4071
4072 if (type == NAT_JOURNAL) {
4073 for (i = 0; i < nats_in_cursum(journal); i++) {
4074 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4075 return i;
4076 }
4077 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4078 return update_nats_in_cursum(journal, 1);
4079 } else if (type == SIT_JOURNAL) {
4080 for (i = 0; i < sits_in_cursum(journal); i++)
4081 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4082 return i;
4083 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4084 return update_sits_in_cursum(journal, 1);
4085 }
4086 return -1;
4087 }
4088
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4089 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4090 unsigned int segno)
4091 {
4092 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4093 }
4094
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4095 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4096 unsigned int start)
4097 {
4098 struct sit_info *sit_i = SIT_I(sbi);
4099 struct page *page;
4100 pgoff_t src_off, dst_off;
4101
4102 src_off = current_sit_addr(sbi, start);
4103 dst_off = next_sit_addr(sbi, src_off);
4104
4105 page = f2fs_grab_meta_page(sbi, dst_off);
4106 seg_info_to_sit_page(sbi, page, start);
4107
4108 set_page_dirty(page);
4109 set_to_next_sit(sit_i, start);
4110
4111 return page;
4112 }
4113
grab_sit_entry_set(void)4114 static struct sit_entry_set *grab_sit_entry_set(void)
4115 {
4116 struct sit_entry_set *ses =
4117 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4118 GFP_NOFS, true, NULL);
4119
4120 ses->entry_cnt = 0;
4121 INIT_LIST_HEAD(&ses->set_list);
4122 return ses;
4123 }
4124
release_sit_entry_set(struct sit_entry_set * ses)4125 static void release_sit_entry_set(struct sit_entry_set *ses)
4126 {
4127 list_del(&ses->set_list);
4128 kmem_cache_free(sit_entry_set_slab, ses);
4129 }
4130
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4131 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4132 struct list_head *head)
4133 {
4134 struct sit_entry_set *next = ses;
4135
4136 if (list_is_last(&ses->set_list, head))
4137 return;
4138
4139 list_for_each_entry_continue(next, head, set_list)
4140 if (ses->entry_cnt <= next->entry_cnt)
4141 break;
4142
4143 list_move_tail(&ses->set_list, &next->set_list);
4144 }
4145
add_sit_entry(unsigned int segno,struct list_head * head)4146 static void add_sit_entry(unsigned int segno, struct list_head *head)
4147 {
4148 struct sit_entry_set *ses;
4149 unsigned int start_segno = START_SEGNO(segno);
4150
4151 list_for_each_entry(ses, head, set_list) {
4152 if (ses->start_segno == start_segno) {
4153 ses->entry_cnt++;
4154 adjust_sit_entry_set(ses, head);
4155 return;
4156 }
4157 }
4158
4159 ses = grab_sit_entry_set();
4160
4161 ses->start_segno = start_segno;
4162 ses->entry_cnt++;
4163 list_add(&ses->set_list, head);
4164 }
4165
add_sits_in_set(struct f2fs_sb_info * sbi)4166 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4167 {
4168 struct f2fs_sm_info *sm_info = SM_I(sbi);
4169 struct list_head *set_list = &sm_info->sit_entry_set;
4170 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4171 unsigned int segno;
4172
4173 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4174 add_sit_entry(segno, set_list);
4175 }
4176
remove_sits_in_journal(struct f2fs_sb_info * sbi)4177 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4178 {
4179 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4180 struct f2fs_journal *journal = curseg->journal;
4181 int i;
4182
4183 down_write(&curseg->journal_rwsem);
4184 for (i = 0; i < sits_in_cursum(journal); i++) {
4185 unsigned int segno;
4186 bool dirtied;
4187
4188 segno = le32_to_cpu(segno_in_journal(journal, i));
4189 dirtied = __mark_sit_entry_dirty(sbi, segno);
4190
4191 if (!dirtied)
4192 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4193 }
4194 update_sits_in_cursum(journal, -i);
4195 up_write(&curseg->journal_rwsem);
4196 }
4197
4198 /*
4199 * CP calls this function, which flushes SIT entries including sit_journal,
4200 * and moves prefree segs to free segs.
4201 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4202 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4203 {
4204 struct sit_info *sit_i = SIT_I(sbi);
4205 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4206 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4207 struct f2fs_journal *journal = curseg->journal;
4208 struct sit_entry_set *ses, *tmp;
4209 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4210 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4211 struct seg_entry *se;
4212
4213 down_write(&sit_i->sentry_lock);
4214
4215 if (!sit_i->dirty_sentries)
4216 goto out;
4217
4218 /*
4219 * add and account sit entries of dirty bitmap in sit entry
4220 * set temporarily
4221 */
4222 add_sits_in_set(sbi);
4223
4224 /*
4225 * if there are no enough space in journal to store dirty sit
4226 * entries, remove all entries from journal and add and account
4227 * them in sit entry set.
4228 */
4229 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4230 !to_journal)
4231 remove_sits_in_journal(sbi);
4232
4233 /*
4234 * there are two steps to flush sit entries:
4235 * #1, flush sit entries to journal in current cold data summary block.
4236 * #2, flush sit entries to sit page.
4237 */
4238 list_for_each_entry_safe(ses, tmp, head, set_list) {
4239 struct page *page = NULL;
4240 struct f2fs_sit_block *raw_sit = NULL;
4241 unsigned int start_segno = ses->start_segno;
4242 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4243 (unsigned long)MAIN_SEGS(sbi));
4244 unsigned int segno = start_segno;
4245
4246 if (to_journal &&
4247 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4248 to_journal = false;
4249
4250 if (to_journal) {
4251 down_write(&curseg->journal_rwsem);
4252 } else {
4253 page = get_next_sit_page(sbi, start_segno);
4254 raw_sit = page_address(page);
4255 }
4256
4257 /* flush dirty sit entries in region of current sit set */
4258 for_each_set_bit_from(segno, bitmap, end) {
4259 int offset, sit_offset;
4260
4261 se = get_seg_entry(sbi, segno);
4262 #ifdef CONFIG_F2FS_CHECK_FS
4263 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4264 SIT_VBLOCK_MAP_SIZE))
4265 f2fs_bug_on(sbi, 1);
4266 #endif
4267
4268 /* add discard candidates */
4269 if (!(cpc->reason & CP_DISCARD)) {
4270 cpc->trim_start = segno;
4271 add_discard_addrs(sbi, cpc, false);
4272 }
4273
4274 if (to_journal) {
4275 offset = f2fs_lookup_journal_in_cursum(journal,
4276 SIT_JOURNAL, segno, 1);
4277 f2fs_bug_on(sbi, offset < 0);
4278 segno_in_journal(journal, offset) =
4279 cpu_to_le32(segno);
4280 seg_info_to_raw_sit(se,
4281 &sit_in_journal(journal, offset));
4282 check_block_count(sbi, segno,
4283 &sit_in_journal(journal, offset));
4284 } else {
4285 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4286 seg_info_to_raw_sit(se,
4287 &raw_sit->entries[sit_offset]);
4288 check_block_count(sbi, segno,
4289 &raw_sit->entries[sit_offset]);
4290 }
4291
4292 __clear_bit(segno, bitmap);
4293 sit_i->dirty_sentries--;
4294 ses->entry_cnt--;
4295 }
4296
4297 if (to_journal)
4298 up_write(&curseg->journal_rwsem);
4299 else
4300 f2fs_put_page(page, 1);
4301
4302 f2fs_bug_on(sbi, ses->entry_cnt);
4303 release_sit_entry_set(ses);
4304 }
4305
4306 f2fs_bug_on(sbi, !list_empty(head));
4307 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4308 out:
4309 if (cpc->reason & CP_DISCARD) {
4310 __u64 trim_start = cpc->trim_start;
4311
4312 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4313 add_discard_addrs(sbi, cpc, false);
4314
4315 cpc->trim_start = trim_start;
4316 }
4317 up_write(&sit_i->sentry_lock);
4318
4319 set_prefree_as_free_segments(sbi);
4320 }
4321
build_sit_info(struct f2fs_sb_info * sbi)4322 static int build_sit_info(struct f2fs_sb_info *sbi)
4323 {
4324 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4325 struct sit_info *sit_i;
4326 unsigned int sit_segs, start;
4327 char *src_bitmap, *bitmap;
4328 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4329 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4330
4331 /* allocate memory for SIT information */
4332 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4333 if (!sit_i)
4334 return -ENOMEM;
4335
4336 SM_I(sbi)->sit_info = sit_i;
4337
4338 sit_i->sentries =
4339 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4340 MAIN_SEGS(sbi)),
4341 GFP_KERNEL);
4342 if (!sit_i->sentries)
4343 return -ENOMEM;
4344
4345 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4346 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4347 GFP_KERNEL);
4348 if (!sit_i->dirty_sentries_bitmap)
4349 return -ENOMEM;
4350
4351 #ifdef CONFIG_F2FS_CHECK_FS
4352 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4353 #else
4354 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4355 #endif
4356 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4357 if (!sit_i->bitmap)
4358 return -ENOMEM;
4359
4360 bitmap = sit_i->bitmap;
4361
4362 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4363 sit_i->sentries[start].cur_valid_map = bitmap;
4364 bitmap += SIT_VBLOCK_MAP_SIZE;
4365
4366 sit_i->sentries[start].ckpt_valid_map = bitmap;
4367 bitmap += SIT_VBLOCK_MAP_SIZE;
4368
4369 #ifdef CONFIG_F2FS_CHECK_FS
4370 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4371 bitmap += SIT_VBLOCK_MAP_SIZE;
4372 #endif
4373
4374 if (discard_map) {
4375 sit_i->sentries[start].discard_map = bitmap;
4376 bitmap += SIT_VBLOCK_MAP_SIZE;
4377 }
4378 }
4379
4380 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4381 if (!sit_i->tmp_map)
4382 return -ENOMEM;
4383
4384 if (__is_large_section(sbi)) {
4385 sit_i->sec_entries =
4386 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4387 MAIN_SECS(sbi)),
4388 GFP_KERNEL);
4389 if (!sit_i->sec_entries)
4390 return -ENOMEM;
4391 }
4392
4393 /* get information related with SIT */
4394 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4395
4396 /* setup SIT bitmap from ckeckpoint pack */
4397 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4398 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4399
4400 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4401 if (!sit_i->sit_bitmap)
4402 return -ENOMEM;
4403
4404 #ifdef CONFIG_F2FS_CHECK_FS
4405 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4406 sit_bitmap_size, GFP_KERNEL);
4407 if (!sit_i->sit_bitmap_mir)
4408 return -ENOMEM;
4409
4410 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4411 main_bitmap_size, GFP_KERNEL);
4412 if (!sit_i->invalid_segmap)
4413 return -ENOMEM;
4414 #endif
4415
4416 /* init SIT information */
4417 sit_i->s_ops = &default_salloc_ops;
4418
4419 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4420 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4421 sit_i->written_valid_blocks = 0;
4422 sit_i->bitmap_size = sit_bitmap_size;
4423 sit_i->dirty_sentries = 0;
4424 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4425 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4426 sit_i->mounted_time = ktime_get_boottime_seconds();
4427 init_rwsem(&sit_i->sentry_lock);
4428 return 0;
4429 }
4430
build_free_segmap(struct f2fs_sb_info * sbi)4431 static int build_free_segmap(struct f2fs_sb_info *sbi)
4432 {
4433 struct free_segmap_info *free_i;
4434 unsigned int bitmap_size, sec_bitmap_size;
4435
4436 /* allocate memory for free segmap information */
4437 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4438 if (!free_i)
4439 return -ENOMEM;
4440
4441 SM_I(sbi)->free_info = free_i;
4442
4443 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4444 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4445 if (!free_i->free_segmap)
4446 return -ENOMEM;
4447
4448 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4449 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4450 if (!free_i->free_secmap)
4451 return -ENOMEM;
4452
4453 /* set all segments as dirty temporarily */
4454 memset(free_i->free_segmap, 0xff, bitmap_size);
4455 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4456
4457 /* init free segmap information */
4458 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4459 free_i->free_segments = 0;
4460 free_i->free_sections = 0;
4461 spin_lock_init(&free_i->segmap_lock);
4462 return 0;
4463 }
4464
build_curseg(struct f2fs_sb_info * sbi)4465 static int build_curseg(struct f2fs_sb_info *sbi)
4466 {
4467 struct curseg_info *array;
4468 int i;
4469
4470 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4471 sizeof(*array)), GFP_KERNEL);
4472 if (!array)
4473 return -ENOMEM;
4474
4475 SM_I(sbi)->curseg_array = array;
4476
4477 for (i = 0; i < NO_CHECK_TYPE; i++) {
4478 mutex_init(&array[i].curseg_mutex);
4479 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4480 if (!array[i].sum_blk)
4481 return -ENOMEM;
4482 init_rwsem(&array[i].journal_rwsem);
4483 array[i].journal = f2fs_kzalloc(sbi,
4484 sizeof(struct f2fs_journal), GFP_KERNEL);
4485 if (!array[i].journal)
4486 return -ENOMEM;
4487 if (i < NR_PERSISTENT_LOG)
4488 array[i].seg_type = CURSEG_HOT_DATA + i;
4489 else if (i == CURSEG_COLD_DATA_PINNED)
4490 array[i].seg_type = CURSEG_COLD_DATA;
4491 else if (i == CURSEG_ALL_DATA_ATGC)
4492 array[i].seg_type = CURSEG_COLD_DATA;
4493 array[i].segno = NULL_SEGNO;
4494 array[i].next_blkoff = 0;
4495 array[i].inited = false;
4496 }
4497 return restore_curseg_summaries(sbi);
4498 }
4499
build_sit_entries(struct f2fs_sb_info * sbi)4500 static int build_sit_entries(struct f2fs_sb_info *sbi)
4501 {
4502 struct sit_info *sit_i = SIT_I(sbi);
4503 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4504 struct f2fs_journal *journal = curseg->journal;
4505 struct seg_entry *se;
4506 struct f2fs_sit_entry sit;
4507 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4508 unsigned int i, start, end;
4509 unsigned int readed, start_blk = 0;
4510 int err = 0;
4511 block_t total_node_blocks = 0;
4512
4513 do {
4514 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4515 META_SIT, true);
4516
4517 start = start_blk * sit_i->sents_per_block;
4518 end = (start_blk + readed) * sit_i->sents_per_block;
4519
4520 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4521 struct f2fs_sit_block *sit_blk;
4522 struct page *page;
4523
4524 se = &sit_i->sentries[start];
4525 page = get_current_sit_page(sbi, start);
4526 if (IS_ERR(page))
4527 return PTR_ERR(page);
4528 sit_blk = (struct f2fs_sit_block *)page_address(page);
4529 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4530 f2fs_put_page(page, 1);
4531
4532 err = check_block_count(sbi, start, &sit);
4533 if (err)
4534 return err;
4535 seg_info_from_raw_sit(se, &sit);
4536 if (IS_NODESEG(se->type))
4537 total_node_blocks += se->valid_blocks;
4538
4539 if (f2fs_block_unit_discard(sbi)) {
4540 /* build discard map only one time */
4541 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4542 memset(se->discard_map, 0xff,
4543 SIT_VBLOCK_MAP_SIZE);
4544 } else {
4545 memcpy(se->discard_map,
4546 se->cur_valid_map,
4547 SIT_VBLOCK_MAP_SIZE);
4548 sbi->discard_blks +=
4549 sbi->blocks_per_seg -
4550 se->valid_blocks;
4551 }
4552 }
4553
4554 if (__is_large_section(sbi))
4555 get_sec_entry(sbi, start)->valid_blocks +=
4556 se->valid_blocks;
4557 }
4558 start_blk += readed;
4559 } while (start_blk < sit_blk_cnt);
4560
4561 down_read(&curseg->journal_rwsem);
4562 for (i = 0; i < sits_in_cursum(journal); i++) {
4563 unsigned int old_valid_blocks;
4564
4565 start = le32_to_cpu(segno_in_journal(journal, i));
4566 if (start >= MAIN_SEGS(sbi)) {
4567 f2fs_err(sbi, "Wrong journal entry on segno %u",
4568 start);
4569 err = -EFSCORRUPTED;
4570 break;
4571 }
4572
4573 se = &sit_i->sentries[start];
4574 sit = sit_in_journal(journal, i);
4575
4576 old_valid_blocks = se->valid_blocks;
4577 if (IS_NODESEG(se->type))
4578 total_node_blocks -= old_valid_blocks;
4579
4580 err = check_block_count(sbi, start, &sit);
4581 if (err)
4582 break;
4583 seg_info_from_raw_sit(se, &sit);
4584 if (IS_NODESEG(se->type))
4585 total_node_blocks += se->valid_blocks;
4586
4587 if (f2fs_block_unit_discard(sbi)) {
4588 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4589 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4590 } else {
4591 memcpy(se->discard_map, se->cur_valid_map,
4592 SIT_VBLOCK_MAP_SIZE);
4593 sbi->discard_blks += old_valid_blocks;
4594 sbi->discard_blks -= se->valid_blocks;
4595 }
4596 }
4597
4598 if (__is_large_section(sbi)) {
4599 get_sec_entry(sbi, start)->valid_blocks +=
4600 se->valid_blocks;
4601 get_sec_entry(sbi, start)->valid_blocks -=
4602 old_valid_blocks;
4603 }
4604 }
4605 up_read(&curseg->journal_rwsem);
4606
4607 if (!err && total_node_blocks != valid_node_count(sbi)) {
4608 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4609 total_node_blocks, valid_node_count(sbi));
4610 err = -EFSCORRUPTED;
4611 }
4612
4613 return err;
4614 }
4615
init_free_segmap(struct f2fs_sb_info * sbi)4616 static void init_free_segmap(struct f2fs_sb_info *sbi)
4617 {
4618 unsigned int start;
4619 int type;
4620 struct seg_entry *sentry;
4621
4622 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4623 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4624 continue;
4625 sentry = get_seg_entry(sbi, start);
4626 if (!sentry->valid_blocks)
4627 __set_free(sbi, start);
4628 else
4629 SIT_I(sbi)->written_valid_blocks +=
4630 sentry->valid_blocks;
4631 }
4632
4633 /* set use the current segments */
4634 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4635 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4636
4637 __set_test_and_inuse(sbi, curseg_t->segno);
4638 }
4639 }
4640
init_dirty_segmap(struct f2fs_sb_info * sbi)4641 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4642 {
4643 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4644 struct free_segmap_info *free_i = FREE_I(sbi);
4645 unsigned int segno = 0, offset = 0, secno;
4646 block_t valid_blocks, usable_blks_in_seg;
4647 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4648
4649 while (1) {
4650 /* find dirty segment based on free segmap */
4651 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4652 if (segno >= MAIN_SEGS(sbi))
4653 break;
4654 offset = segno + 1;
4655 valid_blocks = get_valid_blocks(sbi, segno, false);
4656 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4657 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4658 continue;
4659 if (valid_blocks > usable_blks_in_seg) {
4660 f2fs_bug_on(sbi, 1);
4661 continue;
4662 }
4663 mutex_lock(&dirty_i->seglist_lock);
4664 __locate_dirty_segment(sbi, segno, DIRTY);
4665 mutex_unlock(&dirty_i->seglist_lock);
4666 }
4667
4668 if (!__is_large_section(sbi))
4669 return;
4670
4671 mutex_lock(&dirty_i->seglist_lock);
4672 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4673 valid_blocks = get_valid_blocks(sbi, segno, true);
4674 secno = GET_SEC_FROM_SEG(sbi, segno);
4675
4676 if (!valid_blocks || valid_blocks == blks_per_sec)
4677 continue;
4678 if (IS_CURSEC(sbi, secno))
4679 continue;
4680 set_bit(secno, dirty_i->dirty_secmap);
4681 }
4682 mutex_unlock(&dirty_i->seglist_lock);
4683 }
4684
init_victim_secmap(struct f2fs_sb_info * sbi)4685 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4686 {
4687 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4688 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4689
4690 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4691 if (!dirty_i->victim_secmap)
4692 return -ENOMEM;
4693 return 0;
4694 }
4695
build_dirty_segmap(struct f2fs_sb_info * sbi)4696 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4697 {
4698 struct dirty_seglist_info *dirty_i;
4699 unsigned int bitmap_size, i;
4700
4701 /* allocate memory for dirty segments list information */
4702 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4703 GFP_KERNEL);
4704 if (!dirty_i)
4705 return -ENOMEM;
4706
4707 SM_I(sbi)->dirty_info = dirty_i;
4708 mutex_init(&dirty_i->seglist_lock);
4709
4710 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4711
4712 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4713 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4714 GFP_KERNEL);
4715 if (!dirty_i->dirty_segmap[i])
4716 return -ENOMEM;
4717 }
4718
4719 if (__is_large_section(sbi)) {
4720 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4721 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4722 bitmap_size, GFP_KERNEL);
4723 if (!dirty_i->dirty_secmap)
4724 return -ENOMEM;
4725 }
4726
4727 init_dirty_segmap(sbi);
4728 return init_victim_secmap(sbi);
4729 }
4730
sanity_check_curseg(struct f2fs_sb_info * sbi)4731 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4732 {
4733 int i;
4734
4735 /*
4736 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4737 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4738 */
4739 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4740 struct curseg_info *curseg = CURSEG_I(sbi, i);
4741 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4742 unsigned int blkofs = curseg->next_blkoff;
4743
4744 if (f2fs_sb_has_readonly(sbi) &&
4745 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4746 continue;
4747
4748 sanity_check_seg_type(sbi, curseg->seg_type);
4749
4750 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4751 goto out;
4752
4753 if (curseg->alloc_type == SSR)
4754 continue;
4755
4756 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4757 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4758 continue;
4759 out:
4760 f2fs_err(sbi,
4761 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4762 i, curseg->segno, curseg->alloc_type,
4763 curseg->next_blkoff, blkofs);
4764 return -EFSCORRUPTED;
4765 }
4766 }
4767 return 0;
4768 }
4769
4770 #ifdef CONFIG_BLK_DEV_ZONED
4771
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4772 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4773 struct f2fs_dev_info *fdev,
4774 struct blk_zone *zone)
4775 {
4776 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4777 block_t zone_block, wp_block, last_valid_block;
4778 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4779 int i, s, b, ret;
4780 struct seg_entry *se;
4781
4782 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4783 return 0;
4784
4785 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4786 wp_segno = GET_SEGNO(sbi, wp_block);
4787 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4788 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4789 zone_segno = GET_SEGNO(sbi, zone_block);
4790 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4791
4792 if (zone_segno >= MAIN_SEGS(sbi))
4793 return 0;
4794
4795 /*
4796 * Skip check of zones cursegs point to, since
4797 * fix_curseg_write_pointer() checks them.
4798 */
4799 for (i = 0; i < NO_CHECK_TYPE; i++)
4800 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4801 CURSEG_I(sbi, i)->segno))
4802 return 0;
4803
4804 /*
4805 * Get last valid block of the zone.
4806 */
4807 last_valid_block = zone_block - 1;
4808 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4809 segno = zone_segno + s;
4810 se = get_seg_entry(sbi, segno);
4811 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4812 if (f2fs_test_bit(b, se->cur_valid_map)) {
4813 last_valid_block = START_BLOCK(sbi, segno) + b;
4814 break;
4815 }
4816 if (last_valid_block >= zone_block)
4817 break;
4818 }
4819
4820 /*
4821 * If last valid block is beyond the write pointer, report the
4822 * inconsistency. This inconsistency does not cause write error
4823 * because the zone will not be selected for write operation until
4824 * it get discarded. Just report it.
4825 */
4826 if (last_valid_block >= wp_block) {
4827 f2fs_notice(sbi, "Valid block beyond write pointer: "
4828 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4829 GET_SEGNO(sbi, last_valid_block),
4830 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4831 wp_segno, wp_blkoff);
4832 return 0;
4833 }
4834
4835 /*
4836 * If there is no valid block in the zone and if write pointer is
4837 * not at zone start, reset the write pointer.
4838 */
4839 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4840 f2fs_notice(sbi,
4841 "Zone without valid block has non-zero write "
4842 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4843 wp_segno, wp_blkoff);
4844 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4845 zone->len >> log_sectors_per_block);
4846 if (ret) {
4847 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4848 fdev->path, ret);
4849 return ret;
4850 }
4851 }
4852
4853 return 0;
4854 }
4855
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4856 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4857 block_t zone_blkaddr)
4858 {
4859 int i;
4860
4861 for (i = 0; i < sbi->s_ndevs; i++) {
4862 if (!bdev_is_zoned(FDEV(i).bdev))
4863 continue;
4864 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4865 zone_blkaddr <= FDEV(i).end_blk))
4866 return &FDEV(i);
4867 }
4868
4869 return NULL;
4870 }
4871
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4872 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4873 void *data)
4874 {
4875 memcpy(data, zone, sizeof(struct blk_zone));
4876 return 0;
4877 }
4878
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4879 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4880 {
4881 struct curseg_info *cs = CURSEG_I(sbi, type);
4882 struct f2fs_dev_info *zbd;
4883 struct blk_zone zone;
4884 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4885 block_t cs_zone_block, wp_block;
4886 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4887 sector_t zone_sector;
4888 int err;
4889
4890 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4891 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4892
4893 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4894 if (!zbd)
4895 return 0;
4896
4897 /* report zone for the sector the curseg points to */
4898 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4899 << log_sectors_per_block;
4900 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4901 report_one_zone_cb, &zone);
4902 if (err != 1) {
4903 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4904 zbd->path, err);
4905 return err;
4906 }
4907
4908 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4909 return 0;
4910
4911 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4912 wp_segno = GET_SEGNO(sbi, wp_block);
4913 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4914 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4915
4916 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4917 wp_sector_off == 0)
4918 return 0;
4919
4920 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4921 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4922 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4923
4924 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4925 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4926
4927 f2fs_allocate_new_section(sbi, type, true);
4928
4929 /* check consistency of the zone curseg pointed to */
4930 if (check_zone_write_pointer(sbi, zbd, &zone))
4931 return -EIO;
4932
4933 /* check newly assigned zone */
4934 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4935 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4936
4937 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4938 if (!zbd)
4939 return 0;
4940
4941 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4942 << log_sectors_per_block;
4943 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4944 report_one_zone_cb, &zone);
4945 if (err != 1) {
4946 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4947 zbd->path, err);
4948 return err;
4949 }
4950
4951 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4952 return 0;
4953
4954 if (zone.wp != zone.start) {
4955 f2fs_notice(sbi,
4956 "New zone for curseg[%d] is not yet discarded. "
4957 "Reset the zone: curseg[0x%x,0x%x]",
4958 type, cs->segno, cs->next_blkoff);
4959 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4960 zone_sector >> log_sectors_per_block,
4961 zone.len >> log_sectors_per_block);
4962 if (err) {
4963 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4964 zbd->path, err);
4965 return err;
4966 }
4967 }
4968
4969 return 0;
4970 }
4971
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4972 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4973 {
4974 int i, ret;
4975
4976 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4977 ret = fix_curseg_write_pointer(sbi, i);
4978 if (ret)
4979 return ret;
4980 }
4981
4982 return 0;
4983 }
4984
4985 struct check_zone_write_pointer_args {
4986 struct f2fs_sb_info *sbi;
4987 struct f2fs_dev_info *fdev;
4988 };
4989
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4990 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4991 void *data)
4992 {
4993 struct check_zone_write_pointer_args *args;
4994
4995 args = (struct check_zone_write_pointer_args *)data;
4996
4997 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4998 }
4999
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5000 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5001 {
5002 int i, ret;
5003 struct check_zone_write_pointer_args args;
5004
5005 for (i = 0; i < sbi->s_ndevs; i++) {
5006 if (!bdev_is_zoned(FDEV(i).bdev))
5007 continue;
5008
5009 args.sbi = sbi;
5010 args.fdev = &FDEV(i);
5011 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5012 check_zone_write_pointer_cb, &args);
5013 if (ret < 0)
5014 return ret;
5015 }
5016
5017 return 0;
5018 }
5019
is_conv_zone(struct f2fs_sb_info * sbi,unsigned int zone_idx,unsigned int dev_idx)5020 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5021 unsigned int dev_idx)
5022 {
5023 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5024 return true;
5025 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5026 }
5027
5028 /* Return the zone index in the given device */
get_zone_idx(struct f2fs_sb_info * sbi,unsigned int secno,int dev_idx)5029 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5030 int dev_idx)
5031 {
5032 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5033
5034 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5035 sbi->log_blocks_per_blkz;
5036 }
5037
5038 /*
5039 * Return the usable segments in a section based on the zone's
5040 * corresponding zone capacity. Zone is equal to a section.
5041 */
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5042 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5043 struct f2fs_sb_info *sbi, unsigned int segno)
5044 {
5045 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5046
5047 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5048 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5049
5050 /* Conventional zone's capacity is always equal to zone size */
5051 if (is_conv_zone(sbi, zone_idx, dev_idx))
5052 return sbi->segs_per_sec;
5053
5054 /*
5055 * If the zone_capacity_blocks array is NULL, then zone capacity
5056 * is equal to the zone size for all zones
5057 */
5058 if (!FDEV(dev_idx).zone_capacity_blocks)
5059 return sbi->segs_per_sec;
5060
5061 /* Get the segment count beyond zone capacity block */
5062 unusable_segs_in_sec = (sbi->blocks_per_blkz -
5063 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5064 sbi->log_blocks_per_seg;
5065 return sbi->segs_per_sec - unusable_segs_in_sec;
5066 }
5067
5068 /*
5069 * Return the number of usable blocks in a segment. The number of blocks
5070 * returned is always equal to the number of blocks in a segment for
5071 * segments fully contained within a sequential zone capacity or a
5072 * conventional zone. For segments partially contained in a sequential
5073 * zone capacity, the number of usable blocks up to the zone capacity
5074 * is returned. 0 is returned in all other cases.
5075 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5076 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5077 struct f2fs_sb_info *sbi, unsigned int segno)
5078 {
5079 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5080 unsigned int zone_idx, dev_idx, secno;
5081
5082 secno = GET_SEC_FROM_SEG(sbi, segno);
5083 seg_start = START_BLOCK(sbi, segno);
5084 dev_idx = f2fs_target_device_index(sbi, seg_start);
5085 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5086
5087 /*
5088 * Conventional zone's capacity is always equal to zone size,
5089 * so, blocks per segment is unchanged.
5090 */
5091 if (is_conv_zone(sbi, zone_idx, dev_idx))
5092 return sbi->blocks_per_seg;
5093
5094 if (!FDEV(dev_idx).zone_capacity_blocks)
5095 return sbi->blocks_per_seg;
5096
5097 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5098 sec_cap_blkaddr = sec_start_blkaddr +
5099 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5100
5101 /*
5102 * If segment starts before zone capacity and spans beyond
5103 * zone capacity, then usable blocks are from seg start to
5104 * zone capacity. If the segment starts after the zone capacity,
5105 * then there are no usable blocks.
5106 */
5107 if (seg_start >= sec_cap_blkaddr)
5108 return 0;
5109 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5110 return sec_cap_blkaddr - seg_start;
5111
5112 return sbi->blocks_per_seg;
5113 }
5114 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5115 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5116 {
5117 return 0;
5118 }
5119
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5120 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5121 {
5122 return 0;
5123 }
5124
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5125 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5126 unsigned int segno)
5127 {
5128 return 0;
5129 }
5130
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5131 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5132 unsigned int segno)
5133 {
5134 return 0;
5135 }
5136 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5137 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5138 unsigned int segno)
5139 {
5140 if (f2fs_sb_has_blkzoned(sbi))
5141 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5142
5143 return sbi->blocks_per_seg;
5144 }
5145
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5146 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5147 unsigned int segno)
5148 {
5149 if (f2fs_sb_has_blkzoned(sbi))
5150 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5151
5152 return sbi->segs_per_sec;
5153 }
5154
5155 /*
5156 * Update min, max modified time for cost-benefit GC algorithm
5157 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5158 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5159 {
5160 struct sit_info *sit_i = SIT_I(sbi);
5161 unsigned int segno;
5162
5163 down_write(&sit_i->sentry_lock);
5164
5165 sit_i->min_mtime = ULLONG_MAX;
5166
5167 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5168 unsigned int i;
5169 unsigned long long mtime = 0;
5170
5171 for (i = 0; i < sbi->segs_per_sec; i++)
5172 mtime += get_seg_entry(sbi, segno + i)->mtime;
5173
5174 mtime = div_u64(mtime, sbi->segs_per_sec);
5175
5176 if (sit_i->min_mtime > mtime)
5177 sit_i->min_mtime = mtime;
5178 }
5179 sit_i->max_mtime = get_mtime(sbi, false);
5180 sit_i->dirty_max_mtime = 0;
5181 up_write(&sit_i->sentry_lock);
5182 }
5183
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5184 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5185 {
5186 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5187 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5188 struct f2fs_sm_info *sm_info;
5189 int err;
5190
5191 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5192 if (!sm_info)
5193 return -ENOMEM;
5194
5195 /* init sm info */
5196 sbi->sm_info = sm_info;
5197 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5198 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5199 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5200 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5201 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5202 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5203 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5204 sm_info->rec_prefree_segments = sm_info->main_segments *
5205 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5206 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5207 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5208
5209 if (!f2fs_lfs_mode(sbi))
5210 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5211 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5212 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5213 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5214 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5215 sm_info->min_ssr_sections = reserved_sections(sbi);
5216
5217 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5218
5219 init_rwsem(&sm_info->curseg_lock);
5220
5221 if (!f2fs_readonly(sbi->sb)) {
5222 err = f2fs_create_flush_cmd_control(sbi);
5223 if (err)
5224 return err;
5225 }
5226
5227 err = create_discard_cmd_control(sbi);
5228 if (err)
5229 return err;
5230
5231 err = build_sit_info(sbi);
5232 if (err)
5233 return err;
5234 err = build_free_segmap(sbi);
5235 if (err)
5236 return err;
5237 err = build_curseg(sbi);
5238 if (err)
5239 return err;
5240
5241 /* reinit free segmap based on SIT */
5242 err = build_sit_entries(sbi);
5243 if (err)
5244 return err;
5245
5246 init_free_segmap(sbi);
5247 err = build_dirty_segmap(sbi);
5248 if (err)
5249 return err;
5250
5251 err = sanity_check_curseg(sbi);
5252 if (err)
5253 return err;
5254
5255 init_min_max_mtime(sbi);
5256 return 0;
5257 }
5258
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5259 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5260 enum dirty_type dirty_type)
5261 {
5262 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5263
5264 mutex_lock(&dirty_i->seglist_lock);
5265 kvfree(dirty_i->dirty_segmap[dirty_type]);
5266 dirty_i->nr_dirty[dirty_type] = 0;
5267 mutex_unlock(&dirty_i->seglist_lock);
5268 }
5269
destroy_victim_secmap(struct f2fs_sb_info * sbi)5270 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5271 {
5272 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5273
5274 kvfree(dirty_i->victim_secmap);
5275 }
5276
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5277 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5278 {
5279 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5280 int i;
5281
5282 if (!dirty_i)
5283 return;
5284
5285 /* discard pre-free/dirty segments list */
5286 for (i = 0; i < NR_DIRTY_TYPE; i++)
5287 discard_dirty_segmap(sbi, i);
5288
5289 if (__is_large_section(sbi)) {
5290 mutex_lock(&dirty_i->seglist_lock);
5291 kvfree(dirty_i->dirty_secmap);
5292 mutex_unlock(&dirty_i->seglist_lock);
5293 }
5294
5295 destroy_victim_secmap(sbi);
5296 SM_I(sbi)->dirty_info = NULL;
5297 kfree(dirty_i);
5298 }
5299
destroy_curseg(struct f2fs_sb_info * sbi)5300 static void destroy_curseg(struct f2fs_sb_info *sbi)
5301 {
5302 struct curseg_info *array = SM_I(sbi)->curseg_array;
5303 int i;
5304
5305 if (!array)
5306 return;
5307 SM_I(sbi)->curseg_array = NULL;
5308 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5309 kfree(array[i].sum_blk);
5310 kfree(array[i].journal);
5311 }
5312 kfree(array);
5313 }
5314
destroy_free_segmap(struct f2fs_sb_info * sbi)5315 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5316 {
5317 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5318
5319 if (!free_i)
5320 return;
5321 SM_I(sbi)->free_info = NULL;
5322 kvfree(free_i->free_segmap);
5323 kvfree(free_i->free_secmap);
5324 kfree(free_i);
5325 }
5326
destroy_sit_info(struct f2fs_sb_info * sbi)5327 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5328 {
5329 struct sit_info *sit_i = SIT_I(sbi);
5330
5331 if (!sit_i)
5332 return;
5333
5334 if (sit_i->sentries)
5335 kvfree(sit_i->bitmap);
5336 kfree(sit_i->tmp_map);
5337
5338 kvfree(sit_i->sentries);
5339 kvfree(sit_i->sec_entries);
5340 kvfree(sit_i->dirty_sentries_bitmap);
5341
5342 SM_I(sbi)->sit_info = NULL;
5343 kvfree(sit_i->sit_bitmap);
5344 #ifdef CONFIG_F2FS_CHECK_FS
5345 kvfree(sit_i->sit_bitmap_mir);
5346 kvfree(sit_i->invalid_segmap);
5347 #endif
5348 kfree(sit_i);
5349 }
5350
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5351 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5352 {
5353 struct f2fs_sm_info *sm_info = SM_I(sbi);
5354
5355 if (!sm_info)
5356 return;
5357 f2fs_destroy_flush_cmd_control(sbi, true);
5358 destroy_discard_cmd_control(sbi);
5359 destroy_dirty_segmap(sbi);
5360 destroy_curseg(sbi);
5361 destroy_free_segmap(sbi);
5362 destroy_sit_info(sbi);
5363 sbi->sm_info = NULL;
5364 kfree(sm_info);
5365 }
5366
f2fs_create_segment_manager_caches(void)5367 int __init f2fs_create_segment_manager_caches(void)
5368 {
5369 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5370 sizeof(struct discard_entry));
5371 if (!discard_entry_slab)
5372 goto fail;
5373
5374 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5375 sizeof(struct discard_cmd));
5376 if (!discard_cmd_slab)
5377 goto destroy_discard_entry;
5378
5379 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5380 sizeof(struct sit_entry_set));
5381 if (!sit_entry_set_slab)
5382 goto destroy_discard_cmd;
5383
5384 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5385 sizeof(struct inmem_pages));
5386 if (!inmem_entry_slab)
5387 goto destroy_sit_entry_set;
5388 return 0;
5389
5390 destroy_sit_entry_set:
5391 kmem_cache_destroy(sit_entry_set_slab);
5392 destroy_discard_cmd:
5393 kmem_cache_destroy(discard_cmd_slab);
5394 destroy_discard_entry:
5395 kmem_cache_destroy(discard_entry_slab);
5396 fail:
5397 return -ENOMEM;
5398 }
5399
f2fs_destroy_segment_manager_caches(void)5400 void f2fs_destroy_segment_manager_caches(void)
5401 {
5402 kmem_cache_destroy(sit_entry_set_slab);
5403 kmem_cache_destroy(discard_cmd_slab);
5404 kmem_cache_destroy(discard_entry_slab);
5405 kmem_cache_destroy(inmem_entry_slab);
5406 }
5407