1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_fault_t ret;
43
44 ret = filemap_fault(vmf);
45 if (!ret)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 return VM_FAULT_SIGBUS;
68
69 if (unlikely(f2fs_cp_error(sbi))) {
70 err = -EIO;
71 goto err;
72 }
73
74 if (!f2fs_is_checkpoint_ready(sbi)) {
75 err = -ENOSPC;
76 goto err;
77 }
78
79 err = f2fs_convert_inline_inode(inode);
80 if (err)
81 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 if (f2fs_compressed_file(inode)) {
85 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87 if (ret < 0) {
88 err = ret;
89 goto err;
90 } else if (ret) {
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 filemap_invalidate_lock_shared(inode->i_mapping);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block_locked(&dn, page->index);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152
153 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
154 f2fs_update_time(sbi, REQ_TIME);
155
156 trace_f2fs_vm_page_mkwrite(page, DATA);
157 out_sem:
158 filemap_invalidate_unlock_shared(inode->i_mapping);
159
160 sb_end_pagefault(inode->i_sb);
161 err:
162 return vmf_fs_error(err);
163 }
164
165 static const struct vm_operations_struct f2fs_file_vm_ops = {
166 .fault = f2fs_filemap_fault,
167 .map_pages = filemap_map_pages,
168 .page_mkwrite = f2fs_vm_page_mkwrite,
169 };
170
get_parent_ino(struct inode * inode,nid_t * pino)171 static int get_parent_ino(struct inode *inode, nid_t *pino)
172 {
173 struct dentry *dentry;
174
175 /*
176 * Make sure to get the non-deleted alias. The alias associated with
177 * the open file descriptor being fsync()'ed may be deleted already.
178 */
179 dentry = d_find_alias(inode);
180 if (!dentry)
181 return 0;
182
183 *pino = parent_ino(dentry);
184 dput(dentry);
185 return 1;
186 }
187
need_do_checkpoint(struct inode * inode)188 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
189 {
190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 enum cp_reason_type cp_reason = CP_NO_NEEDED;
192
193 if (!S_ISREG(inode->i_mode))
194 cp_reason = CP_NON_REGULAR;
195 else if (f2fs_compressed_file(inode))
196 cp_reason = CP_COMPRESSED;
197 else if (inode->i_nlink != 1)
198 cp_reason = CP_HARDLINK;
199 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
200 cp_reason = CP_SB_NEED_CP;
201 else if (file_wrong_pino(inode))
202 cp_reason = CP_WRONG_PINO;
203 else if (!f2fs_space_for_roll_forward(sbi))
204 cp_reason = CP_NO_SPC_ROLL;
205 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
206 cp_reason = CP_NODE_NEED_CP;
207 else if (test_opt(sbi, FASTBOOT))
208 cp_reason = CP_FASTBOOT_MODE;
209 else if (F2FS_OPTION(sbi).active_logs == 2)
210 cp_reason = CP_SPEC_LOG_NUM;
211 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
212 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
213 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
214 TRANS_DIR_INO))
215 cp_reason = CP_RECOVER_DIR;
216
217 return cp_reason;
218 }
219
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)220 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
221 {
222 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
223 bool ret = false;
224 /* But we need to avoid that there are some inode updates */
225 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
226 ret = true;
227 f2fs_put_page(i, 0);
228 return ret;
229 }
230
try_to_fix_pino(struct inode * inode)231 static void try_to_fix_pino(struct inode *inode)
232 {
233 struct f2fs_inode_info *fi = F2FS_I(inode);
234 nid_t pino;
235
236 f2fs_down_write(&fi->i_sem);
237 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
238 get_parent_ino(inode, &pino)) {
239 f2fs_i_pino_write(inode, pino);
240 file_got_pino(inode);
241 }
242 f2fs_up_write(&fi->i_sem);
243 }
244
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)245 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
246 int datasync, bool atomic)
247 {
248 struct inode *inode = file->f_mapping->host;
249 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
250 nid_t ino = inode->i_ino;
251 int ret = 0;
252 enum cp_reason_type cp_reason = 0;
253 struct writeback_control wbc = {
254 .sync_mode = WB_SYNC_ALL,
255 .nr_to_write = LONG_MAX,
256 .for_reclaim = 0,
257 };
258 unsigned int seq_id = 0;
259
260 if (unlikely(f2fs_readonly(inode->i_sb)))
261 return 0;
262
263 trace_f2fs_sync_file_enter(inode);
264
265 if (S_ISDIR(inode->i_mode))
266 goto go_write;
267
268 /* if fdatasync is triggered, let's do in-place-update */
269 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
270 set_inode_flag(inode, FI_NEED_IPU);
271 ret = file_write_and_wait_range(file, start, end);
272 clear_inode_flag(inode, FI_NEED_IPU);
273
274 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
275 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
276 return ret;
277 }
278
279 /* if the inode is dirty, let's recover all the time */
280 if (!f2fs_skip_inode_update(inode, datasync)) {
281 f2fs_write_inode(inode, NULL);
282 goto go_write;
283 }
284
285 /*
286 * if there is no written data, don't waste time to write recovery info.
287 */
288 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
289 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
290
291 /* it may call write_inode just prior to fsync */
292 if (need_inode_page_update(sbi, ino))
293 goto go_write;
294
295 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
296 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
297 goto flush_out;
298 goto out;
299 } else {
300 /*
301 * for OPU case, during fsync(), node can be persisted before
302 * data when lower device doesn't support write barrier, result
303 * in data corruption after SPO.
304 * So for strict fsync mode, force to use atomic write semantics
305 * to keep write order in between data/node and last node to
306 * avoid potential data corruption.
307 */
308 if (F2FS_OPTION(sbi).fsync_mode ==
309 FSYNC_MODE_STRICT && !atomic)
310 atomic = true;
311 }
312 go_write:
313 /*
314 * Both of fdatasync() and fsync() are able to be recovered from
315 * sudden-power-off.
316 */
317 f2fs_down_read(&F2FS_I(inode)->i_sem);
318 cp_reason = need_do_checkpoint(inode);
319 f2fs_up_read(&F2FS_I(inode)->i_sem);
320
321 if (cp_reason) {
322 /* all the dirty node pages should be flushed for POR */
323 ret = f2fs_sync_fs(inode->i_sb, 1);
324
325 /*
326 * We've secured consistency through sync_fs. Following pino
327 * will be used only for fsynced inodes after checkpoint.
328 */
329 try_to_fix_pino(inode);
330 clear_inode_flag(inode, FI_APPEND_WRITE);
331 clear_inode_flag(inode, FI_UPDATE_WRITE);
332 goto out;
333 }
334 sync_nodes:
335 atomic_inc(&sbi->wb_sync_req[NODE]);
336 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
337 atomic_dec(&sbi->wb_sync_req[NODE]);
338 if (ret)
339 goto out;
340
341 /* if cp_error was enabled, we should avoid infinite loop */
342 if (unlikely(f2fs_cp_error(sbi))) {
343 ret = -EIO;
344 goto out;
345 }
346
347 if (f2fs_need_inode_block_update(sbi, ino)) {
348 f2fs_mark_inode_dirty_sync(inode, true);
349 f2fs_write_inode(inode, NULL);
350 goto sync_nodes;
351 }
352
353 /*
354 * If it's atomic_write, it's just fine to keep write ordering. So
355 * here we don't need to wait for node write completion, since we use
356 * node chain which serializes node blocks. If one of node writes are
357 * reordered, we can see simply broken chain, resulting in stopping
358 * roll-forward recovery. It means we'll recover all or none node blocks
359 * given fsync mark.
360 */
361 if (!atomic) {
362 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
363 if (ret)
364 goto out;
365 }
366
367 /* once recovery info is written, don't need to tack this */
368 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
369 clear_inode_flag(inode, FI_APPEND_WRITE);
370 flush_out:
371 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
372 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
373 ret = f2fs_issue_flush(sbi, inode->i_ino);
374 if (!ret) {
375 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
376 clear_inode_flag(inode, FI_UPDATE_WRITE);
377 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
378 }
379 f2fs_update_time(sbi, REQ_TIME);
380 out:
381 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
382 return ret;
383 }
384
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)385 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
386 {
387 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
388 return -EIO;
389 return f2fs_do_sync_file(file, start, end, datasync, false);
390 }
391
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)392 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
393 pgoff_t index, int whence)
394 {
395 switch (whence) {
396 case SEEK_DATA:
397 if (__is_valid_data_blkaddr(blkaddr))
398 return true;
399 if (blkaddr == NEW_ADDR &&
400 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
401 return true;
402 break;
403 case SEEK_HOLE:
404 if (blkaddr == NULL_ADDR)
405 return true;
406 break;
407 }
408 return false;
409 }
410
f2fs_seek_block(struct file * file,loff_t offset,int whence)411 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
412 {
413 struct inode *inode = file->f_mapping->host;
414 loff_t maxbytes = inode->i_sb->s_maxbytes;
415 struct dnode_of_data dn;
416 pgoff_t pgofs, end_offset;
417 loff_t data_ofs = offset;
418 loff_t isize;
419 int err = 0;
420
421 inode_lock(inode);
422
423 isize = i_size_read(inode);
424 if (offset >= isize)
425 goto fail;
426
427 /* handle inline data case */
428 if (f2fs_has_inline_data(inode)) {
429 if (whence == SEEK_HOLE) {
430 data_ofs = isize;
431 goto found;
432 } else if (whence == SEEK_DATA) {
433 data_ofs = offset;
434 goto found;
435 }
436 }
437
438 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
439
440 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
441 set_new_dnode(&dn, inode, NULL, NULL, 0);
442 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
443 if (err && err != -ENOENT) {
444 goto fail;
445 } else if (err == -ENOENT) {
446 /* direct node does not exists */
447 if (whence == SEEK_DATA) {
448 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
449 continue;
450 } else {
451 goto found;
452 }
453 }
454
455 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
456
457 /* find data/hole in dnode block */
458 for (; dn.ofs_in_node < end_offset;
459 dn.ofs_in_node++, pgofs++,
460 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 block_t blkaddr;
462
463 blkaddr = f2fs_data_blkaddr(&dn);
464
465 if (__is_valid_data_blkaddr(blkaddr) &&
466 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
467 blkaddr, DATA_GENERIC_ENHANCE)) {
468 f2fs_put_dnode(&dn);
469 goto fail;
470 }
471
472 if (__found_offset(file->f_mapping, blkaddr,
473 pgofs, whence)) {
474 f2fs_put_dnode(&dn);
475 goto found;
476 }
477 }
478 f2fs_put_dnode(&dn);
479 }
480
481 if (whence == SEEK_DATA)
482 goto fail;
483 found:
484 if (whence == SEEK_HOLE && data_ofs > isize)
485 data_ofs = isize;
486 inode_unlock(inode);
487 return vfs_setpos(file, data_ofs, maxbytes);
488 fail:
489 inode_unlock(inode);
490 return -ENXIO;
491 }
492
f2fs_llseek(struct file * file,loff_t offset,int whence)493 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
494 {
495 struct inode *inode = file->f_mapping->host;
496 loff_t maxbytes = inode->i_sb->s_maxbytes;
497
498 if (f2fs_compressed_file(inode))
499 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
500
501 switch (whence) {
502 case SEEK_SET:
503 case SEEK_CUR:
504 case SEEK_END:
505 return generic_file_llseek_size(file, offset, whence,
506 maxbytes, i_size_read(inode));
507 case SEEK_DATA:
508 case SEEK_HOLE:
509 if (offset < 0)
510 return -ENXIO;
511 return f2fs_seek_block(file, offset, whence);
512 }
513
514 return -EINVAL;
515 }
516
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)517 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
518 {
519 struct inode *inode = file_inode(file);
520
521 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
522 return -EIO;
523
524 if (!f2fs_is_compress_backend_ready(inode))
525 return -EOPNOTSUPP;
526
527 file_accessed(file);
528 vma->vm_ops = &f2fs_file_vm_ops;
529
530 f2fs_down_read(&F2FS_I(inode)->i_sem);
531 set_inode_flag(inode, FI_MMAP_FILE);
532 f2fs_up_read(&F2FS_I(inode)->i_sem);
533
534 return 0;
535 }
536
f2fs_file_open(struct inode * inode,struct file * filp)537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 int err = fscrypt_file_open(inode, filp);
540
541 if (err)
542 return err;
543
544 if (!f2fs_is_compress_backend_ready(inode))
545 return -EOPNOTSUPP;
546
547 err = fsverity_file_open(inode, filp);
548 if (err)
549 return err;
550
551 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
552 filp->f_mode |= FMODE_CAN_ODIRECT;
553
554 return dquot_file_open(inode, filp);
555 }
556
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)557 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
558 {
559 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
560 struct f2fs_node *raw_node;
561 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
562 __le32 *addr;
563 int base = 0;
564 bool compressed_cluster = false;
565 int cluster_index = 0, valid_blocks = 0;
566 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
567 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
568
569 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
570 base = get_extra_isize(dn->inode);
571
572 raw_node = F2FS_NODE(dn->node_page);
573 addr = blkaddr_in_node(raw_node) + base + ofs;
574
575 /* Assumption: truncation starts with cluster */
576 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
577 block_t blkaddr = le32_to_cpu(*addr);
578
579 if (f2fs_compressed_file(dn->inode) &&
580 !(cluster_index & (cluster_size - 1))) {
581 if (compressed_cluster)
582 f2fs_i_compr_blocks_update(dn->inode,
583 valid_blocks, false);
584 compressed_cluster = (blkaddr == COMPRESS_ADDR);
585 valid_blocks = 0;
586 }
587
588 if (blkaddr == NULL_ADDR)
589 continue;
590
591 dn->data_blkaddr = NULL_ADDR;
592 f2fs_set_data_blkaddr(dn);
593
594 if (__is_valid_data_blkaddr(blkaddr)) {
595 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
596 DATA_GENERIC_ENHANCE))
597 continue;
598 if (compressed_cluster)
599 valid_blocks++;
600 }
601
602 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
603 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
604
605 f2fs_invalidate_blocks(sbi, blkaddr);
606
607 if (!released || blkaddr != COMPRESS_ADDR)
608 nr_free++;
609 }
610
611 if (compressed_cluster)
612 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
613
614 if (nr_free) {
615 pgoff_t fofs;
616 /*
617 * once we invalidate valid blkaddr in range [ofs, ofs + count],
618 * we will invalidate all blkaddr in the whole range.
619 */
620 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
621 dn->inode) + ofs;
622 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
623 f2fs_update_age_extent_cache_range(dn, fofs, len);
624 dec_valid_block_count(sbi, dn->inode, nr_free);
625 }
626 dn->ofs_in_node = ofs;
627
628 f2fs_update_time(sbi, REQ_TIME);
629 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
630 dn->ofs_in_node, nr_free);
631 }
632
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)633 static int truncate_partial_data_page(struct inode *inode, u64 from,
634 bool cache_only)
635 {
636 loff_t offset = from & (PAGE_SIZE - 1);
637 pgoff_t index = from >> PAGE_SHIFT;
638 struct address_space *mapping = inode->i_mapping;
639 struct page *page;
640
641 if (!offset && !cache_only)
642 return 0;
643
644 if (cache_only) {
645 page = find_lock_page(mapping, index);
646 if (page && PageUptodate(page))
647 goto truncate_out;
648 f2fs_put_page(page, 1);
649 return 0;
650 }
651
652 page = f2fs_get_lock_data_page(inode, index, true);
653 if (IS_ERR(page))
654 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
655 truncate_out:
656 f2fs_wait_on_page_writeback(page, DATA, true, true);
657 zero_user(page, offset, PAGE_SIZE - offset);
658
659 /* An encrypted inode should have a key and truncate the last page. */
660 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
661 if (!cache_only)
662 set_page_dirty(page);
663 f2fs_put_page(page, 1);
664 return 0;
665 }
666
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)667 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
668 {
669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
670 struct dnode_of_data dn;
671 pgoff_t free_from;
672 int count = 0, err = 0;
673 struct page *ipage;
674 bool truncate_page = false;
675
676 trace_f2fs_truncate_blocks_enter(inode, from);
677
678 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
679
680 if (free_from >= max_file_blocks(inode))
681 goto free_partial;
682
683 if (lock)
684 f2fs_lock_op(sbi);
685
686 ipage = f2fs_get_node_page(sbi, inode->i_ino);
687 if (IS_ERR(ipage)) {
688 err = PTR_ERR(ipage);
689 goto out;
690 }
691
692 if (f2fs_has_inline_data(inode)) {
693 f2fs_truncate_inline_inode(inode, ipage, from);
694 f2fs_put_page(ipage, 1);
695 truncate_page = true;
696 goto out;
697 }
698
699 set_new_dnode(&dn, inode, ipage, NULL, 0);
700 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
701 if (err) {
702 if (err == -ENOENT)
703 goto free_next;
704 goto out;
705 }
706
707 count = ADDRS_PER_PAGE(dn.node_page, inode);
708
709 count -= dn.ofs_in_node;
710 f2fs_bug_on(sbi, count < 0);
711
712 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
713 f2fs_truncate_data_blocks_range(&dn, count);
714 free_from += count;
715 }
716
717 f2fs_put_dnode(&dn);
718 free_next:
719 err = f2fs_truncate_inode_blocks(inode, free_from);
720 out:
721 if (lock)
722 f2fs_unlock_op(sbi);
723 free_partial:
724 /* lastly zero out the first data page */
725 if (!err)
726 err = truncate_partial_data_page(inode, from, truncate_page);
727
728 trace_f2fs_truncate_blocks_exit(inode, err);
729 return err;
730 }
731
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)732 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
733 {
734 u64 free_from = from;
735 int err;
736
737 #ifdef CONFIG_F2FS_FS_COMPRESSION
738 /*
739 * for compressed file, only support cluster size
740 * aligned truncation.
741 */
742 if (f2fs_compressed_file(inode))
743 free_from = round_up(from,
744 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
745 #endif
746
747 err = f2fs_do_truncate_blocks(inode, free_from, lock);
748 if (err)
749 return err;
750
751 #ifdef CONFIG_F2FS_FS_COMPRESSION
752 /*
753 * For compressed file, after release compress blocks, don't allow write
754 * direct, but we should allow write direct after truncate to zero.
755 */
756 if (f2fs_compressed_file(inode) && !free_from
757 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
758 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
759
760 if (from != free_from) {
761 err = f2fs_truncate_partial_cluster(inode, from, lock);
762 if (err)
763 return err;
764 }
765 #endif
766
767 return 0;
768 }
769
f2fs_truncate(struct inode * inode)770 int f2fs_truncate(struct inode *inode)
771 {
772 int err;
773
774 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
775 return -EIO;
776
777 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
778 S_ISLNK(inode->i_mode)))
779 return 0;
780
781 trace_f2fs_truncate(inode);
782
783 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
784 return -EIO;
785
786 err = f2fs_dquot_initialize(inode);
787 if (err)
788 return err;
789
790 /* we should check inline_data size */
791 if (!f2fs_may_inline_data(inode)) {
792 err = f2fs_convert_inline_inode(inode);
793 if (err)
794 return err;
795 }
796
797 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
798 if (err)
799 return err;
800
801 inode->i_mtime = inode_set_ctime_current(inode);
802 f2fs_mark_inode_dirty_sync(inode, false);
803 return 0;
804 }
805
f2fs_force_buffered_io(struct inode * inode,int rw)806 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
807 {
808 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
809
810 if (!fscrypt_dio_supported(inode))
811 return true;
812 if (fsverity_active(inode))
813 return true;
814 if (f2fs_compressed_file(inode))
815 return true;
816
817 /* disallow direct IO if any of devices has unaligned blksize */
818 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
819 return true;
820 /*
821 * for blkzoned device, fallback direct IO to buffered IO, so
822 * all IOs can be serialized by log-structured write.
823 */
824 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
825 return true;
826 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
827 return true;
828 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
829 return true;
830
831 return false;
832 }
833
f2fs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)834 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
835 struct kstat *stat, u32 request_mask, unsigned int query_flags)
836 {
837 struct inode *inode = d_inode(path->dentry);
838 struct f2fs_inode_info *fi = F2FS_I(inode);
839 struct f2fs_inode *ri = NULL;
840 unsigned int flags;
841
842 if (f2fs_has_extra_attr(inode) &&
843 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
844 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
845 stat->result_mask |= STATX_BTIME;
846 stat->btime.tv_sec = fi->i_crtime.tv_sec;
847 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
848 }
849
850 /*
851 * Return the DIO alignment restrictions if requested. We only return
852 * this information when requested, since on encrypted files it might
853 * take a fair bit of work to get if the file wasn't opened recently.
854 *
855 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
856 * cannot represent that, so in that case we report no DIO support.
857 */
858 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
859 unsigned int bsize = i_blocksize(inode);
860
861 stat->result_mask |= STATX_DIOALIGN;
862 if (!f2fs_force_buffered_io(inode, WRITE)) {
863 stat->dio_mem_align = bsize;
864 stat->dio_offset_align = bsize;
865 }
866 }
867
868 flags = fi->i_flags;
869 if (flags & F2FS_COMPR_FL)
870 stat->attributes |= STATX_ATTR_COMPRESSED;
871 if (flags & F2FS_APPEND_FL)
872 stat->attributes |= STATX_ATTR_APPEND;
873 if (IS_ENCRYPTED(inode))
874 stat->attributes |= STATX_ATTR_ENCRYPTED;
875 if (flags & F2FS_IMMUTABLE_FL)
876 stat->attributes |= STATX_ATTR_IMMUTABLE;
877 if (flags & F2FS_NODUMP_FL)
878 stat->attributes |= STATX_ATTR_NODUMP;
879 if (IS_VERITY(inode))
880 stat->attributes |= STATX_ATTR_VERITY;
881
882 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
883 STATX_ATTR_APPEND |
884 STATX_ATTR_ENCRYPTED |
885 STATX_ATTR_IMMUTABLE |
886 STATX_ATTR_NODUMP |
887 STATX_ATTR_VERITY);
888
889 generic_fillattr(idmap, request_mask, inode, stat);
890
891 /* we need to show initial sectors used for inline_data/dentries */
892 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
893 f2fs_has_inline_dentry(inode))
894 stat->blocks += (stat->size + 511) >> 9;
895
896 return 0;
897 }
898
899 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct mnt_idmap * idmap,struct inode * inode,const struct iattr * attr)900 static void __setattr_copy(struct mnt_idmap *idmap,
901 struct inode *inode, const struct iattr *attr)
902 {
903 unsigned int ia_valid = attr->ia_valid;
904
905 i_uid_update(idmap, attr, inode);
906 i_gid_update(idmap, attr, inode);
907 if (ia_valid & ATTR_ATIME)
908 inode->i_atime = attr->ia_atime;
909 if (ia_valid & ATTR_MTIME)
910 inode->i_mtime = attr->ia_mtime;
911 if (ia_valid & ATTR_CTIME)
912 inode_set_ctime_to_ts(inode, attr->ia_ctime);
913 if (ia_valid & ATTR_MODE) {
914 umode_t mode = attr->ia_mode;
915 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
916
917 if (!vfsgid_in_group_p(vfsgid) &&
918 !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
919 mode &= ~S_ISGID;
920 set_acl_inode(inode, mode);
921 }
922 }
923 #else
924 #define __setattr_copy setattr_copy
925 #endif
926
f2fs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)927 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
928 struct iattr *attr)
929 {
930 struct inode *inode = d_inode(dentry);
931 int err;
932
933 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
934 return -EIO;
935
936 if (unlikely(IS_IMMUTABLE(inode)))
937 return -EPERM;
938
939 if (unlikely(IS_APPEND(inode) &&
940 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
941 ATTR_GID | ATTR_TIMES_SET))))
942 return -EPERM;
943
944 if ((attr->ia_valid & ATTR_SIZE) &&
945 !f2fs_is_compress_backend_ready(inode))
946 return -EOPNOTSUPP;
947
948 err = setattr_prepare(idmap, dentry, attr);
949 if (err)
950 return err;
951
952 err = fscrypt_prepare_setattr(dentry, attr);
953 if (err)
954 return err;
955
956 err = fsverity_prepare_setattr(dentry, attr);
957 if (err)
958 return err;
959
960 if (is_quota_modification(idmap, inode, attr)) {
961 err = f2fs_dquot_initialize(inode);
962 if (err)
963 return err;
964 }
965 if (i_uid_needs_update(idmap, attr, inode) ||
966 i_gid_needs_update(idmap, attr, inode)) {
967 f2fs_lock_op(F2FS_I_SB(inode));
968 err = dquot_transfer(idmap, inode, attr);
969 if (err) {
970 set_sbi_flag(F2FS_I_SB(inode),
971 SBI_QUOTA_NEED_REPAIR);
972 f2fs_unlock_op(F2FS_I_SB(inode));
973 return err;
974 }
975 /*
976 * update uid/gid under lock_op(), so that dquot and inode can
977 * be updated atomically.
978 */
979 i_uid_update(idmap, attr, inode);
980 i_gid_update(idmap, attr, inode);
981 f2fs_mark_inode_dirty_sync(inode, true);
982 f2fs_unlock_op(F2FS_I_SB(inode));
983 }
984
985 if (attr->ia_valid & ATTR_SIZE) {
986 loff_t old_size = i_size_read(inode);
987
988 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
989 /*
990 * should convert inline inode before i_size_write to
991 * keep smaller than inline_data size with inline flag.
992 */
993 err = f2fs_convert_inline_inode(inode);
994 if (err)
995 return err;
996 }
997
998 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
999 filemap_invalidate_lock(inode->i_mapping);
1000
1001 truncate_setsize(inode, attr->ia_size);
1002
1003 if (attr->ia_size <= old_size)
1004 err = f2fs_truncate(inode);
1005 /*
1006 * do not trim all blocks after i_size if target size is
1007 * larger than i_size.
1008 */
1009 filemap_invalidate_unlock(inode->i_mapping);
1010 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1011 if (err)
1012 return err;
1013
1014 spin_lock(&F2FS_I(inode)->i_size_lock);
1015 inode->i_mtime = inode_set_ctime_current(inode);
1016 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1017 spin_unlock(&F2FS_I(inode)->i_size_lock);
1018 }
1019
1020 __setattr_copy(idmap, inode, attr);
1021
1022 if (attr->ia_valid & ATTR_MODE) {
1023 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1024
1025 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1026 if (!err)
1027 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1028 clear_inode_flag(inode, FI_ACL_MODE);
1029 }
1030 }
1031
1032 /* file size may changed here */
1033 f2fs_mark_inode_dirty_sync(inode, true);
1034
1035 /* inode change will produce dirty node pages flushed by checkpoint */
1036 f2fs_balance_fs(F2FS_I_SB(inode), true);
1037
1038 return err;
1039 }
1040
1041 const struct inode_operations f2fs_file_inode_operations = {
1042 .getattr = f2fs_getattr,
1043 .setattr = f2fs_setattr,
1044 .get_inode_acl = f2fs_get_acl,
1045 .set_acl = f2fs_set_acl,
1046 .listxattr = f2fs_listxattr,
1047 .fiemap = f2fs_fiemap,
1048 .fileattr_get = f2fs_fileattr_get,
1049 .fileattr_set = f2fs_fileattr_set,
1050 };
1051
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1052 static int fill_zero(struct inode *inode, pgoff_t index,
1053 loff_t start, loff_t len)
1054 {
1055 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1056 struct page *page;
1057
1058 if (!len)
1059 return 0;
1060
1061 f2fs_balance_fs(sbi, true);
1062
1063 f2fs_lock_op(sbi);
1064 page = f2fs_get_new_data_page(inode, NULL, index, false);
1065 f2fs_unlock_op(sbi);
1066
1067 if (IS_ERR(page))
1068 return PTR_ERR(page);
1069
1070 f2fs_wait_on_page_writeback(page, DATA, true, true);
1071 zero_user(page, start, len);
1072 set_page_dirty(page);
1073 f2fs_put_page(page, 1);
1074 return 0;
1075 }
1076
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1077 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1078 {
1079 int err;
1080
1081 while (pg_start < pg_end) {
1082 struct dnode_of_data dn;
1083 pgoff_t end_offset, count;
1084
1085 set_new_dnode(&dn, inode, NULL, NULL, 0);
1086 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1087 if (err) {
1088 if (err == -ENOENT) {
1089 pg_start = f2fs_get_next_page_offset(&dn,
1090 pg_start);
1091 continue;
1092 }
1093 return err;
1094 }
1095
1096 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1097 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1098
1099 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1100
1101 f2fs_truncate_data_blocks_range(&dn, count);
1102 f2fs_put_dnode(&dn);
1103
1104 pg_start += count;
1105 }
1106 return 0;
1107 }
1108
f2fs_punch_hole(struct inode * inode,loff_t offset,loff_t len)1109 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1110 {
1111 pgoff_t pg_start, pg_end;
1112 loff_t off_start, off_end;
1113 int ret;
1114
1115 ret = f2fs_convert_inline_inode(inode);
1116 if (ret)
1117 return ret;
1118
1119 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1120 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1121
1122 off_start = offset & (PAGE_SIZE - 1);
1123 off_end = (offset + len) & (PAGE_SIZE - 1);
1124
1125 if (pg_start == pg_end) {
1126 ret = fill_zero(inode, pg_start, off_start,
1127 off_end - off_start);
1128 if (ret)
1129 return ret;
1130 } else {
1131 if (off_start) {
1132 ret = fill_zero(inode, pg_start++, off_start,
1133 PAGE_SIZE - off_start);
1134 if (ret)
1135 return ret;
1136 }
1137 if (off_end) {
1138 ret = fill_zero(inode, pg_end, 0, off_end);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 if (pg_start < pg_end) {
1144 loff_t blk_start, blk_end;
1145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146
1147 f2fs_balance_fs(sbi, true);
1148
1149 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1150 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1151
1152 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1153 filemap_invalidate_lock(inode->i_mapping);
1154
1155 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1156
1157 f2fs_lock_op(sbi);
1158 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1159 f2fs_unlock_op(sbi);
1160
1161 filemap_invalidate_unlock(inode->i_mapping);
1162 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1163 }
1164 }
1165
1166 return ret;
1167 }
1168
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1169 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1170 int *do_replace, pgoff_t off, pgoff_t len)
1171 {
1172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173 struct dnode_of_data dn;
1174 int ret, done, i;
1175
1176 next_dnode:
1177 set_new_dnode(&dn, inode, NULL, NULL, 0);
1178 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1179 if (ret && ret != -ENOENT) {
1180 return ret;
1181 } else if (ret == -ENOENT) {
1182 if (dn.max_level == 0)
1183 return -ENOENT;
1184 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1185 dn.ofs_in_node, len);
1186 blkaddr += done;
1187 do_replace += done;
1188 goto next;
1189 }
1190
1191 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1192 dn.ofs_in_node, len);
1193 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1194 *blkaddr = f2fs_data_blkaddr(&dn);
1195
1196 if (__is_valid_data_blkaddr(*blkaddr) &&
1197 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1198 DATA_GENERIC_ENHANCE)) {
1199 f2fs_put_dnode(&dn);
1200 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1201 return -EFSCORRUPTED;
1202 }
1203
1204 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1205
1206 if (f2fs_lfs_mode(sbi)) {
1207 f2fs_put_dnode(&dn);
1208 return -EOPNOTSUPP;
1209 }
1210
1211 /* do not invalidate this block address */
1212 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1213 *do_replace = 1;
1214 }
1215 }
1216 f2fs_put_dnode(&dn);
1217 next:
1218 len -= done;
1219 off += done;
1220 if (len)
1221 goto next_dnode;
1222 return 0;
1223 }
1224
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1225 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1226 int *do_replace, pgoff_t off, int len)
1227 {
1228 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1229 struct dnode_of_data dn;
1230 int ret, i;
1231
1232 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1233 if (*do_replace == 0)
1234 continue;
1235
1236 set_new_dnode(&dn, inode, NULL, NULL, 0);
1237 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1238 if (ret) {
1239 dec_valid_block_count(sbi, inode, 1);
1240 f2fs_invalidate_blocks(sbi, *blkaddr);
1241 } else {
1242 f2fs_update_data_blkaddr(&dn, *blkaddr);
1243 }
1244 f2fs_put_dnode(&dn);
1245 }
1246 return 0;
1247 }
1248
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1249 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1250 block_t *blkaddr, int *do_replace,
1251 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1252 {
1253 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1254 pgoff_t i = 0;
1255 int ret;
1256
1257 while (i < len) {
1258 if (blkaddr[i] == NULL_ADDR && !full) {
1259 i++;
1260 continue;
1261 }
1262
1263 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1264 struct dnode_of_data dn;
1265 struct node_info ni;
1266 size_t new_size;
1267 pgoff_t ilen;
1268
1269 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1270 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1271 if (ret)
1272 return ret;
1273
1274 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1275 if (ret) {
1276 f2fs_put_dnode(&dn);
1277 return ret;
1278 }
1279
1280 ilen = min((pgoff_t)
1281 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1282 dn.ofs_in_node, len - i);
1283 do {
1284 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1285 f2fs_truncate_data_blocks_range(&dn, 1);
1286
1287 if (do_replace[i]) {
1288 f2fs_i_blocks_write(src_inode,
1289 1, false, false);
1290 f2fs_i_blocks_write(dst_inode,
1291 1, true, false);
1292 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1293 blkaddr[i], ni.version, true, false);
1294
1295 do_replace[i] = 0;
1296 }
1297 dn.ofs_in_node++;
1298 i++;
1299 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1300 if (dst_inode->i_size < new_size)
1301 f2fs_i_size_write(dst_inode, new_size);
1302 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1303
1304 f2fs_put_dnode(&dn);
1305 } else {
1306 struct page *psrc, *pdst;
1307
1308 psrc = f2fs_get_lock_data_page(src_inode,
1309 src + i, true);
1310 if (IS_ERR(psrc))
1311 return PTR_ERR(psrc);
1312 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1313 true);
1314 if (IS_ERR(pdst)) {
1315 f2fs_put_page(psrc, 1);
1316 return PTR_ERR(pdst);
1317 }
1318 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1319 set_page_dirty(pdst);
1320 f2fs_put_page(pdst, 1);
1321 f2fs_put_page(psrc, 1);
1322
1323 ret = f2fs_truncate_hole(src_inode,
1324 src + i, src + i + 1);
1325 if (ret)
1326 return ret;
1327 i++;
1328 }
1329 }
1330 return 0;
1331 }
1332
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1333 static int __exchange_data_block(struct inode *src_inode,
1334 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1335 pgoff_t len, bool full)
1336 {
1337 block_t *src_blkaddr;
1338 int *do_replace;
1339 pgoff_t olen;
1340 int ret;
1341
1342 while (len) {
1343 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1344
1345 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1346 array_size(olen, sizeof(block_t)),
1347 GFP_NOFS);
1348 if (!src_blkaddr)
1349 return -ENOMEM;
1350
1351 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1352 array_size(olen, sizeof(int)),
1353 GFP_NOFS);
1354 if (!do_replace) {
1355 kvfree(src_blkaddr);
1356 return -ENOMEM;
1357 }
1358
1359 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1360 do_replace, src, olen);
1361 if (ret)
1362 goto roll_back;
1363
1364 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1365 do_replace, src, dst, olen, full);
1366 if (ret)
1367 goto roll_back;
1368
1369 src += olen;
1370 dst += olen;
1371 len -= olen;
1372
1373 kvfree(src_blkaddr);
1374 kvfree(do_replace);
1375 }
1376 return 0;
1377
1378 roll_back:
1379 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1380 kvfree(src_blkaddr);
1381 kvfree(do_replace);
1382 return ret;
1383 }
1384
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1385 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1386 {
1387 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1388 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1389 pgoff_t start = offset >> PAGE_SHIFT;
1390 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1391 int ret;
1392
1393 f2fs_balance_fs(sbi, true);
1394
1395 /* avoid gc operation during block exchange */
1396 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1397 filemap_invalidate_lock(inode->i_mapping);
1398
1399 f2fs_lock_op(sbi);
1400 f2fs_drop_extent_tree(inode);
1401 truncate_pagecache(inode, offset);
1402 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1403 f2fs_unlock_op(sbi);
1404
1405 filemap_invalidate_unlock(inode->i_mapping);
1406 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1407 return ret;
1408 }
1409
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1410 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1411 {
1412 loff_t new_size;
1413 int ret;
1414
1415 if (offset + len >= i_size_read(inode))
1416 return -EINVAL;
1417
1418 /* collapse range should be aligned to block size of f2fs. */
1419 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1420 return -EINVAL;
1421
1422 ret = f2fs_convert_inline_inode(inode);
1423 if (ret)
1424 return ret;
1425
1426 /* write out all dirty pages from offset */
1427 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1428 if (ret)
1429 return ret;
1430
1431 ret = f2fs_do_collapse(inode, offset, len);
1432 if (ret)
1433 return ret;
1434
1435 /* write out all moved pages, if possible */
1436 filemap_invalidate_lock(inode->i_mapping);
1437 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1438 truncate_pagecache(inode, offset);
1439
1440 new_size = i_size_read(inode) - len;
1441 ret = f2fs_truncate_blocks(inode, new_size, true);
1442 filemap_invalidate_unlock(inode->i_mapping);
1443 if (!ret)
1444 f2fs_i_size_write(inode, new_size);
1445 return ret;
1446 }
1447
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1448 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1449 pgoff_t end)
1450 {
1451 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1452 pgoff_t index = start;
1453 unsigned int ofs_in_node = dn->ofs_in_node;
1454 blkcnt_t count = 0;
1455 int ret;
1456
1457 for (; index < end; index++, dn->ofs_in_node++) {
1458 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1459 count++;
1460 }
1461
1462 dn->ofs_in_node = ofs_in_node;
1463 ret = f2fs_reserve_new_blocks(dn, count);
1464 if (ret)
1465 return ret;
1466
1467 dn->ofs_in_node = ofs_in_node;
1468 for (index = start; index < end; index++, dn->ofs_in_node++) {
1469 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1470 /*
1471 * f2fs_reserve_new_blocks will not guarantee entire block
1472 * allocation.
1473 */
1474 if (dn->data_blkaddr == NULL_ADDR) {
1475 ret = -ENOSPC;
1476 break;
1477 }
1478
1479 if (dn->data_blkaddr == NEW_ADDR)
1480 continue;
1481
1482 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1483 DATA_GENERIC_ENHANCE)) {
1484 ret = -EFSCORRUPTED;
1485 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1486 break;
1487 }
1488
1489 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1490 dn->data_blkaddr = NEW_ADDR;
1491 f2fs_set_data_blkaddr(dn);
1492 }
1493
1494 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1495 f2fs_update_age_extent_cache_range(dn, start, index - start);
1496
1497 return ret;
1498 }
1499
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1500 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1501 int mode)
1502 {
1503 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1504 struct address_space *mapping = inode->i_mapping;
1505 pgoff_t index, pg_start, pg_end;
1506 loff_t new_size = i_size_read(inode);
1507 loff_t off_start, off_end;
1508 int ret = 0;
1509
1510 ret = inode_newsize_ok(inode, (len + offset));
1511 if (ret)
1512 return ret;
1513
1514 ret = f2fs_convert_inline_inode(inode);
1515 if (ret)
1516 return ret;
1517
1518 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1519 if (ret)
1520 return ret;
1521
1522 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1523 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1524
1525 off_start = offset & (PAGE_SIZE - 1);
1526 off_end = (offset + len) & (PAGE_SIZE - 1);
1527
1528 if (pg_start == pg_end) {
1529 ret = fill_zero(inode, pg_start, off_start,
1530 off_end - off_start);
1531 if (ret)
1532 return ret;
1533
1534 new_size = max_t(loff_t, new_size, offset + len);
1535 } else {
1536 if (off_start) {
1537 ret = fill_zero(inode, pg_start++, off_start,
1538 PAGE_SIZE - off_start);
1539 if (ret)
1540 return ret;
1541
1542 new_size = max_t(loff_t, new_size,
1543 (loff_t)pg_start << PAGE_SHIFT);
1544 }
1545
1546 for (index = pg_start; index < pg_end;) {
1547 struct dnode_of_data dn;
1548 unsigned int end_offset;
1549 pgoff_t end;
1550
1551 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1552 filemap_invalidate_lock(mapping);
1553
1554 truncate_pagecache_range(inode,
1555 (loff_t)index << PAGE_SHIFT,
1556 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1557
1558 f2fs_lock_op(sbi);
1559
1560 set_new_dnode(&dn, inode, NULL, NULL, 0);
1561 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1562 if (ret) {
1563 f2fs_unlock_op(sbi);
1564 filemap_invalidate_unlock(mapping);
1565 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1566 goto out;
1567 }
1568
1569 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1570 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1571
1572 ret = f2fs_do_zero_range(&dn, index, end);
1573 f2fs_put_dnode(&dn);
1574
1575 f2fs_unlock_op(sbi);
1576 filemap_invalidate_unlock(mapping);
1577 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1578
1579 f2fs_balance_fs(sbi, dn.node_changed);
1580
1581 if (ret)
1582 goto out;
1583
1584 index = end;
1585 new_size = max_t(loff_t, new_size,
1586 (loff_t)index << PAGE_SHIFT);
1587 }
1588
1589 if (off_end) {
1590 ret = fill_zero(inode, pg_end, 0, off_end);
1591 if (ret)
1592 goto out;
1593
1594 new_size = max_t(loff_t, new_size, offset + len);
1595 }
1596 }
1597
1598 out:
1599 if (new_size > i_size_read(inode)) {
1600 if (mode & FALLOC_FL_KEEP_SIZE)
1601 file_set_keep_isize(inode);
1602 else
1603 f2fs_i_size_write(inode, new_size);
1604 }
1605 return ret;
1606 }
1607
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1608 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1609 {
1610 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611 struct address_space *mapping = inode->i_mapping;
1612 pgoff_t nr, pg_start, pg_end, delta, idx;
1613 loff_t new_size;
1614 int ret = 0;
1615
1616 new_size = i_size_read(inode) + len;
1617 ret = inode_newsize_ok(inode, new_size);
1618 if (ret)
1619 return ret;
1620
1621 if (offset >= i_size_read(inode))
1622 return -EINVAL;
1623
1624 /* insert range should be aligned to block size of f2fs. */
1625 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1626 return -EINVAL;
1627
1628 ret = f2fs_convert_inline_inode(inode);
1629 if (ret)
1630 return ret;
1631
1632 f2fs_balance_fs(sbi, true);
1633
1634 filemap_invalidate_lock(mapping);
1635 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1636 filemap_invalidate_unlock(mapping);
1637 if (ret)
1638 return ret;
1639
1640 /* write out all dirty pages from offset */
1641 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1642 if (ret)
1643 return ret;
1644
1645 pg_start = offset >> PAGE_SHIFT;
1646 pg_end = (offset + len) >> PAGE_SHIFT;
1647 delta = pg_end - pg_start;
1648 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1649
1650 /* avoid gc operation during block exchange */
1651 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1652 filemap_invalidate_lock(mapping);
1653 truncate_pagecache(inode, offset);
1654
1655 while (!ret && idx > pg_start) {
1656 nr = idx - pg_start;
1657 if (nr > delta)
1658 nr = delta;
1659 idx -= nr;
1660
1661 f2fs_lock_op(sbi);
1662 f2fs_drop_extent_tree(inode);
1663
1664 ret = __exchange_data_block(inode, inode, idx,
1665 idx + delta, nr, false);
1666 f2fs_unlock_op(sbi);
1667 }
1668 filemap_invalidate_unlock(mapping);
1669 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1670
1671 /* write out all moved pages, if possible */
1672 filemap_invalidate_lock(mapping);
1673 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1674 truncate_pagecache(inode, offset);
1675 filemap_invalidate_unlock(mapping);
1676
1677 if (!ret)
1678 f2fs_i_size_write(inode, new_size);
1679 return ret;
1680 }
1681
f2fs_expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1682 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1683 loff_t len, int mode)
1684 {
1685 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1686 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1687 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1688 .m_may_create = true };
1689 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1690 .init_gc_type = FG_GC,
1691 .should_migrate_blocks = false,
1692 .err_gc_skipped = true,
1693 .nr_free_secs = 0 };
1694 pgoff_t pg_start, pg_end;
1695 loff_t new_size;
1696 loff_t off_end;
1697 block_t expanded = 0;
1698 int err;
1699
1700 err = inode_newsize_ok(inode, (len + offset));
1701 if (err)
1702 return err;
1703
1704 err = f2fs_convert_inline_inode(inode);
1705 if (err)
1706 return err;
1707
1708 f2fs_balance_fs(sbi, true);
1709
1710 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1711 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1712 off_end = (offset + len) & (PAGE_SIZE - 1);
1713
1714 map.m_lblk = pg_start;
1715 map.m_len = pg_end - pg_start;
1716 if (off_end)
1717 map.m_len++;
1718
1719 if (!map.m_len)
1720 return 0;
1721
1722 if (f2fs_is_pinned_file(inode)) {
1723 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1724 block_t sec_len = roundup(map.m_len, sec_blks);
1725
1726 map.m_len = sec_blks;
1727 next_alloc:
1728 if (has_not_enough_free_secs(sbi, 0,
1729 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1730 f2fs_down_write(&sbi->gc_lock);
1731 stat_inc_gc_call_count(sbi, FOREGROUND);
1732 err = f2fs_gc(sbi, &gc_control);
1733 if (err && err != -ENODATA)
1734 goto out_err;
1735 }
1736
1737 f2fs_down_write(&sbi->pin_sem);
1738
1739 f2fs_lock_op(sbi);
1740 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1741 f2fs_unlock_op(sbi);
1742
1743 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1744 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1745 file_dont_truncate(inode);
1746
1747 f2fs_up_write(&sbi->pin_sem);
1748
1749 expanded += map.m_len;
1750 sec_len -= map.m_len;
1751 map.m_lblk += map.m_len;
1752 if (!err && sec_len)
1753 goto next_alloc;
1754
1755 map.m_len = expanded;
1756 } else {
1757 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1758 expanded = map.m_len;
1759 }
1760 out_err:
1761 if (err) {
1762 pgoff_t last_off;
1763
1764 if (!expanded)
1765 return err;
1766
1767 last_off = pg_start + expanded - 1;
1768
1769 /* update new size to the failed position */
1770 new_size = (last_off == pg_end) ? offset + len :
1771 (loff_t)(last_off + 1) << PAGE_SHIFT;
1772 } else {
1773 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1774 }
1775
1776 if (new_size > i_size_read(inode)) {
1777 if (mode & FALLOC_FL_KEEP_SIZE)
1778 file_set_keep_isize(inode);
1779 else
1780 f2fs_i_size_write(inode, new_size);
1781 }
1782
1783 return err;
1784 }
1785
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1786 static long f2fs_fallocate(struct file *file, int mode,
1787 loff_t offset, loff_t len)
1788 {
1789 struct inode *inode = file_inode(file);
1790 long ret = 0;
1791
1792 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1793 return -EIO;
1794 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1795 return -ENOSPC;
1796 if (!f2fs_is_compress_backend_ready(inode))
1797 return -EOPNOTSUPP;
1798
1799 /* f2fs only support ->fallocate for regular file */
1800 if (!S_ISREG(inode->i_mode))
1801 return -EINVAL;
1802
1803 if (IS_ENCRYPTED(inode) &&
1804 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1805 return -EOPNOTSUPP;
1806
1807 /*
1808 * Pinned file should not support partial truncation since the block
1809 * can be used by applications.
1810 */
1811 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1812 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1813 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1814 return -EOPNOTSUPP;
1815
1816 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1817 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1818 FALLOC_FL_INSERT_RANGE))
1819 return -EOPNOTSUPP;
1820
1821 inode_lock(inode);
1822
1823 ret = file_modified(file);
1824 if (ret)
1825 goto out;
1826
1827 if (mode & FALLOC_FL_PUNCH_HOLE) {
1828 if (offset >= inode->i_size)
1829 goto out;
1830
1831 ret = f2fs_punch_hole(inode, offset, len);
1832 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1833 ret = f2fs_collapse_range(inode, offset, len);
1834 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1835 ret = f2fs_zero_range(inode, offset, len, mode);
1836 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1837 ret = f2fs_insert_range(inode, offset, len);
1838 } else {
1839 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1840 }
1841
1842 if (!ret) {
1843 inode->i_mtime = inode_set_ctime_current(inode);
1844 f2fs_mark_inode_dirty_sync(inode, false);
1845 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1846 }
1847
1848 out:
1849 inode_unlock(inode);
1850
1851 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1852 return ret;
1853 }
1854
f2fs_release_file(struct inode * inode,struct file * filp)1855 static int f2fs_release_file(struct inode *inode, struct file *filp)
1856 {
1857 /*
1858 * f2fs_release_file is called at every close calls. So we should
1859 * not drop any inmemory pages by close called by other process.
1860 */
1861 if (!(filp->f_mode & FMODE_WRITE) ||
1862 atomic_read(&inode->i_writecount) != 1)
1863 return 0;
1864
1865 inode_lock(inode);
1866 f2fs_abort_atomic_write(inode, true);
1867 inode_unlock(inode);
1868
1869 return 0;
1870 }
1871
f2fs_file_flush(struct file * file,fl_owner_t id)1872 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1873 {
1874 struct inode *inode = file_inode(file);
1875
1876 /*
1877 * If the process doing a transaction is crashed, we should do
1878 * roll-back. Otherwise, other reader/write can see corrupted database
1879 * until all the writers close its file. Since this should be done
1880 * before dropping file lock, it needs to do in ->flush.
1881 */
1882 if (F2FS_I(inode)->atomic_write_task == current &&
1883 (current->flags & PF_EXITING)) {
1884 inode_lock(inode);
1885 f2fs_abort_atomic_write(inode, true);
1886 inode_unlock(inode);
1887 }
1888
1889 return 0;
1890 }
1891
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1892 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1893 {
1894 struct f2fs_inode_info *fi = F2FS_I(inode);
1895 u32 masked_flags = fi->i_flags & mask;
1896
1897 /* mask can be shrunk by flags_valid selector */
1898 iflags &= mask;
1899
1900 /* Is it quota file? Do not allow user to mess with it */
1901 if (IS_NOQUOTA(inode))
1902 return -EPERM;
1903
1904 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1905 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1906 return -EOPNOTSUPP;
1907 if (!f2fs_empty_dir(inode))
1908 return -ENOTEMPTY;
1909 }
1910
1911 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1912 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1913 return -EOPNOTSUPP;
1914 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1915 return -EINVAL;
1916 }
1917
1918 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1919 if (masked_flags & F2FS_COMPR_FL) {
1920 if (!f2fs_disable_compressed_file(inode))
1921 return -EINVAL;
1922 } else {
1923 /* try to convert inline_data to support compression */
1924 int err = f2fs_convert_inline_inode(inode);
1925 if (err)
1926 return err;
1927
1928 f2fs_down_write(&F2FS_I(inode)->i_sem);
1929 if (!f2fs_may_compress(inode) ||
1930 (S_ISREG(inode->i_mode) &&
1931 F2FS_HAS_BLOCKS(inode))) {
1932 f2fs_up_write(&F2FS_I(inode)->i_sem);
1933 return -EINVAL;
1934 }
1935 err = set_compress_context(inode);
1936 f2fs_up_write(&F2FS_I(inode)->i_sem);
1937
1938 if (err)
1939 return err;
1940 }
1941 }
1942
1943 fi->i_flags = iflags | (fi->i_flags & ~mask);
1944 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1945 (fi->i_flags & F2FS_NOCOMP_FL));
1946
1947 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1948 set_inode_flag(inode, FI_PROJ_INHERIT);
1949 else
1950 clear_inode_flag(inode, FI_PROJ_INHERIT);
1951
1952 inode_set_ctime_current(inode);
1953 f2fs_set_inode_flags(inode);
1954 f2fs_mark_inode_dirty_sync(inode, true);
1955 return 0;
1956 }
1957
1958 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1959
1960 /*
1961 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1962 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1963 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1964 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1965 *
1966 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1967 * FS_IOC_FSSETXATTR is done by the VFS.
1968 */
1969
1970 static const struct {
1971 u32 iflag;
1972 u32 fsflag;
1973 } f2fs_fsflags_map[] = {
1974 { F2FS_COMPR_FL, FS_COMPR_FL },
1975 { F2FS_SYNC_FL, FS_SYNC_FL },
1976 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1977 { F2FS_APPEND_FL, FS_APPEND_FL },
1978 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1979 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1980 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1981 { F2FS_INDEX_FL, FS_INDEX_FL },
1982 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1983 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1984 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1985 };
1986
1987 #define F2FS_GETTABLE_FS_FL ( \
1988 FS_COMPR_FL | \
1989 FS_SYNC_FL | \
1990 FS_IMMUTABLE_FL | \
1991 FS_APPEND_FL | \
1992 FS_NODUMP_FL | \
1993 FS_NOATIME_FL | \
1994 FS_NOCOMP_FL | \
1995 FS_INDEX_FL | \
1996 FS_DIRSYNC_FL | \
1997 FS_PROJINHERIT_FL | \
1998 FS_ENCRYPT_FL | \
1999 FS_INLINE_DATA_FL | \
2000 FS_NOCOW_FL | \
2001 FS_VERITY_FL | \
2002 FS_CASEFOLD_FL)
2003
2004 #define F2FS_SETTABLE_FS_FL ( \
2005 FS_COMPR_FL | \
2006 FS_SYNC_FL | \
2007 FS_IMMUTABLE_FL | \
2008 FS_APPEND_FL | \
2009 FS_NODUMP_FL | \
2010 FS_NOATIME_FL | \
2011 FS_NOCOMP_FL | \
2012 FS_DIRSYNC_FL | \
2013 FS_PROJINHERIT_FL | \
2014 FS_CASEFOLD_FL)
2015
2016 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2017 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2018 {
2019 u32 fsflags = 0;
2020 int i;
2021
2022 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2023 if (iflags & f2fs_fsflags_map[i].iflag)
2024 fsflags |= f2fs_fsflags_map[i].fsflag;
2025
2026 return fsflags;
2027 }
2028
2029 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2030 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2031 {
2032 u32 iflags = 0;
2033 int i;
2034
2035 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2036 if (fsflags & f2fs_fsflags_map[i].fsflag)
2037 iflags |= f2fs_fsflags_map[i].iflag;
2038
2039 return iflags;
2040 }
2041
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2042 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2043 {
2044 struct inode *inode = file_inode(filp);
2045
2046 return put_user(inode->i_generation, (int __user *)arg);
2047 }
2048
f2fs_ioc_start_atomic_write(struct file * filp,bool truncate)2049 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2050 {
2051 struct inode *inode = file_inode(filp);
2052 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2053 struct f2fs_inode_info *fi = F2FS_I(inode);
2054 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2055 struct inode *pinode;
2056 loff_t isize;
2057 int ret;
2058
2059 if (!inode_owner_or_capable(idmap, inode))
2060 return -EACCES;
2061
2062 if (!S_ISREG(inode->i_mode))
2063 return -EINVAL;
2064
2065 if (filp->f_flags & O_DIRECT)
2066 return -EINVAL;
2067
2068 ret = mnt_want_write_file(filp);
2069 if (ret)
2070 return ret;
2071
2072 inode_lock(inode);
2073
2074 if (!f2fs_disable_compressed_file(inode)) {
2075 ret = -EINVAL;
2076 goto out;
2077 }
2078
2079 if (f2fs_is_atomic_file(inode))
2080 goto out;
2081
2082 ret = f2fs_convert_inline_inode(inode);
2083 if (ret)
2084 goto out;
2085
2086 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2087
2088 /*
2089 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2090 * f2fs_is_atomic_file.
2091 */
2092 if (get_dirty_pages(inode))
2093 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2094 inode->i_ino, get_dirty_pages(inode));
2095 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2096 if (ret) {
2097 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2098 goto out;
2099 }
2100
2101 /* Check if the inode already has a COW inode */
2102 if (fi->cow_inode == NULL) {
2103 /* Create a COW inode for atomic write */
2104 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2105 if (IS_ERR(pinode)) {
2106 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2107 ret = PTR_ERR(pinode);
2108 goto out;
2109 }
2110
2111 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2112 iput(pinode);
2113 if (ret) {
2114 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2115 goto out;
2116 }
2117
2118 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2119 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2120 } else {
2121 /* Reuse the already created COW inode */
2122 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2123 if (ret) {
2124 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2125 goto out;
2126 }
2127 }
2128
2129 f2fs_write_inode(inode, NULL);
2130
2131 stat_inc_atomic_inode(inode);
2132
2133 set_inode_flag(inode, FI_ATOMIC_FILE);
2134
2135 isize = i_size_read(inode);
2136 fi->original_i_size = isize;
2137 if (truncate) {
2138 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2139 truncate_inode_pages_final(inode->i_mapping);
2140 f2fs_i_size_write(inode, 0);
2141 isize = 0;
2142 }
2143 f2fs_i_size_write(fi->cow_inode, isize);
2144
2145 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2146
2147 f2fs_update_time(sbi, REQ_TIME);
2148 fi->atomic_write_task = current;
2149 stat_update_max_atomic_write(inode);
2150 fi->atomic_write_cnt = 0;
2151 out:
2152 inode_unlock(inode);
2153 mnt_drop_write_file(filp);
2154 return ret;
2155 }
2156
f2fs_ioc_commit_atomic_write(struct file * filp)2157 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2158 {
2159 struct inode *inode = file_inode(filp);
2160 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2161 int ret;
2162
2163 if (!inode_owner_or_capable(idmap, inode))
2164 return -EACCES;
2165
2166 ret = mnt_want_write_file(filp);
2167 if (ret)
2168 return ret;
2169
2170 f2fs_balance_fs(F2FS_I_SB(inode), true);
2171
2172 inode_lock(inode);
2173
2174 if (f2fs_is_atomic_file(inode)) {
2175 ret = f2fs_commit_atomic_write(inode);
2176 if (!ret)
2177 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2178
2179 f2fs_abort_atomic_write(inode, ret);
2180 } else {
2181 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2182 }
2183
2184 inode_unlock(inode);
2185 mnt_drop_write_file(filp);
2186 return ret;
2187 }
2188
f2fs_ioc_abort_atomic_write(struct file * filp)2189 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2190 {
2191 struct inode *inode = file_inode(filp);
2192 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2193 int ret;
2194
2195 if (!inode_owner_or_capable(idmap, inode))
2196 return -EACCES;
2197
2198 ret = mnt_want_write_file(filp);
2199 if (ret)
2200 return ret;
2201
2202 inode_lock(inode);
2203
2204 f2fs_abort_atomic_write(inode, true);
2205
2206 inode_unlock(inode);
2207
2208 mnt_drop_write_file(filp);
2209 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2210 return ret;
2211 }
2212
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2213 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2214 {
2215 struct inode *inode = file_inode(filp);
2216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2217 struct super_block *sb = sbi->sb;
2218 __u32 in;
2219 int ret = 0;
2220
2221 if (!capable(CAP_SYS_ADMIN))
2222 return -EPERM;
2223
2224 if (get_user(in, (__u32 __user *)arg))
2225 return -EFAULT;
2226
2227 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2228 ret = mnt_want_write_file(filp);
2229 if (ret) {
2230 if (ret == -EROFS) {
2231 ret = 0;
2232 f2fs_stop_checkpoint(sbi, false,
2233 STOP_CP_REASON_SHUTDOWN);
2234 trace_f2fs_shutdown(sbi, in, ret);
2235 }
2236 return ret;
2237 }
2238 }
2239
2240 switch (in) {
2241 case F2FS_GOING_DOWN_FULLSYNC:
2242 ret = freeze_bdev(sb->s_bdev);
2243 if (ret)
2244 goto out;
2245 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2246 thaw_bdev(sb->s_bdev);
2247 break;
2248 case F2FS_GOING_DOWN_METASYNC:
2249 /* do checkpoint only */
2250 ret = f2fs_sync_fs(sb, 1);
2251 if (ret)
2252 goto out;
2253 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2254 break;
2255 case F2FS_GOING_DOWN_NOSYNC:
2256 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2257 break;
2258 case F2FS_GOING_DOWN_METAFLUSH:
2259 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2260 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2261 break;
2262 case F2FS_GOING_DOWN_NEED_FSCK:
2263 set_sbi_flag(sbi, SBI_NEED_FSCK);
2264 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2265 set_sbi_flag(sbi, SBI_IS_DIRTY);
2266 /* do checkpoint only */
2267 ret = f2fs_sync_fs(sb, 1);
2268 goto out;
2269 default:
2270 ret = -EINVAL;
2271 goto out;
2272 }
2273
2274 f2fs_stop_gc_thread(sbi);
2275 f2fs_stop_discard_thread(sbi);
2276
2277 f2fs_drop_discard_cmd(sbi);
2278 clear_opt(sbi, DISCARD);
2279
2280 f2fs_update_time(sbi, REQ_TIME);
2281 out:
2282 if (in != F2FS_GOING_DOWN_FULLSYNC)
2283 mnt_drop_write_file(filp);
2284
2285 trace_f2fs_shutdown(sbi, in, ret);
2286
2287 return ret;
2288 }
2289
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2290 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2291 {
2292 struct inode *inode = file_inode(filp);
2293 struct super_block *sb = inode->i_sb;
2294 struct fstrim_range range;
2295 int ret;
2296
2297 if (!capable(CAP_SYS_ADMIN))
2298 return -EPERM;
2299
2300 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2301 return -EOPNOTSUPP;
2302
2303 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2304 sizeof(range)))
2305 return -EFAULT;
2306
2307 ret = mnt_want_write_file(filp);
2308 if (ret)
2309 return ret;
2310
2311 range.minlen = max((unsigned int)range.minlen,
2312 bdev_discard_granularity(sb->s_bdev));
2313 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2314 mnt_drop_write_file(filp);
2315 if (ret < 0)
2316 return ret;
2317
2318 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2319 sizeof(range)))
2320 return -EFAULT;
2321 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2322 return 0;
2323 }
2324
uuid_is_nonzero(__u8 u[16])2325 static bool uuid_is_nonzero(__u8 u[16])
2326 {
2327 int i;
2328
2329 for (i = 0; i < 16; i++)
2330 if (u[i])
2331 return true;
2332 return false;
2333 }
2334
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2335 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2336 {
2337 struct inode *inode = file_inode(filp);
2338
2339 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2340 return -EOPNOTSUPP;
2341
2342 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2343
2344 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2345 }
2346
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2347 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2348 {
2349 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2350 return -EOPNOTSUPP;
2351 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2352 }
2353
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2354 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2355 {
2356 struct inode *inode = file_inode(filp);
2357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358 u8 encrypt_pw_salt[16];
2359 int err;
2360
2361 if (!f2fs_sb_has_encrypt(sbi))
2362 return -EOPNOTSUPP;
2363
2364 err = mnt_want_write_file(filp);
2365 if (err)
2366 return err;
2367
2368 f2fs_down_write(&sbi->sb_lock);
2369
2370 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2371 goto got_it;
2372
2373 /* update superblock with uuid */
2374 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2375
2376 err = f2fs_commit_super(sbi, false);
2377 if (err) {
2378 /* undo new data */
2379 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2380 goto out_err;
2381 }
2382 got_it:
2383 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2384 out_err:
2385 f2fs_up_write(&sbi->sb_lock);
2386 mnt_drop_write_file(filp);
2387
2388 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2389 err = -EFAULT;
2390
2391 return err;
2392 }
2393
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2394 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2395 unsigned long arg)
2396 {
2397 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2398 return -EOPNOTSUPP;
2399
2400 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2401 }
2402
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2403 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2404 {
2405 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2406 return -EOPNOTSUPP;
2407
2408 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2409 }
2410
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2411 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2412 {
2413 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2414 return -EOPNOTSUPP;
2415
2416 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2417 }
2418
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2419 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2420 unsigned long arg)
2421 {
2422 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2423 return -EOPNOTSUPP;
2424
2425 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2426 }
2427
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2428 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2429 unsigned long arg)
2430 {
2431 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2432 return -EOPNOTSUPP;
2433
2434 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2435 }
2436
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2437 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2438 {
2439 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440 return -EOPNOTSUPP;
2441
2442 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2443 }
2444
f2fs_ioc_gc(struct file * filp,unsigned long arg)2445 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2446 {
2447 struct inode *inode = file_inode(filp);
2448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2449 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2450 .no_bg_gc = false,
2451 .should_migrate_blocks = false,
2452 .nr_free_secs = 0 };
2453 __u32 sync;
2454 int ret;
2455
2456 if (!capable(CAP_SYS_ADMIN))
2457 return -EPERM;
2458
2459 if (get_user(sync, (__u32 __user *)arg))
2460 return -EFAULT;
2461
2462 if (f2fs_readonly(sbi->sb))
2463 return -EROFS;
2464
2465 ret = mnt_want_write_file(filp);
2466 if (ret)
2467 return ret;
2468
2469 if (!sync) {
2470 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2471 ret = -EBUSY;
2472 goto out;
2473 }
2474 } else {
2475 f2fs_down_write(&sbi->gc_lock);
2476 }
2477
2478 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2479 gc_control.err_gc_skipped = sync;
2480 stat_inc_gc_call_count(sbi, FOREGROUND);
2481 ret = f2fs_gc(sbi, &gc_control);
2482 out:
2483 mnt_drop_write_file(filp);
2484 return ret;
2485 }
2486
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2487 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2488 {
2489 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2490 struct f2fs_gc_control gc_control = {
2491 .init_gc_type = range->sync ? FG_GC : BG_GC,
2492 .no_bg_gc = false,
2493 .should_migrate_blocks = false,
2494 .err_gc_skipped = range->sync,
2495 .nr_free_secs = 0 };
2496 u64 end;
2497 int ret;
2498
2499 if (!capable(CAP_SYS_ADMIN))
2500 return -EPERM;
2501 if (f2fs_readonly(sbi->sb))
2502 return -EROFS;
2503
2504 end = range->start + range->len;
2505 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2506 end >= MAX_BLKADDR(sbi))
2507 return -EINVAL;
2508
2509 ret = mnt_want_write_file(filp);
2510 if (ret)
2511 return ret;
2512
2513 do_more:
2514 if (!range->sync) {
2515 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2516 ret = -EBUSY;
2517 goto out;
2518 }
2519 } else {
2520 f2fs_down_write(&sbi->gc_lock);
2521 }
2522
2523 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2524 stat_inc_gc_call_count(sbi, FOREGROUND);
2525 ret = f2fs_gc(sbi, &gc_control);
2526 if (ret) {
2527 if (ret == -EBUSY)
2528 ret = -EAGAIN;
2529 goto out;
2530 }
2531 range->start += CAP_BLKS_PER_SEC(sbi);
2532 if (range->start <= end)
2533 goto do_more;
2534 out:
2535 mnt_drop_write_file(filp);
2536 return ret;
2537 }
2538
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2539 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2540 {
2541 struct f2fs_gc_range range;
2542
2543 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2544 sizeof(range)))
2545 return -EFAULT;
2546 return __f2fs_ioc_gc_range(filp, &range);
2547 }
2548
f2fs_ioc_write_checkpoint(struct file * filp)2549 static int f2fs_ioc_write_checkpoint(struct file *filp)
2550 {
2551 struct inode *inode = file_inode(filp);
2552 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2553 int ret;
2554
2555 if (!capable(CAP_SYS_ADMIN))
2556 return -EPERM;
2557
2558 if (f2fs_readonly(sbi->sb))
2559 return -EROFS;
2560
2561 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2562 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2563 return -EINVAL;
2564 }
2565
2566 ret = mnt_want_write_file(filp);
2567 if (ret)
2568 return ret;
2569
2570 ret = f2fs_sync_fs(sbi->sb, 1);
2571
2572 mnt_drop_write_file(filp);
2573 return ret;
2574 }
2575
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2576 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2577 struct file *filp,
2578 struct f2fs_defragment *range)
2579 {
2580 struct inode *inode = file_inode(filp);
2581 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2582 .m_seg_type = NO_CHECK_TYPE,
2583 .m_may_create = false };
2584 struct extent_info ei = {};
2585 pgoff_t pg_start, pg_end, next_pgofs;
2586 unsigned int blk_per_seg = sbi->blocks_per_seg;
2587 unsigned int total = 0, sec_num;
2588 block_t blk_end = 0;
2589 bool fragmented = false;
2590 int err;
2591
2592 pg_start = range->start >> PAGE_SHIFT;
2593 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2594
2595 f2fs_balance_fs(sbi, true);
2596
2597 inode_lock(inode);
2598
2599 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2600 err = -EINVAL;
2601 goto unlock_out;
2602 }
2603
2604 /* if in-place-update policy is enabled, don't waste time here */
2605 set_inode_flag(inode, FI_OPU_WRITE);
2606 if (f2fs_should_update_inplace(inode, NULL)) {
2607 err = -EINVAL;
2608 goto out;
2609 }
2610
2611 /* writeback all dirty pages in the range */
2612 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2613 range->start + range->len - 1);
2614 if (err)
2615 goto out;
2616
2617 /*
2618 * lookup mapping info in extent cache, skip defragmenting if physical
2619 * block addresses are continuous.
2620 */
2621 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2622 if (ei.fofs + ei.len >= pg_end)
2623 goto out;
2624 }
2625
2626 map.m_lblk = pg_start;
2627 map.m_next_pgofs = &next_pgofs;
2628
2629 /*
2630 * lookup mapping info in dnode page cache, skip defragmenting if all
2631 * physical block addresses are continuous even if there are hole(s)
2632 * in logical blocks.
2633 */
2634 while (map.m_lblk < pg_end) {
2635 map.m_len = pg_end - map.m_lblk;
2636 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2637 if (err)
2638 goto out;
2639
2640 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2641 map.m_lblk = next_pgofs;
2642 continue;
2643 }
2644
2645 if (blk_end && blk_end != map.m_pblk)
2646 fragmented = true;
2647
2648 /* record total count of block that we're going to move */
2649 total += map.m_len;
2650
2651 blk_end = map.m_pblk + map.m_len;
2652
2653 map.m_lblk += map.m_len;
2654 }
2655
2656 if (!fragmented) {
2657 total = 0;
2658 goto out;
2659 }
2660
2661 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2662
2663 /*
2664 * make sure there are enough free section for LFS allocation, this can
2665 * avoid defragment running in SSR mode when free section are allocated
2666 * intensively
2667 */
2668 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2669 err = -EAGAIN;
2670 goto out;
2671 }
2672
2673 map.m_lblk = pg_start;
2674 map.m_len = pg_end - pg_start;
2675 total = 0;
2676
2677 while (map.m_lblk < pg_end) {
2678 pgoff_t idx;
2679 int cnt = 0;
2680
2681 do_map:
2682 map.m_len = pg_end - map.m_lblk;
2683 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2684 if (err)
2685 goto clear_out;
2686
2687 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2688 map.m_lblk = next_pgofs;
2689 goto check;
2690 }
2691
2692 set_inode_flag(inode, FI_SKIP_WRITES);
2693
2694 idx = map.m_lblk;
2695 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2696 struct page *page;
2697
2698 page = f2fs_get_lock_data_page(inode, idx, true);
2699 if (IS_ERR(page)) {
2700 err = PTR_ERR(page);
2701 goto clear_out;
2702 }
2703
2704 set_page_dirty(page);
2705 set_page_private_gcing(page);
2706 f2fs_put_page(page, 1);
2707
2708 idx++;
2709 cnt++;
2710 total++;
2711 }
2712
2713 map.m_lblk = idx;
2714 check:
2715 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2716 goto do_map;
2717
2718 clear_inode_flag(inode, FI_SKIP_WRITES);
2719
2720 err = filemap_fdatawrite(inode->i_mapping);
2721 if (err)
2722 goto out;
2723 }
2724 clear_out:
2725 clear_inode_flag(inode, FI_SKIP_WRITES);
2726 out:
2727 clear_inode_flag(inode, FI_OPU_WRITE);
2728 unlock_out:
2729 inode_unlock(inode);
2730 if (!err)
2731 range->len = (u64)total << PAGE_SHIFT;
2732 return err;
2733 }
2734
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2735 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2736 {
2737 struct inode *inode = file_inode(filp);
2738 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739 struct f2fs_defragment range;
2740 int err;
2741
2742 if (!capable(CAP_SYS_ADMIN))
2743 return -EPERM;
2744
2745 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2746 return -EINVAL;
2747
2748 if (f2fs_readonly(sbi->sb))
2749 return -EROFS;
2750
2751 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2752 sizeof(range)))
2753 return -EFAULT;
2754
2755 /* verify alignment of offset & size */
2756 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2757 return -EINVAL;
2758
2759 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2760 max_file_blocks(inode)))
2761 return -EINVAL;
2762
2763 err = mnt_want_write_file(filp);
2764 if (err)
2765 return err;
2766
2767 err = f2fs_defragment_range(sbi, filp, &range);
2768 mnt_drop_write_file(filp);
2769
2770 f2fs_update_time(sbi, REQ_TIME);
2771 if (err < 0)
2772 return err;
2773
2774 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2775 sizeof(range)))
2776 return -EFAULT;
2777
2778 return 0;
2779 }
2780
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2781 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2782 struct file *file_out, loff_t pos_out, size_t len)
2783 {
2784 struct inode *src = file_inode(file_in);
2785 struct inode *dst = file_inode(file_out);
2786 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2787 size_t olen = len, dst_max_i_size = 0;
2788 size_t dst_osize;
2789 int ret;
2790
2791 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2792 src->i_sb != dst->i_sb)
2793 return -EXDEV;
2794
2795 if (unlikely(f2fs_readonly(src->i_sb)))
2796 return -EROFS;
2797
2798 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2799 return -EINVAL;
2800
2801 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2802 return -EOPNOTSUPP;
2803
2804 if (pos_out < 0 || pos_in < 0)
2805 return -EINVAL;
2806
2807 if (src == dst) {
2808 if (pos_in == pos_out)
2809 return 0;
2810 if (pos_out > pos_in && pos_out < pos_in + len)
2811 return -EINVAL;
2812 }
2813
2814 inode_lock(src);
2815 if (src != dst) {
2816 ret = -EBUSY;
2817 if (!inode_trylock(dst))
2818 goto out;
2819 }
2820
2821 ret = -EINVAL;
2822 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2823 goto out_unlock;
2824 if (len == 0)
2825 olen = len = src->i_size - pos_in;
2826 if (pos_in + len == src->i_size)
2827 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2828 if (len == 0) {
2829 ret = 0;
2830 goto out_unlock;
2831 }
2832
2833 dst_osize = dst->i_size;
2834 if (pos_out + olen > dst->i_size)
2835 dst_max_i_size = pos_out + olen;
2836
2837 /* verify the end result is block aligned */
2838 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2839 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2840 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2841 goto out_unlock;
2842
2843 ret = f2fs_convert_inline_inode(src);
2844 if (ret)
2845 goto out_unlock;
2846
2847 ret = f2fs_convert_inline_inode(dst);
2848 if (ret)
2849 goto out_unlock;
2850
2851 /* write out all dirty pages from offset */
2852 ret = filemap_write_and_wait_range(src->i_mapping,
2853 pos_in, pos_in + len);
2854 if (ret)
2855 goto out_unlock;
2856
2857 ret = filemap_write_and_wait_range(dst->i_mapping,
2858 pos_out, pos_out + len);
2859 if (ret)
2860 goto out_unlock;
2861
2862 f2fs_balance_fs(sbi, true);
2863
2864 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2865 if (src != dst) {
2866 ret = -EBUSY;
2867 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2868 goto out_src;
2869 }
2870
2871 f2fs_lock_op(sbi);
2872 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2873 pos_out >> F2FS_BLKSIZE_BITS,
2874 len >> F2FS_BLKSIZE_BITS, false);
2875
2876 if (!ret) {
2877 if (dst_max_i_size)
2878 f2fs_i_size_write(dst, dst_max_i_size);
2879 else if (dst_osize != dst->i_size)
2880 f2fs_i_size_write(dst, dst_osize);
2881 }
2882 f2fs_unlock_op(sbi);
2883
2884 if (src != dst)
2885 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2886 out_src:
2887 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2888 if (ret)
2889 goto out_unlock;
2890
2891 src->i_mtime = inode_set_ctime_current(src);
2892 f2fs_mark_inode_dirty_sync(src, false);
2893 if (src != dst) {
2894 dst->i_mtime = inode_set_ctime_current(dst);
2895 f2fs_mark_inode_dirty_sync(dst, false);
2896 }
2897 f2fs_update_time(sbi, REQ_TIME);
2898
2899 out_unlock:
2900 if (src != dst)
2901 inode_unlock(dst);
2902 out:
2903 inode_unlock(src);
2904 return ret;
2905 }
2906
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2907 static int __f2fs_ioc_move_range(struct file *filp,
2908 struct f2fs_move_range *range)
2909 {
2910 struct fd dst;
2911 int err;
2912
2913 if (!(filp->f_mode & FMODE_READ) ||
2914 !(filp->f_mode & FMODE_WRITE))
2915 return -EBADF;
2916
2917 dst = fdget(range->dst_fd);
2918 if (!dst.file)
2919 return -EBADF;
2920
2921 if (!(dst.file->f_mode & FMODE_WRITE)) {
2922 err = -EBADF;
2923 goto err_out;
2924 }
2925
2926 err = mnt_want_write_file(filp);
2927 if (err)
2928 goto err_out;
2929
2930 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2931 range->pos_out, range->len);
2932
2933 mnt_drop_write_file(filp);
2934 err_out:
2935 fdput(dst);
2936 return err;
2937 }
2938
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2939 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2940 {
2941 struct f2fs_move_range range;
2942
2943 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2944 sizeof(range)))
2945 return -EFAULT;
2946 return __f2fs_ioc_move_range(filp, &range);
2947 }
2948
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2949 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2950 {
2951 struct inode *inode = file_inode(filp);
2952 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2953 struct sit_info *sm = SIT_I(sbi);
2954 unsigned int start_segno = 0, end_segno = 0;
2955 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2956 struct f2fs_flush_device range;
2957 struct f2fs_gc_control gc_control = {
2958 .init_gc_type = FG_GC,
2959 .should_migrate_blocks = true,
2960 .err_gc_skipped = true,
2961 .nr_free_secs = 0 };
2962 int ret;
2963
2964 if (!capable(CAP_SYS_ADMIN))
2965 return -EPERM;
2966
2967 if (f2fs_readonly(sbi->sb))
2968 return -EROFS;
2969
2970 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2971 return -EINVAL;
2972
2973 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2974 sizeof(range)))
2975 return -EFAULT;
2976
2977 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2978 __is_large_section(sbi)) {
2979 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2980 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2981 return -EINVAL;
2982 }
2983
2984 ret = mnt_want_write_file(filp);
2985 if (ret)
2986 return ret;
2987
2988 if (range.dev_num != 0)
2989 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2990 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2991
2992 start_segno = sm->last_victim[FLUSH_DEVICE];
2993 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2994 start_segno = dev_start_segno;
2995 end_segno = min(start_segno + range.segments, dev_end_segno);
2996
2997 while (start_segno < end_segno) {
2998 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2999 ret = -EBUSY;
3000 goto out;
3001 }
3002 sm->last_victim[GC_CB] = end_segno + 1;
3003 sm->last_victim[GC_GREEDY] = end_segno + 1;
3004 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3005
3006 gc_control.victim_segno = start_segno;
3007 stat_inc_gc_call_count(sbi, FOREGROUND);
3008 ret = f2fs_gc(sbi, &gc_control);
3009 if (ret == -EAGAIN)
3010 ret = 0;
3011 else if (ret < 0)
3012 break;
3013 start_segno++;
3014 }
3015 out:
3016 mnt_drop_write_file(filp);
3017 return ret;
3018 }
3019
f2fs_ioc_get_features(struct file * filp,unsigned long arg)3020 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3021 {
3022 struct inode *inode = file_inode(filp);
3023 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3024
3025 /* Must validate to set it with SQLite behavior in Android. */
3026 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3027
3028 return put_user(sb_feature, (u32 __user *)arg);
3029 }
3030
3031 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3032 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3033 {
3034 struct dquot *transfer_to[MAXQUOTAS] = {};
3035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3036 struct super_block *sb = sbi->sb;
3037 int err;
3038
3039 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3040 if (IS_ERR(transfer_to[PRJQUOTA]))
3041 return PTR_ERR(transfer_to[PRJQUOTA]);
3042
3043 err = __dquot_transfer(inode, transfer_to);
3044 if (err)
3045 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3046 dqput(transfer_to[PRJQUOTA]);
3047 return err;
3048 }
3049
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3050 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3051 {
3052 struct f2fs_inode_info *fi = F2FS_I(inode);
3053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3054 struct f2fs_inode *ri = NULL;
3055 kprojid_t kprojid;
3056 int err;
3057
3058 if (!f2fs_sb_has_project_quota(sbi)) {
3059 if (projid != F2FS_DEF_PROJID)
3060 return -EOPNOTSUPP;
3061 else
3062 return 0;
3063 }
3064
3065 if (!f2fs_has_extra_attr(inode))
3066 return -EOPNOTSUPP;
3067
3068 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3069
3070 if (projid_eq(kprojid, fi->i_projid))
3071 return 0;
3072
3073 err = -EPERM;
3074 /* Is it quota file? Do not allow user to mess with it */
3075 if (IS_NOQUOTA(inode))
3076 return err;
3077
3078 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3079 return -EOVERFLOW;
3080
3081 err = f2fs_dquot_initialize(inode);
3082 if (err)
3083 return err;
3084
3085 f2fs_lock_op(sbi);
3086 err = f2fs_transfer_project_quota(inode, kprojid);
3087 if (err)
3088 goto out_unlock;
3089
3090 fi->i_projid = kprojid;
3091 inode_set_ctime_current(inode);
3092 f2fs_mark_inode_dirty_sync(inode, true);
3093 out_unlock:
3094 f2fs_unlock_op(sbi);
3095 return err;
3096 }
3097 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3098 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3099 {
3100 return 0;
3101 }
3102
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3103 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3104 {
3105 if (projid != F2FS_DEF_PROJID)
3106 return -EOPNOTSUPP;
3107 return 0;
3108 }
3109 #endif
3110
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3111 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3112 {
3113 struct inode *inode = d_inode(dentry);
3114 struct f2fs_inode_info *fi = F2FS_I(inode);
3115 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3116
3117 if (IS_ENCRYPTED(inode))
3118 fsflags |= FS_ENCRYPT_FL;
3119 if (IS_VERITY(inode))
3120 fsflags |= FS_VERITY_FL;
3121 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3122 fsflags |= FS_INLINE_DATA_FL;
3123 if (is_inode_flag_set(inode, FI_PIN_FILE))
3124 fsflags |= FS_NOCOW_FL;
3125
3126 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3127
3128 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3129 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3130
3131 return 0;
3132 }
3133
f2fs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3134 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3135 struct dentry *dentry, struct fileattr *fa)
3136 {
3137 struct inode *inode = d_inode(dentry);
3138 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3139 u32 iflags;
3140 int err;
3141
3142 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3143 return -EIO;
3144 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3145 return -ENOSPC;
3146 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3147 return -EOPNOTSUPP;
3148 fsflags &= F2FS_SETTABLE_FS_FL;
3149 if (!fa->flags_valid)
3150 mask &= FS_COMMON_FL;
3151
3152 iflags = f2fs_fsflags_to_iflags(fsflags);
3153 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3154 return -EOPNOTSUPP;
3155
3156 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3157 if (!err)
3158 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3159
3160 return err;
3161 }
3162
f2fs_pin_file_control(struct inode * inode,bool inc)3163 int f2fs_pin_file_control(struct inode *inode, bool inc)
3164 {
3165 struct f2fs_inode_info *fi = F2FS_I(inode);
3166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3167
3168 /* Use i_gc_failures for normal file as a risk signal. */
3169 if (inc)
3170 f2fs_i_gc_failures_write(inode,
3171 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3172
3173 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3174 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3175 __func__, inode->i_ino,
3176 fi->i_gc_failures[GC_FAILURE_PIN]);
3177 clear_inode_flag(inode, FI_PIN_FILE);
3178 return -EAGAIN;
3179 }
3180 return 0;
3181 }
3182
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3183 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3184 {
3185 struct inode *inode = file_inode(filp);
3186 __u32 pin;
3187 int ret = 0;
3188
3189 if (get_user(pin, (__u32 __user *)arg))
3190 return -EFAULT;
3191
3192 if (!S_ISREG(inode->i_mode))
3193 return -EINVAL;
3194
3195 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3196 return -EROFS;
3197
3198 ret = mnt_want_write_file(filp);
3199 if (ret)
3200 return ret;
3201
3202 inode_lock(inode);
3203
3204 if (!pin) {
3205 clear_inode_flag(inode, FI_PIN_FILE);
3206 f2fs_i_gc_failures_write(inode, 0);
3207 goto done;
3208 }
3209
3210 if (f2fs_should_update_outplace(inode, NULL)) {
3211 ret = -EINVAL;
3212 goto out;
3213 }
3214
3215 if (f2fs_pin_file_control(inode, false)) {
3216 ret = -EAGAIN;
3217 goto out;
3218 }
3219
3220 ret = f2fs_convert_inline_inode(inode);
3221 if (ret)
3222 goto out;
3223
3224 if (!f2fs_disable_compressed_file(inode)) {
3225 ret = -EOPNOTSUPP;
3226 goto out;
3227 }
3228
3229 set_inode_flag(inode, FI_PIN_FILE);
3230 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3231 done:
3232 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3233 out:
3234 inode_unlock(inode);
3235 mnt_drop_write_file(filp);
3236 return ret;
3237 }
3238
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3239 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3240 {
3241 struct inode *inode = file_inode(filp);
3242 __u32 pin = 0;
3243
3244 if (is_inode_flag_set(inode, FI_PIN_FILE))
3245 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3246 return put_user(pin, (u32 __user *)arg);
3247 }
3248
f2fs_precache_extents(struct inode * inode)3249 int f2fs_precache_extents(struct inode *inode)
3250 {
3251 struct f2fs_inode_info *fi = F2FS_I(inode);
3252 struct f2fs_map_blocks map;
3253 pgoff_t m_next_extent;
3254 loff_t end;
3255 int err;
3256
3257 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3258 return -EOPNOTSUPP;
3259
3260 map.m_lblk = 0;
3261 map.m_next_pgofs = NULL;
3262 map.m_next_extent = &m_next_extent;
3263 map.m_seg_type = NO_CHECK_TYPE;
3264 map.m_may_create = false;
3265 end = max_file_blocks(inode);
3266
3267 while (map.m_lblk < end) {
3268 map.m_len = end - map.m_lblk;
3269
3270 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3271 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3272 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3273 if (err)
3274 return err;
3275
3276 map.m_lblk = m_next_extent;
3277 }
3278
3279 return 0;
3280 }
3281
f2fs_ioc_precache_extents(struct file * filp)3282 static int f2fs_ioc_precache_extents(struct file *filp)
3283 {
3284 return f2fs_precache_extents(file_inode(filp));
3285 }
3286
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3287 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3288 {
3289 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3290 __u64 block_count;
3291
3292 if (!capable(CAP_SYS_ADMIN))
3293 return -EPERM;
3294
3295 if (f2fs_readonly(sbi->sb))
3296 return -EROFS;
3297
3298 if (copy_from_user(&block_count, (void __user *)arg,
3299 sizeof(block_count)))
3300 return -EFAULT;
3301
3302 return f2fs_resize_fs(filp, block_count);
3303 }
3304
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3305 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3306 {
3307 struct inode *inode = file_inode(filp);
3308
3309 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3310
3311 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3312 f2fs_warn(F2FS_I_SB(inode),
3313 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3314 inode->i_ino);
3315 return -EOPNOTSUPP;
3316 }
3317
3318 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3319 }
3320
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3321 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3322 {
3323 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3324 return -EOPNOTSUPP;
3325
3326 return fsverity_ioctl_measure(filp, (void __user *)arg);
3327 }
3328
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3329 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3330 {
3331 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3332 return -EOPNOTSUPP;
3333
3334 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3335 }
3336
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3337 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3338 {
3339 struct inode *inode = file_inode(filp);
3340 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3341 char *vbuf;
3342 int count;
3343 int err = 0;
3344
3345 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3346 if (!vbuf)
3347 return -ENOMEM;
3348
3349 f2fs_down_read(&sbi->sb_lock);
3350 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3351 ARRAY_SIZE(sbi->raw_super->volume_name),
3352 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3353 f2fs_up_read(&sbi->sb_lock);
3354
3355 if (copy_to_user((char __user *)arg, vbuf,
3356 min(FSLABEL_MAX, count)))
3357 err = -EFAULT;
3358
3359 kfree(vbuf);
3360 return err;
3361 }
3362
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3363 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3364 {
3365 struct inode *inode = file_inode(filp);
3366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3367 char *vbuf;
3368 int err = 0;
3369
3370 if (!capable(CAP_SYS_ADMIN))
3371 return -EPERM;
3372
3373 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3374 if (IS_ERR(vbuf))
3375 return PTR_ERR(vbuf);
3376
3377 err = mnt_want_write_file(filp);
3378 if (err)
3379 goto out;
3380
3381 f2fs_down_write(&sbi->sb_lock);
3382
3383 memset(sbi->raw_super->volume_name, 0,
3384 sizeof(sbi->raw_super->volume_name));
3385 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3386 sbi->raw_super->volume_name,
3387 ARRAY_SIZE(sbi->raw_super->volume_name));
3388
3389 err = f2fs_commit_super(sbi, false);
3390
3391 f2fs_up_write(&sbi->sb_lock);
3392
3393 mnt_drop_write_file(filp);
3394 out:
3395 kfree(vbuf);
3396 return err;
3397 }
3398
f2fs_get_compress_blocks(struct inode * inode,__u64 * blocks)3399 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3400 {
3401 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3402 return -EOPNOTSUPP;
3403
3404 if (!f2fs_compressed_file(inode))
3405 return -EINVAL;
3406
3407 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3408
3409 return 0;
3410 }
3411
f2fs_ioc_get_compress_blocks(struct file * filp,unsigned long arg)3412 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3413 {
3414 struct inode *inode = file_inode(filp);
3415 __u64 blocks;
3416 int ret;
3417
3418 ret = f2fs_get_compress_blocks(inode, &blocks);
3419 if (ret < 0)
3420 return ret;
3421
3422 return put_user(blocks, (u64 __user *)arg);
3423 }
3424
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3425 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3426 {
3427 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3428 unsigned int released_blocks = 0;
3429 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3430 block_t blkaddr;
3431 int i;
3432
3433 for (i = 0; i < count; i++) {
3434 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3435 dn->ofs_in_node + i);
3436
3437 if (!__is_valid_data_blkaddr(blkaddr))
3438 continue;
3439 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3440 DATA_GENERIC_ENHANCE))) {
3441 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3442 return -EFSCORRUPTED;
3443 }
3444 }
3445
3446 while (count) {
3447 int compr_blocks = 0;
3448
3449 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3450 blkaddr = f2fs_data_blkaddr(dn);
3451
3452 if (i == 0) {
3453 if (blkaddr == COMPRESS_ADDR)
3454 continue;
3455 dn->ofs_in_node += cluster_size;
3456 goto next;
3457 }
3458
3459 if (__is_valid_data_blkaddr(blkaddr))
3460 compr_blocks++;
3461
3462 if (blkaddr != NEW_ADDR)
3463 continue;
3464
3465 dn->data_blkaddr = NULL_ADDR;
3466 f2fs_set_data_blkaddr(dn);
3467 }
3468
3469 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3470 dec_valid_block_count(sbi, dn->inode,
3471 cluster_size - compr_blocks);
3472
3473 released_blocks += cluster_size - compr_blocks;
3474 next:
3475 count -= cluster_size;
3476 }
3477
3478 return released_blocks;
3479 }
3480
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3481 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3482 {
3483 struct inode *inode = file_inode(filp);
3484 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3485 pgoff_t page_idx = 0, last_idx;
3486 unsigned int released_blocks = 0;
3487 int ret;
3488 int writecount;
3489
3490 if (!f2fs_sb_has_compression(sbi))
3491 return -EOPNOTSUPP;
3492
3493 if (!f2fs_compressed_file(inode))
3494 return -EINVAL;
3495
3496 if (f2fs_readonly(sbi->sb))
3497 return -EROFS;
3498
3499 ret = mnt_want_write_file(filp);
3500 if (ret)
3501 return ret;
3502
3503 f2fs_balance_fs(sbi, true);
3504
3505 inode_lock(inode);
3506
3507 writecount = atomic_read(&inode->i_writecount);
3508 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3509 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3510 ret = -EBUSY;
3511 goto out;
3512 }
3513
3514 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3515 ret = -EINVAL;
3516 goto out;
3517 }
3518
3519 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3520 if (ret)
3521 goto out;
3522
3523 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3524 ret = -EPERM;
3525 goto out;
3526 }
3527
3528 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3529 inode_set_ctime_current(inode);
3530 f2fs_mark_inode_dirty_sync(inode, true);
3531
3532 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3533 filemap_invalidate_lock(inode->i_mapping);
3534
3535 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3536
3537 while (page_idx < last_idx) {
3538 struct dnode_of_data dn;
3539 pgoff_t end_offset, count;
3540
3541 set_new_dnode(&dn, inode, NULL, NULL, 0);
3542 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3543 if (ret) {
3544 if (ret == -ENOENT) {
3545 page_idx = f2fs_get_next_page_offset(&dn,
3546 page_idx);
3547 ret = 0;
3548 continue;
3549 }
3550 break;
3551 }
3552
3553 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3554 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3555 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3556
3557 ret = release_compress_blocks(&dn, count);
3558
3559 f2fs_put_dnode(&dn);
3560
3561 if (ret < 0)
3562 break;
3563
3564 page_idx += count;
3565 released_blocks += ret;
3566 }
3567
3568 filemap_invalidate_unlock(inode->i_mapping);
3569 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3570 out:
3571 inode_unlock(inode);
3572
3573 mnt_drop_write_file(filp);
3574
3575 if (ret >= 0) {
3576 ret = put_user(released_blocks, (u64 __user *)arg);
3577 } else if (released_blocks &&
3578 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3579 set_sbi_flag(sbi, SBI_NEED_FSCK);
3580 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3581 "iblocks=%llu, released=%u, compr_blocks=%u, "
3582 "run fsck to fix.",
3583 __func__, inode->i_ino, inode->i_blocks,
3584 released_blocks,
3585 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3586 }
3587
3588 return ret;
3589 }
3590
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3591 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3592 {
3593 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3594 unsigned int reserved_blocks = 0;
3595 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3596 block_t blkaddr;
3597 int i;
3598
3599 for (i = 0; i < count; i++) {
3600 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3601 dn->ofs_in_node + i);
3602
3603 if (!__is_valid_data_blkaddr(blkaddr))
3604 continue;
3605 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3606 DATA_GENERIC_ENHANCE))) {
3607 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3608 return -EFSCORRUPTED;
3609 }
3610 }
3611
3612 while (count) {
3613 int compr_blocks = 0;
3614 blkcnt_t reserved;
3615 int ret;
3616
3617 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3618 blkaddr = f2fs_data_blkaddr(dn);
3619
3620 if (i == 0) {
3621 if (blkaddr == COMPRESS_ADDR)
3622 continue;
3623 dn->ofs_in_node += cluster_size;
3624 goto next;
3625 }
3626
3627 if (__is_valid_data_blkaddr(blkaddr)) {
3628 compr_blocks++;
3629 continue;
3630 }
3631
3632 dn->data_blkaddr = NEW_ADDR;
3633 f2fs_set_data_blkaddr(dn);
3634 }
3635
3636 reserved = cluster_size - compr_blocks;
3637 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3638 if (ret)
3639 return ret;
3640
3641 if (reserved != cluster_size - compr_blocks)
3642 return -ENOSPC;
3643
3644 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3645
3646 reserved_blocks += reserved;
3647 next:
3648 count -= cluster_size;
3649 }
3650
3651 return reserved_blocks;
3652 }
3653
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3654 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3655 {
3656 struct inode *inode = file_inode(filp);
3657 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3658 pgoff_t page_idx = 0, last_idx;
3659 unsigned int reserved_blocks = 0;
3660 int ret;
3661
3662 if (!f2fs_sb_has_compression(sbi))
3663 return -EOPNOTSUPP;
3664
3665 if (!f2fs_compressed_file(inode))
3666 return -EINVAL;
3667
3668 if (f2fs_readonly(sbi->sb))
3669 return -EROFS;
3670
3671 ret = mnt_want_write_file(filp);
3672 if (ret)
3673 return ret;
3674
3675 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3676 goto out;
3677
3678 f2fs_balance_fs(sbi, true);
3679
3680 inode_lock(inode);
3681
3682 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3683 ret = -EINVAL;
3684 goto unlock_inode;
3685 }
3686
3687 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3688 filemap_invalidate_lock(inode->i_mapping);
3689
3690 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3691
3692 while (page_idx < last_idx) {
3693 struct dnode_of_data dn;
3694 pgoff_t end_offset, count;
3695
3696 set_new_dnode(&dn, inode, NULL, NULL, 0);
3697 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3698 if (ret) {
3699 if (ret == -ENOENT) {
3700 page_idx = f2fs_get_next_page_offset(&dn,
3701 page_idx);
3702 ret = 0;
3703 continue;
3704 }
3705 break;
3706 }
3707
3708 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3709 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3710 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3711
3712 ret = reserve_compress_blocks(&dn, count);
3713
3714 f2fs_put_dnode(&dn);
3715
3716 if (ret < 0)
3717 break;
3718
3719 page_idx += count;
3720 reserved_blocks += ret;
3721 }
3722
3723 filemap_invalidate_unlock(inode->i_mapping);
3724 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3725
3726 if (ret >= 0) {
3727 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3728 inode_set_ctime_current(inode);
3729 f2fs_mark_inode_dirty_sync(inode, true);
3730 }
3731 unlock_inode:
3732 inode_unlock(inode);
3733 out:
3734 mnt_drop_write_file(filp);
3735
3736 if (ret >= 0) {
3737 ret = put_user(reserved_blocks, (u64 __user *)arg);
3738 } else if (reserved_blocks &&
3739 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3740 set_sbi_flag(sbi, SBI_NEED_FSCK);
3741 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3742 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3743 "run fsck to fix.",
3744 __func__, inode->i_ino, inode->i_blocks,
3745 reserved_blocks,
3746 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3747 }
3748
3749 return ret;
3750 }
3751
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3752 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3753 pgoff_t off, block_t block, block_t len, u32 flags)
3754 {
3755 sector_t sector = SECTOR_FROM_BLOCK(block);
3756 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3757 int ret = 0;
3758
3759 if (flags & F2FS_TRIM_FILE_DISCARD) {
3760 if (bdev_max_secure_erase_sectors(bdev))
3761 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3762 GFP_NOFS);
3763 else
3764 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3765 GFP_NOFS);
3766 }
3767
3768 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3769 if (IS_ENCRYPTED(inode))
3770 ret = fscrypt_zeroout_range(inode, off, block, len);
3771 else
3772 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3773 GFP_NOFS, 0);
3774 }
3775
3776 return ret;
3777 }
3778
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3779 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3780 {
3781 struct inode *inode = file_inode(filp);
3782 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3783 struct address_space *mapping = inode->i_mapping;
3784 struct block_device *prev_bdev = NULL;
3785 struct f2fs_sectrim_range range;
3786 pgoff_t index, pg_end, prev_index = 0;
3787 block_t prev_block = 0, len = 0;
3788 loff_t end_addr;
3789 bool to_end = false;
3790 int ret = 0;
3791
3792 if (!(filp->f_mode & FMODE_WRITE))
3793 return -EBADF;
3794
3795 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3796 sizeof(range)))
3797 return -EFAULT;
3798
3799 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3800 !S_ISREG(inode->i_mode))
3801 return -EINVAL;
3802
3803 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3804 !f2fs_hw_support_discard(sbi)) ||
3805 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3806 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3807 return -EOPNOTSUPP;
3808
3809 file_start_write(filp);
3810 inode_lock(inode);
3811
3812 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3813 range.start >= inode->i_size) {
3814 ret = -EINVAL;
3815 goto err;
3816 }
3817
3818 if (range.len == 0)
3819 goto err;
3820
3821 if (inode->i_size - range.start > range.len) {
3822 end_addr = range.start + range.len;
3823 } else {
3824 end_addr = range.len == (u64)-1 ?
3825 sbi->sb->s_maxbytes : inode->i_size;
3826 to_end = true;
3827 }
3828
3829 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3830 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3831 ret = -EINVAL;
3832 goto err;
3833 }
3834
3835 index = F2FS_BYTES_TO_BLK(range.start);
3836 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3837
3838 ret = f2fs_convert_inline_inode(inode);
3839 if (ret)
3840 goto err;
3841
3842 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3843 filemap_invalidate_lock(mapping);
3844
3845 ret = filemap_write_and_wait_range(mapping, range.start,
3846 to_end ? LLONG_MAX : end_addr - 1);
3847 if (ret)
3848 goto out;
3849
3850 truncate_inode_pages_range(mapping, range.start,
3851 to_end ? -1 : end_addr - 1);
3852
3853 while (index < pg_end) {
3854 struct dnode_of_data dn;
3855 pgoff_t end_offset, count;
3856 int i;
3857
3858 set_new_dnode(&dn, inode, NULL, NULL, 0);
3859 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3860 if (ret) {
3861 if (ret == -ENOENT) {
3862 index = f2fs_get_next_page_offset(&dn, index);
3863 continue;
3864 }
3865 goto out;
3866 }
3867
3868 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3869 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3870 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3871 struct block_device *cur_bdev;
3872 block_t blkaddr = f2fs_data_blkaddr(&dn);
3873
3874 if (!__is_valid_data_blkaddr(blkaddr))
3875 continue;
3876
3877 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3878 DATA_GENERIC_ENHANCE)) {
3879 ret = -EFSCORRUPTED;
3880 f2fs_put_dnode(&dn);
3881 f2fs_handle_error(sbi,
3882 ERROR_INVALID_BLKADDR);
3883 goto out;
3884 }
3885
3886 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3887 if (f2fs_is_multi_device(sbi)) {
3888 int di = f2fs_target_device_index(sbi, blkaddr);
3889
3890 blkaddr -= FDEV(di).start_blk;
3891 }
3892
3893 if (len) {
3894 if (prev_bdev == cur_bdev &&
3895 index == prev_index + len &&
3896 blkaddr == prev_block + len) {
3897 len++;
3898 } else {
3899 ret = f2fs_secure_erase(prev_bdev,
3900 inode, prev_index, prev_block,
3901 len, range.flags);
3902 if (ret) {
3903 f2fs_put_dnode(&dn);
3904 goto out;
3905 }
3906
3907 len = 0;
3908 }
3909 }
3910
3911 if (!len) {
3912 prev_bdev = cur_bdev;
3913 prev_index = index;
3914 prev_block = blkaddr;
3915 len = 1;
3916 }
3917 }
3918
3919 f2fs_put_dnode(&dn);
3920
3921 if (fatal_signal_pending(current)) {
3922 ret = -EINTR;
3923 goto out;
3924 }
3925 cond_resched();
3926 }
3927
3928 if (len)
3929 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3930 prev_block, len, range.flags);
3931 out:
3932 filemap_invalidate_unlock(mapping);
3933 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3934 err:
3935 inode_unlock(inode);
3936 file_end_write(filp);
3937
3938 return ret;
3939 }
3940
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)3941 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3942 {
3943 struct inode *inode = file_inode(filp);
3944 struct f2fs_comp_option option;
3945
3946 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3947 return -EOPNOTSUPP;
3948
3949 inode_lock_shared(inode);
3950
3951 if (!f2fs_compressed_file(inode)) {
3952 inode_unlock_shared(inode);
3953 return -ENODATA;
3954 }
3955
3956 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3957 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3958
3959 inode_unlock_shared(inode);
3960
3961 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3962 sizeof(option)))
3963 return -EFAULT;
3964
3965 return 0;
3966 }
3967
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)3968 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3969 {
3970 struct inode *inode = file_inode(filp);
3971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3972 struct f2fs_comp_option option;
3973 int ret = 0;
3974
3975 if (!f2fs_sb_has_compression(sbi))
3976 return -EOPNOTSUPP;
3977
3978 if (!(filp->f_mode & FMODE_WRITE))
3979 return -EBADF;
3980
3981 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3982 sizeof(option)))
3983 return -EFAULT;
3984
3985 if (!f2fs_compressed_file(inode) ||
3986 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3987 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3988 option.algorithm >= COMPRESS_MAX)
3989 return -EINVAL;
3990
3991 file_start_write(filp);
3992 inode_lock(inode);
3993
3994 f2fs_down_write(&F2FS_I(inode)->i_sem);
3995 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3996 ret = -EBUSY;
3997 goto out;
3998 }
3999
4000 if (F2FS_HAS_BLOCKS(inode)) {
4001 ret = -EFBIG;
4002 goto out;
4003 }
4004
4005 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4006 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4007 F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4008 f2fs_mark_inode_dirty_sync(inode, true);
4009
4010 if (!f2fs_is_compress_backend_ready(inode))
4011 f2fs_warn(sbi, "compression algorithm is successfully set, "
4012 "but current kernel doesn't support this algorithm.");
4013 out:
4014 f2fs_up_write(&F2FS_I(inode)->i_sem);
4015 inode_unlock(inode);
4016 file_end_write(filp);
4017
4018 return ret;
4019 }
4020
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)4021 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4022 {
4023 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4024 struct address_space *mapping = inode->i_mapping;
4025 struct page *page;
4026 pgoff_t redirty_idx = page_idx;
4027 int i, page_len = 0, ret = 0;
4028
4029 page_cache_ra_unbounded(&ractl, len, 0);
4030
4031 for (i = 0; i < len; i++, page_idx++) {
4032 page = read_cache_page(mapping, page_idx, NULL, NULL);
4033 if (IS_ERR(page)) {
4034 ret = PTR_ERR(page);
4035 break;
4036 }
4037 page_len++;
4038 }
4039
4040 for (i = 0; i < page_len; i++, redirty_idx++) {
4041 page = find_lock_page(mapping, redirty_idx);
4042
4043 /* It will never fail, when page has pinned above */
4044 f2fs_bug_on(F2FS_I_SB(inode), !page);
4045
4046 set_page_dirty(page);
4047 f2fs_put_page(page, 1);
4048 f2fs_put_page(page, 0);
4049 }
4050
4051 return ret;
4052 }
4053
f2fs_ioc_decompress_file(struct file * filp)4054 static int f2fs_ioc_decompress_file(struct file *filp)
4055 {
4056 struct inode *inode = file_inode(filp);
4057 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4058 struct f2fs_inode_info *fi = F2FS_I(inode);
4059 pgoff_t page_idx = 0, last_idx;
4060 unsigned int blk_per_seg = sbi->blocks_per_seg;
4061 int cluster_size = fi->i_cluster_size;
4062 int count, ret;
4063
4064 if (!f2fs_sb_has_compression(sbi) ||
4065 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4066 return -EOPNOTSUPP;
4067
4068 if (!(filp->f_mode & FMODE_WRITE))
4069 return -EBADF;
4070
4071 if (!f2fs_compressed_file(inode))
4072 return -EINVAL;
4073
4074 f2fs_balance_fs(sbi, true);
4075
4076 file_start_write(filp);
4077 inode_lock(inode);
4078
4079 if (!f2fs_is_compress_backend_ready(inode)) {
4080 ret = -EOPNOTSUPP;
4081 goto out;
4082 }
4083
4084 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088
4089 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4090 if (ret)
4091 goto out;
4092
4093 if (!atomic_read(&fi->i_compr_blocks))
4094 goto out;
4095
4096 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4097
4098 count = last_idx - page_idx;
4099 while (count && count >= cluster_size) {
4100 ret = redirty_blocks(inode, page_idx, cluster_size);
4101 if (ret < 0)
4102 break;
4103
4104 if (get_dirty_pages(inode) >= blk_per_seg) {
4105 ret = filemap_fdatawrite(inode->i_mapping);
4106 if (ret < 0)
4107 break;
4108 }
4109
4110 count -= cluster_size;
4111 page_idx += cluster_size;
4112
4113 cond_resched();
4114 if (fatal_signal_pending(current)) {
4115 ret = -EINTR;
4116 break;
4117 }
4118 }
4119
4120 if (!ret)
4121 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4122 LLONG_MAX);
4123
4124 if (ret)
4125 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4126 __func__, ret);
4127 out:
4128 inode_unlock(inode);
4129 file_end_write(filp);
4130
4131 return ret;
4132 }
4133
f2fs_ioc_compress_file(struct file * filp)4134 static int f2fs_ioc_compress_file(struct file *filp)
4135 {
4136 struct inode *inode = file_inode(filp);
4137 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4138 pgoff_t page_idx = 0, last_idx;
4139 unsigned int blk_per_seg = sbi->blocks_per_seg;
4140 int cluster_size = F2FS_I(inode)->i_cluster_size;
4141 int count, ret;
4142
4143 if (!f2fs_sb_has_compression(sbi) ||
4144 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4145 return -EOPNOTSUPP;
4146
4147 if (!(filp->f_mode & FMODE_WRITE))
4148 return -EBADF;
4149
4150 if (!f2fs_compressed_file(inode))
4151 return -EINVAL;
4152
4153 f2fs_balance_fs(sbi, true);
4154
4155 file_start_write(filp);
4156 inode_lock(inode);
4157
4158 if (!f2fs_is_compress_backend_ready(inode)) {
4159 ret = -EOPNOTSUPP;
4160 goto out;
4161 }
4162
4163 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4164 ret = -EINVAL;
4165 goto out;
4166 }
4167
4168 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4169 if (ret)
4170 goto out;
4171
4172 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4173
4174 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4175
4176 count = last_idx - page_idx;
4177 while (count && count >= cluster_size) {
4178 ret = redirty_blocks(inode, page_idx, cluster_size);
4179 if (ret < 0)
4180 break;
4181
4182 if (get_dirty_pages(inode) >= blk_per_seg) {
4183 ret = filemap_fdatawrite(inode->i_mapping);
4184 if (ret < 0)
4185 break;
4186 }
4187
4188 count -= cluster_size;
4189 page_idx += cluster_size;
4190
4191 cond_resched();
4192 if (fatal_signal_pending(current)) {
4193 ret = -EINTR;
4194 break;
4195 }
4196 }
4197
4198 if (!ret)
4199 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4200 LLONG_MAX);
4201
4202 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4203
4204 if (ret)
4205 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4206 __func__, ret);
4207 out:
4208 inode_unlock(inode);
4209 file_end_write(filp);
4210
4211 return ret;
4212 }
4213
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4214 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4215 {
4216 switch (cmd) {
4217 case FS_IOC_GETVERSION:
4218 return f2fs_ioc_getversion(filp, arg);
4219 case F2FS_IOC_START_ATOMIC_WRITE:
4220 return f2fs_ioc_start_atomic_write(filp, false);
4221 case F2FS_IOC_START_ATOMIC_REPLACE:
4222 return f2fs_ioc_start_atomic_write(filp, true);
4223 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4224 return f2fs_ioc_commit_atomic_write(filp);
4225 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4226 return f2fs_ioc_abort_atomic_write(filp);
4227 case F2FS_IOC_START_VOLATILE_WRITE:
4228 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4229 return -EOPNOTSUPP;
4230 case F2FS_IOC_SHUTDOWN:
4231 return f2fs_ioc_shutdown(filp, arg);
4232 case FITRIM:
4233 return f2fs_ioc_fitrim(filp, arg);
4234 case FS_IOC_SET_ENCRYPTION_POLICY:
4235 return f2fs_ioc_set_encryption_policy(filp, arg);
4236 case FS_IOC_GET_ENCRYPTION_POLICY:
4237 return f2fs_ioc_get_encryption_policy(filp, arg);
4238 case FS_IOC_GET_ENCRYPTION_PWSALT:
4239 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4240 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4241 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4242 case FS_IOC_ADD_ENCRYPTION_KEY:
4243 return f2fs_ioc_add_encryption_key(filp, arg);
4244 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4245 return f2fs_ioc_remove_encryption_key(filp, arg);
4246 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4247 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4248 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4249 return f2fs_ioc_get_encryption_key_status(filp, arg);
4250 case FS_IOC_GET_ENCRYPTION_NONCE:
4251 return f2fs_ioc_get_encryption_nonce(filp, arg);
4252 case F2FS_IOC_GARBAGE_COLLECT:
4253 return f2fs_ioc_gc(filp, arg);
4254 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4255 return f2fs_ioc_gc_range(filp, arg);
4256 case F2FS_IOC_WRITE_CHECKPOINT:
4257 return f2fs_ioc_write_checkpoint(filp);
4258 case F2FS_IOC_DEFRAGMENT:
4259 return f2fs_ioc_defragment(filp, arg);
4260 case F2FS_IOC_MOVE_RANGE:
4261 return f2fs_ioc_move_range(filp, arg);
4262 case F2FS_IOC_FLUSH_DEVICE:
4263 return f2fs_ioc_flush_device(filp, arg);
4264 case F2FS_IOC_GET_FEATURES:
4265 return f2fs_ioc_get_features(filp, arg);
4266 case F2FS_IOC_GET_PIN_FILE:
4267 return f2fs_ioc_get_pin_file(filp, arg);
4268 case F2FS_IOC_SET_PIN_FILE:
4269 return f2fs_ioc_set_pin_file(filp, arg);
4270 case F2FS_IOC_PRECACHE_EXTENTS:
4271 return f2fs_ioc_precache_extents(filp);
4272 case F2FS_IOC_RESIZE_FS:
4273 return f2fs_ioc_resize_fs(filp, arg);
4274 case FS_IOC_ENABLE_VERITY:
4275 return f2fs_ioc_enable_verity(filp, arg);
4276 case FS_IOC_MEASURE_VERITY:
4277 return f2fs_ioc_measure_verity(filp, arg);
4278 case FS_IOC_READ_VERITY_METADATA:
4279 return f2fs_ioc_read_verity_metadata(filp, arg);
4280 case FS_IOC_GETFSLABEL:
4281 return f2fs_ioc_getfslabel(filp, arg);
4282 case FS_IOC_SETFSLABEL:
4283 return f2fs_ioc_setfslabel(filp, arg);
4284 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4285 return f2fs_ioc_get_compress_blocks(filp, arg);
4286 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4287 return f2fs_release_compress_blocks(filp, arg);
4288 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4289 return f2fs_reserve_compress_blocks(filp, arg);
4290 case F2FS_IOC_SEC_TRIM_FILE:
4291 return f2fs_sec_trim_file(filp, arg);
4292 case F2FS_IOC_GET_COMPRESS_OPTION:
4293 return f2fs_ioc_get_compress_option(filp, arg);
4294 case F2FS_IOC_SET_COMPRESS_OPTION:
4295 return f2fs_ioc_set_compress_option(filp, arg);
4296 case F2FS_IOC_DECOMPRESS_FILE:
4297 return f2fs_ioc_decompress_file(filp);
4298 case F2FS_IOC_COMPRESS_FILE:
4299 return f2fs_ioc_compress_file(filp);
4300 default:
4301 return -ENOTTY;
4302 }
4303 }
4304
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4305 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4306 {
4307 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4308 return -EIO;
4309 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4310 return -ENOSPC;
4311
4312 return __f2fs_ioctl(filp, cmd, arg);
4313 }
4314
4315 /*
4316 * Return %true if the given read or write request should use direct I/O, or
4317 * %false if it should use buffered I/O.
4318 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4319 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4320 struct iov_iter *iter)
4321 {
4322 unsigned int align;
4323
4324 if (!(iocb->ki_flags & IOCB_DIRECT))
4325 return false;
4326
4327 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4328 return false;
4329
4330 /*
4331 * Direct I/O not aligned to the disk's logical_block_size will be
4332 * attempted, but will fail with -EINVAL.
4333 *
4334 * f2fs additionally requires that direct I/O be aligned to the
4335 * filesystem block size, which is often a stricter requirement.
4336 * However, f2fs traditionally falls back to buffered I/O on requests
4337 * that are logical_block_size-aligned but not fs-block aligned.
4338 *
4339 * The below logic implements this behavior.
4340 */
4341 align = iocb->ki_pos | iov_iter_alignment(iter);
4342 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4343 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4344 return false;
4345
4346 return true;
4347 }
4348
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4349 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4350 unsigned int flags)
4351 {
4352 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4353
4354 dec_page_count(sbi, F2FS_DIO_READ);
4355 if (error)
4356 return error;
4357 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4358 return 0;
4359 }
4360
4361 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4362 .end_io = f2fs_dio_read_end_io,
4363 };
4364
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4365 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4366 {
4367 struct file *file = iocb->ki_filp;
4368 struct inode *inode = file_inode(file);
4369 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4370 struct f2fs_inode_info *fi = F2FS_I(inode);
4371 const loff_t pos = iocb->ki_pos;
4372 const size_t count = iov_iter_count(to);
4373 struct iomap_dio *dio;
4374 ssize_t ret;
4375
4376 if (count == 0)
4377 return 0; /* skip atime update */
4378
4379 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4380
4381 if (iocb->ki_flags & IOCB_NOWAIT) {
4382 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4383 ret = -EAGAIN;
4384 goto out;
4385 }
4386 } else {
4387 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4388 }
4389
4390 /*
4391 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4392 * the higher-level function iomap_dio_rw() in order to ensure that the
4393 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4394 */
4395 inc_page_count(sbi, F2FS_DIO_READ);
4396 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4397 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4398 if (IS_ERR_OR_NULL(dio)) {
4399 ret = PTR_ERR_OR_ZERO(dio);
4400 if (ret != -EIOCBQUEUED)
4401 dec_page_count(sbi, F2FS_DIO_READ);
4402 } else {
4403 ret = iomap_dio_complete(dio);
4404 }
4405
4406 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4407
4408 file_accessed(file);
4409 out:
4410 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4411 return ret;
4412 }
4413
f2fs_trace_rw_file_path(struct file * file,loff_t pos,size_t count,int rw)4414 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4415 int rw)
4416 {
4417 struct inode *inode = file_inode(file);
4418 char *buf, *path;
4419
4420 buf = f2fs_getname(F2FS_I_SB(inode));
4421 if (!buf)
4422 return;
4423 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4424 if (IS_ERR(path))
4425 goto free_buf;
4426 if (rw == WRITE)
4427 trace_f2fs_datawrite_start(inode, pos, count,
4428 current->pid, path, current->comm);
4429 else
4430 trace_f2fs_dataread_start(inode, pos, count,
4431 current->pid, path, current->comm);
4432 free_buf:
4433 f2fs_putname(buf);
4434 }
4435
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4436 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4437 {
4438 struct inode *inode = file_inode(iocb->ki_filp);
4439 const loff_t pos = iocb->ki_pos;
4440 ssize_t ret;
4441
4442 if (!f2fs_is_compress_backend_ready(inode))
4443 return -EOPNOTSUPP;
4444
4445 if (trace_f2fs_dataread_start_enabled())
4446 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4447 iov_iter_count(to), READ);
4448
4449 if (f2fs_should_use_dio(inode, iocb, to)) {
4450 ret = f2fs_dio_read_iter(iocb, to);
4451 } else {
4452 ret = filemap_read(iocb, to, 0);
4453 if (ret > 0)
4454 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4455 APP_BUFFERED_READ_IO, ret);
4456 }
4457 if (trace_f2fs_dataread_end_enabled())
4458 trace_f2fs_dataread_end(inode, pos, ret);
4459 return ret;
4460 }
4461
f2fs_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)4462 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4463 struct pipe_inode_info *pipe,
4464 size_t len, unsigned int flags)
4465 {
4466 struct inode *inode = file_inode(in);
4467 const loff_t pos = *ppos;
4468 ssize_t ret;
4469
4470 if (!f2fs_is_compress_backend_ready(inode))
4471 return -EOPNOTSUPP;
4472
4473 if (trace_f2fs_dataread_start_enabled())
4474 f2fs_trace_rw_file_path(in, pos, len, READ);
4475
4476 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4477 if (ret > 0)
4478 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4479 APP_BUFFERED_READ_IO, ret);
4480
4481 if (trace_f2fs_dataread_end_enabled())
4482 trace_f2fs_dataread_end(inode, pos, ret);
4483 return ret;
4484 }
4485
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4486 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4487 {
4488 struct file *file = iocb->ki_filp;
4489 struct inode *inode = file_inode(file);
4490 ssize_t count;
4491 int err;
4492
4493 if (IS_IMMUTABLE(inode))
4494 return -EPERM;
4495
4496 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4497 return -EPERM;
4498
4499 count = generic_write_checks(iocb, from);
4500 if (count <= 0)
4501 return count;
4502
4503 err = file_modified(file);
4504 if (err)
4505 return err;
4506 return count;
4507 }
4508
4509 /*
4510 * Preallocate blocks for a write request, if it is possible and helpful to do
4511 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4512 * blocks were preallocated, or a negative errno value if something went
4513 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4514 * requested blocks (not just some of them) have been allocated.
4515 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4516 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4517 bool dio)
4518 {
4519 struct inode *inode = file_inode(iocb->ki_filp);
4520 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4521 const loff_t pos = iocb->ki_pos;
4522 const size_t count = iov_iter_count(iter);
4523 struct f2fs_map_blocks map = {};
4524 int flag;
4525 int ret;
4526
4527 /* If it will be an out-of-place direct write, don't bother. */
4528 if (dio && f2fs_lfs_mode(sbi))
4529 return 0;
4530 /*
4531 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4532 * buffered IO, if DIO meets any holes.
4533 */
4534 if (dio && i_size_read(inode) &&
4535 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4536 return 0;
4537
4538 /* No-wait I/O can't allocate blocks. */
4539 if (iocb->ki_flags & IOCB_NOWAIT)
4540 return 0;
4541
4542 /* If it will be a short write, don't bother. */
4543 if (fault_in_iov_iter_readable(iter, count))
4544 return 0;
4545
4546 if (f2fs_has_inline_data(inode)) {
4547 /* If the data will fit inline, don't bother. */
4548 if (pos + count <= MAX_INLINE_DATA(inode))
4549 return 0;
4550 ret = f2fs_convert_inline_inode(inode);
4551 if (ret)
4552 return ret;
4553 }
4554
4555 /* Do not preallocate blocks that will be written partially in 4KB. */
4556 map.m_lblk = F2FS_BLK_ALIGN(pos);
4557 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4558 if (map.m_len > map.m_lblk)
4559 map.m_len -= map.m_lblk;
4560 else
4561 map.m_len = 0;
4562 map.m_may_create = true;
4563 if (dio) {
4564 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4565 flag = F2FS_GET_BLOCK_PRE_DIO;
4566 } else {
4567 map.m_seg_type = NO_CHECK_TYPE;
4568 flag = F2FS_GET_BLOCK_PRE_AIO;
4569 }
4570
4571 ret = f2fs_map_blocks(inode, &map, flag);
4572 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4573 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4574 return ret;
4575 if (ret == 0)
4576 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4577 return map.m_len;
4578 }
4579
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4580 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4581 struct iov_iter *from)
4582 {
4583 struct file *file = iocb->ki_filp;
4584 struct inode *inode = file_inode(file);
4585 ssize_t ret;
4586
4587 if (iocb->ki_flags & IOCB_NOWAIT)
4588 return -EOPNOTSUPP;
4589
4590 ret = generic_perform_write(iocb, from);
4591
4592 if (ret > 0) {
4593 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4594 APP_BUFFERED_IO, ret);
4595 }
4596 return ret;
4597 }
4598
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4599 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4600 unsigned int flags)
4601 {
4602 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4603
4604 dec_page_count(sbi, F2FS_DIO_WRITE);
4605 if (error)
4606 return error;
4607 f2fs_update_time(sbi, REQ_TIME);
4608 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4609 return 0;
4610 }
4611
4612 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4613 .end_io = f2fs_dio_write_end_io,
4614 };
4615
f2fs_flush_buffered_write(struct address_space * mapping,loff_t start_pos,loff_t end_pos)4616 static void f2fs_flush_buffered_write(struct address_space *mapping,
4617 loff_t start_pos, loff_t end_pos)
4618 {
4619 int ret;
4620
4621 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4622 if (ret < 0)
4623 return;
4624 invalidate_mapping_pages(mapping,
4625 start_pos >> PAGE_SHIFT,
4626 end_pos >> PAGE_SHIFT);
4627 }
4628
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4629 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4630 bool *may_need_sync)
4631 {
4632 struct file *file = iocb->ki_filp;
4633 struct inode *inode = file_inode(file);
4634 struct f2fs_inode_info *fi = F2FS_I(inode);
4635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4636 const bool do_opu = f2fs_lfs_mode(sbi);
4637 const loff_t pos = iocb->ki_pos;
4638 const ssize_t count = iov_iter_count(from);
4639 unsigned int dio_flags;
4640 struct iomap_dio *dio;
4641 ssize_t ret;
4642
4643 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4644
4645 if (iocb->ki_flags & IOCB_NOWAIT) {
4646 /* f2fs_convert_inline_inode() and block allocation can block */
4647 if (f2fs_has_inline_data(inode) ||
4648 !f2fs_overwrite_io(inode, pos, count)) {
4649 ret = -EAGAIN;
4650 goto out;
4651 }
4652
4653 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4654 ret = -EAGAIN;
4655 goto out;
4656 }
4657 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4658 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4659 ret = -EAGAIN;
4660 goto out;
4661 }
4662 } else {
4663 ret = f2fs_convert_inline_inode(inode);
4664 if (ret)
4665 goto out;
4666
4667 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4668 if (do_opu)
4669 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4670 }
4671
4672 /*
4673 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4674 * the higher-level function iomap_dio_rw() in order to ensure that the
4675 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4676 */
4677 inc_page_count(sbi, F2FS_DIO_WRITE);
4678 dio_flags = 0;
4679 if (pos + count > inode->i_size)
4680 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4681 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4682 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4683 if (IS_ERR_OR_NULL(dio)) {
4684 ret = PTR_ERR_OR_ZERO(dio);
4685 if (ret == -ENOTBLK)
4686 ret = 0;
4687 if (ret != -EIOCBQUEUED)
4688 dec_page_count(sbi, F2FS_DIO_WRITE);
4689 } else {
4690 ret = iomap_dio_complete(dio);
4691 }
4692
4693 if (do_opu)
4694 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4695 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4696
4697 if (ret < 0)
4698 goto out;
4699 if (pos + ret > inode->i_size)
4700 f2fs_i_size_write(inode, pos + ret);
4701 if (!do_opu)
4702 set_inode_flag(inode, FI_UPDATE_WRITE);
4703
4704 if (iov_iter_count(from)) {
4705 ssize_t ret2;
4706 loff_t bufio_start_pos = iocb->ki_pos;
4707
4708 /*
4709 * The direct write was partial, so we need to fall back to a
4710 * buffered write for the remainder.
4711 */
4712
4713 ret2 = f2fs_buffered_write_iter(iocb, from);
4714 if (iov_iter_count(from))
4715 f2fs_write_failed(inode, iocb->ki_pos);
4716 if (ret2 < 0)
4717 goto out;
4718
4719 /*
4720 * Ensure that the pagecache pages are written to disk and
4721 * invalidated to preserve the expected O_DIRECT semantics.
4722 */
4723 if (ret2 > 0) {
4724 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4725
4726 ret += ret2;
4727
4728 f2fs_flush_buffered_write(file->f_mapping,
4729 bufio_start_pos,
4730 bufio_end_pos);
4731 }
4732 } else {
4733 /* iomap_dio_rw() already handled the generic_write_sync(). */
4734 *may_need_sync = false;
4735 }
4736 out:
4737 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4738 return ret;
4739 }
4740
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4741 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4742 {
4743 struct inode *inode = file_inode(iocb->ki_filp);
4744 const loff_t orig_pos = iocb->ki_pos;
4745 const size_t orig_count = iov_iter_count(from);
4746 loff_t target_size;
4747 bool dio;
4748 bool may_need_sync = true;
4749 int preallocated;
4750 ssize_t ret;
4751
4752 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4753 ret = -EIO;
4754 goto out;
4755 }
4756
4757 if (!f2fs_is_compress_backend_ready(inode)) {
4758 ret = -EOPNOTSUPP;
4759 goto out;
4760 }
4761
4762 if (iocb->ki_flags & IOCB_NOWAIT) {
4763 if (!inode_trylock(inode)) {
4764 ret = -EAGAIN;
4765 goto out;
4766 }
4767 } else {
4768 inode_lock(inode);
4769 }
4770
4771 ret = f2fs_write_checks(iocb, from);
4772 if (ret <= 0)
4773 goto out_unlock;
4774
4775 /* Determine whether we will do a direct write or a buffered write. */
4776 dio = f2fs_should_use_dio(inode, iocb, from);
4777
4778 /* Possibly preallocate the blocks for the write. */
4779 target_size = iocb->ki_pos + iov_iter_count(from);
4780 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4781 if (preallocated < 0) {
4782 ret = preallocated;
4783 } else {
4784 if (trace_f2fs_datawrite_start_enabled())
4785 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4786 orig_count, WRITE);
4787
4788 /* Do the actual write. */
4789 ret = dio ?
4790 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4791 f2fs_buffered_write_iter(iocb, from);
4792
4793 if (trace_f2fs_datawrite_end_enabled())
4794 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4795 }
4796
4797 /* Don't leave any preallocated blocks around past i_size. */
4798 if (preallocated && i_size_read(inode) < target_size) {
4799 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4800 filemap_invalidate_lock(inode->i_mapping);
4801 if (!f2fs_truncate(inode))
4802 file_dont_truncate(inode);
4803 filemap_invalidate_unlock(inode->i_mapping);
4804 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4805 } else {
4806 file_dont_truncate(inode);
4807 }
4808
4809 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4810 out_unlock:
4811 inode_unlock(inode);
4812 out:
4813 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4814
4815 if (ret > 0 && may_need_sync)
4816 ret = generic_write_sync(iocb, ret);
4817
4818 /* If buffered IO was forced, flush and drop the data from
4819 * the page cache to preserve O_DIRECT semantics
4820 */
4821 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4822 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4823 orig_pos,
4824 orig_pos + ret - 1);
4825
4826 return ret;
4827 }
4828
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4829 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4830 int advice)
4831 {
4832 struct address_space *mapping;
4833 struct backing_dev_info *bdi;
4834 struct inode *inode = file_inode(filp);
4835 int err;
4836
4837 if (advice == POSIX_FADV_SEQUENTIAL) {
4838 if (S_ISFIFO(inode->i_mode))
4839 return -ESPIPE;
4840
4841 mapping = filp->f_mapping;
4842 if (!mapping || len < 0)
4843 return -EINVAL;
4844
4845 bdi = inode_to_bdi(mapping->host);
4846 filp->f_ra.ra_pages = bdi->ra_pages *
4847 F2FS_I_SB(inode)->seq_file_ra_mul;
4848 spin_lock(&filp->f_lock);
4849 filp->f_mode &= ~FMODE_RANDOM;
4850 spin_unlock(&filp->f_lock);
4851 return 0;
4852 }
4853
4854 err = generic_fadvise(filp, offset, len, advice);
4855 if (!err && advice == POSIX_FADV_DONTNEED &&
4856 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4857 f2fs_compressed_file(inode))
4858 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4859
4860 return err;
4861 }
4862
4863 #ifdef CONFIG_COMPAT
4864 struct compat_f2fs_gc_range {
4865 u32 sync;
4866 compat_u64 start;
4867 compat_u64 len;
4868 };
4869 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4870 struct compat_f2fs_gc_range)
4871
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4872 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4873 {
4874 struct compat_f2fs_gc_range __user *urange;
4875 struct f2fs_gc_range range;
4876 int err;
4877
4878 urange = compat_ptr(arg);
4879 err = get_user(range.sync, &urange->sync);
4880 err |= get_user(range.start, &urange->start);
4881 err |= get_user(range.len, &urange->len);
4882 if (err)
4883 return -EFAULT;
4884
4885 return __f2fs_ioc_gc_range(file, &range);
4886 }
4887
4888 struct compat_f2fs_move_range {
4889 u32 dst_fd;
4890 compat_u64 pos_in;
4891 compat_u64 pos_out;
4892 compat_u64 len;
4893 };
4894 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4895 struct compat_f2fs_move_range)
4896
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4897 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4898 {
4899 struct compat_f2fs_move_range __user *urange;
4900 struct f2fs_move_range range;
4901 int err;
4902
4903 urange = compat_ptr(arg);
4904 err = get_user(range.dst_fd, &urange->dst_fd);
4905 err |= get_user(range.pos_in, &urange->pos_in);
4906 err |= get_user(range.pos_out, &urange->pos_out);
4907 err |= get_user(range.len, &urange->len);
4908 if (err)
4909 return -EFAULT;
4910
4911 return __f2fs_ioc_move_range(file, &range);
4912 }
4913
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4914 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4915 {
4916 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4917 return -EIO;
4918 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4919 return -ENOSPC;
4920
4921 switch (cmd) {
4922 case FS_IOC32_GETVERSION:
4923 cmd = FS_IOC_GETVERSION;
4924 break;
4925 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4926 return f2fs_compat_ioc_gc_range(file, arg);
4927 case F2FS_IOC32_MOVE_RANGE:
4928 return f2fs_compat_ioc_move_range(file, arg);
4929 case F2FS_IOC_START_ATOMIC_WRITE:
4930 case F2FS_IOC_START_ATOMIC_REPLACE:
4931 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4932 case F2FS_IOC_START_VOLATILE_WRITE:
4933 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4934 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4935 case F2FS_IOC_SHUTDOWN:
4936 case FITRIM:
4937 case FS_IOC_SET_ENCRYPTION_POLICY:
4938 case FS_IOC_GET_ENCRYPTION_PWSALT:
4939 case FS_IOC_GET_ENCRYPTION_POLICY:
4940 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4941 case FS_IOC_ADD_ENCRYPTION_KEY:
4942 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4943 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4944 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4945 case FS_IOC_GET_ENCRYPTION_NONCE:
4946 case F2FS_IOC_GARBAGE_COLLECT:
4947 case F2FS_IOC_WRITE_CHECKPOINT:
4948 case F2FS_IOC_DEFRAGMENT:
4949 case F2FS_IOC_FLUSH_DEVICE:
4950 case F2FS_IOC_GET_FEATURES:
4951 case F2FS_IOC_GET_PIN_FILE:
4952 case F2FS_IOC_SET_PIN_FILE:
4953 case F2FS_IOC_PRECACHE_EXTENTS:
4954 case F2FS_IOC_RESIZE_FS:
4955 case FS_IOC_ENABLE_VERITY:
4956 case FS_IOC_MEASURE_VERITY:
4957 case FS_IOC_READ_VERITY_METADATA:
4958 case FS_IOC_GETFSLABEL:
4959 case FS_IOC_SETFSLABEL:
4960 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4961 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4962 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4963 case F2FS_IOC_SEC_TRIM_FILE:
4964 case F2FS_IOC_GET_COMPRESS_OPTION:
4965 case F2FS_IOC_SET_COMPRESS_OPTION:
4966 case F2FS_IOC_DECOMPRESS_FILE:
4967 case F2FS_IOC_COMPRESS_FILE:
4968 break;
4969 default:
4970 return -ENOIOCTLCMD;
4971 }
4972 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4973 }
4974 #endif
4975
4976 const struct file_operations f2fs_file_operations = {
4977 .llseek = f2fs_llseek,
4978 .read_iter = f2fs_file_read_iter,
4979 .write_iter = f2fs_file_write_iter,
4980 .iopoll = iocb_bio_iopoll,
4981 .open = f2fs_file_open,
4982 .release = f2fs_release_file,
4983 .mmap = f2fs_file_mmap,
4984 .flush = f2fs_file_flush,
4985 .fsync = f2fs_sync_file,
4986 .fallocate = f2fs_fallocate,
4987 .unlocked_ioctl = f2fs_ioctl,
4988 #ifdef CONFIG_COMPAT
4989 .compat_ioctl = f2fs_compat_ioctl,
4990 #endif
4991 .splice_read = f2fs_file_splice_read,
4992 .splice_write = iter_file_splice_write,
4993 .fadvise = f2fs_file_fadvise,
4994 };
4995