1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113 #else
114 res = false;
115 #endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121 }
122
clear_node_page_dirty(struct page * page)123 static void clear_node_page_dirty(struct page *page)
124 {
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131 }
132
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134 {
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136 }
137
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139 {
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165 }
166
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169 {
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179 }
180
__free_nat_entry(struct nat_entry * e)181 static void __free_nat_entry(struct nat_entry *e)
182 {
183 kmem_cache_free(nat_entry_slab, e);
184 }
185
186 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189 {
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205 }
206
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208 {
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222 }
223
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226 {
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228 }
229
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231 {
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236 }
237
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240 {
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256 }
257
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260 {
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284 refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291 }
292
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295 {
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304 }
305
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308 {
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311 }
312
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314 {
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317 }
318
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320 {
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325 }
326
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329 {
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349 }
350
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352 {
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369 }
370
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378 }
379
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381 {
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395 }
396
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398 {
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409 }
410
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425 }
426
427 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454 }
455
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458 {
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513 }
514
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516 {
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544 }
545
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548 {
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562 retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611 cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620 }
621
622 /*
623 * readahead MAX_RA_NODE number of node pages.
624 */
f2fs_ra_node_pages(struct page * parent,int start,int n)625 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626 {
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643 }
644
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646 {
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676 }
677
678 /*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])682 static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684 {
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752 got:
753 return level;
754 }
755
756 /*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762 {
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856 block_t blkaddr;
857
858 if (!c_len)
859 goto out;
860
861 blkaddr = f2fs_data_blkaddr(dn);
862 if (blkaddr == COMPRESS_ADDR)
863 blkaddr = data_blkaddr(dn->inode, dn->node_page,
864 dn->ofs_in_node + 1);
865
866 f2fs_update_read_extent_tree_range_compressed(dn->inode,
867 index, blkaddr,
868 F2FS_I(dn->inode)->i_cluster_size,
869 c_len);
870 }
871 out:
872 return 0;
873
874 release_pages:
875 f2fs_put_page(parent, 1);
876 if (i > 1)
877 f2fs_put_page(npage[0], 0);
878 release_out:
879 dn->inode_page = NULL;
880 dn->node_page = NULL;
881 if (err == -ENOENT) {
882 dn->cur_level = i;
883 dn->max_level = level;
884 dn->ofs_in_node = offset[level];
885 }
886 return err;
887 }
888
truncate_node(struct dnode_of_data * dn)889 static int truncate_node(struct dnode_of_data *dn)
890 {
891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892 struct node_info ni;
893 int err;
894 pgoff_t index;
895
896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
897 if (err)
898 return err;
899
900 /* Deallocate node address */
901 f2fs_invalidate_blocks(sbi, ni.blk_addr);
902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
903 set_node_addr(sbi, &ni, NULL_ADDR, false);
904
905 if (dn->nid == dn->inode->i_ino) {
906 f2fs_remove_orphan_inode(sbi, dn->nid);
907 dec_valid_inode_count(sbi);
908 f2fs_inode_synced(dn->inode);
909 }
910
911 clear_node_page_dirty(dn->node_page);
912 set_sbi_flag(sbi, SBI_IS_DIRTY);
913
914 index = dn->node_page->index;
915 f2fs_put_page(dn->node_page, 1);
916
917 invalidate_mapping_pages(NODE_MAPPING(sbi),
918 index, index);
919
920 dn->node_page = NULL;
921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
922
923 return 0;
924 }
925
truncate_dnode(struct dnode_of_data * dn)926 static int truncate_dnode(struct dnode_of_data *dn)
927 {
928 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
929 struct page *page;
930 int err;
931
932 if (dn->nid == 0)
933 return 1;
934
935 /* get direct node */
936 page = f2fs_get_node_page(sbi, dn->nid);
937 if (PTR_ERR(page) == -ENOENT)
938 return 1;
939 else if (IS_ERR(page))
940 return PTR_ERR(page);
941
942 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
943 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
944 dn->inode->i_ino, dn->nid, ino_of_node(page));
945 set_sbi_flag(sbi, SBI_NEED_FSCK);
946 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
947 f2fs_put_page(page, 1);
948 return -EFSCORRUPTED;
949 }
950
951 /* Make dnode_of_data for parameter */
952 dn->node_page = page;
953 dn->ofs_in_node = 0;
954 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
955 err = truncate_node(dn);
956 if (err) {
957 f2fs_put_page(page, 1);
958 return err;
959 }
960
961 return 1;
962 }
963
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)964 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
965 int ofs, int depth)
966 {
967 struct dnode_of_data rdn = *dn;
968 struct page *page;
969 struct f2fs_node *rn;
970 nid_t child_nid;
971 unsigned int child_nofs;
972 int freed = 0;
973 int i, ret;
974
975 if (dn->nid == 0)
976 return NIDS_PER_BLOCK + 1;
977
978 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
979
980 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
981 if (IS_ERR(page)) {
982 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
983 return PTR_ERR(page);
984 }
985
986 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
987
988 rn = F2FS_NODE(page);
989 if (depth < 3) {
990 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
991 child_nid = le32_to_cpu(rn->in.nid[i]);
992 if (child_nid == 0)
993 continue;
994 rdn.nid = child_nid;
995 ret = truncate_dnode(&rdn);
996 if (ret < 0)
997 goto out_err;
998 if (set_nid(page, i, 0, false))
999 dn->node_changed = true;
1000 }
1001 } else {
1002 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1003 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1004 child_nid = le32_to_cpu(rn->in.nid[i]);
1005 if (child_nid == 0) {
1006 child_nofs += NIDS_PER_BLOCK + 1;
1007 continue;
1008 }
1009 rdn.nid = child_nid;
1010 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1011 if (ret == (NIDS_PER_BLOCK + 1)) {
1012 if (set_nid(page, i, 0, false))
1013 dn->node_changed = true;
1014 child_nofs += ret;
1015 } else if (ret < 0 && ret != -ENOENT) {
1016 goto out_err;
1017 }
1018 }
1019 freed = child_nofs;
1020 }
1021
1022 if (!ofs) {
1023 /* remove current indirect node */
1024 dn->node_page = page;
1025 ret = truncate_node(dn);
1026 if (ret)
1027 goto out_err;
1028 freed++;
1029 } else {
1030 f2fs_put_page(page, 1);
1031 }
1032 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1033 return freed;
1034
1035 out_err:
1036 f2fs_put_page(page, 1);
1037 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1038 return ret;
1039 }
1040
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1041 static int truncate_partial_nodes(struct dnode_of_data *dn,
1042 struct f2fs_inode *ri, int *offset, int depth)
1043 {
1044 struct page *pages[2];
1045 nid_t nid[3];
1046 nid_t child_nid;
1047 int err = 0;
1048 int i;
1049 int idx = depth - 2;
1050
1051 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1052 if (!nid[0])
1053 return 0;
1054
1055 /* get indirect nodes in the path */
1056 for (i = 0; i < idx + 1; i++) {
1057 /* reference count'll be increased */
1058 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1059 if (IS_ERR(pages[i])) {
1060 err = PTR_ERR(pages[i]);
1061 idx = i - 1;
1062 goto fail;
1063 }
1064 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1065 }
1066
1067 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1068
1069 /* free direct nodes linked to a partial indirect node */
1070 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1071 child_nid = get_nid(pages[idx], i, false);
1072 if (!child_nid)
1073 continue;
1074 dn->nid = child_nid;
1075 err = truncate_dnode(dn);
1076 if (err < 0)
1077 goto fail;
1078 if (set_nid(pages[idx], i, 0, false))
1079 dn->node_changed = true;
1080 }
1081
1082 if (offset[idx + 1] == 0) {
1083 dn->node_page = pages[idx];
1084 dn->nid = nid[idx];
1085 err = truncate_node(dn);
1086 if (err)
1087 goto fail;
1088 } else {
1089 f2fs_put_page(pages[idx], 1);
1090 }
1091 offset[idx]++;
1092 offset[idx + 1] = 0;
1093 idx--;
1094 fail:
1095 for (i = idx; i >= 0; i--)
1096 f2fs_put_page(pages[i], 1);
1097
1098 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1099
1100 return err;
1101 }
1102
1103 /*
1104 * All the block addresses of data and nodes should be nullified.
1105 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1106 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1107 {
1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1109 int err = 0, cont = 1;
1110 int level, offset[4], noffset[4];
1111 unsigned int nofs = 0;
1112 struct f2fs_inode *ri;
1113 struct dnode_of_data dn;
1114 struct page *page;
1115
1116 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1117
1118 level = get_node_path(inode, from, offset, noffset);
1119 if (level < 0) {
1120 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1121 return level;
1122 }
1123
1124 page = f2fs_get_node_page(sbi, inode->i_ino);
1125 if (IS_ERR(page)) {
1126 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1127 return PTR_ERR(page);
1128 }
1129
1130 set_new_dnode(&dn, inode, page, NULL, 0);
1131 unlock_page(page);
1132
1133 ri = F2FS_INODE(page);
1134 switch (level) {
1135 case 0:
1136 case 1:
1137 nofs = noffset[1];
1138 break;
1139 case 2:
1140 nofs = noffset[1];
1141 if (!offset[level - 1])
1142 goto skip_partial;
1143 err = truncate_partial_nodes(&dn, ri, offset, level);
1144 if (err < 0 && err != -ENOENT)
1145 goto fail;
1146 nofs += 1 + NIDS_PER_BLOCK;
1147 break;
1148 case 3:
1149 nofs = 5 + 2 * NIDS_PER_BLOCK;
1150 if (!offset[level - 1])
1151 goto skip_partial;
1152 err = truncate_partial_nodes(&dn, ri, offset, level);
1153 if (err < 0 && err != -ENOENT)
1154 goto fail;
1155 break;
1156 default:
1157 BUG();
1158 }
1159
1160 skip_partial:
1161 while (cont) {
1162 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1163 switch (offset[0]) {
1164 case NODE_DIR1_BLOCK:
1165 case NODE_DIR2_BLOCK:
1166 err = truncate_dnode(&dn);
1167 break;
1168
1169 case NODE_IND1_BLOCK:
1170 case NODE_IND2_BLOCK:
1171 err = truncate_nodes(&dn, nofs, offset[1], 2);
1172 break;
1173
1174 case NODE_DIND_BLOCK:
1175 err = truncate_nodes(&dn, nofs, offset[1], 3);
1176 cont = 0;
1177 break;
1178
1179 default:
1180 BUG();
1181 }
1182 if (err < 0 && err != -ENOENT)
1183 goto fail;
1184 if (offset[1] == 0 &&
1185 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1186 lock_page(page);
1187 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1188 f2fs_wait_on_page_writeback(page, NODE, true, true);
1189 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1190 set_page_dirty(page);
1191 unlock_page(page);
1192 }
1193 offset[1] = 0;
1194 offset[0]++;
1195 nofs += err;
1196 }
1197 fail:
1198 f2fs_put_page(page, 0);
1199 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1200 return err > 0 ? 0 : err;
1201 }
1202
1203 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1204 int f2fs_truncate_xattr_node(struct inode *inode)
1205 {
1206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1208 struct dnode_of_data dn;
1209 struct page *npage;
1210 int err;
1211
1212 if (!nid)
1213 return 0;
1214
1215 npage = f2fs_get_node_page(sbi, nid);
1216 if (IS_ERR(npage))
1217 return PTR_ERR(npage);
1218
1219 set_new_dnode(&dn, inode, NULL, npage, nid);
1220 err = truncate_node(&dn);
1221 if (err) {
1222 f2fs_put_page(npage, 1);
1223 return err;
1224 }
1225
1226 f2fs_i_xnid_write(inode, 0);
1227
1228 return 0;
1229 }
1230
1231 /*
1232 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1233 * f2fs_unlock_op().
1234 */
f2fs_remove_inode_page(struct inode * inode)1235 int f2fs_remove_inode_page(struct inode *inode)
1236 {
1237 struct dnode_of_data dn;
1238 int err;
1239
1240 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1241 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1242 if (err)
1243 return err;
1244
1245 err = f2fs_truncate_xattr_node(inode);
1246 if (err) {
1247 f2fs_put_dnode(&dn);
1248 return err;
1249 }
1250
1251 /* remove potential inline_data blocks */
1252 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1253 S_ISLNK(inode->i_mode))
1254 f2fs_truncate_data_blocks_range(&dn, 1);
1255
1256 /* 0 is possible, after f2fs_new_inode() has failed */
1257 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1258 f2fs_put_dnode(&dn);
1259 return -EIO;
1260 }
1261
1262 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1263 f2fs_warn(F2FS_I_SB(inode),
1264 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1265 inode->i_ino, (unsigned long long)inode->i_blocks);
1266 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1267 }
1268
1269 /* will put inode & node pages */
1270 err = truncate_node(&dn);
1271 if (err) {
1272 f2fs_put_dnode(&dn);
1273 return err;
1274 }
1275 return 0;
1276 }
1277
f2fs_new_inode_page(struct inode * inode)1278 struct page *f2fs_new_inode_page(struct inode *inode)
1279 {
1280 struct dnode_of_data dn;
1281
1282 /* allocate inode page for new inode */
1283 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1284
1285 /* caller should f2fs_put_page(page, 1); */
1286 return f2fs_new_node_page(&dn, 0);
1287 }
1288
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1289 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1290 {
1291 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1292 struct node_info new_ni;
1293 struct page *page;
1294 int err;
1295
1296 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1297 return ERR_PTR(-EPERM);
1298
1299 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1300 if (!page)
1301 return ERR_PTR(-ENOMEM);
1302
1303 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1304 goto fail;
1305
1306 #ifdef CONFIG_F2FS_CHECK_FS
1307 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1308 if (err) {
1309 dec_valid_node_count(sbi, dn->inode, !ofs);
1310 goto fail;
1311 }
1312 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1313 err = -EFSCORRUPTED;
1314 set_sbi_flag(sbi, SBI_NEED_FSCK);
1315 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1316 goto fail;
1317 }
1318 #endif
1319 new_ni.nid = dn->nid;
1320 new_ni.ino = dn->inode->i_ino;
1321 new_ni.blk_addr = NULL_ADDR;
1322 new_ni.flag = 0;
1323 new_ni.version = 0;
1324 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1325
1326 f2fs_wait_on_page_writeback(page, NODE, true, true);
1327 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1328 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1329 if (!PageUptodate(page))
1330 SetPageUptodate(page);
1331 if (set_page_dirty(page))
1332 dn->node_changed = true;
1333
1334 if (f2fs_has_xattr_block(ofs))
1335 f2fs_i_xnid_write(dn->inode, dn->nid);
1336
1337 if (ofs == 0)
1338 inc_valid_inode_count(sbi);
1339 return page;
1340
1341 fail:
1342 clear_node_page_dirty(page);
1343 f2fs_put_page(page, 1);
1344 return ERR_PTR(err);
1345 }
1346
1347 /*
1348 * Caller should do after getting the following values.
1349 * 0: f2fs_put_page(page, 0)
1350 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1351 */
read_node_page(struct page * page,blk_opf_t op_flags)1352 static int read_node_page(struct page *page, blk_opf_t op_flags)
1353 {
1354 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1355 struct node_info ni;
1356 struct f2fs_io_info fio = {
1357 .sbi = sbi,
1358 .type = NODE,
1359 .op = REQ_OP_READ,
1360 .op_flags = op_flags,
1361 .page = page,
1362 .encrypted_page = NULL,
1363 };
1364 int err;
1365
1366 if (PageUptodate(page)) {
1367 if (!f2fs_inode_chksum_verify(sbi, page)) {
1368 ClearPageUptodate(page);
1369 return -EFSBADCRC;
1370 }
1371 return LOCKED_PAGE;
1372 }
1373
1374 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1375 if (err)
1376 return err;
1377
1378 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1379 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1380 ClearPageUptodate(page);
1381 return -ENOENT;
1382 }
1383
1384 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1385
1386 err = f2fs_submit_page_bio(&fio);
1387
1388 if (!err)
1389 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1390
1391 return err;
1392 }
1393
1394 /*
1395 * Readahead a node page
1396 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1397 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1398 {
1399 struct page *apage;
1400 int err;
1401
1402 if (!nid)
1403 return;
1404 if (f2fs_check_nid_range(sbi, nid))
1405 return;
1406
1407 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1408 if (apage)
1409 return;
1410
1411 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1412 if (!apage)
1413 return;
1414
1415 err = read_node_page(apage, REQ_RAHEAD);
1416 f2fs_put_page(apage, err ? 1 : 0);
1417 }
1418
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1419 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1420 struct page *parent, int start)
1421 {
1422 struct page *page;
1423 int err;
1424
1425 if (!nid)
1426 return ERR_PTR(-ENOENT);
1427 if (f2fs_check_nid_range(sbi, nid))
1428 return ERR_PTR(-EINVAL);
1429 repeat:
1430 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1431 if (!page)
1432 return ERR_PTR(-ENOMEM);
1433
1434 err = read_node_page(page, 0);
1435 if (err < 0) {
1436 goto out_put_err;
1437 } else if (err == LOCKED_PAGE) {
1438 err = 0;
1439 goto page_hit;
1440 }
1441
1442 if (parent)
1443 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1444
1445 lock_page(page);
1446
1447 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1448 f2fs_put_page(page, 1);
1449 goto repeat;
1450 }
1451
1452 if (unlikely(!PageUptodate(page))) {
1453 err = -EIO;
1454 goto out_err;
1455 }
1456
1457 if (!f2fs_inode_chksum_verify(sbi, page)) {
1458 err = -EFSBADCRC;
1459 goto out_err;
1460 }
1461 page_hit:
1462 if (likely(nid == nid_of_node(page)))
1463 return page;
1464
1465 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1466 nid, nid_of_node(page), ino_of_node(page),
1467 ofs_of_node(page), cpver_of_node(page),
1468 next_blkaddr_of_node(page));
1469 set_sbi_flag(sbi, SBI_NEED_FSCK);
1470 err = -EINVAL;
1471 out_err:
1472 ClearPageUptodate(page);
1473 out_put_err:
1474 /* ENOENT comes from read_node_page which is not an error. */
1475 if (err != -ENOENT)
1476 f2fs_handle_page_eio(sbi, page->index, NODE);
1477 f2fs_put_page(page, 1);
1478 return ERR_PTR(err);
1479 }
1480
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1481 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1482 {
1483 return __get_node_page(sbi, nid, NULL, 0);
1484 }
1485
f2fs_get_node_page_ra(struct page * parent,int start)1486 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1487 {
1488 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1489 nid_t nid = get_nid(parent, start, false);
1490
1491 return __get_node_page(sbi, nid, parent, start);
1492 }
1493
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1494 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1495 {
1496 struct inode *inode;
1497 struct page *page;
1498 int ret;
1499
1500 /* should flush inline_data before evict_inode */
1501 inode = ilookup(sbi->sb, ino);
1502 if (!inode)
1503 return;
1504
1505 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1506 FGP_LOCK|FGP_NOWAIT, 0);
1507 if (!page)
1508 goto iput_out;
1509
1510 if (!PageUptodate(page))
1511 goto page_out;
1512
1513 if (!PageDirty(page))
1514 goto page_out;
1515
1516 if (!clear_page_dirty_for_io(page))
1517 goto page_out;
1518
1519 ret = f2fs_write_inline_data(inode, page);
1520 inode_dec_dirty_pages(inode);
1521 f2fs_remove_dirty_inode(inode);
1522 if (ret)
1523 set_page_dirty(page);
1524 page_out:
1525 f2fs_put_page(page, 1);
1526 iput_out:
1527 iput(inode);
1528 }
1529
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1530 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1531 {
1532 pgoff_t index;
1533 struct folio_batch fbatch;
1534 struct page *last_page = NULL;
1535 int nr_folios;
1536
1537 folio_batch_init(&fbatch);
1538 index = 0;
1539
1540 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1541 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1542 &fbatch))) {
1543 int i;
1544
1545 for (i = 0; i < nr_folios; i++) {
1546 struct page *page = &fbatch.folios[i]->page;
1547
1548 if (unlikely(f2fs_cp_error(sbi))) {
1549 f2fs_put_page(last_page, 0);
1550 folio_batch_release(&fbatch);
1551 return ERR_PTR(-EIO);
1552 }
1553
1554 if (!IS_DNODE(page) || !is_cold_node(page))
1555 continue;
1556 if (ino_of_node(page) != ino)
1557 continue;
1558
1559 lock_page(page);
1560
1561 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1562 continue_unlock:
1563 unlock_page(page);
1564 continue;
1565 }
1566 if (ino_of_node(page) != ino)
1567 goto continue_unlock;
1568
1569 if (!PageDirty(page)) {
1570 /* someone wrote it for us */
1571 goto continue_unlock;
1572 }
1573
1574 if (last_page)
1575 f2fs_put_page(last_page, 0);
1576
1577 get_page(page);
1578 last_page = page;
1579 unlock_page(page);
1580 }
1581 folio_batch_release(&fbatch);
1582 cond_resched();
1583 }
1584 return last_page;
1585 }
1586
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1587 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1588 struct writeback_control *wbc, bool do_balance,
1589 enum iostat_type io_type, unsigned int *seq_id)
1590 {
1591 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1592 nid_t nid;
1593 struct node_info ni;
1594 struct f2fs_io_info fio = {
1595 .sbi = sbi,
1596 .ino = ino_of_node(page),
1597 .type = NODE,
1598 .op = REQ_OP_WRITE,
1599 .op_flags = wbc_to_write_flags(wbc),
1600 .page = page,
1601 .encrypted_page = NULL,
1602 .submitted = 0,
1603 .io_type = io_type,
1604 .io_wbc = wbc,
1605 };
1606 unsigned int seq;
1607
1608 trace_f2fs_writepage(page, NODE);
1609
1610 if (unlikely(f2fs_cp_error(sbi))) {
1611 /* keep node pages in remount-ro mode */
1612 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1613 goto redirty_out;
1614 ClearPageUptodate(page);
1615 dec_page_count(sbi, F2FS_DIRTY_NODES);
1616 unlock_page(page);
1617 return 0;
1618 }
1619
1620 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1621 goto redirty_out;
1622
1623 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1624 wbc->sync_mode == WB_SYNC_NONE &&
1625 IS_DNODE(page) && is_cold_node(page))
1626 goto redirty_out;
1627
1628 /* get old block addr of this node page */
1629 nid = nid_of_node(page);
1630 f2fs_bug_on(sbi, page->index != nid);
1631
1632 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1633 goto redirty_out;
1634
1635 if (wbc->for_reclaim) {
1636 if (!f2fs_down_read_trylock(&sbi->node_write))
1637 goto redirty_out;
1638 } else {
1639 f2fs_down_read(&sbi->node_write);
1640 }
1641
1642 /* This page is already truncated */
1643 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1644 ClearPageUptodate(page);
1645 dec_page_count(sbi, F2FS_DIRTY_NODES);
1646 f2fs_up_read(&sbi->node_write);
1647 unlock_page(page);
1648 return 0;
1649 }
1650
1651 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1652 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1653 DATA_GENERIC_ENHANCE)) {
1654 f2fs_up_read(&sbi->node_write);
1655 goto redirty_out;
1656 }
1657
1658 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1659 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1660
1661 /* should add to global list before clearing PAGECACHE status */
1662 if (f2fs_in_warm_node_list(sbi, page)) {
1663 seq = f2fs_add_fsync_node_entry(sbi, page);
1664 if (seq_id)
1665 *seq_id = seq;
1666 }
1667
1668 set_page_writeback(page);
1669
1670 fio.old_blkaddr = ni.blk_addr;
1671 f2fs_do_write_node_page(nid, &fio);
1672 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1673 dec_page_count(sbi, F2FS_DIRTY_NODES);
1674 f2fs_up_read(&sbi->node_write);
1675
1676 if (wbc->for_reclaim) {
1677 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1678 submitted = NULL;
1679 }
1680
1681 unlock_page(page);
1682
1683 if (unlikely(f2fs_cp_error(sbi))) {
1684 f2fs_submit_merged_write(sbi, NODE);
1685 submitted = NULL;
1686 }
1687 if (submitted)
1688 *submitted = fio.submitted;
1689
1690 if (do_balance)
1691 f2fs_balance_fs(sbi, false);
1692 return 0;
1693
1694 redirty_out:
1695 redirty_page_for_writepage(wbc, page);
1696 return AOP_WRITEPAGE_ACTIVATE;
1697 }
1698
f2fs_move_node_page(struct page * node_page,int gc_type)1699 int f2fs_move_node_page(struct page *node_page, int gc_type)
1700 {
1701 int err = 0;
1702
1703 if (gc_type == FG_GC) {
1704 struct writeback_control wbc = {
1705 .sync_mode = WB_SYNC_ALL,
1706 .nr_to_write = 1,
1707 .for_reclaim = 0,
1708 };
1709
1710 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1711
1712 set_page_dirty(node_page);
1713
1714 if (!clear_page_dirty_for_io(node_page)) {
1715 err = -EAGAIN;
1716 goto out_page;
1717 }
1718
1719 if (__write_node_page(node_page, false, NULL,
1720 &wbc, false, FS_GC_NODE_IO, NULL)) {
1721 err = -EAGAIN;
1722 unlock_page(node_page);
1723 }
1724 goto release_page;
1725 } else {
1726 /* set page dirty and write it */
1727 if (!PageWriteback(node_page))
1728 set_page_dirty(node_page);
1729 }
1730 out_page:
1731 unlock_page(node_page);
1732 release_page:
1733 f2fs_put_page(node_page, 0);
1734 return err;
1735 }
1736
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1737 static int f2fs_write_node_page(struct page *page,
1738 struct writeback_control *wbc)
1739 {
1740 return __write_node_page(page, false, NULL, wbc, false,
1741 FS_NODE_IO, NULL);
1742 }
1743
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1744 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1745 struct writeback_control *wbc, bool atomic,
1746 unsigned int *seq_id)
1747 {
1748 pgoff_t index;
1749 struct folio_batch fbatch;
1750 int ret = 0;
1751 struct page *last_page = NULL;
1752 bool marked = false;
1753 nid_t ino = inode->i_ino;
1754 int nr_folios;
1755 int nwritten = 0;
1756
1757 if (atomic) {
1758 last_page = last_fsync_dnode(sbi, ino);
1759 if (IS_ERR_OR_NULL(last_page))
1760 return PTR_ERR_OR_ZERO(last_page);
1761 }
1762 retry:
1763 folio_batch_init(&fbatch);
1764 index = 0;
1765
1766 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1767 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1768 &fbatch))) {
1769 int i;
1770
1771 for (i = 0; i < nr_folios; i++) {
1772 struct page *page = &fbatch.folios[i]->page;
1773 bool submitted = false;
1774
1775 if (unlikely(f2fs_cp_error(sbi))) {
1776 f2fs_put_page(last_page, 0);
1777 folio_batch_release(&fbatch);
1778 ret = -EIO;
1779 goto out;
1780 }
1781
1782 if (!IS_DNODE(page) || !is_cold_node(page))
1783 continue;
1784 if (ino_of_node(page) != ino)
1785 continue;
1786
1787 lock_page(page);
1788
1789 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1790 continue_unlock:
1791 unlock_page(page);
1792 continue;
1793 }
1794 if (ino_of_node(page) != ino)
1795 goto continue_unlock;
1796
1797 if (!PageDirty(page) && page != last_page) {
1798 /* someone wrote it for us */
1799 goto continue_unlock;
1800 }
1801
1802 f2fs_wait_on_page_writeback(page, NODE, true, true);
1803
1804 set_fsync_mark(page, 0);
1805 set_dentry_mark(page, 0);
1806
1807 if (!atomic || page == last_page) {
1808 set_fsync_mark(page, 1);
1809 percpu_counter_inc(&sbi->rf_node_block_count);
1810 if (IS_INODE(page)) {
1811 if (is_inode_flag_set(inode,
1812 FI_DIRTY_INODE))
1813 f2fs_update_inode(inode, page);
1814 set_dentry_mark(page,
1815 f2fs_need_dentry_mark(sbi, ino));
1816 }
1817 /* may be written by other thread */
1818 if (!PageDirty(page))
1819 set_page_dirty(page);
1820 }
1821
1822 if (!clear_page_dirty_for_io(page))
1823 goto continue_unlock;
1824
1825 ret = __write_node_page(page, atomic &&
1826 page == last_page,
1827 &submitted, wbc, true,
1828 FS_NODE_IO, seq_id);
1829 if (ret) {
1830 unlock_page(page);
1831 f2fs_put_page(last_page, 0);
1832 break;
1833 } else if (submitted) {
1834 nwritten++;
1835 }
1836
1837 if (page == last_page) {
1838 f2fs_put_page(page, 0);
1839 marked = true;
1840 break;
1841 }
1842 }
1843 folio_batch_release(&fbatch);
1844 cond_resched();
1845
1846 if (ret || marked)
1847 break;
1848 }
1849 if (!ret && atomic && !marked) {
1850 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1851 ino, last_page->index);
1852 lock_page(last_page);
1853 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1854 set_page_dirty(last_page);
1855 unlock_page(last_page);
1856 goto retry;
1857 }
1858 out:
1859 if (nwritten)
1860 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1861 return ret ? -EIO : 0;
1862 }
1863
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1864 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1865 {
1866 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1867 bool clean;
1868
1869 if (inode->i_ino != ino)
1870 return 0;
1871
1872 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1873 return 0;
1874
1875 spin_lock(&sbi->inode_lock[DIRTY_META]);
1876 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1877 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1878
1879 if (clean)
1880 return 0;
1881
1882 inode = igrab(inode);
1883 if (!inode)
1884 return 0;
1885 return 1;
1886 }
1887
flush_dirty_inode(struct page * page)1888 static bool flush_dirty_inode(struct page *page)
1889 {
1890 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1891 struct inode *inode;
1892 nid_t ino = ino_of_node(page);
1893
1894 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1895 if (!inode)
1896 return false;
1897
1898 f2fs_update_inode(inode, page);
1899 unlock_page(page);
1900
1901 iput(inode);
1902 return true;
1903 }
1904
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1905 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1906 {
1907 pgoff_t index = 0;
1908 struct folio_batch fbatch;
1909 int nr_folios;
1910
1911 folio_batch_init(&fbatch);
1912
1913 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1914 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1915 &fbatch))) {
1916 int i;
1917
1918 for (i = 0; i < nr_folios; i++) {
1919 struct page *page = &fbatch.folios[i]->page;
1920
1921 if (!IS_DNODE(page))
1922 continue;
1923
1924 lock_page(page);
1925
1926 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1927 continue_unlock:
1928 unlock_page(page);
1929 continue;
1930 }
1931
1932 if (!PageDirty(page)) {
1933 /* someone wrote it for us */
1934 goto continue_unlock;
1935 }
1936
1937 /* flush inline_data, if it's async context. */
1938 if (page_private_inline(page)) {
1939 clear_page_private_inline(page);
1940 unlock_page(page);
1941 flush_inline_data(sbi, ino_of_node(page));
1942 continue;
1943 }
1944 unlock_page(page);
1945 }
1946 folio_batch_release(&fbatch);
1947 cond_resched();
1948 }
1949 }
1950
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1951 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1952 struct writeback_control *wbc,
1953 bool do_balance, enum iostat_type io_type)
1954 {
1955 pgoff_t index;
1956 struct folio_batch fbatch;
1957 int step = 0;
1958 int nwritten = 0;
1959 int ret = 0;
1960 int nr_folios, done = 0;
1961
1962 folio_batch_init(&fbatch);
1963
1964 next_step:
1965 index = 0;
1966
1967 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1968 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1969 &fbatch))) {
1970 int i;
1971
1972 for (i = 0; i < nr_folios; i++) {
1973 struct page *page = &fbatch.folios[i]->page;
1974 bool submitted = false;
1975
1976 /* give a priority to WB_SYNC threads */
1977 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1978 wbc->sync_mode == WB_SYNC_NONE) {
1979 done = 1;
1980 break;
1981 }
1982
1983 /*
1984 * flushing sequence with step:
1985 * 0. indirect nodes
1986 * 1. dentry dnodes
1987 * 2. file dnodes
1988 */
1989 if (step == 0 && IS_DNODE(page))
1990 continue;
1991 if (step == 1 && (!IS_DNODE(page) ||
1992 is_cold_node(page)))
1993 continue;
1994 if (step == 2 && (!IS_DNODE(page) ||
1995 !is_cold_node(page)))
1996 continue;
1997 lock_node:
1998 if (wbc->sync_mode == WB_SYNC_ALL)
1999 lock_page(page);
2000 else if (!trylock_page(page))
2001 continue;
2002
2003 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2004 continue_unlock:
2005 unlock_page(page);
2006 continue;
2007 }
2008
2009 if (!PageDirty(page)) {
2010 /* someone wrote it for us */
2011 goto continue_unlock;
2012 }
2013
2014 /* flush inline_data/inode, if it's async context. */
2015 if (!do_balance)
2016 goto write_node;
2017
2018 /* flush inline_data */
2019 if (page_private_inline(page)) {
2020 clear_page_private_inline(page);
2021 unlock_page(page);
2022 flush_inline_data(sbi, ino_of_node(page));
2023 goto lock_node;
2024 }
2025
2026 /* flush dirty inode */
2027 if (IS_INODE(page) && flush_dirty_inode(page))
2028 goto lock_node;
2029 write_node:
2030 f2fs_wait_on_page_writeback(page, NODE, true, true);
2031
2032 if (!clear_page_dirty_for_io(page))
2033 goto continue_unlock;
2034
2035 set_fsync_mark(page, 0);
2036 set_dentry_mark(page, 0);
2037
2038 ret = __write_node_page(page, false, &submitted,
2039 wbc, do_balance, io_type, NULL);
2040 if (ret)
2041 unlock_page(page);
2042 else if (submitted)
2043 nwritten++;
2044
2045 if (--wbc->nr_to_write == 0)
2046 break;
2047 }
2048 folio_batch_release(&fbatch);
2049 cond_resched();
2050
2051 if (wbc->nr_to_write == 0) {
2052 step = 2;
2053 break;
2054 }
2055 }
2056
2057 if (step < 2) {
2058 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2059 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2060 goto out;
2061 step++;
2062 goto next_step;
2063 }
2064 out:
2065 if (nwritten)
2066 f2fs_submit_merged_write(sbi, NODE);
2067
2068 if (unlikely(f2fs_cp_error(sbi)))
2069 return -EIO;
2070 return ret;
2071 }
2072
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2073 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2074 unsigned int seq_id)
2075 {
2076 struct fsync_node_entry *fn;
2077 struct page *page;
2078 struct list_head *head = &sbi->fsync_node_list;
2079 unsigned long flags;
2080 unsigned int cur_seq_id = 0;
2081
2082 while (seq_id && cur_seq_id < seq_id) {
2083 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2084 if (list_empty(head)) {
2085 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2086 break;
2087 }
2088 fn = list_first_entry(head, struct fsync_node_entry, list);
2089 if (fn->seq_id > seq_id) {
2090 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2091 break;
2092 }
2093 cur_seq_id = fn->seq_id;
2094 page = fn->page;
2095 get_page(page);
2096 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2097
2098 f2fs_wait_on_page_writeback(page, NODE, true, false);
2099
2100 put_page(page);
2101 }
2102
2103 return filemap_check_errors(NODE_MAPPING(sbi));
2104 }
2105
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2106 static int f2fs_write_node_pages(struct address_space *mapping,
2107 struct writeback_control *wbc)
2108 {
2109 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2110 struct blk_plug plug;
2111 long diff;
2112
2113 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2114 goto skip_write;
2115
2116 /* balancing f2fs's metadata in background */
2117 f2fs_balance_fs_bg(sbi, true);
2118
2119 /* collect a number of dirty node pages and write together */
2120 if (wbc->sync_mode != WB_SYNC_ALL &&
2121 get_pages(sbi, F2FS_DIRTY_NODES) <
2122 nr_pages_to_skip(sbi, NODE))
2123 goto skip_write;
2124
2125 if (wbc->sync_mode == WB_SYNC_ALL)
2126 atomic_inc(&sbi->wb_sync_req[NODE]);
2127 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2128 /* to avoid potential deadlock */
2129 if (current->plug)
2130 blk_finish_plug(current->plug);
2131 goto skip_write;
2132 }
2133
2134 trace_f2fs_writepages(mapping->host, wbc, NODE);
2135
2136 diff = nr_pages_to_write(sbi, NODE, wbc);
2137 blk_start_plug(&plug);
2138 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2139 blk_finish_plug(&plug);
2140 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2141
2142 if (wbc->sync_mode == WB_SYNC_ALL)
2143 atomic_dec(&sbi->wb_sync_req[NODE]);
2144 return 0;
2145
2146 skip_write:
2147 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2148 trace_f2fs_writepages(mapping->host, wbc, NODE);
2149 return 0;
2150 }
2151
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2152 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2153 struct folio *folio)
2154 {
2155 trace_f2fs_set_page_dirty(&folio->page, NODE);
2156
2157 if (!folio_test_uptodate(folio))
2158 folio_mark_uptodate(folio);
2159 #ifdef CONFIG_F2FS_CHECK_FS
2160 if (IS_INODE(&folio->page))
2161 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2162 #endif
2163 if (filemap_dirty_folio(mapping, folio)) {
2164 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2165 set_page_private_reference(&folio->page);
2166 return true;
2167 }
2168 return false;
2169 }
2170
2171 /*
2172 * Structure of the f2fs node operations
2173 */
2174 const struct address_space_operations f2fs_node_aops = {
2175 .writepage = f2fs_write_node_page,
2176 .writepages = f2fs_write_node_pages,
2177 .dirty_folio = f2fs_dirty_node_folio,
2178 .invalidate_folio = f2fs_invalidate_folio,
2179 .release_folio = f2fs_release_folio,
2180 .migrate_folio = filemap_migrate_folio,
2181 };
2182
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2183 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2184 nid_t n)
2185 {
2186 return radix_tree_lookup(&nm_i->free_nid_root, n);
2187 }
2188
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2189 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2190 struct free_nid *i)
2191 {
2192 struct f2fs_nm_info *nm_i = NM_I(sbi);
2193 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2194
2195 if (err)
2196 return err;
2197
2198 nm_i->nid_cnt[FREE_NID]++;
2199 list_add_tail(&i->list, &nm_i->free_nid_list);
2200 return 0;
2201 }
2202
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2203 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2204 struct free_nid *i, enum nid_state state)
2205 {
2206 struct f2fs_nm_info *nm_i = NM_I(sbi);
2207
2208 f2fs_bug_on(sbi, state != i->state);
2209 nm_i->nid_cnt[state]--;
2210 if (state == FREE_NID)
2211 list_del(&i->list);
2212 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2213 }
2214
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2215 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2216 enum nid_state org_state, enum nid_state dst_state)
2217 {
2218 struct f2fs_nm_info *nm_i = NM_I(sbi);
2219
2220 f2fs_bug_on(sbi, org_state != i->state);
2221 i->state = dst_state;
2222 nm_i->nid_cnt[org_state]--;
2223 nm_i->nid_cnt[dst_state]++;
2224
2225 switch (dst_state) {
2226 case PREALLOC_NID:
2227 list_del(&i->list);
2228 break;
2229 case FREE_NID:
2230 list_add_tail(&i->list, &nm_i->free_nid_list);
2231 break;
2232 default:
2233 BUG_ON(1);
2234 }
2235 }
2236
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2237 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2238 {
2239 struct f2fs_nm_info *nm_i = NM_I(sbi);
2240 unsigned int i;
2241 bool ret = true;
2242
2243 f2fs_down_read(&nm_i->nat_tree_lock);
2244 for (i = 0; i < nm_i->nat_blocks; i++) {
2245 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2246 ret = false;
2247 break;
2248 }
2249 }
2250 f2fs_up_read(&nm_i->nat_tree_lock);
2251
2252 return ret;
2253 }
2254
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2255 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2256 bool set, bool build)
2257 {
2258 struct f2fs_nm_info *nm_i = NM_I(sbi);
2259 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2260 unsigned int nid_ofs = nid - START_NID(nid);
2261
2262 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2263 return;
2264
2265 if (set) {
2266 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2267 return;
2268 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2269 nm_i->free_nid_count[nat_ofs]++;
2270 } else {
2271 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2272 return;
2273 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2274 if (!build)
2275 nm_i->free_nid_count[nat_ofs]--;
2276 }
2277 }
2278
2279 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2280 static bool add_free_nid(struct f2fs_sb_info *sbi,
2281 nid_t nid, bool build, bool update)
2282 {
2283 struct f2fs_nm_info *nm_i = NM_I(sbi);
2284 struct free_nid *i, *e;
2285 struct nat_entry *ne;
2286 int err = -EINVAL;
2287 bool ret = false;
2288
2289 /* 0 nid should not be used */
2290 if (unlikely(nid == 0))
2291 return false;
2292
2293 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2294 return false;
2295
2296 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2297 i->nid = nid;
2298 i->state = FREE_NID;
2299
2300 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2301
2302 spin_lock(&nm_i->nid_list_lock);
2303
2304 if (build) {
2305 /*
2306 * Thread A Thread B
2307 * - f2fs_create
2308 * - f2fs_new_inode
2309 * - f2fs_alloc_nid
2310 * - __insert_nid_to_list(PREALLOC_NID)
2311 * - f2fs_balance_fs_bg
2312 * - f2fs_build_free_nids
2313 * - __f2fs_build_free_nids
2314 * - scan_nat_page
2315 * - add_free_nid
2316 * - __lookup_nat_cache
2317 * - f2fs_add_link
2318 * - f2fs_init_inode_metadata
2319 * - f2fs_new_inode_page
2320 * - f2fs_new_node_page
2321 * - set_node_addr
2322 * - f2fs_alloc_nid_done
2323 * - __remove_nid_from_list(PREALLOC_NID)
2324 * - __insert_nid_to_list(FREE_NID)
2325 */
2326 ne = __lookup_nat_cache(nm_i, nid);
2327 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2328 nat_get_blkaddr(ne) != NULL_ADDR))
2329 goto err_out;
2330
2331 e = __lookup_free_nid_list(nm_i, nid);
2332 if (e) {
2333 if (e->state == FREE_NID)
2334 ret = true;
2335 goto err_out;
2336 }
2337 }
2338 ret = true;
2339 err = __insert_free_nid(sbi, i);
2340 err_out:
2341 if (update) {
2342 update_free_nid_bitmap(sbi, nid, ret, build);
2343 if (!build)
2344 nm_i->available_nids++;
2345 }
2346 spin_unlock(&nm_i->nid_list_lock);
2347 radix_tree_preload_end();
2348
2349 if (err)
2350 kmem_cache_free(free_nid_slab, i);
2351 return ret;
2352 }
2353
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2354 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2355 {
2356 struct f2fs_nm_info *nm_i = NM_I(sbi);
2357 struct free_nid *i;
2358 bool need_free = false;
2359
2360 spin_lock(&nm_i->nid_list_lock);
2361 i = __lookup_free_nid_list(nm_i, nid);
2362 if (i && i->state == FREE_NID) {
2363 __remove_free_nid(sbi, i, FREE_NID);
2364 need_free = true;
2365 }
2366 spin_unlock(&nm_i->nid_list_lock);
2367
2368 if (need_free)
2369 kmem_cache_free(free_nid_slab, i);
2370 }
2371
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2372 static int scan_nat_page(struct f2fs_sb_info *sbi,
2373 struct page *nat_page, nid_t start_nid)
2374 {
2375 struct f2fs_nm_info *nm_i = NM_I(sbi);
2376 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2377 block_t blk_addr;
2378 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2379 int i;
2380
2381 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2382
2383 i = start_nid % NAT_ENTRY_PER_BLOCK;
2384
2385 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2386 if (unlikely(start_nid >= nm_i->max_nid))
2387 break;
2388
2389 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2390
2391 if (blk_addr == NEW_ADDR)
2392 return -EINVAL;
2393
2394 if (blk_addr == NULL_ADDR) {
2395 add_free_nid(sbi, start_nid, true, true);
2396 } else {
2397 spin_lock(&NM_I(sbi)->nid_list_lock);
2398 update_free_nid_bitmap(sbi, start_nid, false, true);
2399 spin_unlock(&NM_I(sbi)->nid_list_lock);
2400 }
2401 }
2402
2403 return 0;
2404 }
2405
scan_curseg_cache(struct f2fs_sb_info * sbi)2406 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2407 {
2408 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2409 struct f2fs_journal *journal = curseg->journal;
2410 int i;
2411
2412 down_read(&curseg->journal_rwsem);
2413 for (i = 0; i < nats_in_cursum(journal); i++) {
2414 block_t addr;
2415 nid_t nid;
2416
2417 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2418 nid = le32_to_cpu(nid_in_journal(journal, i));
2419 if (addr == NULL_ADDR)
2420 add_free_nid(sbi, nid, true, false);
2421 else
2422 remove_free_nid(sbi, nid);
2423 }
2424 up_read(&curseg->journal_rwsem);
2425 }
2426
scan_free_nid_bits(struct f2fs_sb_info * sbi)2427 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2428 {
2429 struct f2fs_nm_info *nm_i = NM_I(sbi);
2430 unsigned int i, idx;
2431 nid_t nid;
2432
2433 f2fs_down_read(&nm_i->nat_tree_lock);
2434
2435 for (i = 0; i < nm_i->nat_blocks; i++) {
2436 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2437 continue;
2438 if (!nm_i->free_nid_count[i])
2439 continue;
2440 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2441 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2442 NAT_ENTRY_PER_BLOCK, idx);
2443 if (idx >= NAT_ENTRY_PER_BLOCK)
2444 break;
2445
2446 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2447 add_free_nid(sbi, nid, true, false);
2448
2449 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2450 goto out;
2451 }
2452 }
2453 out:
2454 scan_curseg_cache(sbi);
2455
2456 f2fs_up_read(&nm_i->nat_tree_lock);
2457 }
2458
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2459 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2460 bool sync, bool mount)
2461 {
2462 struct f2fs_nm_info *nm_i = NM_I(sbi);
2463 int i = 0, ret;
2464 nid_t nid = nm_i->next_scan_nid;
2465
2466 if (unlikely(nid >= nm_i->max_nid))
2467 nid = 0;
2468
2469 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2470 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2471
2472 /* Enough entries */
2473 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2474 return 0;
2475
2476 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2477 return 0;
2478
2479 if (!mount) {
2480 /* try to find free nids in free_nid_bitmap */
2481 scan_free_nid_bits(sbi);
2482
2483 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2484 return 0;
2485 }
2486
2487 /* readahead nat pages to be scanned */
2488 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2489 META_NAT, true);
2490
2491 f2fs_down_read(&nm_i->nat_tree_lock);
2492
2493 while (1) {
2494 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2495 nm_i->nat_block_bitmap)) {
2496 struct page *page = get_current_nat_page(sbi, nid);
2497
2498 if (IS_ERR(page)) {
2499 ret = PTR_ERR(page);
2500 } else {
2501 ret = scan_nat_page(sbi, page, nid);
2502 f2fs_put_page(page, 1);
2503 }
2504
2505 if (ret) {
2506 f2fs_up_read(&nm_i->nat_tree_lock);
2507 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2508 return ret;
2509 }
2510 }
2511
2512 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2513 if (unlikely(nid >= nm_i->max_nid))
2514 nid = 0;
2515
2516 if (++i >= FREE_NID_PAGES)
2517 break;
2518 }
2519
2520 /* go to the next free nat pages to find free nids abundantly */
2521 nm_i->next_scan_nid = nid;
2522
2523 /* find free nids from current sum_pages */
2524 scan_curseg_cache(sbi);
2525
2526 f2fs_up_read(&nm_i->nat_tree_lock);
2527
2528 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2529 nm_i->ra_nid_pages, META_NAT, false);
2530
2531 return 0;
2532 }
2533
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2534 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2535 {
2536 int ret;
2537
2538 mutex_lock(&NM_I(sbi)->build_lock);
2539 ret = __f2fs_build_free_nids(sbi, sync, mount);
2540 mutex_unlock(&NM_I(sbi)->build_lock);
2541
2542 return ret;
2543 }
2544
2545 /*
2546 * If this function returns success, caller can obtain a new nid
2547 * from second parameter of this function.
2548 * The returned nid could be used ino as well as nid when inode is created.
2549 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2550 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2551 {
2552 struct f2fs_nm_info *nm_i = NM_I(sbi);
2553 struct free_nid *i = NULL;
2554 retry:
2555 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2556 return false;
2557
2558 spin_lock(&nm_i->nid_list_lock);
2559
2560 if (unlikely(nm_i->available_nids == 0)) {
2561 spin_unlock(&nm_i->nid_list_lock);
2562 return false;
2563 }
2564
2565 /* We should not use stale free nids created by f2fs_build_free_nids */
2566 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2567 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2568 i = list_first_entry(&nm_i->free_nid_list,
2569 struct free_nid, list);
2570 *nid = i->nid;
2571
2572 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2573 nm_i->available_nids--;
2574
2575 update_free_nid_bitmap(sbi, *nid, false, false);
2576
2577 spin_unlock(&nm_i->nid_list_lock);
2578 return true;
2579 }
2580 spin_unlock(&nm_i->nid_list_lock);
2581
2582 /* Let's scan nat pages and its caches to get free nids */
2583 if (!f2fs_build_free_nids(sbi, true, false))
2584 goto retry;
2585 return false;
2586 }
2587
2588 /*
2589 * f2fs_alloc_nid() should be called prior to this function.
2590 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2591 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2592 {
2593 struct f2fs_nm_info *nm_i = NM_I(sbi);
2594 struct free_nid *i;
2595
2596 spin_lock(&nm_i->nid_list_lock);
2597 i = __lookup_free_nid_list(nm_i, nid);
2598 f2fs_bug_on(sbi, !i);
2599 __remove_free_nid(sbi, i, PREALLOC_NID);
2600 spin_unlock(&nm_i->nid_list_lock);
2601
2602 kmem_cache_free(free_nid_slab, i);
2603 }
2604
2605 /*
2606 * f2fs_alloc_nid() should be called prior to this function.
2607 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2608 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2609 {
2610 struct f2fs_nm_info *nm_i = NM_I(sbi);
2611 struct free_nid *i;
2612 bool need_free = false;
2613
2614 if (!nid)
2615 return;
2616
2617 spin_lock(&nm_i->nid_list_lock);
2618 i = __lookup_free_nid_list(nm_i, nid);
2619 f2fs_bug_on(sbi, !i);
2620
2621 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2622 __remove_free_nid(sbi, i, PREALLOC_NID);
2623 need_free = true;
2624 } else {
2625 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2626 }
2627
2628 nm_i->available_nids++;
2629
2630 update_free_nid_bitmap(sbi, nid, true, false);
2631
2632 spin_unlock(&nm_i->nid_list_lock);
2633
2634 if (need_free)
2635 kmem_cache_free(free_nid_slab, i);
2636 }
2637
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2638 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2639 {
2640 struct f2fs_nm_info *nm_i = NM_I(sbi);
2641 int nr = nr_shrink;
2642
2643 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2644 return 0;
2645
2646 if (!mutex_trylock(&nm_i->build_lock))
2647 return 0;
2648
2649 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2650 struct free_nid *i, *next;
2651 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2652
2653 spin_lock(&nm_i->nid_list_lock);
2654 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2655 if (!nr_shrink || !batch ||
2656 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2657 break;
2658 __remove_free_nid(sbi, i, FREE_NID);
2659 kmem_cache_free(free_nid_slab, i);
2660 nr_shrink--;
2661 batch--;
2662 }
2663 spin_unlock(&nm_i->nid_list_lock);
2664 }
2665
2666 mutex_unlock(&nm_i->build_lock);
2667
2668 return nr - nr_shrink;
2669 }
2670
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2671 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2672 {
2673 void *src_addr, *dst_addr;
2674 size_t inline_size;
2675 struct page *ipage;
2676 struct f2fs_inode *ri;
2677
2678 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2679 if (IS_ERR(ipage))
2680 return PTR_ERR(ipage);
2681
2682 ri = F2FS_INODE(page);
2683 if (ri->i_inline & F2FS_INLINE_XATTR) {
2684 if (!f2fs_has_inline_xattr(inode)) {
2685 set_inode_flag(inode, FI_INLINE_XATTR);
2686 stat_inc_inline_xattr(inode);
2687 }
2688 } else {
2689 if (f2fs_has_inline_xattr(inode)) {
2690 stat_dec_inline_xattr(inode);
2691 clear_inode_flag(inode, FI_INLINE_XATTR);
2692 }
2693 goto update_inode;
2694 }
2695
2696 dst_addr = inline_xattr_addr(inode, ipage);
2697 src_addr = inline_xattr_addr(inode, page);
2698 inline_size = inline_xattr_size(inode);
2699
2700 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2701 memcpy(dst_addr, src_addr, inline_size);
2702 update_inode:
2703 f2fs_update_inode(inode, ipage);
2704 f2fs_put_page(ipage, 1);
2705 return 0;
2706 }
2707
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2708 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2709 {
2710 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2711 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2712 nid_t new_xnid;
2713 struct dnode_of_data dn;
2714 struct node_info ni;
2715 struct page *xpage;
2716 int err;
2717
2718 if (!prev_xnid)
2719 goto recover_xnid;
2720
2721 /* 1: invalidate the previous xattr nid */
2722 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2723 if (err)
2724 return err;
2725
2726 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2727 dec_valid_node_count(sbi, inode, false);
2728 set_node_addr(sbi, &ni, NULL_ADDR, false);
2729
2730 recover_xnid:
2731 /* 2: update xattr nid in inode */
2732 if (!f2fs_alloc_nid(sbi, &new_xnid))
2733 return -ENOSPC;
2734
2735 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2736 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2737 if (IS_ERR(xpage)) {
2738 f2fs_alloc_nid_failed(sbi, new_xnid);
2739 return PTR_ERR(xpage);
2740 }
2741
2742 f2fs_alloc_nid_done(sbi, new_xnid);
2743 f2fs_update_inode_page(inode);
2744
2745 /* 3: update and set xattr node page dirty */
2746 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2747
2748 set_page_dirty(xpage);
2749 f2fs_put_page(xpage, 1);
2750
2751 return 0;
2752 }
2753
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2754 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2755 {
2756 struct f2fs_inode *src, *dst;
2757 nid_t ino = ino_of_node(page);
2758 struct node_info old_ni, new_ni;
2759 struct page *ipage;
2760 int err;
2761
2762 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2763 if (err)
2764 return err;
2765
2766 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2767 return -EINVAL;
2768 retry:
2769 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2770 if (!ipage) {
2771 memalloc_retry_wait(GFP_NOFS);
2772 goto retry;
2773 }
2774
2775 /* Should not use this inode from free nid list */
2776 remove_free_nid(sbi, ino);
2777
2778 if (!PageUptodate(ipage))
2779 SetPageUptodate(ipage);
2780 fill_node_footer(ipage, ino, ino, 0, true);
2781 set_cold_node(ipage, false);
2782
2783 src = F2FS_INODE(page);
2784 dst = F2FS_INODE(ipage);
2785
2786 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2787 dst->i_size = 0;
2788 dst->i_blocks = cpu_to_le64(1);
2789 dst->i_links = cpu_to_le32(1);
2790 dst->i_xattr_nid = 0;
2791 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2792 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2793 dst->i_extra_isize = src->i_extra_isize;
2794
2795 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2796 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2797 i_inline_xattr_size))
2798 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2799
2800 if (f2fs_sb_has_project_quota(sbi) &&
2801 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2802 i_projid))
2803 dst->i_projid = src->i_projid;
2804
2805 if (f2fs_sb_has_inode_crtime(sbi) &&
2806 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2807 i_crtime_nsec)) {
2808 dst->i_crtime = src->i_crtime;
2809 dst->i_crtime_nsec = src->i_crtime_nsec;
2810 }
2811 }
2812
2813 new_ni = old_ni;
2814 new_ni.ino = ino;
2815
2816 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2817 WARN_ON(1);
2818 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2819 inc_valid_inode_count(sbi);
2820 set_page_dirty(ipage);
2821 f2fs_put_page(ipage, 1);
2822 return 0;
2823 }
2824
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2825 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2826 unsigned int segno, struct f2fs_summary_block *sum)
2827 {
2828 struct f2fs_node *rn;
2829 struct f2fs_summary *sum_entry;
2830 block_t addr;
2831 int i, idx, last_offset, nrpages;
2832
2833 /* scan the node segment */
2834 last_offset = sbi->blocks_per_seg;
2835 addr = START_BLOCK(sbi, segno);
2836 sum_entry = &sum->entries[0];
2837
2838 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2839 nrpages = bio_max_segs(last_offset - i);
2840
2841 /* readahead node pages */
2842 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2843
2844 for (idx = addr; idx < addr + nrpages; idx++) {
2845 struct page *page = f2fs_get_tmp_page(sbi, idx);
2846
2847 if (IS_ERR(page))
2848 return PTR_ERR(page);
2849
2850 rn = F2FS_NODE(page);
2851 sum_entry->nid = rn->footer.nid;
2852 sum_entry->version = 0;
2853 sum_entry->ofs_in_node = 0;
2854 sum_entry++;
2855 f2fs_put_page(page, 1);
2856 }
2857
2858 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2859 addr + nrpages);
2860 }
2861 return 0;
2862 }
2863
remove_nats_in_journal(struct f2fs_sb_info * sbi)2864 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2865 {
2866 struct f2fs_nm_info *nm_i = NM_I(sbi);
2867 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2868 struct f2fs_journal *journal = curseg->journal;
2869 int i;
2870
2871 down_write(&curseg->journal_rwsem);
2872 for (i = 0; i < nats_in_cursum(journal); i++) {
2873 struct nat_entry *ne;
2874 struct f2fs_nat_entry raw_ne;
2875 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2876
2877 if (f2fs_check_nid_range(sbi, nid))
2878 continue;
2879
2880 raw_ne = nat_in_journal(journal, i);
2881
2882 ne = __lookup_nat_cache(nm_i, nid);
2883 if (!ne) {
2884 ne = __alloc_nat_entry(sbi, nid, true);
2885 __init_nat_entry(nm_i, ne, &raw_ne, true);
2886 }
2887
2888 /*
2889 * if a free nat in journal has not been used after last
2890 * checkpoint, we should remove it from available nids,
2891 * since later we will add it again.
2892 */
2893 if (!get_nat_flag(ne, IS_DIRTY) &&
2894 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2895 spin_lock(&nm_i->nid_list_lock);
2896 nm_i->available_nids--;
2897 spin_unlock(&nm_i->nid_list_lock);
2898 }
2899
2900 __set_nat_cache_dirty(nm_i, ne);
2901 }
2902 update_nats_in_cursum(journal, -i);
2903 up_write(&curseg->journal_rwsem);
2904 }
2905
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2906 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2907 struct list_head *head, int max)
2908 {
2909 struct nat_entry_set *cur;
2910
2911 if (nes->entry_cnt >= max)
2912 goto add_out;
2913
2914 list_for_each_entry(cur, head, set_list) {
2915 if (cur->entry_cnt >= nes->entry_cnt) {
2916 list_add(&nes->set_list, cur->set_list.prev);
2917 return;
2918 }
2919 }
2920 add_out:
2921 list_add_tail(&nes->set_list, head);
2922 }
2923
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2924 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2925 unsigned int valid)
2926 {
2927 if (valid == 0) {
2928 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2929 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 return;
2931 }
2932
2933 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2934 if (valid == NAT_ENTRY_PER_BLOCK)
2935 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2936 else
2937 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2938 }
2939
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2940 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2941 struct page *page)
2942 {
2943 struct f2fs_nm_info *nm_i = NM_I(sbi);
2944 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2945 struct f2fs_nat_block *nat_blk = page_address(page);
2946 int valid = 0;
2947 int i = 0;
2948
2949 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2950 return;
2951
2952 if (nat_index == 0) {
2953 valid = 1;
2954 i = 1;
2955 }
2956 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2957 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2958 valid++;
2959 }
2960
2961 __update_nat_bits(nm_i, nat_index, valid);
2962 }
2963
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2964 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2965 {
2966 struct f2fs_nm_info *nm_i = NM_I(sbi);
2967 unsigned int nat_ofs;
2968
2969 f2fs_down_read(&nm_i->nat_tree_lock);
2970
2971 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2972 unsigned int valid = 0, nid_ofs = 0;
2973
2974 /* handle nid zero due to it should never be used */
2975 if (unlikely(nat_ofs == 0)) {
2976 valid = 1;
2977 nid_ofs = 1;
2978 }
2979
2980 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2981 if (!test_bit_le(nid_ofs,
2982 nm_i->free_nid_bitmap[nat_ofs]))
2983 valid++;
2984 }
2985
2986 __update_nat_bits(nm_i, nat_ofs, valid);
2987 }
2988
2989 f2fs_up_read(&nm_i->nat_tree_lock);
2990 }
2991
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2992 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2993 struct nat_entry_set *set, struct cp_control *cpc)
2994 {
2995 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2996 struct f2fs_journal *journal = curseg->journal;
2997 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2998 bool to_journal = true;
2999 struct f2fs_nat_block *nat_blk;
3000 struct nat_entry *ne, *cur;
3001 struct page *page = NULL;
3002
3003 /*
3004 * there are two steps to flush nat entries:
3005 * #1, flush nat entries to journal in current hot data summary block.
3006 * #2, flush nat entries to nat page.
3007 */
3008 if ((cpc->reason & CP_UMOUNT) ||
3009 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3010 to_journal = false;
3011
3012 if (to_journal) {
3013 down_write(&curseg->journal_rwsem);
3014 } else {
3015 page = get_next_nat_page(sbi, start_nid);
3016 if (IS_ERR(page))
3017 return PTR_ERR(page);
3018
3019 nat_blk = page_address(page);
3020 f2fs_bug_on(sbi, !nat_blk);
3021 }
3022
3023 /* flush dirty nats in nat entry set */
3024 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3025 struct f2fs_nat_entry *raw_ne;
3026 nid_t nid = nat_get_nid(ne);
3027 int offset;
3028
3029 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3030
3031 if (to_journal) {
3032 offset = f2fs_lookup_journal_in_cursum(journal,
3033 NAT_JOURNAL, nid, 1);
3034 f2fs_bug_on(sbi, offset < 0);
3035 raw_ne = &nat_in_journal(journal, offset);
3036 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3037 } else {
3038 raw_ne = &nat_blk->entries[nid - start_nid];
3039 }
3040 raw_nat_from_node_info(raw_ne, &ne->ni);
3041 nat_reset_flag(ne);
3042 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3043 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3044 add_free_nid(sbi, nid, false, true);
3045 } else {
3046 spin_lock(&NM_I(sbi)->nid_list_lock);
3047 update_free_nid_bitmap(sbi, nid, false, false);
3048 spin_unlock(&NM_I(sbi)->nid_list_lock);
3049 }
3050 }
3051
3052 if (to_journal) {
3053 up_write(&curseg->journal_rwsem);
3054 } else {
3055 update_nat_bits(sbi, start_nid, page);
3056 f2fs_put_page(page, 1);
3057 }
3058
3059 /* Allow dirty nats by node block allocation in write_begin */
3060 if (!set->entry_cnt) {
3061 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3062 kmem_cache_free(nat_entry_set_slab, set);
3063 }
3064 return 0;
3065 }
3066
3067 /*
3068 * This function is called during the checkpointing process.
3069 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3070 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3071 {
3072 struct f2fs_nm_info *nm_i = NM_I(sbi);
3073 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3074 struct f2fs_journal *journal = curseg->journal;
3075 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3076 struct nat_entry_set *set, *tmp;
3077 unsigned int found;
3078 nid_t set_idx = 0;
3079 LIST_HEAD(sets);
3080 int err = 0;
3081
3082 /*
3083 * during unmount, let's flush nat_bits before checking
3084 * nat_cnt[DIRTY_NAT].
3085 */
3086 if (cpc->reason & CP_UMOUNT) {
3087 f2fs_down_write(&nm_i->nat_tree_lock);
3088 remove_nats_in_journal(sbi);
3089 f2fs_up_write(&nm_i->nat_tree_lock);
3090 }
3091
3092 if (!nm_i->nat_cnt[DIRTY_NAT])
3093 return 0;
3094
3095 f2fs_down_write(&nm_i->nat_tree_lock);
3096
3097 /*
3098 * if there are no enough space in journal to store dirty nat
3099 * entries, remove all entries from journal and merge them
3100 * into nat entry set.
3101 */
3102 if (cpc->reason & CP_UMOUNT ||
3103 !__has_cursum_space(journal,
3104 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3105 remove_nats_in_journal(sbi);
3106
3107 while ((found = __gang_lookup_nat_set(nm_i,
3108 set_idx, NAT_VEC_SIZE, setvec))) {
3109 unsigned idx;
3110
3111 set_idx = setvec[found - 1]->set + 1;
3112 for (idx = 0; idx < found; idx++)
3113 __adjust_nat_entry_set(setvec[idx], &sets,
3114 MAX_NAT_JENTRIES(journal));
3115 }
3116
3117 /* flush dirty nats in nat entry set */
3118 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3119 err = __flush_nat_entry_set(sbi, set, cpc);
3120 if (err)
3121 break;
3122 }
3123
3124 f2fs_up_write(&nm_i->nat_tree_lock);
3125 /* Allow dirty nats by node block allocation in write_begin */
3126
3127 return err;
3128 }
3129
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3130 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3131 {
3132 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3133 struct f2fs_nm_info *nm_i = NM_I(sbi);
3134 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3135 unsigned int i;
3136 __u64 cp_ver = cur_cp_version(ckpt);
3137 block_t nat_bits_addr;
3138
3139 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3140 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3141 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3142 if (!nm_i->nat_bits)
3143 return -ENOMEM;
3144
3145 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3146 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3147
3148 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3149 return 0;
3150
3151 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3152 nm_i->nat_bits_blocks;
3153 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3154 struct page *page;
3155
3156 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3157 if (IS_ERR(page))
3158 return PTR_ERR(page);
3159
3160 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3161 page_address(page), F2FS_BLKSIZE);
3162 f2fs_put_page(page, 1);
3163 }
3164
3165 cp_ver |= (cur_cp_crc(ckpt) << 32);
3166 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3167 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3168 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3169 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3170 return 0;
3171 }
3172
3173 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3174 return 0;
3175 }
3176
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3177 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3178 {
3179 struct f2fs_nm_info *nm_i = NM_I(sbi);
3180 unsigned int i = 0;
3181 nid_t nid, last_nid;
3182
3183 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3184 return;
3185
3186 for (i = 0; i < nm_i->nat_blocks; i++) {
3187 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3188 if (i >= nm_i->nat_blocks)
3189 break;
3190
3191 __set_bit_le(i, nm_i->nat_block_bitmap);
3192
3193 nid = i * NAT_ENTRY_PER_BLOCK;
3194 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3195
3196 spin_lock(&NM_I(sbi)->nid_list_lock);
3197 for (; nid < last_nid; nid++)
3198 update_free_nid_bitmap(sbi, nid, true, true);
3199 spin_unlock(&NM_I(sbi)->nid_list_lock);
3200 }
3201
3202 for (i = 0; i < nm_i->nat_blocks; i++) {
3203 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3204 if (i >= nm_i->nat_blocks)
3205 break;
3206
3207 __set_bit_le(i, nm_i->nat_block_bitmap);
3208 }
3209 }
3210
init_node_manager(struct f2fs_sb_info * sbi)3211 static int init_node_manager(struct f2fs_sb_info *sbi)
3212 {
3213 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3214 struct f2fs_nm_info *nm_i = NM_I(sbi);
3215 unsigned char *version_bitmap;
3216 unsigned int nat_segs;
3217 int err;
3218
3219 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3220
3221 /* segment_count_nat includes pair segment so divide to 2. */
3222 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3223 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3224 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3225
3226 /* not used nids: 0, node, meta, (and root counted as valid node) */
3227 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3228 F2FS_RESERVED_NODE_NUM;
3229 nm_i->nid_cnt[FREE_NID] = 0;
3230 nm_i->nid_cnt[PREALLOC_NID] = 0;
3231 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3232 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3233 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3234 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3235
3236 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3237 INIT_LIST_HEAD(&nm_i->free_nid_list);
3238 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3239 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3240 INIT_LIST_HEAD(&nm_i->nat_entries);
3241 spin_lock_init(&nm_i->nat_list_lock);
3242
3243 mutex_init(&nm_i->build_lock);
3244 spin_lock_init(&nm_i->nid_list_lock);
3245 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3246
3247 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3248 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3249 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3250 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3251 GFP_KERNEL);
3252 if (!nm_i->nat_bitmap)
3253 return -ENOMEM;
3254
3255 err = __get_nat_bitmaps(sbi);
3256 if (err)
3257 return err;
3258
3259 #ifdef CONFIG_F2FS_CHECK_FS
3260 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3261 GFP_KERNEL);
3262 if (!nm_i->nat_bitmap_mir)
3263 return -ENOMEM;
3264 #endif
3265
3266 return 0;
3267 }
3268
init_free_nid_cache(struct f2fs_sb_info * sbi)3269 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3270 {
3271 struct f2fs_nm_info *nm_i = NM_I(sbi);
3272 int i;
3273
3274 nm_i->free_nid_bitmap =
3275 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3276 nm_i->nat_blocks),
3277 GFP_KERNEL);
3278 if (!nm_i->free_nid_bitmap)
3279 return -ENOMEM;
3280
3281 for (i = 0; i < nm_i->nat_blocks; i++) {
3282 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3283 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3284 if (!nm_i->free_nid_bitmap[i])
3285 return -ENOMEM;
3286 }
3287
3288 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3289 GFP_KERNEL);
3290 if (!nm_i->nat_block_bitmap)
3291 return -ENOMEM;
3292
3293 nm_i->free_nid_count =
3294 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3295 nm_i->nat_blocks),
3296 GFP_KERNEL);
3297 if (!nm_i->free_nid_count)
3298 return -ENOMEM;
3299 return 0;
3300 }
3301
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3302 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3303 {
3304 int err;
3305
3306 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3307 GFP_KERNEL);
3308 if (!sbi->nm_info)
3309 return -ENOMEM;
3310
3311 err = init_node_manager(sbi);
3312 if (err)
3313 return err;
3314
3315 err = init_free_nid_cache(sbi);
3316 if (err)
3317 return err;
3318
3319 /* load free nid status from nat_bits table */
3320 load_free_nid_bitmap(sbi);
3321
3322 return f2fs_build_free_nids(sbi, true, true);
3323 }
3324
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3325 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3326 {
3327 struct f2fs_nm_info *nm_i = NM_I(sbi);
3328 struct free_nid *i, *next_i;
3329 void *vec[NAT_VEC_SIZE];
3330 struct nat_entry **natvec = (struct nat_entry **)vec;
3331 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3332 nid_t nid = 0;
3333 unsigned int found;
3334
3335 if (!nm_i)
3336 return;
3337
3338 /* destroy free nid list */
3339 spin_lock(&nm_i->nid_list_lock);
3340 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3341 __remove_free_nid(sbi, i, FREE_NID);
3342 spin_unlock(&nm_i->nid_list_lock);
3343 kmem_cache_free(free_nid_slab, i);
3344 spin_lock(&nm_i->nid_list_lock);
3345 }
3346 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3347 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3348 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3349 spin_unlock(&nm_i->nid_list_lock);
3350
3351 /* destroy nat cache */
3352 f2fs_down_write(&nm_i->nat_tree_lock);
3353 while ((found = __gang_lookup_nat_cache(nm_i,
3354 nid, NAT_VEC_SIZE, natvec))) {
3355 unsigned idx;
3356
3357 nid = nat_get_nid(natvec[found - 1]) + 1;
3358 for (idx = 0; idx < found; idx++) {
3359 spin_lock(&nm_i->nat_list_lock);
3360 list_del(&natvec[idx]->list);
3361 spin_unlock(&nm_i->nat_list_lock);
3362
3363 __del_from_nat_cache(nm_i, natvec[idx]);
3364 }
3365 }
3366 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3367
3368 /* destroy nat set cache */
3369 nid = 0;
3370 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3371 while ((found = __gang_lookup_nat_set(nm_i,
3372 nid, NAT_VEC_SIZE, setvec))) {
3373 unsigned idx;
3374
3375 nid = setvec[found - 1]->set + 1;
3376 for (idx = 0; idx < found; idx++) {
3377 /* entry_cnt is not zero, when cp_error was occurred */
3378 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3379 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3380 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3381 }
3382 }
3383 f2fs_up_write(&nm_i->nat_tree_lock);
3384
3385 kvfree(nm_i->nat_block_bitmap);
3386 if (nm_i->free_nid_bitmap) {
3387 int i;
3388
3389 for (i = 0; i < nm_i->nat_blocks; i++)
3390 kvfree(nm_i->free_nid_bitmap[i]);
3391 kvfree(nm_i->free_nid_bitmap);
3392 }
3393 kvfree(nm_i->free_nid_count);
3394
3395 kvfree(nm_i->nat_bitmap);
3396 kvfree(nm_i->nat_bits);
3397 #ifdef CONFIG_F2FS_CHECK_FS
3398 kvfree(nm_i->nat_bitmap_mir);
3399 #endif
3400 sbi->nm_info = NULL;
3401 kfree(nm_i);
3402 }
3403
f2fs_create_node_manager_caches(void)3404 int __init f2fs_create_node_manager_caches(void)
3405 {
3406 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3407 sizeof(struct nat_entry));
3408 if (!nat_entry_slab)
3409 goto fail;
3410
3411 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3412 sizeof(struct free_nid));
3413 if (!free_nid_slab)
3414 goto destroy_nat_entry;
3415
3416 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3417 sizeof(struct nat_entry_set));
3418 if (!nat_entry_set_slab)
3419 goto destroy_free_nid;
3420
3421 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3422 sizeof(struct fsync_node_entry));
3423 if (!fsync_node_entry_slab)
3424 goto destroy_nat_entry_set;
3425 return 0;
3426
3427 destroy_nat_entry_set:
3428 kmem_cache_destroy(nat_entry_set_slab);
3429 destroy_free_nid:
3430 kmem_cache_destroy(free_nid_slab);
3431 destroy_nat_entry:
3432 kmem_cache_destroy(nat_entry_slab);
3433 fail:
3434 return -ENOMEM;
3435 }
3436
f2fs_destroy_node_manager_caches(void)3437 void f2fs_destroy_node_manager_caches(void)
3438 {
3439 kmem_cache_destroy(fsync_node_entry_slab);
3440 kmem_cache_destroy(nat_entry_set_slab);
3441 kmem_cache_destroy(free_nid_slab);
3442 kmem_cache_destroy(nat_entry_slab);
3443 }
3444