1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34
__reverse_ulong(unsigned char * str)35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40 #if BITS_PER_LONG == 64
41 shift = 56;
42 #endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48 }
49
50 /*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
__reverse_ffs(unsigned long word)54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 int num = 0;
57
58 #if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63 #endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87 }
88
89 /*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100 {
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122 pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130 found:
131 return result - size + __reverse_ffs(tmp);
132 }
133
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136 {
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159 pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167 found:
168 return result - size + __reverse_ffz(tmp);
169 }
170
f2fs_need_SSR(struct f2fs_sb_info * sbi)171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187
f2fs_abort_atomic_write(struct inode * inode,bool clean)188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 if (clean)
196 truncate_inode_pages_final(inode->i_mapping);
197 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
198 iput(fi->cow_inode);
199 fi->cow_inode = NULL;
200 release_atomic_write_cnt(inode);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 stat_dec_atomic_inode(inode);
203 }
204
__replace_atomic_write_block(struct inode * inode,pgoff_t index,block_t new_addr,block_t * old_addr,bool recover)205 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
206 block_t new_addr, block_t *old_addr, bool recover)
207 {
208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
209 struct dnode_of_data dn;
210 struct node_info ni;
211 int err;
212
213 retry:
214 set_new_dnode(&dn, inode, NULL, NULL, 0);
215 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
216 if (err) {
217 if (err == -ENOMEM) {
218 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
219 goto retry;
220 }
221 return err;
222 }
223
224 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
225 if (err) {
226 f2fs_put_dnode(&dn);
227 return err;
228 }
229
230 if (recover) {
231 /* dn.data_blkaddr is always valid */
232 if (!__is_valid_data_blkaddr(new_addr)) {
233 if (new_addr == NULL_ADDR)
234 dec_valid_block_count(sbi, inode, 1);
235 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
236 f2fs_update_data_blkaddr(&dn, new_addr);
237 } else {
238 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
239 new_addr, ni.version, true, true);
240 }
241 } else {
242 blkcnt_t count = 1;
243
244 *old_addr = dn.data_blkaddr;
245 f2fs_truncate_data_blocks_range(&dn, 1);
246 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
247 inc_valid_block_count(sbi, inode, &count);
248 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
249 ni.version, true, false);
250 }
251
252 f2fs_put_dnode(&dn);
253 return 0;
254 }
255
__complete_revoke_list(struct inode * inode,struct list_head * head,bool revoke)256 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
257 bool revoke)
258 {
259 struct revoke_entry *cur, *tmp;
260
261 list_for_each_entry_safe(cur, tmp, head, list) {
262 if (revoke)
263 __replace_atomic_write_block(inode, cur->index,
264 cur->old_addr, NULL, true);
265 list_del(&cur->list);
266 kmem_cache_free(revoke_entry_slab, cur);
267 }
268 }
269
__f2fs_commit_atomic_write(struct inode * inode)270 static int __f2fs_commit_atomic_write(struct inode *inode)
271 {
272 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
273 struct f2fs_inode_info *fi = F2FS_I(inode);
274 struct inode *cow_inode = fi->cow_inode;
275 struct revoke_entry *new;
276 struct list_head revoke_list;
277 block_t blkaddr;
278 struct dnode_of_data dn;
279 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
280 pgoff_t off = 0, blen, index;
281 int ret = 0, i;
282
283 INIT_LIST_HEAD(&revoke_list);
284
285 while (len) {
286 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
287
288 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
289 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
290 if (ret && ret != -ENOENT) {
291 goto out;
292 } else if (ret == -ENOENT) {
293 ret = 0;
294 if (dn.max_level == 0)
295 goto out;
296 goto next;
297 }
298
299 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
300 len);
301 index = off;
302 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
303 blkaddr = f2fs_data_blkaddr(&dn);
304
305 if (!__is_valid_data_blkaddr(blkaddr)) {
306 continue;
307 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
308 DATA_GENERIC_ENHANCE)) {
309 f2fs_put_dnode(&dn);
310 ret = -EFSCORRUPTED;
311 f2fs_handle_error(sbi,
312 ERROR_INVALID_BLKADDR);
313 goto out;
314 }
315
316 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
317 true, NULL);
318
319 ret = __replace_atomic_write_block(inode, index, blkaddr,
320 &new->old_addr, false);
321 if (ret) {
322 f2fs_put_dnode(&dn);
323 kmem_cache_free(revoke_entry_slab, new);
324 goto out;
325 }
326
327 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
328 new->index = index;
329 list_add_tail(&new->list, &revoke_list);
330 }
331 f2fs_put_dnode(&dn);
332 next:
333 off += blen;
334 len -= blen;
335 }
336
337 out:
338 if (ret)
339 sbi->revoked_atomic_block += fi->atomic_write_cnt;
340 else
341 sbi->committed_atomic_block += fi->atomic_write_cnt;
342
343 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
344
345 return ret;
346 }
347
f2fs_commit_atomic_write(struct inode * inode)348 int f2fs_commit_atomic_write(struct inode *inode)
349 {
350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 int err;
353
354 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
355 if (err)
356 return err;
357
358 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
359 f2fs_lock_op(sbi);
360
361 err = __f2fs_commit_atomic_write(inode);
362
363 f2fs_unlock_op(sbi);
364 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
365
366 return err;
367 }
368
369 /*
370 * This function balances dirty node and dentry pages.
371 * In addition, it controls garbage collection.
372 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)373 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
374 {
375 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
376 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
377 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
378 }
379
380 /* balance_fs_bg is able to be pending */
381 if (need && excess_cached_nats(sbi))
382 f2fs_balance_fs_bg(sbi, false);
383
384 if (!f2fs_is_checkpoint_ready(sbi))
385 return;
386
387 /*
388 * We should do GC or end up with checkpoint, if there are so many dirty
389 * dir/node pages without enough free segments.
390 */
391 if (has_not_enough_free_secs(sbi, 0, 0)) {
392 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
393 sbi->gc_thread->f2fs_gc_task) {
394 DEFINE_WAIT(wait);
395
396 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
397 TASK_UNINTERRUPTIBLE);
398 wake_up(&sbi->gc_thread->gc_wait_queue_head);
399 io_schedule();
400 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
401 } else {
402 struct f2fs_gc_control gc_control = {
403 .victim_segno = NULL_SEGNO,
404 .init_gc_type = BG_GC,
405 .no_bg_gc = true,
406 .should_migrate_blocks = false,
407 .err_gc_skipped = false,
408 .nr_free_secs = 1 };
409 f2fs_down_write(&sbi->gc_lock);
410 f2fs_gc(sbi, &gc_control);
411 }
412 }
413 }
414
excess_dirty_threshold(struct f2fs_sb_info * sbi)415 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
416 {
417 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
418 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
419 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
420 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
421 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
422 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
423 unsigned int threshold = sbi->blocks_per_seg * factor *
424 DEFAULT_DIRTY_THRESHOLD;
425 unsigned int global_threshold = threshold * 3 / 2;
426
427 if (dents >= threshold || qdata >= threshold ||
428 nodes >= threshold || meta >= threshold ||
429 imeta >= threshold)
430 return true;
431 return dents + qdata + nodes + meta + imeta > global_threshold;
432 }
433
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)434 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
435 {
436 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
437 return;
438
439 /* try to shrink extent cache when there is no enough memory */
440 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
441 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
442
443 /* check the # of cached NAT entries */
444 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
445 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
446
447 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
448 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
449 else
450 f2fs_build_free_nids(sbi, false, false);
451
452 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
453 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
454 goto do_sync;
455
456 /* there is background inflight IO or foreground operation recently */
457 if (is_inflight_io(sbi, REQ_TIME) ||
458 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
459 return;
460
461 /* exceed periodical checkpoint timeout threshold */
462 if (f2fs_time_over(sbi, CP_TIME))
463 goto do_sync;
464
465 /* checkpoint is the only way to shrink partial cached entries */
466 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
467 f2fs_available_free_memory(sbi, INO_ENTRIES))
468 return;
469
470 do_sync:
471 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
472 struct blk_plug plug;
473
474 mutex_lock(&sbi->flush_lock);
475
476 blk_start_plug(&plug);
477 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
478 blk_finish_plug(&plug);
479
480 mutex_unlock(&sbi->flush_lock);
481 }
482 f2fs_sync_fs(sbi->sb, 1);
483 stat_inc_bg_cp_count(sbi->stat_info);
484 }
485
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)486 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
487 struct block_device *bdev)
488 {
489 int ret = blkdev_issue_flush(bdev);
490
491 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
492 test_opt(sbi, FLUSH_MERGE), ret);
493 return ret;
494 }
495
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)496 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
497 {
498 int ret = 0;
499 int i;
500
501 if (!f2fs_is_multi_device(sbi))
502 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
503
504 for (i = 0; i < sbi->s_ndevs; i++) {
505 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
506 continue;
507 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
508 if (ret)
509 break;
510 }
511 return ret;
512 }
513
issue_flush_thread(void * data)514 static int issue_flush_thread(void *data)
515 {
516 struct f2fs_sb_info *sbi = data;
517 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
518 wait_queue_head_t *q = &fcc->flush_wait_queue;
519 repeat:
520 if (kthread_should_stop())
521 return 0;
522
523 if (!llist_empty(&fcc->issue_list)) {
524 struct flush_cmd *cmd, *next;
525 int ret;
526
527 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
528 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
529
530 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
531
532 ret = submit_flush_wait(sbi, cmd->ino);
533 atomic_inc(&fcc->issued_flush);
534
535 llist_for_each_entry_safe(cmd, next,
536 fcc->dispatch_list, llnode) {
537 cmd->ret = ret;
538 complete(&cmd->wait);
539 }
540 fcc->dispatch_list = NULL;
541 }
542
543 wait_event_interruptible(*q,
544 kthread_should_stop() || !llist_empty(&fcc->issue_list));
545 goto repeat;
546 }
547
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)548 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
549 {
550 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
551 struct flush_cmd cmd;
552 int ret;
553
554 if (test_opt(sbi, NOBARRIER))
555 return 0;
556
557 if (!test_opt(sbi, FLUSH_MERGE)) {
558 atomic_inc(&fcc->queued_flush);
559 ret = submit_flush_wait(sbi, ino);
560 atomic_dec(&fcc->queued_flush);
561 atomic_inc(&fcc->issued_flush);
562 return ret;
563 }
564
565 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
566 f2fs_is_multi_device(sbi)) {
567 ret = submit_flush_wait(sbi, ino);
568 atomic_dec(&fcc->queued_flush);
569
570 atomic_inc(&fcc->issued_flush);
571 return ret;
572 }
573
574 cmd.ino = ino;
575 init_completion(&cmd.wait);
576
577 llist_add(&cmd.llnode, &fcc->issue_list);
578
579 /*
580 * update issue_list before we wake up issue_flush thread, this
581 * smp_mb() pairs with another barrier in ___wait_event(), see
582 * more details in comments of waitqueue_active().
583 */
584 smp_mb();
585
586 if (waitqueue_active(&fcc->flush_wait_queue))
587 wake_up(&fcc->flush_wait_queue);
588
589 if (fcc->f2fs_issue_flush) {
590 wait_for_completion(&cmd.wait);
591 atomic_dec(&fcc->queued_flush);
592 } else {
593 struct llist_node *list;
594
595 list = llist_del_all(&fcc->issue_list);
596 if (!list) {
597 wait_for_completion(&cmd.wait);
598 atomic_dec(&fcc->queued_flush);
599 } else {
600 struct flush_cmd *tmp, *next;
601
602 ret = submit_flush_wait(sbi, ino);
603
604 llist_for_each_entry_safe(tmp, next, list, llnode) {
605 if (tmp == &cmd) {
606 cmd.ret = ret;
607 atomic_dec(&fcc->queued_flush);
608 continue;
609 }
610 tmp->ret = ret;
611 complete(&tmp->wait);
612 }
613 }
614 }
615
616 return cmd.ret;
617 }
618
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)619 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
620 {
621 dev_t dev = sbi->sb->s_bdev->bd_dev;
622 struct flush_cmd_control *fcc;
623 int err = 0;
624
625 if (SM_I(sbi)->fcc_info) {
626 fcc = SM_I(sbi)->fcc_info;
627 if (fcc->f2fs_issue_flush)
628 return err;
629 goto init_thread;
630 }
631
632 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
633 if (!fcc)
634 return -ENOMEM;
635 atomic_set(&fcc->issued_flush, 0);
636 atomic_set(&fcc->queued_flush, 0);
637 init_waitqueue_head(&fcc->flush_wait_queue);
638 init_llist_head(&fcc->issue_list);
639 SM_I(sbi)->fcc_info = fcc;
640 if (!test_opt(sbi, FLUSH_MERGE))
641 return err;
642
643 init_thread:
644 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
645 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
646 if (IS_ERR(fcc->f2fs_issue_flush)) {
647 err = PTR_ERR(fcc->f2fs_issue_flush);
648 kfree(fcc);
649 SM_I(sbi)->fcc_info = NULL;
650 return err;
651 }
652
653 return err;
654 }
655
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)656 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
657 {
658 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
659
660 if (fcc && fcc->f2fs_issue_flush) {
661 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
662
663 fcc->f2fs_issue_flush = NULL;
664 kthread_stop(flush_thread);
665 }
666 if (free) {
667 kfree(fcc);
668 SM_I(sbi)->fcc_info = NULL;
669 }
670 }
671
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)672 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
673 {
674 int ret = 0, i;
675
676 if (!f2fs_is_multi_device(sbi))
677 return 0;
678
679 if (test_opt(sbi, NOBARRIER))
680 return 0;
681
682 for (i = 1; i < sbi->s_ndevs; i++) {
683 int count = DEFAULT_RETRY_IO_COUNT;
684
685 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
686 continue;
687
688 do {
689 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
690 if (ret)
691 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
692 } while (ret && --count);
693
694 if (ret) {
695 f2fs_stop_checkpoint(sbi, false,
696 STOP_CP_REASON_FLUSH_FAIL);
697 break;
698 }
699
700 spin_lock(&sbi->dev_lock);
701 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
702 spin_unlock(&sbi->dev_lock);
703 }
704
705 return ret;
706 }
707
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)708 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
709 enum dirty_type dirty_type)
710 {
711 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
712
713 /* need not be added */
714 if (IS_CURSEG(sbi, segno))
715 return;
716
717 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
718 dirty_i->nr_dirty[dirty_type]++;
719
720 if (dirty_type == DIRTY) {
721 struct seg_entry *sentry = get_seg_entry(sbi, segno);
722 enum dirty_type t = sentry->type;
723
724 if (unlikely(t >= DIRTY)) {
725 f2fs_bug_on(sbi, 1);
726 return;
727 }
728 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
729 dirty_i->nr_dirty[t]++;
730
731 if (__is_large_section(sbi)) {
732 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
733 block_t valid_blocks =
734 get_valid_blocks(sbi, segno, true);
735
736 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
737 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
738
739 if (!IS_CURSEC(sbi, secno))
740 set_bit(secno, dirty_i->dirty_secmap);
741 }
742 }
743 }
744
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)745 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
746 enum dirty_type dirty_type)
747 {
748 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
749 block_t valid_blocks;
750
751 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
752 dirty_i->nr_dirty[dirty_type]--;
753
754 if (dirty_type == DIRTY) {
755 struct seg_entry *sentry = get_seg_entry(sbi, segno);
756 enum dirty_type t = sentry->type;
757
758 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
759 dirty_i->nr_dirty[t]--;
760
761 valid_blocks = get_valid_blocks(sbi, segno, true);
762 if (valid_blocks == 0) {
763 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
764 dirty_i->victim_secmap);
765 #ifdef CONFIG_F2FS_CHECK_FS
766 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
767 #endif
768 }
769 if (__is_large_section(sbi)) {
770 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771
772 if (!valid_blocks ||
773 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
774 clear_bit(secno, dirty_i->dirty_secmap);
775 return;
776 }
777
778 if (!IS_CURSEC(sbi, secno))
779 set_bit(secno, dirty_i->dirty_secmap);
780 }
781 }
782 }
783
784 /*
785 * Should not occur error such as -ENOMEM.
786 * Adding dirty entry into seglist is not critical operation.
787 * If a given segment is one of current working segments, it won't be added.
788 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)789 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
790 {
791 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
792 unsigned short valid_blocks, ckpt_valid_blocks;
793 unsigned int usable_blocks;
794
795 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
796 return;
797
798 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
799 mutex_lock(&dirty_i->seglist_lock);
800
801 valid_blocks = get_valid_blocks(sbi, segno, false);
802 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
803
804 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
805 ckpt_valid_blocks == usable_blocks)) {
806 __locate_dirty_segment(sbi, segno, PRE);
807 __remove_dirty_segment(sbi, segno, DIRTY);
808 } else if (valid_blocks < usable_blocks) {
809 __locate_dirty_segment(sbi, segno, DIRTY);
810 } else {
811 /* Recovery routine with SSR needs this */
812 __remove_dirty_segment(sbi, segno, DIRTY);
813 }
814
815 mutex_unlock(&dirty_i->seglist_lock);
816 }
817
818 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)819 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
820 {
821 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
822 unsigned int segno;
823
824 mutex_lock(&dirty_i->seglist_lock);
825 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
826 if (get_valid_blocks(sbi, segno, false))
827 continue;
828 if (IS_CURSEG(sbi, segno))
829 continue;
830 __locate_dirty_segment(sbi, segno, PRE);
831 __remove_dirty_segment(sbi, segno, DIRTY);
832 }
833 mutex_unlock(&dirty_i->seglist_lock);
834 }
835
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)836 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
837 {
838 int ovp_hole_segs =
839 (overprovision_segments(sbi) - reserved_segments(sbi));
840 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
841 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
842 block_t holes[2] = {0, 0}; /* DATA and NODE */
843 block_t unusable;
844 struct seg_entry *se;
845 unsigned int segno;
846
847 mutex_lock(&dirty_i->seglist_lock);
848 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
849 se = get_seg_entry(sbi, segno);
850 if (IS_NODESEG(se->type))
851 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
852 se->valid_blocks;
853 else
854 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
855 se->valid_blocks;
856 }
857 mutex_unlock(&dirty_i->seglist_lock);
858
859 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
860 if (unusable > ovp_holes)
861 return unusable - ovp_holes;
862 return 0;
863 }
864
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)865 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
866 {
867 int ovp_hole_segs =
868 (overprovision_segments(sbi) - reserved_segments(sbi));
869 if (unusable > F2FS_OPTION(sbi).unusable_cap)
870 return -EAGAIN;
871 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
872 dirty_segments(sbi) > ovp_hole_segs)
873 return -EAGAIN;
874 return 0;
875 }
876
877 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)878 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
879 {
880 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
881 unsigned int segno = 0;
882
883 mutex_lock(&dirty_i->seglist_lock);
884 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
885 if (get_valid_blocks(sbi, segno, false))
886 continue;
887 if (get_ckpt_valid_blocks(sbi, segno, false))
888 continue;
889 mutex_unlock(&dirty_i->seglist_lock);
890 return segno;
891 }
892 mutex_unlock(&dirty_i->seglist_lock);
893 return NULL_SEGNO;
894 }
895
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)896 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
897 struct block_device *bdev, block_t lstart,
898 block_t start, block_t len)
899 {
900 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
901 struct list_head *pend_list;
902 struct discard_cmd *dc;
903
904 f2fs_bug_on(sbi, !len);
905
906 pend_list = &dcc->pend_list[plist_idx(len)];
907
908 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
909 INIT_LIST_HEAD(&dc->list);
910 dc->bdev = bdev;
911 dc->lstart = lstart;
912 dc->start = start;
913 dc->len = len;
914 dc->ref = 0;
915 dc->state = D_PREP;
916 dc->queued = 0;
917 dc->error = 0;
918 init_completion(&dc->wait);
919 list_add_tail(&dc->list, pend_list);
920 spin_lock_init(&dc->lock);
921 dc->bio_ref = 0;
922 atomic_inc(&dcc->discard_cmd_cnt);
923 dcc->undiscard_blks += len;
924
925 return dc;
926 }
927
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)928 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
929 struct block_device *bdev, block_t lstart,
930 block_t start, block_t len,
931 struct rb_node *parent, struct rb_node **p,
932 bool leftmost)
933 {
934 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
935 struct discard_cmd *dc;
936
937 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
938
939 rb_link_node(&dc->rb_node, parent, p);
940 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
941
942 return dc;
943 }
944
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)945 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
946 struct discard_cmd *dc)
947 {
948 if (dc->state == D_DONE)
949 atomic_sub(dc->queued, &dcc->queued_discard);
950
951 list_del(&dc->list);
952 rb_erase_cached(&dc->rb_node, &dcc->root);
953 dcc->undiscard_blks -= dc->len;
954
955 kmem_cache_free(discard_cmd_slab, dc);
956
957 atomic_dec(&dcc->discard_cmd_cnt);
958 }
959
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)960 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
961 struct discard_cmd *dc)
962 {
963 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964 unsigned long flags;
965
966 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
967
968 spin_lock_irqsave(&dc->lock, flags);
969 if (dc->bio_ref) {
970 spin_unlock_irqrestore(&dc->lock, flags);
971 return;
972 }
973 spin_unlock_irqrestore(&dc->lock, flags);
974
975 f2fs_bug_on(sbi, dc->ref);
976
977 if (dc->error == -EOPNOTSUPP)
978 dc->error = 0;
979
980 if (dc->error)
981 printk_ratelimited(
982 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
983 KERN_INFO, sbi->sb->s_id,
984 dc->lstart, dc->start, dc->len, dc->error);
985 __detach_discard_cmd(dcc, dc);
986 }
987
f2fs_submit_discard_endio(struct bio * bio)988 static void f2fs_submit_discard_endio(struct bio *bio)
989 {
990 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
991 unsigned long flags;
992
993 spin_lock_irqsave(&dc->lock, flags);
994 if (!dc->error)
995 dc->error = blk_status_to_errno(bio->bi_status);
996 dc->bio_ref--;
997 if (!dc->bio_ref && dc->state == D_SUBMIT) {
998 dc->state = D_DONE;
999 complete_all(&dc->wait);
1000 }
1001 spin_unlock_irqrestore(&dc->lock, flags);
1002 bio_put(bio);
1003 }
1004
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1005 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1006 block_t start, block_t end)
1007 {
1008 #ifdef CONFIG_F2FS_CHECK_FS
1009 struct seg_entry *sentry;
1010 unsigned int segno;
1011 block_t blk = start;
1012 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1013 unsigned long *map;
1014
1015 while (blk < end) {
1016 segno = GET_SEGNO(sbi, blk);
1017 sentry = get_seg_entry(sbi, segno);
1018 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1019
1020 if (end < START_BLOCK(sbi, segno + 1))
1021 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1022 else
1023 size = max_blocks;
1024 map = (unsigned long *)(sentry->cur_valid_map);
1025 offset = __find_rev_next_bit(map, size, offset);
1026 f2fs_bug_on(sbi, offset != size);
1027 blk = START_BLOCK(sbi, segno + 1);
1028 }
1029 #endif
1030 }
1031
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1032 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1033 struct discard_policy *dpolicy,
1034 int discard_type, unsigned int granularity)
1035 {
1036 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1037
1038 /* common policy */
1039 dpolicy->type = discard_type;
1040 dpolicy->sync = true;
1041 dpolicy->ordered = false;
1042 dpolicy->granularity = granularity;
1043
1044 dpolicy->max_requests = dcc->max_discard_request;
1045 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1046 dpolicy->timeout = false;
1047
1048 if (discard_type == DPOLICY_BG) {
1049 dpolicy->min_interval = dcc->min_discard_issue_time;
1050 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1051 dpolicy->max_interval = dcc->max_discard_issue_time;
1052 dpolicy->io_aware = true;
1053 dpolicy->sync = false;
1054 dpolicy->ordered = true;
1055 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1056 dpolicy->granularity = 1;
1057 if (atomic_read(&dcc->discard_cmd_cnt))
1058 dpolicy->max_interval =
1059 dcc->min_discard_issue_time;
1060 }
1061 } else if (discard_type == DPOLICY_FORCE) {
1062 dpolicy->min_interval = dcc->min_discard_issue_time;
1063 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1064 dpolicy->max_interval = dcc->max_discard_issue_time;
1065 dpolicy->io_aware = false;
1066 } else if (discard_type == DPOLICY_FSTRIM) {
1067 dpolicy->io_aware = false;
1068 } else if (discard_type == DPOLICY_UMOUNT) {
1069 dpolicy->io_aware = false;
1070 /* we need to issue all to keep CP_TRIMMED_FLAG */
1071 dpolicy->granularity = 1;
1072 dpolicy->timeout = true;
1073 }
1074 }
1075
1076 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1077 struct block_device *bdev, block_t lstart,
1078 block_t start, block_t len);
1079 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1080 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1081 struct discard_policy *dpolicy,
1082 struct discard_cmd *dc,
1083 unsigned int *issued)
1084 {
1085 struct block_device *bdev = dc->bdev;
1086 unsigned int max_discard_blocks =
1087 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1088 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1089 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1090 &(dcc->fstrim_list) : &(dcc->wait_list);
1091 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1092 block_t lstart, start, len, total_len;
1093 int err = 0;
1094
1095 if (dc->state != D_PREP)
1096 return 0;
1097
1098 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1099 return 0;
1100
1101 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1102
1103 lstart = dc->lstart;
1104 start = dc->start;
1105 len = dc->len;
1106 total_len = len;
1107
1108 dc->len = 0;
1109
1110 while (total_len && *issued < dpolicy->max_requests && !err) {
1111 struct bio *bio = NULL;
1112 unsigned long flags;
1113 bool last = true;
1114
1115 if (len > max_discard_blocks) {
1116 len = max_discard_blocks;
1117 last = false;
1118 }
1119
1120 (*issued)++;
1121 if (*issued == dpolicy->max_requests)
1122 last = true;
1123
1124 dc->len += len;
1125
1126 if (time_to_inject(sbi, FAULT_DISCARD)) {
1127 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1128 err = -EIO;
1129 goto submit;
1130 }
1131 err = __blkdev_issue_discard(bdev,
1132 SECTOR_FROM_BLOCK(start),
1133 SECTOR_FROM_BLOCK(len),
1134 GFP_NOFS, &bio);
1135 submit:
1136 if (err) {
1137 spin_lock_irqsave(&dc->lock, flags);
1138 if (dc->state == D_PARTIAL)
1139 dc->state = D_SUBMIT;
1140 spin_unlock_irqrestore(&dc->lock, flags);
1141
1142 break;
1143 }
1144
1145 f2fs_bug_on(sbi, !bio);
1146
1147 /*
1148 * should keep before submission to avoid D_DONE
1149 * right away
1150 */
1151 spin_lock_irqsave(&dc->lock, flags);
1152 if (last)
1153 dc->state = D_SUBMIT;
1154 else
1155 dc->state = D_PARTIAL;
1156 dc->bio_ref++;
1157 spin_unlock_irqrestore(&dc->lock, flags);
1158
1159 atomic_inc(&dcc->queued_discard);
1160 dc->queued++;
1161 list_move_tail(&dc->list, wait_list);
1162
1163 /* sanity check on discard range */
1164 __check_sit_bitmap(sbi, lstart, lstart + len);
1165
1166 bio->bi_private = dc;
1167 bio->bi_end_io = f2fs_submit_discard_endio;
1168 bio->bi_opf |= flag;
1169 submit_bio(bio);
1170
1171 atomic_inc(&dcc->issued_discard);
1172
1173 f2fs_update_iostat(sbi, NULL, FS_DISCARD, 1);
1174
1175 lstart += len;
1176 start += len;
1177 total_len -= len;
1178 len = total_len;
1179 }
1180
1181 if (!err && len) {
1182 dcc->undiscard_blks -= len;
1183 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1184 }
1185 return err;
1186 }
1187
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1188 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1189 struct block_device *bdev, block_t lstart,
1190 block_t start, block_t len,
1191 struct rb_node **insert_p,
1192 struct rb_node *insert_parent)
1193 {
1194 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1195 struct rb_node **p;
1196 struct rb_node *parent = NULL;
1197 bool leftmost = true;
1198
1199 if (insert_p && insert_parent) {
1200 parent = insert_parent;
1201 p = insert_p;
1202 goto do_insert;
1203 }
1204
1205 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1206 lstart, &leftmost);
1207 do_insert:
1208 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1209 p, leftmost);
1210 }
1211
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1212 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1213 struct discard_cmd *dc)
1214 {
1215 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1216 }
1217
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1218 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1219 struct discard_cmd *dc, block_t blkaddr)
1220 {
1221 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1222 struct discard_info di = dc->di;
1223 bool modified = false;
1224
1225 if (dc->state == D_DONE || dc->len == 1) {
1226 __remove_discard_cmd(sbi, dc);
1227 return;
1228 }
1229
1230 dcc->undiscard_blks -= di.len;
1231
1232 if (blkaddr > di.lstart) {
1233 dc->len = blkaddr - dc->lstart;
1234 dcc->undiscard_blks += dc->len;
1235 __relocate_discard_cmd(dcc, dc);
1236 modified = true;
1237 }
1238
1239 if (blkaddr < di.lstart + di.len - 1) {
1240 if (modified) {
1241 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1242 di.start + blkaddr + 1 - di.lstart,
1243 di.lstart + di.len - 1 - blkaddr,
1244 NULL, NULL);
1245 } else {
1246 dc->lstart++;
1247 dc->len--;
1248 dc->start++;
1249 dcc->undiscard_blks += dc->len;
1250 __relocate_discard_cmd(dcc, dc);
1251 }
1252 }
1253 }
1254
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1255 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1256 struct block_device *bdev, block_t lstart,
1257 block_t start, block_t len)
1258 {
1259 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1261 struct discard_cmd *dc;
1262 struct discard_info di = {0};
1263 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1264 unsigned int max_discard_blocks =
1265 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1266 block_t end = lstart + len;
1267
1268 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1269 NULL, lstart,
1270 (struct rb_entry **)&prev_dc,
1271 (struct rb_entry **)&next_dc,
1272 &insert_p, &insert_parent, true, NULL);
1273 if (dc)
1274 prev_dc = dc;
1275
1276 if (!prev_dc) {
1277 di.lstart = lstart;
1278 di.len = next_dc ? next_dc->lstart - lstart : len;
1279 di.len = min(di.len, len);
1280 di.start = start;
1281 }
1282
1283 while (1) {
1284 struct rb_node *node;
1285 bool merged = false;
1286 struct discard_cmd *tdc = NULL;
1287
1288 if (prev_dc) {
1289 di.lstart = prev_dc->lstart + prev_dc->len;
1290 if (di.lstart < lstart)
1291 di.lstart = lstart;
1292 if (di.lstart >= end)
1293 break;
1294
1295 if (!next_dc || next_dc->lstart > end)
1296 di.len = end - di.lstart;
1297 else
1298 di.len = next_dc->lstart - di.lstart;
1299 di.start = start + di.lstart - lstart;
1300 }
1301
1302 if (!di.len)
1303 goto next;
1304
1305 if (prev_dc && prev_dc->state == D_PREP &&
1306 prev_dc->bdev == bdev &&
1307 __is_discard_back_mergeable(&di, &prev_dc->di,
1308 max_discard_blocks)) {
1309 prev_dc->di.len += di.len;
1310 dcc->undiscard_blks += di.len;
1311 __relocate_discard_cmd(dcc, prev_dc);
1312 di = prev_dc->di;
1313 tdc = prev_dc;
1314 merged = true;
1315 }
1316
1317 if (next_dc && next_dc->state == D_PREP &&
1318 next_dc->bdev == bdev &&
1319 __is_discard_front_mergeable(&di, &next_dc->di,
1320 max_discard_blocks)) {
1321 next_dc->di.lstart = di.lstart;
1322 next_dc->di.len += di.len;
1323 next_dc->di.start = di.start;
1324 dcc->undiscard_blks += di.len;
1325 __relocate_discard_cmd(dcc, next_dc);
1326 if (tdc)
1327 __remove_discard_cmd(sbi, tdc);
1328 merged = true;
1329 }
1330
1331 if (!merged) {
1332 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1333 di.len, NULL, NULL);
1334 }
1335 next:
1336 prev_dc = next_dc;
1337 if (!prev_dc)
1338 break;
1339
1340 node = rb_next(&prev_dc->rb_node);
1341 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1342 }
1343 }
1344
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1345 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1346 struct block_device *bdev, block_t blkstart, block_t blklen)
1347 {
1348 block_t lblkstart = blkstart;
1349
1350 if (!f2fs_bdev_support_discard(bdev))
1351 return 0;
1352
1353 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1354
1355 if (f2fs_is_multi_device(sbi)) {
1356 int devi = f2fs_target_device_index(sbi, blkstart);
1357
1358 blkstart -= FDEV(devi).start_blk;
1359 }
1360 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1361 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1362 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1363 return 0;
1364 }
1365
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1366 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1367 struct discard_policy *dpolicy)
1368 {
1369 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1371 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1372 struct discard_cmd *dc;
1373 struct blk_plug plug;
1374 unsigned int pos = dcc->next_pos;
1375 unsigned int issued = 0;
1376 bool io_interrupted = false;
1377
1378 mutex_lock(&dcc->cmd_lock);
1379 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1380 NULL, pos,
1381 (struct rb_entry **)&prev_dc,
1382 (struct rb_entry **)&next_dc,
1383 &insert_p, &insert_parent, true, NULL);
1384 if (!dc)
1385 dc = next_dc;
1386
1387 blk_start_plug(&plug);
1388
1389 while (dc) {
1390 struct rb_node *node;
1391 int err = 0;
1392
1393 if (dc->state != D_PREP)
1394 goto next;
1395
1396 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1397 io_interrupted = true;
1398 break;
1399 }
1400
1401 dcc->next_pos = dc->lstart + dc->len;
1402 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1403
1404 if (issued >= dpolicy->max_requests)
1405 break;
1406 next:
1407 node = rb_next(&dc->rb_node);
1408 if (err)
1409 __remove_discard_cmd(sbi, dc);
1410 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1411 }
1412
1413 blk_finish_plug(&plug);
1414
1415 if (!dc)
1416 dcc->next_pos = 0;
1417
1418 mutex_unlock(&dcc->cmd_lock);
1419
1420 if (!issued && io_interrupted)
1421 issued = -1;
1422
1423 return issued;
1424 }
1425 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1426 struct discard_policy *dpolicy);
1427
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1428 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1429 struct discard_policy *dpolicy)
1430 {
1431 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432 struct list_head *pend_list;
1433 struct discard_cmd *dc, *tmp;
1434 struct blk_plug plug;
1435 int i, issued;
1436 bool io_interrupted = false;
1437
1438 if (dpolicy->timeout)
1439 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1440
1441 retry:
1442 issued = 0;
1443 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1444 if (dpolicy->timeout &&
1445 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1446 break;
1447
1448 if (i + 1 < dpolicy->granularity)
1449 break;
1450
1451 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1452 return __issue_discard_cmd_orderly(sbi, dpolicy);
1453
1454 pend_list = &dcc->pend_list[i];
1455
1456 mutex_lock(&dcc->cmd_lock);
1457 if (list_empty(pend_list))
1458 goto next;
1459 if (unlikely(dcc->rbtree_check))
1460 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1461 &dcc->root, false));
1462 blk_start_plug(&plug);
1463 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1464 f2fs_bug_on(sbi, dc->state != D_PREP);
1465
1466 if (dpolicy->timeout &&
1467 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1468 break;
1469
1470 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1471 !is_idle(sbi, DISCARD_TIME)) {
1472 io_interrupted = true;
1473 break;
1474 }
1475
1476 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1477
1478 if (issued >= dpolicy->max_requests)
1479 break;
1480 }
1481 blk_finish_plug(&plug);
1482 next:
1483 mutex_unlock(&dcc->cmd_lock);
1484
1485 if (issued >= dpolicy->max_requests || io_interrupted)
1486 break;
1487 }
1488
1489 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1490 __wait_all_discard_cmd(sbi, dpolicy);
1491 goto retry;
1492 }
1493
1494 if (!issued && io_interrupted)
1495 issued = -1;
1496
1497 return issued;
1498 }
1499
__drop_discard_cmd(struct f2fs_sb_info * sbi)1500 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1501 {
1502 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1503 struct list_head *pend_list;
1504 struct discard_cmd *dc, *tmp;
1505 int i;
1506 bool dropped = false;
1507
1508 mutex_lock(&dcc->cmd_lock);
1509 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1510 pend_list = &dcc->pend_list[i];
1511 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1512 f2fs_bug_on(sbi, dc->state != D_PREP);
1513 __remove_discard_cmd(sbi, dc);
1514 dropped = true;
1515 }
1516 }
1517 mutex_unlock(&dcc->cmd_lock);
1518
1519 return dropped;
1520 }
1521
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1522 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1523 {
1524 __drop_discard_cmd(sbi);
1525 }
1526
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1527 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1528 struct discard_cmd *dc)
1529 {
1530 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1531 unsigned int len = 0;
1532
1533 wait_for_completion_io(&dc->wait);
1534 mutex_lock(&dcc->cmd_lock);
1535 f2fs_bug_on(sbi, dc->state != D_DONE);
1536 dc->ref--;
1537 if (!dc->ref) {
1538 if (!dc->error)
1539 len = dc->len;
1540 __remove_discard_cmd(sbi, dc);
1541 }
1542 mutex_unlock(&dcc->cmd_lock);
1543
1544 return len;
1545 }
1546
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1547 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1548 struct discard_policy *dpolicy,
1549 block_t start, block_t end)
1550 {
1551 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1552 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1553 &(dcc->fstrim_list) : &(dcc->wait_list);
1554 struct discard_cmd *dc = NULL, *iter, *tmp;
1555 unsigned int trimmed = 0;
1556
1557 next:
1558 dc = NULL;
1559
1560 mutex_lock(&dcc->cmd_lock);
1561 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1562 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1563 continue;
1564 if (iter->len < dpolicy->granularity)
1565 continue;
1566 if (iter->state == D_DONE && !iter->ref) {
1567 wait_for_completion_io(&iter->wait);
1568 if (!iter->error)
1569 trimmed += iter->len;
1570 __remove_discard_cmd(sbi, iter);
1571 } else {
1572 iter->ref++;
1573 dc = iter;
1574 break;
1575 }
1576 }
1577 mutex_unlock(&dcc->cmd_lock);
1578
1579 if (dc) {
1580 trimmed += __wait_one_discard_bio(sbi, dc);
1581 goto next;
1582 }
1583
1584 return trimmed;
1585 }
1586
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1587 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1588 struct discard_policy *dpolicy)
1589 {
1590 struct discard_policy dp;
1591 unsigned int discard_blks;
1592
1593 if (dpolicy)
1594 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1595
1596 /* wait all */
1597 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1598 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1599 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1600 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1601
1602 return discard_blks;
1603 }
1604
1605 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1606 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1607 {
1608 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1609 struct discard_cmd *dc;
1610 bool need_wait = false;
1611
1612 mutex_lock(&dcc->cmd_lock);
1613 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1614 NULL, blkaddr);
1615 if (dc) {
1616 if (dc->state == D_PREP) {
1617 __punch_discard_cmd(sbi, dc, blkaddr);
1618 } else {
1619 dc->ref++;
1620 need_wait = true;
1621 }
1622 }
1623 mutex_unlock(&dcc->cmd_lock);
1624
1625 if (need_wait)
1626 __wait_one_discard_bio(sbi, dc);
1627 }
1628
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1629 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1630 {
1631 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1632
1633 if (dcc && dcc->f2fs_issue_discard) {
1634 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1635
1636 dcc->f2fs_issue_discard = NULL;
1637 kthread_stop(discard_thread);
1638 }
1639 }
1640
1641 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1642 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1643 {
1644 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1645 struct discard_policy dpolicy;
1646 bool dropped;
1647
1648 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1649 dcc->discard_granularity);
1650 __issue_discard_cmd(sbi, &dpolicy);
1651 dropped = __drop_discard_cmd(sbi);
1652
1653 /* just to make sure there is no pending discard commands */
1654 __wait_all_discard_cmd(sbi, NULL);
1655
1656 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1657 return dropped;
1658 }
1659
issue_discard_thread(void * data)1660 static int issue_discard_thread(void *data)
1661 {
1662 struct f2fs_sb_info *sbi = data;
1663 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1664 wait_queue_head_t *q = &dcc->discard_wait_queue;
1665 struct discard_policy dpolicy;
1666 unsigned int wait_ms = dcc->min_discard_issue_time;
1667 int issued;
1668
1669 set_freezable();
1670
1671 do {
1672 if (sbi->gc_mode == GC_URGENT_HIGH ||
1673 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1674 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1675 else
1676 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1677 dcc->discard_granularity);
1678
1679 if (!atomic_read(&dcc->discard_cmd_cnt))
1680 wait_ms = dpolicy.max_interval;
1681
1682 wait_event_interruptible_timeout(*q,
1683 kthread_should_stop() || freezing(current) ||
1684 dcc->discard_wake,
1685 msecs_to_jiffies(wait_ms));
1686
1687 if (dcc->discard_wake)
1688 dcc->discard_wake = 0;
1689
1690 /* clean up pending candidates before going to sleep */
1691 if (atomic_read(&dcc->queued_discard))
1692 __wait_all_discard_cmd(sbi, NULL);
1693
1694 if (try_to_freeze())
1695 continue;
1696 if (f2fs_readonly(sbi->sb))
1697 continue;
1698 if (kthread_should_stop())
1699 return 0;
1700 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1701 wait_ms = dpolicy.max_interval;
1702 continue;
1703 }
1704 if (!atomic_read(&dcc->discard_cmd_cnt))
1705 continue;
1706
1707 sb_start_intwrite(sbi->sb);
1708
1709 issued = __issue_discard_cmd(sbi, &dpolicy);
1710 if (issued > 0) {
1711 __wait_all_discard_cmd(sbi, &dpolicy);
1712 wait_ms = dpolicy.min_interval;
1713 } else if (issued == -1) {
1714 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1715 if (!wait_ms)
1716 wait_ms = dpolicy.mid_interval;
1717 } else {
1718 wait_ms = dpolicy.max_interval;
1719 }
1720
1721 sb_end_intwrite(sbi->sb);
1722
1723 } while (!kthread_should_stop());
1724 return 0;
1725 }
1726
1727 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1728 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1729 struct block_device *bdev, block_t blkstart, block_t blklen)
1730 {
1731 sector_t sector, nr_sects;
1732 block_t lblkstart = blkstart;
1733 int devi = 0;
1734
1735 if (f2fs_is_multi_device(sbi)) {
1736 devi = f2fs_target_device_index(sbi, blkstart);
1737 if (blkstart < FDEV(devi).start_blk ||
1738 blkstart > FDEV(devi).end_blk) {
1739 f2fs_err(sbi, "Invalid block %x", blkstart);
1740 return -EIO;
1741 }
1742 blkstart -= FDEV(devi).start_blk;
1743 }
1744
1745 /* For sequential zones, reset the zone write pointer */
1746 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1747 sector = SECTOR_FROM_BLOCK(blkstart);
1748 nr_sects = SECTOR_FROM_BLOCK(blklen);
1749
1750 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1751 nr_sects != bdev_zone_sectors(bdev)) {
1752 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1753 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1754 blkstart, blklen);
1755 return -EIO;
1756 }
1757 trace_f2fs_issue_reset_zone(bdev, blkstart);
1758 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1759 sector, nr_sects, GFP_NOFS);
1760 }
1761
1762 /* For conventional zones, use regular discard if supported */
1763 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1764 }
1765 #endif
1766
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1767 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1768 struct block_device *bdev, block_t blkstart, block_t blklen)
1769 {
1770 #ifdef CONFIG_BLK_DEV_ZONED
1771 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1772 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1773 #endif
1774 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1775 }
1776
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1777 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1778 block_t blkstart, block_t blklen)
1779 {
1780 sector_t start = blkstart, len = 0;
1781 struct block_device *bdev;
1782 struct seg_entry *se;
1783 unsigned int offset;
1784 block_t i;
1785 int err = 0;
1786
1787 bdev = f2fs_target_device(sbi, blkstart, NULL);
1788
1789 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1790 if (i != start) {
1791 struct block_device *bdev2 =
1792 f2fs_target_device(sbi, i, NULL);
1793
1794 if (bdev2 != bdev) {
1795 err = __issue_discard_async(sbi, bdev,
1796 start, len);
1797 if (err)
1798 return err;
1799 bdev = bdev2;
1800 start = i;
1801 len = 0;
1802 }
1803 }
1804
1805 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1806 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1807
1808 if (f2fs_block_unit_discard(sbi) &&
1809 !f2fs_test_and_set_bit(offset, se->discard_map))
1810 sbi->discard_blks--;
1811 }
1812
1813 if (len)
1814 err = __issue_discard_async(sbi, bdev, start, len);
1815 return err;
1816 }
1817
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1818 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1819 bool check_only)
1820 {
1821 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1822 int max_blocks = sbi->blocks_per_seg;
1823 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1824 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1825 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1826 unsigned long *discard_map = (unsigned long *)se->discard_map;
1827 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1828 unsigned int start = 0, end = -1;
1829 bool force = (cpc->reason & CP_DISCARD);
1830 struct discard_entry *de = NULL;
1831 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1832 int i;
1833
1834 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1835 !f2fs_block_unit_discard(sbi))
1836 return false;
1837
1838 if (!force) {
1839 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1840 SM_I(sbi)->dcc_info->nr_discards >=
1841 SM_I(sbi)->dcc_info->max_discards)
1842 return false;
1843 }
1844
1845 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1846 for (i = 0; i < entries; i++)
1847 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1848 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1849
1850 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1851 SM_I(sbi)->dcc_info->max_discards) {
1852 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1853 if (start >= max_blocks)
1854 break;
1855
1856 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1857 if (force && start && end != max_blocks
1858 && (end - start) < cpc->trim_minlen)
1859 continue;
1860
1861 if (check_only)
1862 return true;
1863
1864 if (!de) {
1865 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1866 GFP_F2FS_ZERO, true, NULL);
1867 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1868 list_add_tail(&de->list, head);
1869 }
1870
1871 for (i = start; i < end; i++)
1872 __set_bit_le(i, (void *)de->discard_map);
1873
1874 SM_I(sbi)->dcc_info->nr_discards += end - start;
1875 }
1876 return false;
1877 }
1878
release_discard_addr(struct discard_entry * entry)1879 static void release_discard_addr(struct discard_entry *entry)
1880 {
1881 list_del(&entry->list);
1882 kmem_cache_free(discard_entry_slab, entry);
1883 }
1884
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1885 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1886 {
1887 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1888 struct discard_entry *entry, *this;
1889
1890 /* drop caches */
1891 list_for_each_entry_safe(entry, this, head, list)
1892 release_discard_addr(entry);
1893 }
1894
1895 /*
1896 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1897 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1898 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1899 {
1900 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1901 unsigned int segno;
1902
1903 mutex_lock(&dirty_i->seglist_lock);
1904 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1905 __set_test_and_free(sbi, segno, false);
1906 mutex_unlock(&dirty_i->seglist_lock);
1907 }
1908
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1909 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1910 struct cp_control *cpc)
1911 {
1912 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1913 struct list_head *head = &dcc->entry_list;
1914 struct discard_entry *entry, *this;
1915 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1916 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1917 unsigned int start = 0, end = -1;
1918 unsigned int secno, start_segno;
1919 bool force = (cpc->reason & CP_DISCARD);
1920 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1921 DISCARD_UNIT_SECTION;
1922
1923 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1924 section_alignment = true;
1925
1926 mutex_lock(&dirty_i->seglist_lock);
1927
1928 while (1) {
1929 int i;
1930
1931 if (section_alignment && end != -1)
1932 end--;
1933 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1934 if (start >= MAIN_SEGS(sbi))
1935 break;
1936 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1937 start + 1);
1938
1939 if (section_alignment) {
1940 start = rounddown(start, sbi->segs_per_sec);
1941 end = roundup(end, sbi->segs_per_sec);
1942 }
1943
1944 for (i = start; i < end; i++) {
1945 if (test_and_clear_bit(i, prefree_map))
1946 dirty_i->nr_dirty[PRE]--;
1947 }
1948
1949 if (!f2fs_realtime_discard_enable(sbi))
1950 continue;
1951
1952 if (force && start >= cpc->trim_start &&
1953 (end - 1) <= cpc->trim_end)
1954 continue;
1955
1956 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1957 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1958 (end - start) << sbi->log_blocks_per_seg);
1959 continue;
1960 }
1961 next:
1962 secno = GET_SEC_FROM_SEG(sbi, start);
1963 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1964 if (!IS_CURSEC(sbi, secno) &&
1965 !get_valid_blocks(sbi, start, true))
1966 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1967 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1968
1969 start = start_segno + sbi->segs_per_sec;
1970 if (start < end)
1971 goto next;
1972 else
1973 end = start - 1;
1974 }
1975 mutex_unlock(&dirty_i->seglist_lock);
1976
1977 if (!f2fs_block_unit_discard(sbi))
1978 goto wakeup;
1979
1980 /* send small discards */
1981 list_for_each_entry_safe(entry, this, head, list) {
1982 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1983 bool is_valid = test_bit_le(0, entry->discard_map);
1984
1985 find_next:
1986 if (is_valid) {
1987 next_pos = find_next_zero_bit_le(entry->discard_map,
1988 sbi->blocks_per_seg, cur_pos);
1989 len = next_pos - cur_pos;
1990
1991 if (f2fs_sb_has_blkzoned(sbi) ||
1992 (force && len < cpc->trim_minlen))
1993 goto skip;
1994
1995 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1996 len);
1997 total_len += len;
1998 } else {
1999 next_pos = find_next_bit_le(entry->discard_map,
2000 sbi->blocks_per_seg, cur_pos);
2001 }
2002 skip:
2003 cur_pos = next_pos;
2004 is_valid = !is_valid;
2005
2006 if (cur_pos < sbi->blocks_per_seg)
2007 goto find_next;
2008
2009 release_discard_addr(entry);
2010 dcc->nr_discards -= total_len;
2011 }
2012
2013 wakeup:
2014 wake_up_discard_thread(sbi, false);
2015 }
2016
f2fs_start_discard_thread(struct f2fs_sb_info * sbi)2017 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2018 {
2019 dev_t dev = sbi->sb->s_bdev->bd_dev;
2020 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2021 int err = 0;
2022
2023 if (!f2fs_realtime_discard_enable(sbi))
2024 return 0;
2025
2026 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2027 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2028 if (IS_ERR(dcc->f2fs_issue_discard))
2029 err = PTR_ERR(dcc->f2fs_issue_discard);
2030
2031 return err;
2032 }
2033
create_discard_cmd_control(struct f2fs_sb_info * sbi)2034 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2035 {
2036 struct discard_cmd_control *dcc;
2037 int err = 0, i;
2038
2039 if (SM_I(sbi)->dcc_info) {
2040 dcc = SM_I(sbi)->dcc_info;
2041 goto init_thread;
2042 }
2043
2044 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2045 if (!dcc)
2046 return -ENOMEM;
2047
2048 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2049 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2050 dcc->discard_granularity = sbi->blocks_per_seg;
2051 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2052 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2053
2054 INIT_LIST_HEAD(&dcc->entry_list);
2055 for (i = 0; i < MAX_PLIST_NUM; i++)
2056 INIT_LIST_HEAD(&dcc->pend_list[i]);
2057 INIT_LIST_HEAD(&dcc->wait_list);
2058 INIT_LIST_HEAD(&dcc->fstrim_list);
2059 mutex_init(&dcc->cmd_lock);
2060 atomic_set(&dcc->issued_discard, 0);
2061 atomic_set(&dcc->queued_discard, 0);
2062 atomic_set(&dcc->discard_cmd_cnt, 0);
2063 dcc->nr_discards = 0;
2064 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2065 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2066 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2067 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2068 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2069 dcc->undiscard_blks = 0;
2070 dcc->next_pos = 0;
2071 dcc->root = RB_ROOT_CACHED;
2072 dcc->rbtree_check = false;
2073
2074 init_waitqueue_head(&dcc->discard_wait_queue);
2075 SM_I(sbi)->dcc_info = dcc;
2076 init_thread:
2077 err = f2fs_start_discard_thread(sbi);
2078 if (err) {
2079 kfree(dcc);
2080 SM_I(sbi)->dcc_info = NULL;
2081 }
2082
2083 return err;
2084 }
2085
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2086 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2087 {
2088 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2089
2090 if (!dcc)
2091 return;
2092
2093 f2fs_stop_discard_thread(sbi);
2094
2095 /*
2096 * Recovery can cache discard commands, so in error path of
2097 * fill_super(), it needs to give a chance to handle them.
2098 */
2099 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2100 f2fs_issue_discard_timeout(sbi);
2101
2102 kfree(dcc);
2103 SM_I(sbi)->dcc_info = NULL;
2104 }
2105
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2106 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2107 {
2108 struct sit_info *sit_i = SIT_I(sbi);
2109
2110 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2111 sit_i->dirty_sentries++;
2112 return false;
2113 }
2114
2115 return true;
2116 }
2117
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2118 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2119 unsigned int segno, int modified)
2120 {
2121 struct seg_entry *se = get_seg_entry(sbi, segno);
2122
2123 se->type = type;
2124 if (modified)
2125 __mark_sit_entry_dirty(sbi, segno);
2126 }
2127
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2128 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2129 block_t blkaddr)
2130 {
2131 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2132
2133 if (segno == NULL_SEGNO)
2134 return 0;
2135 return get_seg_entry(sbi, segno)->mtime;
2136 }
2137
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2138 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2139 unsigned long long old_mtime)
2140 {
2141 struct seg_entry *se;
2142 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2143 unsigned long long ctime = get_mtime(sbi, false);
2144 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2145
2146 if (segno == NULL_SEGNO)
2147 return;
2148
2149 se = get_seg_entry(sbi, segno);
2150
2151 if (!se->mtime)
2152 se->mtime = mtime;
2153 else
2154 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2155 se->valid_blocks + 1);
2156
2157 if (ctime > SIT_I(sbi)->max_mtime)
2158 SIT_I(sbi)->max_mtime = ctime;
2159 }
2160
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2161 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2162 {
2163 struct seg_entry *se;
2164 unsigned int segno, offset;
2165 long int new_vblocks;
2166 bool exist;
2167 #ifdef CONFIG_F2FS_CHECK_FS
2168 bool mir_exist;
2169 #endif
2170
2171 segno = GET_SEGNO(sbi, blkaddr);
2172
2173 se = get_seg_entry(sbi, segno);
2174 new_vblocks = se->valid_blocks + del;
2175 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2176
2177 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2178 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2179
2180 se->valid_blocks = new_vblocks;
2181
2182 /* Update valid block bitmap */
2183 if (del > 0) {
2184 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2185 #ifdef CONFIG_F2FS_CHECK_FS
2186 mir_exist = f2fs_test_and_set_bit(offset,
2187 se->cur_valid_map_mir);
2188 if (unlikely(exist != mir_exist)) {
2189 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2190 blkaddr, exist);
2191 f2fs_bug_on(sbi, 1);
2192 }
2193 #endif
2194 if (unlikely(exist)) {
2195 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2196 blkaddr);
2197 f2fs_bug_on(sbi, 1);
2198 se->valid_blocks--;
2199 del = 0;
2200 }
2201
2202 if (f2fs_block_unit_discard(sbi) &&
2203 !f2fs_test_and_set_bit(offset, se->discard_map))
2204 sbi->discard_blks--;
2205
2206 /*
2207 * SSR should never reuse block which is checkpointed
2208 * or newly invalidated.
2209 */
2210 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2211 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2212 se->ckpt_valid_blocks++;
2213 }
2214 } else {
2215 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2216 #ifdef CONFIG_F2FS_CHECK_FS
2217 mir_exist = f2fs_test_and_clear_bit(offset,
2218 se->cur_valid_map_mir);
2219 if (unlikely(exist != mir_exist)) {
2220 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2221 blkaddr, exist);
2222 f2fs_bug_on(sbi, 1);
2223 }
2224 #endif
2225 if (unlikely(!exist)) {
2226 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2227 blkaddr);
2228 f2fs_bug_on(sbi, 1);
2229 se->valid_blocks++;
2230 del = 0;
2231 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2232 /*
2233 * If checkpoints are off, we must not reuse data that
2234 * was used in the previous checkpoint. If it was used
2235 * before, we must track that to know how much space we
2236 * really have.
2237 */
2238 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2239 spin_lock(&sbi->stat_lock);
2240 sbi->unusable_block_count++;
2241 spin_unlock(&sbi->stat_lock);
2242 }
2243 }
2244
2245 if (f2fs_block_unit_discard(sbi) &&
2246 f2fs_test_and_clear_bit(offset, se->discard_map))
2247 sbi->discard_blks++;
2248 }
2249 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2250 se->ckpt_valid_blocks += del;
2251
2252 __mark_sit_entry_dirty(sbi, segno);
2253
2254 /* update total number of valid blocks to be written in ckpt area */
2255 SIT_I(sbi)->written_valid_blocks += del;
2256
2257 if (__is_large_section(sbi))
2258 get_sec_entry(sbi, segno)->valid_blocks += del;
2259 }
2260
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2261 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2262 {
2263 unsigned int segno = GET_SEGNO(sbi, addr);
2264 struct sit_info *sit_i = SIT_I(sbi);
2265
2266 f2fs_bug_on(sbi, addr == NULL_ADDR);
2267 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2268 return;
2269
2270 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2271 f2fs_invalidate_compress_page(sbi, addr);
2272
2273 /* add it into sit main buffer */
2274 down_write(&sit_i->sentry_lock);
2275
2276 update_segment_mtime(sbi, addr, 0);
2277 update_sit_entry(sbi, addr, -1);
2278
2279 /* add it into dirty seglist */
2280 locate_dirty_segment(sbi, segno);
2281
2282 up_write(&sit_i->sentry_lock);
2283 }
2284
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2285 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2286 {
2287 struct sit_info *sit_i = SIT_I(sbi);
2288 unsigned int segno, offset;
2289 struct seg_entry *se;
2290 bool is_cp = false;
2291
2292 if (!__is_valid_data_blkaddr(blkaddr))
2293 return true;
2294
2295 down_read(&sit_i->sentry_lock);
2296
2297 segno = GET_SEGNO(sbi, blkaddr);
2298 se = get_seg_entry(sbi, segno);
2299 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2300
2301 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2302 is_cp = true;
2303
2304 up_read(&sit_i->sentry_lock);
2305
2306 return is_cp;
2307 }
2308
2309 /*
2310 * This function should be resided under the curseg_mutex lock
2311 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2312 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2313 struct f2fs_summary *sum)
2314 {
2315 struct curseg_info *curseg = CURSEG_I(sbi, type);
2316 void *addr = curseg->sum_blk;
2317
2318 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2319 memcpy(addr, sum, sizeof(struct f2fs_summary));
2320 }
2321
2322 /*
2323 * Calculate the number of current summary pages for writing
2324 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2325 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2326 {
2327 int valid_sum_count = 0;
2328 int i, sum_in_page;
2329
2330 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2331 if (sbi->ckpt->alloc_type[i] == SSR)
2332 valid_sum_count += sbi->blocks_per_seg;
2333 else {
2334 if (for_ra)
2335 valid_sum_count += le16_to_cpu(
2336 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2337 else
2338 valid_sum_count += curseg_blkoff(sbi, i);
2339 }
2340 }
2341
2342 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2343 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2344 if (valid_sum_count <= sum_in_page)
2345 return 1;
2346 else if ((valid_sum_count - sum_in_page) <=
2347 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2348 return 2;
2349 return 3;
2350 }
2351
2352 /*
2353 * Caller should put this summary page
2354 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2355 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2356 {
2357 if (unlikely(f2fs_cp_error(sbi)))
2358 return ERR_PTR(-EIO);
2359 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2360 }
2361
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2362 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2363 void *src, block_t blk_addr)
2364 {
2365 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2366
2367 memcpy(page_address(page), src, PAGE_SIZE);
2368 set_page_dirty(page);
2369 f2fs_put_page(page, 1);
2370 }
2371
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2372 static void write_sum_page(struct f2fs_sb_info *sbi,
2373 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2374 {
2375 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2376 }
2377
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2378 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2379 int type, block_t blk_addr)
2380 {
2381 struct curseg_info *curseg = CURSEG_I(sbi, type);
2382 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2383 struct f2fs_summary_block *src = curseg->sum_blk;
2384 struct f2fs_summary_block *dst;
2385
2386 dst = (struct f2fs_summary_block *)page_address(page);
2387 memset(dst, 0, PAGE_SIZE);
2388
2389 mutex_lock(&curseg->curseg_mutex);
2390
2391 down_read(&curseg->journal_rwsem);
2392 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2393 up_read(&curseg->journal_rwsem);
2394
2395 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2396 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2397
2398 mutex_unlock(&curseg->curseg_mutex);
2399
2400 set_page_dirty(page);
2401 f2fs_put_page(page, 1);
2402 }
2403
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2404 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2405 struct curseg_info *curseg, int type)
2406 {
2407 unsigned int segno = curseg->segno + 1;
2408 struct free_segmap_info *free_i = FREE_I(sbi);
2409
2410 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2411 return !test_bit(segno, free_i->free_segmap);
2412 return 0;
2413 }
2414
2415 /*
2416 * Find a new segment from the free segments bitmap to right order
2417 * This function should be returned with success, otherwise BUG
2418 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2419 static void get_new_segment(struct f2fs_sb_info *sbi,
2420 unsigned int *newseg, bool new_sec, int dir)
2421 {
2422 struct free_segmap_info *free_i = FREE_I(sbi);
2423 unsigned int segno, secno, zoneno;
2424 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2425 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2426 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2427 unsigned int left_start = hint;
2428 bool init = true;
2429 int go_left = 0;
2430 int i;
2431
2432 spin_lock(&free_i->segmap_lock);
2433
2434 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2435 segno = find_next_zero_bit(free_i->free_segmap,
2436 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2437 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2438 goto got_it;
2439 }
2440 find_other_zone:
2441 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2442 if (secno >= MAIN_SECS(sbi)) {
2443 if (dir == ALLOC_RIGHT) {
2444 secno = find_first_zero_bit(free_i->free_secmap,
2445 MAIN_SECS(sbi));
2446 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2447 } else {
2448 go_left = 1;
2449 left_start = hint - 1;
2450 }
2451 }
2452 if (go_left == 0)
2453 goto skip_left;
2454
2455 while (test_bit(left_start, free_i->free_secmap)) {
2456 if (left_start > 0) {
2457 left_start--;
2458 continue;
2459 }
2460 left_start = find_first_zero_bit(free_i->free_secmap,
2461 MAIN_SECS(sbi));
2462 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2463 break;
2464 }
2465 secno = left_start;
2466 skip_left:
2467 segno = GET_SEG_FROM_SEC(sbi, secno);
2468 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2469
2470 /* give up on finding another zone */
2471 if (!init)
2472 goto got_it;
2473 if (sbi->secs_per_zone == 1)
2474 goto got_it;
2475 if (zoneno == old_zoneno)
2476 goto got_it;
2477 if (dir == ALLOC_LEFT) {
2478 if (!go_left && zoneno + 1 >= total_zones)
2479 goto got_it;
2480 if (go_left && zoneno == 0)
2481 goto got_it;
2482 }
2483 for (i = 0; i < NR_CURSEG_TYPE; i++)
2484 if (CURSEG_I(sbi, i)->zone == zoneno)
2485 break;
2486
2487 if (i < NR_CURSEG_TYPE) {
2488 /* zone is in user, try another */
2489 if (go_left)
2490 hint = zoneno * sbi->secs_per_zone - 1;
2491 else if (zoneno + 1 >= total_zones)
2492 hint = 0;
2493 else
2494 hint = (zoneno + 1) * sbi->secs_per_zone;
2495 init = false;
2496 goto find_other_zone;
2497 }
2498 got_it:
2499 /* set it as dirty segment in free segmap */
2500 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2501 __set_inuse(sbi, segno);
2502 *newseg = segno;
2503 spin_unlock(&free_i->segmap_lock);
2504 }
2505
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2506 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2507 {
2508 struct curseg_info *curseg = CURSEG_I(sbi, type);
2509 struct summary_footer *sum_footer;
2510 unsigned short seg_type = curseg->seg_type;
2511
2512 curseg->inited = true;
2513 curseg->segno = curseg->next_segno;
2514 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2515 curseg->next_blkoff = 0;
2516 curseg->next_segno = NULL_SEGNO;
2517
2518 sum_footer = &(curseg->sum_blk->footer);
2519 memset(sum_footer, 0, sizeof(struct summary_footer));
2520
2521 sanity_check_seg_type(sbi, seg_type);
2522
2523 if (IS_DATASEG(seg_type))
2524 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2525 if (IS_NODESEG(seg_type))
2526 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2527 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2528 }
2529
__get_next_segno(struct f2fs_sb_info * sbi,int type)2530 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2531 {
2532 struct curseg_info *curseg = CURSEG_I(sbi, type);
2533 unsigned short seg_type = curseg->seg_type;
2534
2535 sanity_check_seg_type(sbi, seg_type);
2536 if (f2fs_need_rand_seg(sbi))
2537 return prandom_u32_max(MAIN_SECS(sbi) * sbi->segs_per_sec);
2538
2539 /* if segs_per_sec is large than 1, we need to keep original policy. */
2540 if (__is_large_section(sbi))
2541 return curseg->segno;
2542
2543 /* inmem log may not locate on any segment after mount */
2544 if (!curseg->inited)
2545 return 0;
2546
2547 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2548 return 0;
2549
2550 if (test_opt(sbi, NOHEAP) &&
2551 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2552 return 0;
2553
2554 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2555 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2556
2557 /* find segments from 0 to reuse freed segments */
2558 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2559 return 0;
2560
2561 return curseg->segno;
2562 }
2563
2564 /*
2565 * Allocate a current working segment.
2566 * This function always allocates a free segment in LFS manner.
2567 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2568 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2569 {
2570 struct curseg_info *curseg = CURSEG_I(sbi, type);
2571 unsigned short seg_type = curseg->seg_type;
2572 unsigned int segno = curseg->segno;
2573 int dir = ALLOC_LEFT;
2574
2575 if (curseg->inited)
2576 write_sum_page(sbi, curseg->sum_blk,
2577 GET_SUM_BLOCK(sbi, segno));
2578 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2579 dir = ALLOC_RIGHT;
2580
2581 if (test_opt(sbi, NOHEAP))
2582 dir = ALLOC_RIGHT;
2583
2584 segno = __get_next_segno(sbi, type);
2585 get_new_segment(sbi, &segno, new_sec, dir);
2586 curseg->next_segno = segno;
2587 reset_curseg(sbi, type, 1);
2588 curseg->alloc_type = LFS;
2589 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2590 curseg->fragment_remained_chunk =
2591 prandom_u32_max(sbi->max_fragment_chunk) + 1;
2592 }
2593
__next_free_blkoff(struct f2fs_sb_info * sbi,int segno,block_t start)2594 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2595 int segno, block_t start)
2596 {
2597 struct seg_entry *se = get_seg_entry(sbi, segno);
2598 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2599 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2600 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2601 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2602 int i;
2603
2604 for (i = 0; i < entries; i++)
2605 target_map[i] = ckpt_map[i] | cur_map[i];
2606
2607 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2608 }
2609
2610 /*
2611 * If a segment is written by LFS manner, next block offset is just obtained
2612 * by increasing the current block offset. However, if a segment is written by
2613 * SSR manner, next block offset obtained by calling __next_free_blkoff
2614 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2615 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2616 struct curseg_info *seg)
2617 {
2618 if (seg->alloc_type == SSR) {
2619 seg->next_blkoff =
2620 __next_free_blkoff(sbi, seg->segno,
2621 seg->next_blkoff + 1);
2622 } else {
2623 seg->next_blkoff++;
2624 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2625 /* To allocate block chunks in different sizes, use random number */
2626 if (--seg->fragment_remained_chunk <= 0) {
2627 seg->fragment_remained_chunk =
2628 prandom_u32_max(sbi->max_fragment_chunk) + 1;
2629 seg->next_blkoff +=
2630 prandom_u32_max(sbi->max_fragment_hole) + 1;
2631 }
2632 }
2633 }
2634 }
2635
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2636 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2637 {
2638 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2639 }
2640
2641 /*
2642 * This function always allocates a used segment(from dirty seglist) by SSR
2643 * manner, so it should recover the existing segment information of valid blocks
2644 */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2645 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2646 {
2647 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2648 struct curseg_info *curseg = CURSEG_I(sbi, type);
2649 unsigned int new_segno = curseg->next_segno;
2650 struct f2fs_summary_block *sum_node;
2651 struct page *sum_page;
2652
2653 if (flush)
2654 write_sum_page(sbi, curseg->sum_blk,
2655 GET_SUM_BLOCK(sbi, curseg->segno));
2656
2657 __set_test_and_inuse(sbi, new_segno);
2658
2659 mutex_lock(&dirty_i->seglist_lock);
2660 __remove_dirty_segment(sbi, new_segno, PRE);
2661 __remove_dirty_segment(sbi, new_segno, DIRTY);
2662 mutex_unlock(&dirty_i->seglist_lock);
2663
2664 reset_curseg(sbi, type, 1);
2665 curseg->alloc_type = SSR;
2666 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2667
2668 sum_page = f2fs_get_sum_page(sbi, new_segno);
2669 if (IS_ERR(sum_page)) {
2670 /* GC won't be able to use stale summary pages by cp_error */
2671 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2672 return;
2673 }
2674 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2675 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2676 f2fs_put_page(sum_page, 1);
2677 }
2678
2679 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2680 int alloc_mode, unsigned long long age);
2681
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2682 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2683 int target_type, int alloc_mode,
2684 unsigned long long age)
2685 {
2686 struct curseg_info *curseg = CURSEG_I(sbi, type);
2687
2688 curseg->seg_type = target_type;
2689
2690 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2691 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2692
2693 curseg->seg_type = se->type;
2694 change_curseg(sbi, type, true);
2695 } else {
2696 /* allocate cold segment by default */
2697 curseg->seg_type = CURSEG_COLD_DATA;
2698 new_curseg(sbi, type, true);
2699 }
2700 stat_inc_seg_type(sbi, curseg);
2701 }
2702
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2703 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2704 {
2705 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2706
2707 if (!sbi->am.atgc_enabled)
2708 return;
2709
2710 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2711
2712 mutex_lock(&curseg->curseg_mutex);
2713 down_write(&SIT_I(sbi)->sentry_lock);
2714
2715 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2716
2717 up_write(&SIT_I(sbi)->sentry_lock);
2718 mutex_unlock(&curseg->curseg_mutex);
2719
2720 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2721
2722 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2723 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2724 {
2725 __f2fs_init_atgc_curseg(sbi);
2726 }
2727
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2728 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2729 {
2730 struct curseg_info *curseg = CURSEG_I(sbi, type);
2731
2732 mutex_lock(&curseg->curseg_mutex);
2733 if (!curseg->inited)
2734 goto out;
2735
2736 if (get_valid_blocks(sbi, curseg->segno, false)) {
2737 write_sum_page(sbi, curseg->sum_blk,
2738 GET_SUM_BLOCK(sbi, curseg->segno));
2739 } else {
2740 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2741 __set_test_and_free(sbi, curseg->segno, true);
2742 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2743 }
2744 out:
2745 mutex_unlock(&curseg->curseg_mutex);
2746 }
2747
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2748 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2749 {
2750 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2751
2752 if (sbi->am.atgc_enabled)
2753 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2754 }
2755
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2756 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2757 {
2758 struct curseg_info *curseg = CURSEG_I(sbi, type);
2759
2760 mutex_lock(&curseg->curseg_mutex);
2761 if (!curseg->inited)
2762 goto out;
2763 if (get_valid_blocks(sbi, curseg->segno, false))
2764 goto out;
2765
2766 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2767 __set_test_and_inuse(sbi, curseg->segno);
2768 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2769 out:
2770 mutex_unlock(&curseg->curseg_mutex);
2771 }
2772
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2773 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2774 {
2775 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2776
2777 if (sbi->am.atgc_enabled)
2778 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2779 }
2780
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2781 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2782 int alloc_mode, unsigned long long age)
2783 {
2784 struct curseg_info *curseg = CURSEG_I(sbi, type);
2785 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2786 unsigned segno = NULL_SEGNO;
2787 unsigned short seg_type = curseg->seg_type;
2788 int i, cnt;
2789 bool reversed = false;
2790
2791 sanity_check_seg_type(sbi, seg_type);
2792
2793 /* f2fs_need_SSR() already forces to do this */
2794 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2795 curseg->next_segno = segno;
2796 return 1;
2797 }
2798
2799 /* For node segments, let's do SSR more intensively */
2800 if (IS_NODESEG(seg_type)) {
2801 if (seg_type >= CURSEG_WARM_NODE) {
2802 reversed = true;
2803 i = CURSEG_COLD_NODE;
2804 } else {
2805 i = CURSEG_HOT_NODE;
2806 }
2807 cnt = NR_CURSEG_NODE_TYPE;
2808 } else {
2809 if (seg_type >= CURSEG_WARM_DATA) {
2810 reversed = true;
2811 i = CURSEG_COLD_DATA;
2812 } else {
2813 i = CURSEG_HOT_DATA;
2814 }
2815 cnt = NR_CURSEG_DATA_TYPE;
2816 }
2817
2818 for (; cnt-- > 0; reversed ? i-- : i++) {
2819 if (i == seg_type)
2820 continue;
2821 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2822 curseg->next_segno = segno;
2823 return 1;
2824 }
2825 }
2826
2827 /* find valid_blocks=0 in dirty list */
2828 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2829 segno = get_free_segment(sbi);
2830 if (segno != NULL_SEGNO) {
2831 curseg->next_segno = segno;
2832 return 1;
2833 }
2834 }
2835 return 0;
2836 }
2837
2838 /*
2839 * flush out current segment and replace it with new segment
2840 * This function should be returned with success, otherwise BUG
2841 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2842 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2843 int type, bool force)
2844 {
2845 struct curseg_info *curseg = CURSEG_I(sbi, type);
2846
2847 if (force)
2848 new_curseg(sbi, type, true);
2849 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2850 curseg->seg_type == CURSEG_WARM_NODE)
2851 new_curseg(sbi, type, false);
2852 else if (curseg->alloc_type == LFS &&
2853 is_next_segment_free(sbi, curseg, type) &&
2854 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2855 new_curseg(sbi, type, false);
2856 else if (f2fs_need_SSR(sbi) &&
2857 get_ssr_segment(sbi, type, SSR, 0))
2858 change_curseg(sbi, type, true);
2859 else
2860 new_curseg(sbi, type, false);
2861
2862 stat_inc_seg_type(sbi, curseg);
2863 }
2864
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2865 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2866 unsigned int start, unsigned int end)
2867 {
2868 struct curseg_info *curseg = CURSEG_I(sbi, type);
2869 unsigned int segno;
2870
2871 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2872 mutex_lock(&curseg->curseg_mutex);
2873 down_write(&SIT_I(sbi)->sentry_lock);
2874
2875 segno = CURSEG_I(sbi, type)->segno;
2876 if (segno < start || segno > end)
2877 goto unlock;
2878
2879 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2880 change_curseg(sbi, type, true);
2881 else
2882 new_curseg(sbi, type, true);
2883
2884 stat_inc_seg_type(sbi, curseg);
2885
2886 locate_dirty_segment(sbi, segno);
2887 unlock:
2888 up_write(&SIT_I(sbi)->sentry_lock);
2889
2890 if (segno != curseg->segno)
2891 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2892 type, segno, curseg->segno);
2893
2894 mutex_unlock(&curseg->curseg_mutex);
2895 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2896 }
2897
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec,bool force)2898 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2899 bool new_sec, bool force)
2900 {
2901 struct curseg_info *curseg = CURSEG_I(sbi, type);
2902 unsigned int old_segno;
2903
2904 if (!curseg->inited)
2905 goto alloc;
2906
2907 if (force || curseg->next_blkoff ||
2908 get_valid_blocks(sbi, curseg->segno, new_sec))
2909 goto alloc;
2910
2911 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2912 return;
2913 alloc:
2914 old_segno = curseg->segno;
2915 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2916 locate_dirty_segment(sbi, old_segno);
2917 }
2918
__allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2919 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2920 int type, bool force)
2921 {
2922 __allocate_new_segment(sbi, type, true, force);
2923 }
2924
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type,bool force)2925 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2926 {
2927 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2928 down_write(&SIT_I(sbi)->sentry_lock);
2929 __allocate_new_section(sbi, type, force);
2930 up_write(&SIT_I(sbi)->sentry_lock);
2931 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2932 }
2933
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2934 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2935 {
2936 int i;
2937
2938 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2939 down_write(&SIT_I(sbi)->sentry_lock);
2940 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2941 __allocate_new_segment(sbi, i, false, false);
2942 up_write(&SIT_I(sbi)->sentry_lock);
2943 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2944 }
2945
2946 static const struct segment_allocation default_salloc_ops = {
2947 .allocate_segment = allocate_segment_by_default,
2948 };
2949
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2950 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2951 struct cp_control *cpc)
2952 {
2953 __u64 trim_start = cpc->trim_start;
2954 bool has_candidate = false;
2955
2956 down_write(&SIT_I(sbi)->sentry_lock);
2957 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2958 if (add_discard_addrs(sbi, cpc, true)) {
2959 has_candidate = true;
2960 break;
2961 }
2962 }
2963 up_write(&SIT_I(sbi)->sentry_lock);
2964
2965 cpc->trim_start = trim_start;
2966 return has_candidate;
2967 }
2968
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2969 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2970 struct discard_policy *dpolicy,
2971 unsigned int start, unsigned int end)
2972 {
2973 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2974 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2975 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2976 struct discard_cmd *dc;
2977 struct blk_plug plug;
2978 int issued;
2979 unsigned int trimmed = 0;
2980
2981 next:
2982 issued = 0;
2983
2984 mutex_lock(&dcc->cmd_lock);
2985 if (unlikely(dcc->rbtree_check))
2986 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2987 &dcc->root, false));
2988
2989 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2990 NULL, start,
2991 (struct rb_entry **)&prev_dc,
2992 (struct rb_entry **)&next_dc,
2993 &insert_p, &insert_parent, true, NULL);
2994 if (!dc)
2995 dc = next_dc;
2996
2997 blk_start_plug(&plug);
2998
2999 while (dc && dc->lstart <= end) {
3000 struct rb_node *node;
3001 int err = 0;
3002
3003 if (dc->len < dpolicy->granularity)
3004 goto skip;
3005
3006 if (dc->state != D_PREP) {
3007 list_move_tail(&dc->list, &dcc->fstrim_list);
3008 goto skip;
3009 }
3010
3011 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3012
3013 if (issued >= dpolicy->max_requests) {
3014 start = dc->lstart + dc->len;
3015
3016 if (err)
3017 __remove_discard_cmd(sbi, dc);
3018
3019 blk_finish_plug(&plug);
3020 mutex_unlock(&dcc->cmd_lock);
3021 trimmed += __wait_all_discard_cmd(sbi, NULL);
3022 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3023 goto next;
3024 }
3025 skip:
3026 node = rb_next(&dc->rb_node);
3027 if (err)
3028 __remove_discard_cmd(sbi, dc);
3029 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3030
3031 if (fatal_signal_pending(current))
3032 break;
3033 }
3034
3035 blk_finish_plug(&plug);
3036 mutex_unlock(&dcc->cmd_lock);
3037
3038 return trimmed;
3039 }
3040
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3041 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3042 {
3043 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3044 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3045 unsigned int start_segno, end_segno;
3046 block_t start_block, end_block;
3047 struct cp_control cpc;
3048 struct discard_policy dpolicy;
3049 unsigned long long trimmed = 0;
3050 int err = 0;
3051 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3052
3053 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3054 return -EINVAL;
3055
3056 if (end < MAIN_BLKADDR(sbi))
3057 goto out;
3058
3059 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3060 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3061 return -EFSCORRUPTED;
3062 }
3063
3064 /* start/end segment number in main_area */
3065 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3066 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3067 GET_SEGNO(sbi, end);
3068 if (need_align) {
3069 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3070 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3071 }
3072
3073 cpc.reason = CP_DISCARD;
3074 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3075 cpc.trim_start = start_segno;
3076 cpc.trim_end = end_segno;
3077
3078 if (sbi->discard_blks == 0)
3079 goto out;
3080
3081 f2fs_down_write(&sbi->gc_lock);
3082 err = f2fs_write_checkpoint(sbi, &cpc);
3083 f2fs_up_write(&sbi->gc_lock);
3084 if (err)
3085 goto out;
3086
3087 /*
3088 * We filed discard candidates, but actually we don't need to wait for
3089 * all of them, since they'll be issued in idle time along with runtime
3090 * discard option. User configuration looks like using runtime discard
3091 * or periodic fstrim instead of it.
3092 */
3093 if (f2fs_realtime_discard_enable(sbi))
3094 goto out;
3095
3096 start_block = START_BLOCK(sbi, start_segno);
3097 end_block = START_BLOCK(sbi, end_segno + 1);
3098
3099 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3100 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3101 start_block, end_block);
3102
3103 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3104 start_block, end_block);
3105 out:
3106 if (!err)
3107 range->len = F2FS_BLK_TO_BYTES(trimmed);
3108 return err;
3109 }
3110
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3111 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3112 struct curseg_info *curseg)
3113 {
3114 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3115 curseg->segno);
3116 }
3117
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3118 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3119 {
3120 switch (hint) {
3121 case WRITE_LIFE_SHORT:
3122 return CURSEG_HOT_DATA;
3123 case WRITE_LIFE_EXTREME:
3124 return CURSEG_COLD_DATA;
3125 default:
3126 return CURSEG_WARM_DATA;
3127 }
3128 }
3129
__get_segment_type_2(struct f2fs_io_info * fio)3130 static int __get_segment_type_2(struct f2fs_io_info *fio)
3131 {
3132 if (fio->type == DATA)
3133 return CURSEG_HOT_DATA;
3134 else
3135 return CURSEG_HOT_NODE;
3136 }
3137
__get_segment_type_4(struct f2fs_io_info * fio)3138 static int __get_segment_type_4(struct f2fs_io_info *fio)
3139 {
3140 if (fio->type == DATA) {
3141 struct inode *inode = fio->page->mapping->host;
3142
3143 if (S_ISDIR(inode->i_mode))
3144 return CURSEG_HOT_DATA;
3145 else
3146 return CURSEG_COLD_DATA;
3147 } else {
3148 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3149 return CURSEG_WARM_NODE;
3150 else
3151 return CURSEG_COLD_NODE;
3152 }
3153 }
3154
__get_segment_type_6(struct f2fs_io_info * fio)3155 static int __get_segment_type_6(struct f2fs_io_info *fio)
3156 {
3157 if (fio->type == DATA) {
3158 struct inode *inode = fio->page->mapping->host;
3159
3160 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3161 return CURSEG_COLD_DATA_PINNED;
3162
3163 if (page_private_gcing(fio->page)) {
3164 if (fio->sbi->am.atgc_enabled &&
3165 (fio->io_type == FS_DATA_IO) &&
3166 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3167 return CURSEG_ALL_DATA_ATGC;
3168 else
3169 return CURSEG_COLD_DATA;
3170 }
3171 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3172 return CURSEG_COLD_DATA;
3173 if (file_is_hot(inode) ||
3174 is_inode_flag_set(inode, FI_HOT_DATA) ||
3175 f2fs_is_cow_file(inode))
3176 return CURSEG_HOT_DATA;
3177 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3178 } else {
3179 if (IS_DNODE(fio->page))
3180 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3181 CURSEG_HOT_NODE;
3182 return CURSEG_COLD_NODE;
3183 }
3184 }
3185
__get_segment_type(struct f2fs_io_info * fio)3186 static int __get_segment_type(struct f2fs_io_info *fio)
3187 {
3188 int type = 0;
3189
3190 switch (F2FS_OPTION(fio->sbi).active_logs) {
3191 case 2:
3192 type = __get_segment_type_2(fio);
3193 break;
3194 case 4:
3195 type = __get_segment_type_4(fio);
3196 break;
3197 case 6:
3198 type = __get_segment_type_6(fio);
3199 break;
3200 default:
3201 f2fs_bug_on(fio->sbi, true);
3202 }
3203
3204 if (IS_HOT(type))
3205 fio->temp = HOT;
3206 else if (IS_WARM(type))
3207 fio->temp = WARM;
3208 else
3209 fio->temp = COLD;
3210 return type;
3211 }
3212
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3213 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3214 block_t old_blkaddr, block_t *new_blkaddr,
3215 struct f2fs_summary *sum, int type,
3216 struct f2fs_io_info *fio)
3217 {
3218 struct sit_info *sit_i = SIT_I(sbi);
3219 struct curseg_info *curseg = CURSEG_I(sbi, type);
3220 unsigned long long old_mtime;
3221 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3222 struct seg_entry *se = NULL;
3223
3224 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3225
3226 mutex_lock(&curseg->curseg_mutex);
3227 down_write(&sit_i->sentry_lock);
3228
3229 if (from_gc) {
3230 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3231 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3232 sanity_check_seg_type(sbi, se->type);
3233 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3234 }
3235 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3236
3237 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3238
3239 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3240
3241 /*
3242 * __add_sum_entry should be resided under the curseg_mutex
3243 * because, this function updates a summary entry in the
3244 * current summary block.
3245 */
3246 __add_sum_entry(sbi, type, sum);
3247
3248 __refresh_next_blkoff(sbi, curseg);
3249
3250 stat_inc_block_count(sbi, curseg);
3251
3252 if (from_gc) {
3253 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3254 } else {
3255 update_segment_mtime(sbi, old_blkaddr, 0);
3256 old_mtime = 0;
3257 }
3258 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3259
3260 /*
3261 * SIT information should be updated before segment allocation,
3262 * since SSR needs latest valid block information.
3263 */
3264 update_sit_entry(sbi, *new_blkaddr, 1);
3265 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3266 update_sit_entry(sbi, old_blkaddr, -1);
3267
3268 if (!__has_curseg_space(sbi, curseg)) {
3269 if (from_gc)
3270 get_atssr_segment(sbi, type, se->type,
3271 AT_SSR, se->mtime);
3272 else
3273 sit_i->s_ops->allocate_segment(sbi, type, false);
3274 }
3275 /*
3276 * segment dirty status should be updated after segment allocation,
3277 * so we just need to update status only one time after previous
3278 * segment being closed.
3279 */
3280 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3281 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3282
3283 up_write(&sit_i->sentry_lock);
3284
3285 if (page && IS_NODESEG(type)) {
3286 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3287
3288 f2fs_inode_chksum_set(sbi, page);
3289 }
3290
3291 if (fio) {
3292 struct f2fs_bio_info *io;
3293
3294 if (F2FS_IO_ALIGNED(sbi))
3295 fio->retry = false;
3296
3297 INIT_LIST_HEAD(&fio->list);
3298 fio->in_list = true;
3299 io = sbi->write_io[fio->type] + fio->temp;
3300 spin_lock(&io->io_lock);
3301 list_add_tail(&fio->list, &io->io_list);
3302 spin_unlock(&io->io_lock);
3303 }
3304
3305 mutex_unlock(&curseg->curseg_mutex);
3306
3307 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3308 }
3309
f2fs_update_device_state(struct f2fs_sb_info * sbi,nid_t ino,block_t blkaddr,unsigned int blkcnt)3310 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3311 block_t blkaddr, unsigned int blkcnt)
3312 {
3313 if (!f2fs_is_multi_device(sbi))
3314 return;
3315
3316 while (1) {
3317 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3318 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3319
3320 /* update device state for fsync */
3321 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3322
3323 /* update device state for checkpoint */
3324 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3325 spin_lock(&sbi->dev_lock);
3326 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3327 spin_unlock(&sbi->dev_lock);
3328 }
3329
3330 if (blkcnt <= blks)
3331 break;
3332 blkcnt -= blks;
3333 blkaddr += blks;
3334 }
3335 }
3336
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3337 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3338 {
3339 int type = __get_segment_type(fio);
3340 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3341
3342 if (keep_order)
3343 f2fs_down_read(&fio->sbi->io_order_lock);
3344 reallocate:
3345 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3346 &fio->new_blkaddr, sum, type, fio);
3347 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3348 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3349 fio->old_blkaddr, fio->old_blkaddr);
3350 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3351 }
3352
3353 /* writeout dirty page into bdev */
3354 f2fs_submit_page_write(fio);
3355 if (fio->retry) {
3356 fio->old_blkaddr = fio->new_blkaddr;
3357 goto reallocate;
3358 }
3359
3360 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3361
3362 if (keep_order)
3363 f2fs_up_read(&fio->sbi->io_order_lock);
3364 }
3365
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3366 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3367 enum iostat_type io_type)
3368 {
3369 struct f2fs_io_info fio = {
3370 .sbi = sbi,
3371 .type = META,
3372 .temp = HOT,
3373 .op = REQ_OP_WRITE,
3374 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3375 .old_blkaddr = page->index,
3376 .new_blkaddr = page->index,
3377 .page = page,
3378 .encrypted_page = NULL,
3379 .in_list = false,
3380 };
3381
3382 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3383 fio.op_flags &= ~REQ_META;
3384
3385 set_page_writeback(page);
3386 ClearPageError(page);
3387 f2fs_submit_page_write(&fio);
3388
3389 stat_inc_meta_count(sbi, page->index);
3390 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3391 }
3392
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3393 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3394 {
3395 struct f2fs_summary sum;
3396
3397 set_summary(&sum, nid, 0, 0);
3398 do_write_page(&sum, fio);
3399
3400 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3401 }
3402
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3403 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3404 struct f2fs_io_info *fio)
3405 {
3406 struct f2fs_sb_info *sbi = fio->sbi;
3407 struct f2fs_summary sum;
3408
3409 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3410 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3411 do_write_page(&sum, fio);
3412 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3413
3414 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3415 }
3416
f2fs_inplace_write_data(struct f2fs_io_info * fio)3417 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3418 {
3419 int err;
3420 struct f2fs_sb_info *sbi = fio->sbi;
3421 unsigned int segno;
3422
3423 fio->new_blkaddr = fio->old_blkaddr;
3424 /* i/o temperature is needed for passing down write hints */
3425 __get_segment_type(fio);
3426
3427 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3428
3429 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3430 set_sbi_flag(sbi, SBI_NEED_FSCK);
3431 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3432 __func__, segno);
3433 err = -EFSCORRUPTED;
3434 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3435 goto drop_bio;
3436 }
3437
3438 if (f2fs_cp_error(sbi)) {
3439 err = -EIO;
3440 goto drop_bio;
3441 }
3442
3443 if (fio->post_read)
3444 invalidate_mapping_pages(META_MAPPING(sbi),
3445 fio->new_blkaddr, fio->new_blkaddr);
3446
3447 stat_inc_inplace_blocks(fio->sbi);
3448
3449 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3450 err = f2fs_merge_page_bio(fio);
3451 else
3452 err = f2fs_submit_page_bio(fio);
3453 if (!err) {
3454 f2fs_update_device_state(fio->sbi, fio->ino,
3455 fio->new_blkaddr, 1);
3456 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3457 fio->io_type, F2FS_BLKSIZE);
3458 }
3459
3460 return err;
3461 drop_bio:
3462 if (fio->bio && *(fio->bio)) {
3463 struct bio *bio = *(fio->bio);
3464
3465 bio->bi_status = BLK_STS_IOERR;
3466 bio_endio(bio);
3467 *(fio->bio) = NULL;
3468 }
3469 return err;
3470 }
3471
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3472 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3473 unsigned int segno)
3474 {
3475 int i;
3476
3477 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3478 if (CURSEG_I(sbi, i)->segno == segno)
3479 break;
3480 }
3481 return i;
3482 }
3483
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3484 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3485 block_t old_blkaddr, block_t new_blkaddr,
3486 bool recover_curseg, bool recover_newaddr,
3487 bool from_gc)
3488 {
3489 struct sit_info *sit_i = SIT_I(sbi);
3490 struct curseg_info *curseg;
3491 unsigned int segno, old_cursegno;
3492 struct seg_entry *se;
3493 int type;
3494 unsigned short old_blkoff;
3495 unsigned char old_alloc_type;
3496
3497 segno = GET_SEGNO(sbi, new_blkaddr);
3498 se = get_seg_entry(sbi, segno);
3499 type = se->type;
3500
3501 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3502
3503 if (!recover_curseg) {
3504 /* for recovery flow */
3505 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3506 if (old_blkaddr == NULL_ADDR)
3507 type = CURSEG_COLD_DATA;
3508 else
3509 type = CURSEG_WARM_DATA;
3510 }
3511 } else {
3512 if (IS_CURSEG(sbi, segno)) {
3513 /* se->type is volatile as SSR allocation */
3514 type = __f2fs_get_curseg(sbi, segno);
3515 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3516 } else {
3517 type = CURSEG_WARM_DATA;
3518 }
3519 }
3520
3521 f2fs_bug_on(sbi, !IS_DATASEG(type));
3522 curseg = CURSEG_I(sbi, type);
3523
3524 mutex_lock(&curseg->curseg_mutex);
3525 down_write(&sit_i->sentry_lock);
3526
3527 old_cursegno = curseg->segno;
3528 old_blkoff = curseg->next_blkoff;
3529 old_alloc_type = curseg->alloc_type;
3530
3531 /* change the current segment */
3532 if (segno != curseg->segno) {
3533 curseg->next_segno = segno;
3534 change_curseg(sbi, type, true);
3535 }
3536
3537 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3538 __add_sum_entry(sbi, type, sum);
3539
3540 if (!recover_curseg || recover_newaddr) {
3541 if (!from_gc)
3542 update_segment_mtime(sbi, new_blkaddr, 0);
3543 update_sit_entry(sbi, new_blkaddr, 1);
3544 }
3545 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3546 invalidate_mapping_pages(META_MAPPING(sbi),
3547 old_blkaddr, old_blkaddr);
3548 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3549 if (!from_gc)
3550 update_segment_mtime(sbi, old_blkaddr, 0);
3551 update_sit_entry(sbi, old_blkaddr, -1);
3552 }
3553
3554 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3555 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3556
3557 locate_dirty_segment(sbi, old_cursegno);
3558
3559 if (recover_curseg) {
3560 if (old_cursegno != curseg->segno) {
3561 curseg->next_segno = old_cursegno;
3562 change_curseg(sbi, type, true);
3563 }
3564 curseg->next_blkoff = old_blkoff;
3565 curseg->alloc_type = old_alloc_type;
3566 }
3567
3568 up_write(&sit_i->sentry_lock);
3569 mutex_unlock(&curseg->curseg_mutex);
3570 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3571 }
3572
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3573 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3574 block_t old_addr, block_t new_addr,
3575 unsigned char version, bool recover_curseg,
3576 bool recover_newaddr)
3577 {
3578 struct f2fs_summary sum;
3579
3580 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3581
3582 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3583 recover_curseg, recover_newaddr, false);
3584
3585 f2fs_update_data_blkaddr(dn, new_addr);
3586 }
3587
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3588 void f2fs_wait_on_page_writeback(struct page *page,
3589 enum page_type type, bool ordered, bool locked)
3590 {
3591 if (PageWriteback(page)) {
3592 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3593
3594 /* submit cached LFS IO */
3595 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3596 /* sbumit cached IPU IO */
3597 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3598 if (ordered) {
3599 wait_on_page_writeback(page);
3600 f2fs_bug_on(sbi, locked && PageWriteback(page));
3601 } else {
3602 wait_for_stable_page(page);
3603 }
3604 }
3605 }
3606
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3607 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3608 {
3609 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3610 struct page *cpage;
3611
3612 if (!f2fs_post_read_required(inode))
3613 return;
3614
3615 if (!__is_valid_data_blkaddr(blkaddr))
3616 return;
3617
3618 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3619 if (cpage) {
3620 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3621 f2fs_put_page(cpage, 1);
3622 }
3623 }
3624
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3625 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3626 block_t len)
3627 {
3628 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3629 block_t i;
3630
3631 if (!f2fs_post_read_required(inode))
3632 return;
3633
3634 for (i = 0; i < len; i++)
3635 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3636
3637 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3638 }
3639
read_compacted_summaries(struct f2fs_sb_info * sbi)3640 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3641 {
3642 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3643 struct curseg_info *seg_i;
3644 unsigned char *kaddr;
3645 struct page *page;
3646 block_t start;
3647 int i, j, offset;
3648
3649 start = start_sum_block(sbi);
3650
3651 page = f2fs_get_meta_page(sbi, start++);
3652 if (IS_ERR(page))
3653 return PTR_ERR(page);
3654 kaddr = (unsigned char *)page_address(page);
3655
3656 /* Step 1: restore nat cache */
3657 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3658 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3659
3660 /* Step 2: restore sit cache */
3661 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3662 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3663 offset = 2 * SUM_JOURNAL_SIZE;
3664
3665 /* Step 3: restore summary entries */
3666 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3667 unsigned short blk_off;
3668 unsigned int segno;
3669
3670 seg_i = CURSEG_I(sbi, i);
3671 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3672 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3673 seg_i->next_segno = segno;
3674 reset_curseg(sbi, i, 0);
3675 seg_i->alloc_type = ckpt->alloc_type[i];
3676 seg_i->next_blkoff = blk_off;
3677
3678 if (seg_i->alloc_type == SSR)
3679 blk_off = sbi->blocks_per_seg;
3680
3681 for (j = 0; j < blk_off; j++) {
3682 struct f2fs_summary *s;
3683
3684 s = (struct f2fs_summary *)(kaddr + offset);
3685 seg_i->sum_blk->entries[j] = *s;
3686 offset += SUMMARY_SIZE;
3687 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3688 SUM_FOOTER_SIZE)
3689 continue;
3690
3691 f2fs_put_page(page, 1);
3692 page = NULL;
3693
3694 page = f2fs_get_meta_page(sbi, start++);
3695 if (IS_ERR(page))
3696 return PTR_ERR(page);
3697 kaddr = (unsigned char *)page_address(page);
3698 offset = 0;
3699 }
3700 }
3701 f2fs_put_page(page, 1);
3702 return 0;
3703 }
3704
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3705 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3706 {
3707 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3708 struct f2fs_summary_block *sum;
3709 struct curseg_info *curseg;
3710 struct page *new;
3711 unsigned short blk_off;
3712 unsigned int segno = 0;
3713 block_t blk_addr = 0;
3714 int err = 0;
3715
3716 /* get segment number and block addr */
3717 if (IS_DATASEG(type)) {
3718 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3719 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3720 CURSEG_HOT_DATA]);
3721 if (__exist_node_summaries(sbi))
3722 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3723 else
3724 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3725 } else {
3726 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3727 CURSEG_HOT_NODE]);
3728 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3729 CURSEG_HOT_NODE]);
3730 if (__exist_node_summaries(sbi))
3731 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3732 type - CURSEG_HOT_NODE);
3733 else
3734 blk_addr = GET_SUM_BLOCK(sbi, segno);
3735 }
3736
3737 new = f2fs_get_meta_page(sbi, blk_addr);
3738 if (IS_ERR(new))
3739 return PTR_ERR(new);
3740 sum = (struct f2fs_summary_block *)page_address(new);
3741
3742 if (IS_NODESEG(type)) {
3743 if (__exist_node_summaries(sbi)) {
3744 struct f2fs_summary *ns = &sum->entries[0];
3745 int i;
3746
3747 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3748 ns->version = 0;
3749 ns->ofs_in_node = 0;
3750 }
3751 } else {
3752 err = f2fs_restore_node_summary(sbi, segno, sum);
3753 if (err)
3754 goto out;
3755 }
3756 }
3757
3758 /* set uncompleted segment to curseg */
3759 curseg = CURSEG_I(sbi, type);
3760 mutex_lock(&curseg->curseg_mutex);
3761
3762 /* update journal info */
3763 down_write(&curseg->journal_rwsem);
3764 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3765 up_write(&curseg->journal_rwsem);
3766
3767 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3768 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3769 curseg->next_segno = segno;
3770 reset_curseg(sbi, type, 0);
3771 curseg->alloc_type = ckpt->alloc_type[type];
3772 curseg->next_blkoff = blk_off;
3773 mutex_unlock(&curseg->curseg_mutex);
3774 out:
3775 f2fs_put_page(new, 1);
3776 return err;
3777 }
3778
restore_curseg_summaries(struct f2fs_sb_info * sbi)3779 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3780 {
3781 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3782 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3783 int type = CURSEG_HOT_DATA;
3784 int err;
3785
3786 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3787 int npages = f2fs_npages_for_summary_flush(sbi, true);
3788
3789 if (npages >= 2)
3790 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3791 META_CP, true);
3792
3793 /* restore for compacted data summary */
3794 err = read_compacted_summaries(sbi);
3795 if (err)
3796 return err;
3797 type = CURSEG_HOT_NODE;
3798 }
3799
3800 if (__exist_node_summaries(sbi))
3801 f2fs_ra_meta_pages(sbi,
3802 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3803 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3804
3805 for (; type <= CURSEG_COLD_NODE; type++) {
3806 err = read_normal_summaries(sbi, type);
3807 if (err)
3808 return err;
3809 }
3810
3811 /* sanity check for summary blocks */
3812 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3813 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3814 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3815 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3816 return -EINVAL;
3817 }
3818
3819 return 0;
3820 }
3821
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3822 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3823 {
3824 struct page *page;
3825 unsigned char *kaddr;
3826 struct f2fs_summary *summary;
3827 struct curseg_info *seg_i;
3828 int written_size = 0;
3829 int i, j;
3830
3831 page = f2fs_grab_meta_page(sbi, blkaddr++);
3832 kaddr = (unsigned char *)page_address(page);
3833 memset(kaddr, 0, PAGE_SIZE);
3834
3835 /* Step 1: write nat cache */
3836 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3837 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3838 written_size += SUM_JOURNAL_SIZE;
3839
3840 /* Step 2: write sit cache */
3841 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3842 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3843 written_size += SUM_JOURNAL_SIZE;
3844
3845 /* Step 3: write summary entries */
3846 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3847 unsigned short blkoff;
3848
3849 seg_i = CURSEG_I(sbi, i);
3850 if (sbi->ckpt->alloc_type[i] == SSR)
3851 blkoff = sbi->blocks_per_seg;
3852 else
3853 blkoff = curseg_blkoff(sbi, i);
3854
3855 for (j = 0; j < blkoff; j++) {
3856 if (!page) {
3857 page = f2fs_grab_meta_page(sbi, blkaddr++);
3858 kaddr = (unsigned char *)page_address(page);
3859 memset(kaddr, 0, PAGE_SIZE);
3860 written_size = 0;
3861 }
3862 summary = (struct f2fs_summary *)(kaddr + written_size);
3863 *summary = seg_i->sum_blk->entries[j];
3864 written_size += SUMMARY_SIZE;
3865
3866 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3867 SUM_FOOTER_SIZE)
3868 continue;
3869
3870 set_page_dirty(page);
3871 f2fs_put_page(page, 1);
3872 page = NULL;
3873 }
3874 }
3875 if (page) {
3876 set_page_dirty(page);
3877 f2fs_put_page(page, 1);
3878 }
3879 }
3880
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3881 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3882 block_t blkaddr, int type)
3883 {
3884 int i, end;
3885
3886 if (IS_DATASEG(type))
3887 end = type + NR_CURSEG_DATA_TYPE;
3888 else
3889 end = type + NR_CURSEG_NODE_TYPE;
3890
3891 for (i = type; i < end; i++)
3892 write_current_sum_page(sbi, i, blkaddr + (i - type));
3893 }
3894
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3895 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3896 {
3897 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3898 write_compacted_summaries(sbi, start_blk);
3899 else
3900 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3901 }
3902
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3903 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3904 {
3905 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3906 }
3907
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3908 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3909 unsigned int val, int alloc)
3910 {
3911 int i;
3912
3913 if (type == NAT_JOURNAL) {
3914 for (i = 0; i < nats_in_cursum(journal); i++) {
3915 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3916 return i;
3917 }
3918 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3919 return update_nats_in_cursum(journal, 1);
3920 } else if (type == SIT_JOURNAL) {
3921 for (i = 0; i < sits_in_cursum(journal); i++)
3922 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3923 return i;
3924 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3925 return update_sits_in_cursum(journal, 1);
3926 }
3927 return -1;
3928 }
3929
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3930 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3931 unsigned int segno)
3932 {
3933 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3934 }
3935
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3936 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3937 unsigned int start)
3938 {
3939 struct sit_info *sit_i = SIT_I(sbi);
3940 struct page *page;
3941 pgoff_t src_off, dst_off;
3942
3943 src_off = current_sit_addr(sbi, start);
3944 dst_off = next_sit_addr(sbi, src_off);
3945
3946 page = f2fs_grab_meta_page(sbi, dst_off);
3947 seg_info_to_sit_page(sbi, page, start);
3948
3949 set_page_dirty(page);
3950 set_to_next_sit(sit_i, start);
3951
3952 return page;
3953 }
3954
grab_sit_entry_set(void)3955 static struct sit_entry_set *grab_sit_entry_set(void)
3956 {
3957 struct sit_entry_set *ses =
3958 f2fs_kmem_cache_alloc(sit_entry_set_slab,
3959 GFP_NOFS, true, NULL);
3960
3961 ses->entry_cnt = 0;
3962 INIT_LIST_HEAD(&ses->set_list);
3963 return ses;
3964 }
3965
release_sit_entry_set(struct sit_entry_set * ses)3966 static void release_sit_entry_set(struct sit_entry_set *ses)
3967 {
3968 list_del(&ses->set_list);
3969 kmem_cache_free(sit_entry_set_slab, ses);
3970 }
3971
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)3972 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3973 struct list_head *head)
3974 {
3975 struct sit_entry_set *next = ses;
3976
3977 if (list_is_last(&ses->set_list, head))
3978 return;
3979
3980 list_for_each_entry_continue(next, head, set_list)
3981 if (ses->entry_cnt <= next->entry_cnt) {
3982 list_move_tail(&ses->set_list, &next->set_list);
3983 return;
3984 }
3985
3986 list_move_tail(&ses->set_list, head);
3987 }
3988
add_sit_entry(unsigned int segno,struct list_head * head)3989 static void add_sit_entry(unsigned int segno, struct list_head *head)
3990 {
3991 struct sit_entry_set *ses;
3992 unsigned int start_segno = START_SEGNO(segno);
3993
3994 list_for_each_entry(ses, head, set_list) {
3995 if (ses->start_segno == start_segno) {
3996 ses->entry_cnt++;
3997 adjust_sit_entry_set(ses, head);
3998 return;
3999 }
4000 }
4001
4002 ses = grab_sit_entry_set();
4003
4004 ses->start_segno = start_segno;
4005 ses->entry_cnt++;
4006 list_add(&ses->set_list, head);
4007 }
4008
add_sits_in_set(struct f2fs_sb_info * sbi)4009 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4010 {
4011 struct f2fs_sm_info *sm_info = SM_I(sbi);
4012 struct list_head *set_list = &sm_info->sit_entry_set;
4013 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4014 unsigned int segno;
4015
4016 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4017 add_sit_entry(segno, set_list);
4018 }
4019
remove_sits_in_journal(struct f2fs_sb_info * sbi)4020 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4021 {
4022 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4023 struct f2fs_journal *journal = curseg->journal;
4024 int i;
4025
4026 down_write(&curseg->journal_rwsem);
4027 for (i = 0; i < sits_in_cursum(journal); i++) {
4028 unsigned int segno;
4029 bool dirtied;
4030
4031 segno = le32_to_cpu(segno_in_journal(journal, i));
4032 dirtied = __mark_sit_entry_dirty(sbi, segno);
4033
4034 if (!dirtied)
4035 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4036 }
4037 update_sits_in_cursum(journal, -i);
4038 up_write(&curseg->journal_rwsem);
4039 }
4040
4041 /*
4042 * CP calls this function, which flushes SIT entries including sit_journal,
4043 * and moves prefree segs to free segs.
4044 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4045 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4046 {
4047 struct sit_info *sit_i = SIT_I(sbi);
4048 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4049 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4050 struct f2fs_journal *journal = curseg->journal;
4051 struct sit_entry_set *ses, *tmp;
4052 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4053 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4054 struct seg_entry *se;
4055
4056 down_write(&sit_i->sentry_lock);
4057
4058 if (!sit_i->dirty_sentries)
4059 goto out;
4060
4061 /*
4062 * add and account sit entries of dirty bitmap in sit entry
4063 * set temporarily
4064 */
4065 add_sits_in_set(sbi);
4066
4067 /*
4068 * if there are no enough space in journal to store dirty sit
4069 * entries, remove all entries from journal and add and account
4070 * them in sit entry set.
4071 */
4072 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4073 !to_journal)
4074 remove_sits_in_journal(sbi);
4075
4076 /*
4077 * there are two steps to flush sit entries:
4078 * #1, flush sit entries to journal in current cold data summary block.
4079 * #2, flush sit entries to sit page.
4080 */
4081 list_for_each_entry_safe(ses, tmp, head, set_list) {
4082 struct page *page = NULL;
4083 struct f2fs_sit_block *raw_sit = NULL;
4084 unsigned int start_segno = ses->start_segno;
4085 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4086 (unsigned long)MAIN_SEGS(sbi));
4087 unsigned int segno = start_segno;
4088
4089 if (to_journal &&
4090 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4091 to_journal = false;
4092
4093 if (to_journal) {
4094 down_write(&curseg->journal_rwsem);
4095 } else {
4096 page = get_next_sit_page(sbi, start_segno);
4097 raw_sit = page_address(page);
4098 }
4099
4100 /* flush dirty sit entries in region of current sit set */
4101 for_each_set_bit_from(segno, bitmap, end) {
4102 int offset, sit_offset;
4103
4104 se = get_seg_entry(sbi, segno);
4105 #ifdef CONFIG_F2FS_CHECK_FS
4106 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4107 SIT_VBLOCK_MAP_SIZE))
4108 f2fs_bug_on(sbi, 1);
4109 #endif
4110
4111 /* add discard candidates */
4112 if (!(cpc->reason & CP_DISCARD)) {
4113 cpc->trim_start = segno;
4114 add_discard_addrs(sbi, cpc, false);
4115 }
4116
4117 if (to_journal) {
4118 offset = f2fs_lookup_journal_in_cursum(journal,
4119 SIT_JOURNAL, segno, 1);
4120 f2fs_bug_on(sbi, offset < 0);
4121 segno_in_journal(journal, offset) =
4122 cpu_to_le32(segno);
4123 seg_info_to_raw_sit(se,
4124 &sit_in_journal(journal, offset));
4125 check_block_count(sbi, segno,
4126 &sit_in_journal(journal, offset));
4127 } else {
4128 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4129 seg_info_to_raw_sit(se,
4130 &raw_sit->entries[sit_offset]);
4131 check_block_count(sbi, segno,
4132 &raw_sit->entries[sit_offset]);
4133 }
4134
4135 __clear_bit(segno, bitmap);
4136 sit_i->dirty_sentries--;
4137 ses->entry_cnt--;
4138 }
4139
4140 if (to_journal)
4141 up_write(&curseg->journal_rwsem);
4142 else
4143 f2fs_put_page(page, 1);
4144
4145 f2fs_bug_on(sbi, ses->entry_cnt);
4146 release_sit_entry_set(ses);
4147 }
4148
4149 f2fs_bug_on(sbi, !list_empty(head));
4150 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4151 out:
4152 if (cpc->reason & CP_DISCARD) {
4153 __u64 trim_start = cpc->trim_start;
4154
4155 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4156 add_discard_addrs(sbi, cpc, false);
4157
4158 cpc->trim_start = trim_start;
4159 }
4160 up_write(&sit_i->sentry_lock);
4161
4162 set_prefree_as_free_segments(sbi);
4163 }
4164
build_sit_info(struct f2fs_sb_info * sbi)4165 static int build_sit_info(struct f2fs_sb_info *sbi)
4166 {
4167 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4168 struct sit_info *sit_i;
4169 unsigned int sit_segs, start;
4170 char *src_bitmap, *bitmap;
4171 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4172 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4173
4174 /* allocate memory for SIT information */
4175 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4176 if (!sit_i)
4177 return -ENOMEM;
4178
4179 SM_I(sbi)->sit_info = sit_i;
4180
4181 sit_i->sentries =
4182 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4183 MAIN_SEGS(sbi)),
4184 GFP_KERNEL);
4185 if (!sit_i->sentries)
4186 return -ENOMEM;
4187
4188 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4189 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4190 GFP_KERNEL);
4191 if (!sit_i->dirty_sentries_bitmap)
4192 return -ENOMEM;
4193
4194 #ifdef CONFIG_F2FS_CHECK_FS
4195 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4196 #else
4197 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4198 #endif
4199 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4200 if (!sit_i->bitmap)
4201 return -ENOMEM;
4202
4203 bitmap = sit_i->bitmap;
4204
4205 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4206 sit_i->sentries[start].cur_valid_map = bitmap;
4207 bitmap += SIT_VBLOCK_MAP_SIZE;
4208
4209 sit_i->sentries[start].ckpt_valid_map = bitmap;
4210 bitmap += SIT_VBLOCK_MAP_SIZE;
4211
4212 #ifdef CONFIG_F2FS_CHECK_FS
4213 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4214 bitmap += SIT_VBLOCK_MAP_SIZE;
4215 #endif
4216
4217 if (discard_map) {
4218 sit_i->sentries[start].discard_map = bitmap;
4219 bitmap += SIT_VBLOCK_MAP_SIZE;
4220 }
4221 }
4222
4223 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4224 if (!sit_i->tmp_map)
4225 return -ENOMEM;
4226
4227 if (__is_large_section(sbi)) {
4228 sit_i->sec_entries =
4229 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4230 MAIN_SECS(sbi)),
4231 GFP_KERNEL);
4232 if (!sit_i->sec_entries)
4233 return -ENOMEM;
4234 }
4235
4236 /* get information related with SIT */
4237 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4238
4239 /* setup SIT bitmap from ckeckpoint pack */
4240 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4241 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4242
4243 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4244 if (!sit_i->sit_bitmap)
4245 return -ENOMEM;
4246
4247 #ifdef CONFIG_F2FS_CHECK_FS
4248 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4249 sit_bitmap_size, GFP_KERNEL);
4250 if (!sit_i->sit_bitmap_mir)
4251 return -ENOMEM;
4252
4253 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4254 main_bitmap_size, GFP_KERNEL);
4255 if (!sit_i->invalid_segmap)
4256 return -ENOMEM;
4257 #endif
4258
4259 /* init SIT information */
4260 sit_i->s_ops = &default_salloc_ops;
4261
4262 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4263 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4264 sit_i->written_valid_blocks = 0;
4265 sit_i->bitmap_size = sit_bitmap_size;
4266 sit_i->dirty_sentries = 0;
4267 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4268 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4269 sit_i->mounted_time = ktime_get_boottime_seconds();
4270 init_rwsem(&sit_i->sentry_lock);
4271 return 0;
4272 }
4273
build_free_segmap(struct f2fs_sb_info * sbi)4274 static int build_free_segmap(struct f2fs_sb_info *sbi)
4275 {
4276 struct free_segmap_info *free_i;
4277 unsigned int bitmap_size, sec_bitmap_size;
4278
4279 /* allocate memory for free segmap information */
4280 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4281 if (!free_i)
4282 return -ENOMEM;
4283
4284 SM_I(sbi)->free_info = free_i;
4285
4286 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4287 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4288 if (!free_i->free_segmap)
4289 return -ENOMEM;
4290
4291 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4292 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4293 if (!free_i->free_secmap)
4294 return -ENOMEM;
4295
4296 /* set all segments as dirty temporarily */
4297 memset(free_i->free_segmap, 0xff, bitmap_size);
4298 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4299
4300 /* init free segmap information */
4301 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4302 free_i->free_segments = 0;
4303 free_i->free_sections = 0;
4304 spin_lock_init(&free_i->segmap_lock);
4305 return 0;
4306 }
4307
build_curseg(struct f2fs_sb_info * sbi)4308 static int build_curseg(struct f2fs_sb_info *sbi)
4309 {
4310 struct curseg_info *array;
4311 int i;
4312
4313 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4314 sizeof(*array)), GFP_KERNEL);
4315 if (!array)
4316 return -ENOMEM;
4317
4318 SM_I(sbi)->curseg_array = array;
4319
4320 for (i = 0; i < NO_CHECK_TYPE; i++) {
4321 mutex_init(&array[i].curseg_mutex);
4322 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4323 if (!array[i].sum_blk)
4324 return -ENOMEM;
4325 init_rwsem(&array[i].journal_rwsem);
4326 array[i].journal = f2fs_kzalloc(sbi,
4327 sizeof(struct f2fs_journal), GFP_KERNEL);
4328 if (!array[i].journal)
4329 return -ENOMEM;
4330 if (i < NR_PERSISTENT_LOG)
4331 array[i].seg_type = CURSEG_HOT_DATA + i;
4332 else if (i == CURSEG_COLD_DATA_PINNED)
4333 array[i].seg_type = CURSEG_COLD_DATA;
4334 else if (i == CURSEG_ALL_DATA_ATGC)
4335 array[i].seg_type = CURSEG_COLD_DATA;
4336 array[i].segno = NULL_SEGNO;
4337 array[i].next_blkoff = 0;
4338 array[i].inited = false;
4339 }
4340 return restore_curseg_summaries(sbi);
4341 }
4342
build_sit_entries(struct f2fs_sb_info * sbi)4343 static int build_sit_entries(struct f2fs_sb_info *sbi)
4344 {
4345 struct sit_info *sit_i = SIT_I(sbi);
4346 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4347 struct f2fs_journal *journal = curseg->journal;
4348 struct seg_entry *se;
4349 struct f2fs_sit_entry sit;
4350 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4351 unsigned int i, start, end;
4352 unsigned int readed, start_blk = 0;
4353 int err = 0;
4354 block_t sit_valid_blocks[2] = {0, 0};
4355
4356 do {
4357 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4358 META_SIT, true);
4359
4360 start = start_blk * sit_i->sents_per_block;
4361 end = (start_blk + readed) * sit_i->sents_per_block;
4362
4363 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4364 struct f2fs_sit_block *sit_blk;
4365 struct page *page;
4366
4367 se = &sit_i->sentries[start];
4368 page = get_current_sit_page(sbi, start);
4369 if (IS_ERR(page))
4370 return PTR_ERR(page);
4371 sit_blk = (struct f2fs_sit_block *)page_address(page);
4372 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4373 f2fs_put_page(page, 1);
4374
4375 err = check_block_count(sbi, start, &sit);
4376 if (err)
4377 return err;
4378 seg_info_from_raw_sit(se, &sit);
4379
4380 if (se->type >= NR_PERSISTENT_LOG) {
4381 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4382 se->type, start);
4383 f2fs_handle_error(sbi,
4384 ERROR_INCONSISTENT_SUM_TYPE);
4385 return -EFSCORRUPTED;
4386 }
4387
4388 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4389
4390 if (f2fs_block_unit_discard(sbi)) {
4391 /* build discard map only one time */
4392 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4393 memset(se->discard_map, 0xff,
4394 SIT_VBLOCK_MAP_SIZE);
4395 } else {
4396 memcpy(se->discard_map,
4397 se->cur_valid_map,
4398 SIT_VBLOCK_MAP_SIZE);
4399 sbi->discard_blks +=
4400 sbi->blocks_per_seg -
4401 se->valid_blocks;
4402 }
4403 }
4404
4405 if (__is_large_section(sbi))
4406 get_sec_entry(sbi, start)->valid_blocks +=
4407 se->valid_blocks;
4408 }
4409 start_blk += readed;
4410 } while (start_blk < sit_blk_cnt);
4411
4412 down_read(&curseg->journal_rwsem);
4413 for (i = 0; i < sits_in_cursum(journal); i++) {
4414 unsigned int old_valid_blocks;
4415
4416 start = le32_to_cpu(segno_in_journal(journal, i));
4417 if (start >= MAIN_SEGS(sbi)) {
4418 f2fs_err(sbi, "Wrong journal entry on segno %u",
4419 start);
4420 err = -EFSCORRUPTED;
4421 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4422 break;
4423 }
4424
4425 se = &sit_i->sentries[start];
4426 sit = sit_in_journal(journal, i);
4427
4428 old_valid_blocks = se->valid_blocks;
4429
4430 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4431
4432 err = check_block_count(sbi, start, &sit);
4433 if (err)
4434 break;
4435 seg_info_from_raw_sit(se, &sit);
4436
4437 if (se->type >= NR_PERSISTENT_LOG) {
4438 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4439 se->type, start);
4440 err = -EFSCORRUPTED;
4441 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4442 break;
4443 }
4444
4445 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4446
4447 if (f2fs_block_unit_discard(sbi)) {
4448 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4449 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4450 } else {
4451 memcpy(se->discard_map, se->cur_valid_map,
4452 SIT_VBLOCK_MAP_SIZE);
4453 sbi->discard_blks += old_valid_blocks;
4454 sbi->discard_blks -= se->valid_blocks;
4455 }
4456 }
4457
4458 if (__is_large_section(sbi)) {
4459 get_sec_entry(sbi, start)->valid_blocks +=
4460 se->valid_blocks;
4461 get_sec_entry(sbi, start)->valid_blocks -=
4462 old_valid_blocks;
4463 }
4464 }
4465 up_read(&curseg->journal_rwsem);
4466
4467 if (err)
4468 return err;
4469
4470 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4471 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4472 sit_valid_blocks[NODE], valid_node_count(sbi));
4473 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4474 return -EFSCORRUPTED;
4475 }
4476
4477 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4478 valid_user_blocks(sbi)) {
4479 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4480 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4481 valid_user_blocks(sbi));
4482 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4483 return -EFSCORRUPTED;
4484 }
4485
4486 return 0;
4487 }
4488
init_free_segmap(struct f2fs_sb_info * sbi)4489 static void init_free_segmap(struct f2fs_sb_info *sbi)
4490 {
4491 unsigned int start;
4492 int type;
4493 struct seg_entry *sentry;
4494
4495 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4496 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4497 continue;
4498 sentry = get_seg_entry(sbi, start);
4499 if (!sentry->valid_blocks)
4500 __set_free(sbi, start);
4501 else
4502 SIT_I(sbi)->written_valid_blocks +=
4503 sentry->valid_blocks;
4504 }
4505
4506 /* set use the current segments */
4507 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4508 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4509
4510 __set_test_and_inuse(sbi, curseg_t->segno);
4511 }
4512 }
4513
init_dirty_segmap(struct f2fs_sb_info * sbi)4514 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4515 {
4516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4517 struct free_segmap_info *free_i = FREE_I(sbi);
4518 unsigned int segno = 0, offset = 0, secno;
4519 block_t valid_blocks, usable_blks_in_seg;
4520
4521 while (1) {
4522 /* find dirty segment based on free segmap */
4523 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4524 if (segno >= MAIN_SEGS(sbi))
4525 break;
4526 offset = segno + 1;
4527 valid_blocks = get_valid_blocks(sbi, segno, false);
4528 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4529 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4530 continue;
4531 if (valid_blocks > usable_blks_in_seg) {
4532 f2fs_bug_on(sbi, 1);
4533 continue;
4534 }
4535 mutex_lock(&dirty_i->seglist_lock);
4536 __locate_dirty_segment(sbi, segno, DIRTY);
4537 mutex_unlock(&dirty_i->seglist_lock);
4538 }
4539
4540 if (!__is_large_section(sbi))
4541 return;
4542
4543 mutex_lock(&dirty_i->seglist_lock);
4544 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4545 valid_blocks = get_valid_blocks(sbi, segno, true);
4546 secno = GET_SEC_FROM_SEG(sbi, segno);
4547
4548 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4549 continue;
4550 if (IS_CURSEC(sbi, secno))
4551 continue;
4552 set_bit(secno, dirty_i->dirty_secmap);
4553 }
4554 mutex_unlock(&dirty_i->seglist_lock);
4555 }
4556
init_victim_secmap(struct f2fs_sb_info * sbi)4557 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4558 {
4559 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4560 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4561
4562 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4563 if (!dirty_i->victim_secmap)
4564 return -ENOMEM;
4565
4566 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4567 if (!dirty_i->pinned_secmap)
4568 return -ENOMEM;
4569
4570 dirty_i->pinned_secmap_cnt = 0;
4571 dirty_i->enable_pin_section = true;
4572 return 0;
4573 }
4574
build_dirty_segmap(struct f2fs_sb_info * sbi)4575 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4576 {
4577 struct dirty_seglist_info *dirty_i;
4578 unsigned int bitmap_size, i;
4579
4580 /* allocate memory for dirty segments list information */
4581 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4582 GFP_KERNEL);
4583 if (!dirty_i)
4584 return -ENOMEM;
4585
4586 SM_I(sbi)->dirty_info = dirty_i;
4587 mutex_init(&dirty_i->seglist_lock);
4588
4589 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4590
4591 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4592 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4593 GFP_KERNEL);
4594 if (!dirty_i->dirty_segmap[i])
4595 return -ENOMEM;
4596 }
4597
4598 if (__is_large_section(sbi)) {
4599 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4600 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4601 bitmap_size, GFP_KERNEL);
4602 if (!dirty_i->dirty_secmap)
4603 return -ENOMEM;
4604 }
4605
4606 init_dirty_segmap(sbi);
4607 return init_victim_secmap(sbi);
4608 }
4609
sanity_check_curseg(struct f2fs_sb_info * sbi)4610 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4611 {
4612 int i;
4613
4614 /*
4615 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4616 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4617 */
4618 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4619 struct curseg_info *curseg = CURSEG_I(sbi, i);
4620 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4621 unsigned int blkofs = curseg->next_blkoff;
4622
4623 if (f2fs_sb_has_readonly(sbi) &&
4624 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4625 continue;
4626
4627 sanity_check_seg_type(sbi, curseg->seg_type);
4628
4629 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4630 f2fs_err(sbi,
4631 "Current segment has invalid alloc_type:%d",
4632 curseg->alloc_type);
4633 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4634 return -EFSCORRUPTED;
4635 }
4636
4637 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4638 goto out;
4639
4640 if (curseg->alloc_type == SSR)
4641 continue;
4642
4643 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4644 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4645 continue;
4646 out:
4647 f2fs_err(sbi,
4648 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4649 i, curseg->segno, curseg->alloc_type,
4650 curseg->next_blkoff, blkofs);
4651 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4652 return -EFSCORRUPTED;
4653 }
4654 }
4655 return 0;
4656 }
4657
4658 #ifdef CONFIG_BLK_DEV_ZONED
4659
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4660 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4661 struct f2fs_dev_info *fdev,
4662 struct blk_zone *zone)
4663 {
4664 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4665 block_t zone_block, wp_block, last_valid_block;
4666 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4667 int i, s, b, ret;
4668 struct seg_entry *se;
4669
4670 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4671 return 0;
4672
4673 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4674 wp_segno = GET_SEGNO(sbi, wp_block);
4675 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4676 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4677 zone_segno = GET_SEGNO(sbi, zone_block);
4678 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4679
4680 if (zone_segno >= MAIN_SEGS(sbi))
4681 return 0;
4682
4683 /*
4684 * Skip check of zones cursegs point to, since
4685 * fix_curseg_write_pointer() checks them.
4686 */
4687 for (i = 0; i < NO_CHECK_TYPE; i++)
4688 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4689 CURSEG_I(sbi, i)->segno))
4690 return 0;
4691
4692 /*
4693 * Get last valid block of the zone.
4694 */
4695 last_valid_block = zone_block - 1;
4696 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4697 segno = zone_segno + s;
4698 se = get_seg_entry(sbi, segno);
4699 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4700 if (f2fs_test_bit(b, se->cur_valid_map)) {
4701 last_valid_block = START_BLOCK(sbi, segno) + b;
4702 break;
4703 }
4704 if (last_valid_block >= zone_block)
4705 break;
4706 }
4707
4708 /*
4709 * If last valid block is beyond the write pointer, report the
4710 * inconsistency. This inconsistency does not cause write error
4711 * because the zone will not be selected for write operation until
4712 * it get discarded. Just report it.
4713 */
4714 if (last_valid_block >= wp_block) {
4715 f2fs_notice(sbi, "Valid block beyond write pointer: "
4716 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4717 GET_SEGNO(sbi, last_valid_block),
4718 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4719 wp_segno, wp_blkoff);
4720 return 0;
4721 }
4722
4723 /*
4724 * If there is no valid block in the zone and if write pointer is
4725 * not at zone start, reset the write pointer.
4726 */
4727 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4728 f2fs_notice(sbi,
4729 "Zone without valid block has non-zero write "
4730 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4731 wp_segno, wp_blkoff);
4732 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4733 zone->len >> log_sectors_per_block);
4734 if (ret) {
4735 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4736 fdev->path, ret);
4737 return ret;
4738 }
4739 }
4740
4741 return 0;
4742 }
4743
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4744 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4745 block_t zone_blkaddr)
4746 {
4747 int i;
4748
4749 for (i = 0; i < sbi->s_ndevs; i++) {
4750 if (!bdev_is_zoned(FDEV(i).bdev))
4751 continue;
4752 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4753 zone_blkaddr <= FDEV(i).end_blk))
4754 return &FDEV(i);
4755 }
4756
4757 return NULL;
4758 }
4759
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4760 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4761 void *data)
4762 {
4763 memcpy(data, zone, sizeof(struct blk_zone));
4764 return 0;
4765 }
4766
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4767 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4768 {
4769 struct curseg_info *cs = CURSEG_I(sbi, type);
4770 struct f2fs_dev_info *zbd;
4771 struct blk_zone zone;
4772 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4773 block_t cs_zone_block, wp_block;
4774 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4775 sector_t zone_sector;
4776 int err;
4777
4778 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4779 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4780
4781 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4782 if (!zbd)
4783 return 0;
4784
4785 /* report zone for the sector the curseg points to */
4786 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4787 << log_sectors_per_block;
4788 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4789 report_one_zone_cb, &zone);
4790 if (err != 1) {
4791 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4792 zbd->path, err);
4793 return err;
4794 }
4795
4796 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4797 return 0;
4798
4799 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4800 wp_segno = GET_SEGNO(sbi, wp_block);
4801 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4802 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4803
4804 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4805 wp_sector_off == 0)
4806 return 0;
4807
4808 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4809 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4810 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4811
4812 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4813 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4814
4815 f2fs_allocate_new_section(sbi, type, true);
4816
4817 /* check consistency of the zone curseg pointed to */
4818 if (check_zone_write_pointer(sbi, zbd, &zone))
4819 return -EIO;
4820
4821 /* check newly assigned zone */
4822 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4823 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4824
4825 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4826 if (!zbd)
4827 return 0;
4828
4829 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4830 << log_sectors_per_block;
4831 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4832 report_one_zone_cb, &zone);
4833 if (err != 1) {
4834 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4835 zbd->path, err);
4836 return err;
4837 }
4838
4839 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4840 return 0;
4841
4842 if (zone.wp != zone.start) {
4843 f2fs_notice(sbi,
4844 "New zone for curseg[%d] is not yet discarded. "
4845 "Reset the zone: curseg[0x%x,0x%x]",
4846 type, cs->segno, cs->next_blkoff);
4847 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4848 zone_sector >> log_sectors_per_block,
4849 zone.len >> log_sectors_per_block);
4850 if (err) {
4851 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4852 zbd->path, err);
4853 return err;
4854 }
4855 }
4856
4857 return 0;
4858 }
4859
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4860 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4861 {
4862 int i, ret;
4863
4864 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4865 ret = fix_curseg_write_pointer(sbi, i);
4866 if (ret)
4867 return ret;
4868 }
4869
4870 return 0;
4871 }
4872
4873 struct check_zone_write_pointer_args {
4874 struct f2fs_sb_info *sbi;
4875 struct f2fs_dev_info *fdev;
4876 };
4877
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4878 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4879 void *data)
4880 {
4881 struct check_zone_write_pointer_args *args;
4882
4883 args = (struct check_zone_write_pointer_args *)data;
4884
4885 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4886 }
4887
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4888 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4889 {
4890 int i, ret;
4891 struct check_zone_write_pointer_args args;
4892
4893 for (i = 0; i < sbi->s_ndevs; i++) {
4894 if (!bdev_is_zoned(FDEV(i).bdev))
4895 continue;
4896
4897 args.sbi = sbi;
4898 args.fdev = &FDEV(i);
4899 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4900 check_zone_write_pointer_cb, &args);
4901 if (ret < 0)
4902 return ret;
4903 }
4904
4905 return 0;
4906 }
4907
is_conv_zone(struct f2fs_sb_info * sbi,unsigned int zone_idx,unsigned int dev_idx)4908 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4909 unsigned int dev_idx)
4910 {
4911 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4912 return true;
4913 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4914 }
4915
4916 /* Return the zone index in the given device */
get_zone_idx(struct f2fs_sb_info * sbi,unsigned int secno,int dev_idx)4917 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4918 int dev_idx)
4919 {
4920 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4921
4922 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4923 sbi->log_blocks_per_blkz;
4924 }
4925
4926 /*
4927 * Return the usable segments in a section based on the zone's
4928 * corresponding zone capacity. Zone is equal to a section.
4929 */
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)4930 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4931 struct f2fs_sb_info *sbi, unsigned int segno)
4932 {
4933 unsigned int dev_idx, zone_idx;
4934
4935 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4936 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4937
4938 /* Conventional zone's capacity is always equal to zone size */
4939 if (is_conv_zone(sbi, zone_idx, dev_idx))
4940 return sbi->segs_per_sec;
4941
4942 if (!sbi->unusable_blocks_per_sec)
4943 return sbi->segs_per_sec;
4944
4945 /* Get the segment count beyond zone capacity block */
4946 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4947 sbi->log_blocks_per_seg);
4948 }
4949
4950 /*
4951 * Return the number of usable blocks in a segment. The number of blocks
4952 * returned is always equal to the number of blocks in a segment for
4953 * segments fully contained within a sequential zone capacity or a
4954 * conventional zone. For segments partially contained in a sequential
4955 * zone capacity, the number of usable blocks up to the zone capacity
4956 * is returned. 0 is returned in all other cases.
4957 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)4958 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4959 struct f2fs_sb_info *sbi, unsigned int segno)
4960 {
4961 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4962 unsigned int zone_idx, dev_idx, secno;
4963
4964 secno = GET_SEC_FROM_SEG(sbi, segno);
4965 seg_start = START_BLOCK(sbi, segno);
4966 dev_idx = f2fs_target_device_index(sbi, seg_start);
4967 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4968
4969 /*
4970 * Conventional zone's capacity is always equal to zone size,
4971 * so, blocks per segment is unchanged.
4972 */
4973 if (is_conv_zone(sbi, zone_idx, dev_idx))
4974 return sbi->blocks_per_seg;
4975
4976 if (!sbi->unusable_blocks_per_sec)
4977 return sbi->blocks_per_seg;
4978
4979 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4980 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4981
4982 /*
4983 * If segment starts before zone capacity and spans beyond
4984 * zone capacity, then usable blocks are from seg start to
4985 * zone capacity. If the segment starts after the zone capacity,
4986 * then there are no usable blocks.
4987 */
4988 if (seg_start >= sec_cap_blkaddr)
4989 return 0;
4990 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4991 return sec_cap_blkaddr - seg_start;
4992
4993 return sbi->blocks_per_seg;
4994 }
4995 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4996 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4997 {
4998 return 0;
4999 }
5000
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5001 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5002 {
5003 return 0;
5004 }
5005
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5006 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5007 unsigned int segno)
5008 {
5009 return 0;
5010 }
5011
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5012 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5013 unsigned int segno)
5014 {
5015 return 0;
5016 }
5017 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5018 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5019 unsigned int segno)
5020 {
5021 if (f2fs_sb_has_blkzoned(sbi))
5022 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5023
5024 return sbi->blocks_per_seg;
5025 }
5026
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5027 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5028 unsigned int segno)
5029 {
5030 if (f2fs_sb_has_blkzoned(sbi))
5031 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5032
5033 return sbi->segs_per_sec;
5034 }
5035
5036 /*
5037 * Update min, max modified time for cost-benefit GC algorithm
5038 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5039 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5040 {
5041 struct sit_info *sit_i = SIT_I(sbi);
5042 unsigned int segno;
5043
5044 down_write(&sit_i->sentry_lock);
5045
5046 sit_i->min_mtime = ULLONG_MAX;
5047
5048 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5049 unsigned int i;
5050 unsigned long long mtime = 0;
5051
5052 for (i = 0; i < sbi->segs_per_sec; i++)
5053 mtime += get_seg_entry(sbi, segno + i)->mtime;
5054
5055 mtime = div_u64(mtime, sbi->segs_per_sec);
5056
5057 if (sit_i->min_mtime > mtime)
5058 sit_i->min_mtime = mtime;
5059 }
5060 sit_i->max_mtime = get_mtime(sbi, false);
5061 sit_i->dirty_max_mtime = 0;
5062 up_write(&sit_i->sentry_lock);
5063 }
5064
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5065 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5066 {
5067 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5068 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5069 struct f2fs_sm_info *sm_info;
5070 int err;
5071
5072 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5073 if (!sm_info)
5074 return -ENOMEM;
5075
5076 /* init sm info */
5077 sbi->sm_info = sm_info;
5078 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5079 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5080 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5081 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5082 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5083 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5084 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5085 sm_info->rec_prefree_segments = sm_info->main_segments *
5086 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5087 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5088 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5089
5090 if (!f2fs_lfs_mode(sbi))
5091 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5092 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5093 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5094 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5095 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5096 sm_info->min_ssr_sections = reserved_sections(sbi);
5097
5098 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5099
5100 init_f2fs_rwsem(&sm_info->curseg_lock);
5101
5102 if (!f2fs_readonly(sbi->sb)) {
5103 err = f2fs_create_flush_cmd_control(sbi);
5104 if (err)
5105 return err;
5106 }
5107
5108 err = create_discard_cmd_control(sbi);
5109 if (err)
5110 return err;
5111
5112 err = build_sit_info(sbi);
5113 if (err)
5114 return err;
5115 err = build_free_segmap(sbi);
5116 if (err)
5117 return err;
5118 err = build_curseg(sbi);
5119 if (err)
5120 return err;
5121
5122 /* reinit free segmap based on SIT */
5123 err = build_sit_entries(sbi);
5124 if (err)
5125 return err;
5126
5127 init_free_segmap(sbi);
5128 err = build_dirty_segmap(sbi);
5129 if (err)
5130 return err;
5131
5132 err = sanity_check_curseg(sbi);
5133 if (err)
5134 return err;
5135
5136 init_min_max_mtime(sbi);
5137 return 0;
5138 }
5139
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5140 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5141 enum dirty_type dirty_type)
5142 {
5143 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5144
5145 mutex_lock(&dirty_i->seglist_lock);
5146 kvfree(dirty_i->dirty_segmap[dirty_type]);
5147 dirty_i->nr_dirty[dirty_type] = 0;
5148 mutex_unlock(&dirty_i->seglist_lock);
5149 }
5150
destroy_victim_secmap(struct f2fs_sb_info * sbi)5151 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5152 {
5153 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5154
5155 kvfree(dirty_i->pinned_secmap);
5156 kvfree(dirty_i->victim_secmap);
5157 }
5158
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5159 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5160 {
5161 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5162 int i;
5163
5164 if (!dirty_i)
5165 return;
5166
5167 /* discard pre-free/dirty segments list */
5168 for (i = 0; i < NR_DIRTY_TYPE; i++)
5169 discard_dirty_segmap(sbi, i);
5170
5171 if (__is_large_section(sbi)) {
5172 mutex_lock(&dirty_i->seglist_lock);
5173 kvfree(dirty_i->dirty_secmap);
5174 mutex_unlock(&dirty_i->seglist_lock);
5175 }
5176
5177 destroy_victim_secmap(sbi);
5178 SM_I(sbi)->dirty_info = NULL;
5179 kfree(dirty_i);
5180 }
5181
destroy_curseg(struct f2fs_sb_info * sbi)5182 static void destroy_curseg(struct f2fs_sb_info *sbi)
5183 {
5184 struct curseg_info *array = SM_I(sbi)->curseg_array;
5185 int i;
5186
5187 if (!array)
5188 return;
5189 SM_I(sbi)->curseg_array = NULL;
5190 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5191 kfree(array[i].sum_blk);
5192 kfree(array[i].journal);
5193 }
5194 kfree(array);
5195 }
5196
destroy_free_segmap(struct f2fs_sb_info * sbi)5197 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5198 {
5199 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5200
5201 if (!free_i)
5202 return;
5203 SM_I(sbi)->free_info = NULL;
5204 kvfree(free_i->free_segmap);
5205 kvfree(free_i->free_secmap);
5206 kfree(free_i);
5207 }
5208
destroy_sit_info(struct f2fs_sb_info * sbi)5209 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5210 {
5211 struct sit_info *sit_i = SIT_I(sbi);
5212
5213 if (!sit_i)
5214 return;
5215
5216 if (sit_i->sentries)
5217 kvfree(sit_i->bitmap);
5218 kfree(sit_i->tmp_map);
5219
5220 kvfree(sit_i->sentries);
5221 kvfree(sit_i->sec_entries);
5222 kvfree(sit_i->dirty_sentries_bitmap);
5223
5224 SM_I(sbi)->sit_info = NULL;
5225 kvfree(sit_i->sit_bitmap);
5226 #ifdef CONFIG_F2FS_CHECK_FS
5227 kvfree(sit_i->sit_bitmap_mir);
5228 kvfree(sit_i->invalid_segmap);
5229 #endif
5230 kfree(sit_i);
5231 }
5232
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5233 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5234 {
5235 struct f2fs_sm_info *sm_info = SM_I(sbi);
5236
5237 if (!sm_info)
5238 return;
5239 f2fs_destroy_flush_cmd_control(sbi, true);
5240 destroy_discard_cmd_control(sbi);
5241 destroy_dirty_segmap(sbi);
5242 destroy_curseg(sbi);
5243 destroy_free_segmap(sbi);
5244 destroy_sit_info(sbi);
5245 sbi->sm_info = NULL;
5246 kfree(sm_info);
5247 }
5248
f2fs_create_segment_manager_caches(void)5249 int __init f2fs_create_segment_manager_caches(void)
5250 {
5251 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5252 sizeof(struct discard_entry));
5253 if (!discard_entry_slab)
5254 goto fail;
5255
5256 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5257 sizeof(struct discard_cmd));
5258 if (!discard_cmd_slab)
5259 goto destroy_discard_entry;
5260
5261 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5262 sizeof(struct sit_entry_set));
5263 if (!sit_entry_set_slab)
5264 goto destroy_discard_cmd;
5265
5266 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5267 sizeof(struct revoke_entry));
5268 if (!revoke_entry_slab)
5269 goto destroy_sit_entry_set;
5270 return 0;
5271
5272 destroy_sit_entry_set:
5273 kmem_cache_destroy(sit_entry_set_slab);
5274 destroy_discard_cmd:
5275 kmem_cache_destroy(discard_cmd_slab);
5276 destroy_discard_entry:
5277 kmem_cache_destroy(discard_entry_slab);
5278 fail:
5279 return -ENOMEM;
5280 }
5281
f2fs_destroy_segment_manager_caches(void)5282 void f2fs_destroy_segment_manager_caches(void)
5283 {
5284 kmem_cache_destroy(sit_entry_set_slab);
5285 kmem_cache_destroy(discard_cmd_slab);
5286 kmem_cache_destroy(discard_entry_slab);
5287 kmem_cache_destroy(revoke_entry_slab);
5288 }
5289