1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (WARN_ON(condition)) \
37 set_sbi_flag(sbi, SBI_NEED_FSCK); \
38 } while (0)
39 #endif
40
41 enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_SLAB_ALLOC,
58 FAULT_MAX,
59 };
60
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
63
64 struct f2fs_fault_info {
65 atomic_t inject_ops;
66 unsigned int inject_rate;
67 unsigned int inject_type;
68 };
69
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73
74 /*
75 * For mount options
76 */
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
78 #define F2FS_MOUNT_DISCARD 0x00000004
79 #define F2FS_MOUNT_NOHEAP 0x00000008
80 #define F2FS_MOUNT_XATTR_USER 0x00000010
81 #define F2FS_MOUNT_POSIX_ACL 0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
84 #define F2FS_MOUNT_INLINE_DATA 0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
87 #define F2FS_MOUNT_NOBARRIER 0x00000800
88 #define F2FS_MOUNT_FASTBOOT 0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94 #define F2FS_MOUNT_PRJQUOTA 0x00200000
95 #define F2FS_MOUNT_QUOTA 0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
97 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
98 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
99 #define F2FS_MOUNT_NORECOVERY 0x04000000
100 #define F2FS_MOUNT_ATGC 0x08000000
101 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000
102 #define F2FS_MOUNT_GC_MERGE 0x20000000
103 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000
104
105 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
106 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
107 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
108 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
109
110 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
111 typecheck(unsigned long long, b) && \
112 ((long long)((a) - (b)) > 0))
113
114 typedef u32 block_t; /*
115 * should not change u32, since it is the on-disk block
116 * address format, __le32.
117 */
118 typedef u32 nid_t;
119
120 #define COMPRESS_EXT_NUM 16
121
122 struct f2fs_mount_info {
123 unsigned int opt;
124 int write_io_size_bits; /* Write IO size bits */
125 block_t root_reserved_blocks; /* root reserved blocks */
126 kuid_t s_resuid; /* reserved blocks for uid */
127 kgid_t s_resgid; /* reserved blocks for gid */
128 int active_logs; /* # of active logs */
129 int inline_xattr_size; /* inline xattr size */
130 #ifdef CONFIG_F2FS_FAULT_INJECTION
131 struct f2fs_fault_info fault_info; /* For fault injection */
132 #endif
133 #ifdef CONFIG_QUOTA
134 /* Names of quota files with journalled quota */
135 char *s_qf_names[MAXQUOTAS];
136 int s_jquota_fmt; /* Format of quota to use */
137 #endif
138 /* For which write hints are passed down to block layer */
139 int whint_mode;
140 int alloc_mode; /* segment allocation policy */
141 int fsync_mode; /* fsync policy */
142 int fs_mode; /* fs mode: LFS or ADAPTIVE */
143 int bggc_mode; /* bggc mode: off, on or sync */
144 int discard_unit; /*
145 * discard command's offset/size should
146 * be aligned to this unit: block,
147 * segment or section
148 */
149 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
150 block_t unusable_cap_perc; /* percentage for cap */
151 block_t unusable_cap; /* Amount of space allowed to be
152 * unusable when disabling checkpoint
153 */
154
155 /* For compression */
156 unsigned char compress_algorithm; /* algorithm type */
157 unsigned char compress_log_size; /* cluster log size */
158 unsigned char compress_level; /* compress level */
159 bool compress_chksum; /* compressed data chksum */
160 unsigned char compress_ext_cnt; /* extension count */
161 unsigned char nocompress_ext_cnt; /* nocompress extension count */
162 int compress_mode; /* compression mode */
163 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
164 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
165 };
166
167 #define F2FS_FEATURE_ENCRYPT 0x0001
168 #define F2FS_FEATURE_BLKZONED 0x0002
169 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
170 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
171 #define F2FS_FEATURE_PRJQUOTA 0x0010
172 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
173 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
174 #define F2FS_FEATURE_QUOTA_INO 0x0080
175 #define F2FS_FEATURE_INODE_CRTIME 0x0100
176 #define F2FS_FEATURE_LOST_FOUND 0x0200
177 #define F2FS_FEATURE_VERITY 0x0400
178 #define F2FS_FEATURE_SB_CHKSUM 0x0800
179 #define F2FS_FEATURE_CASEFOLD 0x1000
180 #define F2FS_FEATURE_COMPRESSION 0x2000
181 #define F2FS_FEATURE_RO 0x4000
182
183 #define __F2FS_HAS_FEATURE(raw_super, mask) \
184 ((raw_super->feature & cpu_to_le32(mask)) != 0)
185 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
186 #define F2FS_SET_FEATURE(sbi, mask) \
187 (sbi->raw_super->feature |= cpu_to_le32(mask))
188 #define F2FS_CLEAR_FEATURE(sbi, mask) \
189 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
190
191 /*
192 * Default values for user and/or group using reserved blocks
193 */
194 #define F2FS_DEF_RESUID 0
195 #define F2FS_DEF_RESGID 0
196
197 /*
198 * For checkpoint manager
199 */
200 enum {
201 NAT_BITMAP,
202 SIT_BITMAP
203 };
204
205 #define CP_UMOUNT 0x00000001
206 #define CP_FASTBOOT 0x00000002
207 #define CP_SYNC 0x00000004
208 #define CP_RECOVERY 0x00000008
209 #define CP_DISCARD 0x00000010
210 #define CP_TRIMMED 0x00000020
211 #define CP_PAUSE 0x00000040
212 #define CP_RESIZE 0x00000080
213
214 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
215 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
216 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
217 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
218 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
219 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
220 #define DEF_CP_INTERVAL 60 /* 60 secs */
221 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
222 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
223 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
224 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
225
226 struct cp_control {
227 int reason;
228 __u64 trim_start;
229 __u64 trim_end;
230 __u64 trim_minlen;
231 };
232
233 /*
234 * indicate meta/data type
235 */
236 enum {
237 META_CP,
238 META_NAT,
239 META_SIT,
240 META_SSA,
241 META_MAX,
242 META_POR,
243 DATA_GENERIC, /* check range only */
244 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
245 DATA_GENERIC_ENHANCE_READ, /*
246 * strong check on range and segment
247 * bitmap but no warning due to race
248 * condition of read on truncated area
249 * by extent_cache
250 */
251 META_GENERIC,
252 };
253
254 /* for the list of ino */
255 enum {
256 ORPHAN_INO, /* for orphan ino list */
257 APPEND_INO, /* for append ino list */
258 UPDATE_INO, /* for update ino list */
259 TRANS_DIR_INO, /* for trasactions dir ino list */
260 FLUSH_INO, /* for multiple device flushing */
261 MAX_INO_ENTRY, /* max. list */
262 };
263
264 struct ino_entry {
265 struct list_head list; /* list head */
266 nid_t ino; /* inode number */
267 unsigned int dirty_device; /* dirty device bitmap */
268 };
269
270 /* for the list of inodes to be GCed */
271 struct inode_entry {
272 struct list_head list; /* list head */
273 struct inode *inode; /* vfs inode pointer */
274 };
275
276 struct fsync_node_entry {
277 struct list_head list; /* list head */
278 struct page *page; /* warm node page pointer */
279 unsigned int seq_id; /* sequence id */
280 };
281
282 struct ckpt_req {
283 struct completion wait; /* completion for checkpoint done */
284 struct llist_node llnode; /* llist_node to be linked in wait queue */
285 int ret; /* return code of checkpoint */
286 ktime_t queue_time; /* request queued time */
287 };
288
289 struct ckpt_req_control {
290 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
291 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
292 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
293 atomic_t issued_ckpt; /* # of actually issued ckpts */
294 atomic_t total_ckpt; /* # of total ckpts */
295 atomic_t queued_ckpt; /* # of queued ckpts */
296 struct llist_head issue_list; /* list for command issue */
297 spinlock_t stat_lock; /* lock for below checkpoint time stats */
298 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
299 unsigned int peak_time; /* peak wait time in msec until now */
300 };
301
302 /* for the bitmap indicate blocks to be discarded */
303 struct discard_entry {
304 struct list_head list; /* list head */
305 block_t start_blkaddr; /* start blockaddr of current segment */
306 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
307 };
308
309 /* default discard granularity of inner discard thread, unit: block count */
310 #define DEFAULT_DISCARD_GRANULARITY 16
311
312 /* max discard pend list number */
313 #define MAX_PLIST_NUM 512
314 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
315 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
316
317 enum {
318 D_PREP, /* initial */
319 D_PARTIAL, /* partially submitted */
320 D_SUBMIT, /* all submitted */
321 D_DONE, /* finished */
322 };
323
324 struct discard_info {
325 block_t lstart; /* logical start address */
326 block_t len; /* length */
327 block_t start; /* actual start address in dev */
328 };
329
330 struct discard_cmd {
331 struct rb_node rb_node; /* rb node located in rb-tree */
332 union {
333 struct {
334 block_t lstart; /* logical start address */
335 block_t len; /* length */
336 block_t start; /* actual start address in dev */
337 };
338 struct discard_info di; /* discard info */
339
340 };
341 struct list_head list; /* command list */
342 struct completion wait; /* compleation */
343 struct block_device *bdev; /* bdev */
344 unsigned short ref; /* reference count */
345 unsigned char state; /* state */
346 unsigned char queued; /* queued discard */
347 int error; /* bio error */
348 spinlock_t lock; /* for state/bio_ref updating */
349 unsigned short bio_ref; /* bio reference count */
350 };
351
352 enum {
353 DPOLICY_BG,
354 DPOLICY_FORCE,
355 DPOLICY_FSTRIM,
356 DPOLICY_UMOUNT,
357 MAX_DPOLICY,
358 };
359
360 struct discard_policy {
361 int type; /* type of discard */
362 unsigned int min_interval; /* used for candidates exist */
363 unsigned int mid_interval; /* used for device busy */
364 unsigned int max_interval; /* used for candidates not exist */
365 unsigned int max_requests; /* # of discards issued per round */
366 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
367 bool io_aware; /* issue discard in idle time */
368 bool sync; /* submit discard with REQ_SYNC flag */
369 bool ordered; /* issue discard by lba order */
370 bool timeout; /* discard timeout for put_super */
371 unsigned int granularity; /* discard granularity */
372 };
373
374 struct discard_cmd_control {
375 struct task_struct *f2fs_issue_discard; /* discard thread */
376 struct list_head entry_list; /* 4KB discard entry list */
377 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
378 struct list_head wait_list; /* store on-flushing entries */
379 struct list_head fstrim_list; /* in-flight discard from fstrim */
380 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
381 unsigned int discard_wake; /* to wake up discard thread */
382 struct mutex cmd_lock;
383 unsigned int nr_discards; /* # of discards in the list */
384 unsigned int max_discards; /* max. discards to be issued */
385 unsigned int discard_granularity; /* discard granularity */
386 unsigned int undiscard_blks; /* # of undiscard blocks */
387 unsigned int next_pos; /* next discard position */
388 atomic_t issued_discard; /* # of issued discard */
389 atomic_t queued_discard; /* # of queued discard */
390 atomic_t discard_cmd_cnt; /* # of cached cmd count */
391 struct rb_root_cached root; /* root of discard rb-tree */
392 bool rbtree_check; /* config for consistence check */
393 };
394
395 /* for the list of fsync inodes, used only during recovery */
396 struct fsync_inode_entry {
397 struct list_head list; /* list head */
398 struct inode *inode; /* vfs inode pointer */
399 block_t blkaddr; /* block address locating the last fsync */
400 block_t last_dentry; /* block address locating the last dentry */
401 };
402
403 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
404 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
405
406 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
407 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
408 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
409 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
410
411 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
412 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
413
update_nats_in_cursum(struct f2fs_journal * journal,int i)414 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
415 {
416 int before = nats_in_cursum(journal);
417
418 journal->n_nats = cpu_to_le16(before + i);
419 return before;
420 }
421
update_sits_in_cursum(struct f2fs_journal * journal,int i)422 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
423 {
424 int before = sits_in_cursum(journal);
425
426 journal->n_sits = cpu_to_le16(before + i);
427 return before;
428 }
429
__has_cursum_space(struct f2fs_journal * journal,int size,int type)430 static inline bool __has_cursum_space(struct f2fs_journal *journal,
431 int size, int type)
432 {
433 if (type == NAT_JOURNAL)
434 return size <= MAX_NAT_JENTRIES(journal);
435 return size <= MAX_SIT_JENTRIES(journal);
436 }
437
438 /* for inline stuff */
439 #define DEF_INLINE_RESERVED_SIZE 1
440 static inline int get_extra_isize(struct inode *inode);
441 static inline int get_inline_xattr_addrs(struct inode *inode);
442 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
443 (CUR_ADDRS_PER_INODE(inode) - \
444 get_inline_xattr_addrs(inode) - \
445 DEF_INLINE_RESERVED_SIZE))
446
447 /* for inline dir */
448 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
449 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
450 BITS_PER_BYTE + 1))
451 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
452 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
453 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
454 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
455 NR_INLINE_DENTRY(inode) + \
456 INLINE_DENTRY_BITMAP_SIZE(inode)))
457
458 /*
459 * For INODE and NODE manager
460 */
461 /* for directory operations */
462
463 struct f2fs_filename {
464 /*
465 * The filename the user specified. This is NULL for some
466 * filesystem-internal operations, e.g. converting an inline directory
467 * to a non-inline one, or roll-forward recovering an encrypted dentry.
468 */
469 const struct qstr *usr_fname;
470
471 /*
472 * The on-disk filename. For encrypted directories, this is encrypted.
473 * This may be NULL for lookups in an encrypted dir without the key.
474 */
475 struct fscrypt_str disk_name;
476
477 /* The dirhash of this filename */
478 f2fs_hash_t hash;
479
480 #ifdef CONFIG_FS_ENCRYPTION
481 /*
482 * For lookups in encrypted directories: either the buffer backing
483 * disk_name, or a buffer that holds the decoded no-key name.
484 */
485 struct fscrypt_str crypto_buf;
486 #endif
487 #ifdef CONFIG_UNICODE
488 /*
489 * For casefolded directories: the casefolded name, but it's left NULL
490 * if the original name is not valid Unicode, if the directory is both
491 * casefolded and encrypted and its encryption key is unavailable, or if
492 * the filesystem is doing an internal operation where usr_fname is also
493 * NULL. In all these cases we fall back to treating the name as an
494 * opaque byte sequence.
495 */
496 struct fscrypt_str cf_name;
497 #endif
498 };
499
500 struct f2fs_dentry_ptr {
501 struct inode *inode;
502 void *bitmap;
503 struct f2fs_dir_entry *dentry;
504 __u8 (*filename)[F2FS_SLOT_LEN];
505 int max;
506 int nr_bitmap;
507 };
508
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)509 static inline void make_dentry_ptr_block(struct inode *inode,
510 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
511 {
512 d->inode = inode;
513 d->max = NR_DENTRY_IN_BLOCK;
514 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
515 d->bitmap = t->dentry_bitmap;
516 d->dentry = t->dentry;
517 d->filename = t->filename;
518 }
519
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)520 static inline void make_dentry_ptr_inline(struct inode *inode,
521 struct f2fs_dentry_ptr *d, void *t)
522 {
523 int entry_cnt = NR_INLINE_DENTRY(inode);
524 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
525 int reserved_size = INLINE_RESERVED_SIZE(inode);
526
527 d->inode = inode;
528 d->max = entry_cnt;
529 d->nr_bitmap = bitmap_size;
530 d->bitmap = t;
531 d->dentry = t + bitmap_size + reserved_size;
532 d->filename = t + bitmap_size + reserved_size +
533 SIZE_OF_DIR_ENTRY * entry_cnt;
534 }
535
536 /*
537 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
538 * as its node offset to distinguish from index node blocks.
539 * But some bits are used to mark the node block.
540 */
541 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
542 >> OFFSET_BIT_SHIFT)
543 enum {
544 ALLOC_NODE, /* allocate a new node page if needed */
545 LOOKUP_NODE, /* look up a node without readahead */
546 LOOKUP_NODE_RA, /*
547 * look up a node with readahead called
548 * by get_data_block.
549 */
550 };
551
552 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
553
554 /* congestion wait timeout value, default: 20ms */
555 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
556
557 /* maximum retry quota flush count */
558 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
559
560 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
561
562 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
563
564 /* for in-memory extent cache entry */
565 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
566
567 /* number of extent info in extent cache we try to shrink */
568 #define EXTENT_CACHE_SHRINK_NUMBER 128
569
570 struct rb_entry {
571 struct rb_node rb_node; /* rb node located in rb-tree */
572 union {
573 struct {
574 unsigned int ofs; /* start offset of the entry */
575 unsigned int len; /* length of the entry */
576 };
577 unsigned long long key; /* 64-bits key */
578 } __packed;
579 };
580
581 struct extent_info {
582 unsigned int fofs; /* start offset in a file */
583 unsigned int len; /* length of the extent */
584 u32 blk; /* start block address of the extent */
585 #ifdef CONFIG_F2FS_FS_COMPRESSION
586 unsigned int c_len; /* physical extent length of compressed blocks */
587 #endif
588 };
589
590 struct extent_node {
591 struct rb_node rb_node; /* rb node located in rb-tree */
592 struct extent_info ei; /* extent info */
593 struct list_head list; /* node in global extent list of sbi */
594 struct extent_tree *et; /* extent tree pointer */
595 };
596
597 struct extent_tree {
598 nid_t ino; /* inode number */
599 struct rb_root_cached root; /* root of extent info rb-tree */
600 struct extent_node *cached_en; /* recently accessed extent node */
601 struct extent_info largest; /* largested extent info */
602 struct list_head list; /* to be used by sbi->zombie_list */
603 rwlock_t lock; /* protect extent info rb-tree */
604 atomic_t node_cnt; /* # of extent node in rb-tree*/
605 bool largest_updated; /* largest extent updated */
606 };
607
608 /*
609 * This structure is taken from ext4_map_blocks.
610 *
611 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
612 */
613 #define F2FS_MAP_NEW (1 << BH_New)
614 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
615 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
616 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
617 F2FS_MAP_UNWRITTEN)
618
619 struct f2fs_map_blocks {
620 block_t m_pblk;
621 block_t m_lblk;
622 unsigned int m_len;
623 unsigned int m_flags;
624 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
625 pgoff_t *m_next_extent; /* point to next possible extent */
626 int m_seg_type;
627 bool m_may_create; /* indicate it is from write path */
628 };
629
630 /* for flag in get_data_block */
631 enum {
632 F2FS_GET_BLOCK_DEFAULT,
633 F2FS_GET_BLOCK_FIEMAP,
634 F2FS_GET_BLOCK_BMAP,
635 F2FS_GET_BLOCK_DIO,
636 F2FS_GET_BLOCK_PRE_DIO,
637 F2FS_GET_BLOCK_PRE_AIO,
638 F2FS_GET_BLOCK_PRECACHE,
639 };
640
641 /*
642 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
643 */
644 #define FADVISE_COLD_BIT 0x01
645 #define FADVISE_LOST_PINO_BIT 0x02
646 #define FADVISE_ENCRYPT_BIT 0x04
647 #define FADVISE_ENC_NAME_BIT 0x08
648 #define FADVISE_KEEP_SIZE_BIT 0x10
649 #define FADVISE_HOT_BIT 0x20
650 #define FADVISE_VERITY_BIT 0x40
651
652 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
653
654 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
655 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
656 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
657
658 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
659 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
660 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
661
662 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
663 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
664
665 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
666 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
667
668 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
669 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
670
671 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
672 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
673 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
674
675 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
676 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
677
678 #define DEF_DIR_LEVEL 0
679
680 enum {
681 GC_FAILURE_PIN,
682 GC_FAILURE_ATOMIC,
683 MAX_GC_FAILURE
684 };
685
686 /* used for f2fs_inode_info->flags */
687 enum {
688 FI_NEW_INODE, /* indicate newly allocated inode */
689 FI_DIRTY_INODE, /* indicate inode is dirty or not */
690 FI_AUTO_RECOVER, /* indicate inode is recoverable */
691 FI_DIRTY_DIR, /* indicate directory has dirty pages */
692 FI_INC_LINK, /* need to increment i_nlink */
693 FI_ACL_MODE, /* indicate acl mode */
694 FI_NO_ALLOC, /* should not allocate any blocks */
695 FI_FREE_NID, /* free allocated nide */
696 FI_NO_EXTENT, /* not to use the extent cache */
697 FI_INLINE_XATTR, /* used for inline xattr */
698 FI_INLINE_DATA, /* used for inline data*/
699 FI_INLINE_DENTRY, /* used for inline dentry */
700 FI_APPEND_WRITE, /* inode has appended data */
701 FI_UPDATE_WRITE, /* inode has in-place-update data */
702 FI_NEED_IPU, /* used for ipu per file */
703 FI_ATOMIC_FILE, /* indicate atomic file */
704 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
705 FI_VOLATILE_FILE, /* indicate volatile file */
706 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
707 FI_DROP_CACHE, /* drop dirty page cache */
708 FI_DATA_EXIST, /* indicate data exists */
709 FI_INLINE_DOTS, /* indicate inline dot dentries */
710 FI_DO_DEFRAG, /* indicate defragment is running */
711 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
712 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
713 FI_HOT_DATA, /* indicate file is hot */
714 FI_EXTRA_ATTR, /* indicate file has extra attribute */
715 FI_PROJ_INHERIT, /* indicate file inherits projectid */
716 FI_PIN_FILE, /* indicate file should not be gced */
717 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
718 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
719 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
720 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
721 FI_MMAP_FILE, /* indicate file was mmapped */
722 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
723 FI_COMPRESS_RELEASED, /* compressed blocks were released */
724 FI_ALIGNED_WRITE, /* enable aligned write */
725 FI_MAX, /* max flag, never be used */
726 };
727
728 struct f2fs_inode_info {
729 struct inode vfs_inode; /* serve a vfs inode */
730 unsigned long i_flags; /* keep an inode flags for ioctl */
731 unsigned char i_advise; /* use to give file attribute hints */
732 unsigned char i_dir_level; /* use for dentry level for large dir */
733 unsigned int i_current_depth; /* only for directory depth */
734 /* for gc failure statistic */
735 unsigned int i_gc_failures[MAX_GC_FAILURE];
736 unsigned int i_pino; /* parent inode number */
737 umode_t i_acl_mode; /* keep file acl mode temporarily */
738
739 /* Use below internally in f2fs*/
740 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
741 struct rw_semaphore i_sem; /* protect fi info */
742 atomic_t dirty_pages; /* # of dirty pages */
743 f2fs_hash_t chash; /* hash value of given file name */
744 unsigned int clevel; /* maximum level of given file name */
745 struct task_struct *task; /* lookup and create consistency */
746 struct task_struct *cp_task; /* separate cp/wb IO stats*/
747 nid_t i_xattr_nid; /* node id that contains xattrs */
748 loff_t last_disk_size; /* lastly written file size */
749 spinlock_t i_size_lock; /* protect last_disk_size */
750
751 #ifdef CONFIG_QUOTA
752 struct dquot *i_dquot[MAXQUOTAS];
753
754 /* quota space reservation, managed internally by quota code */
755 qsize_t i_reserved_quota;
756 #endif
757 struct list_head dirty_list; /* dirty list for dirs and files */
758 struct list_head gdirty_list; /* linked in global dirty list */
759 struct list_head inmem_ilist; /* list for inmem inodes */
760 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
761 struct task_struct *inmem_task; /* store inmemory task */
762 struct mutex inmem_lock; /* lock for inmemory pages */
763 struct extent_tree *extent_tree; /* cached extent_tree entry */
764
765 /* avoid racing between foreground op and gc */
766 struct rw_semaphore i_gc_rwsem[2];
767 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
768
769 int i_extra_isize; /* size of extra space located in i_addr */
770 kprojid_t i_projid; /* id for project quota */
771 int i_inline_xattr_size; /* inline xattr size */
772 struct timespec64 i_crtime; /* inode creation time */
773 struct timespec64 i_disk_time[4];/* inode disk times */
774
775 /* for file compress */
776 atomic_t i_compr_blocks; /* # of compressed blocks */
777 unsigned char i_compress_algorithm; /* algorithm type */
778 unsigned char i_log_cluster_size; /* log of cluster size */
779 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
780 unsigned short i_compress_flag; /* compress flag */
781 unsigned int i_cluster_size; /* cluster size */
782 };
783
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)784 static inline void get_extent_info(struct extent_info *ext,
785 struct f2fs_extent *i_ext)
786 {
787 ext->fofs = le32_to_cpu(i_ext->fofs);
788 ext->blk = le32_to_cpu(i_ext->blk);
789 ext->len = le32_to_cpu(i_ext->len);
790 }
791
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)792 static inline void set_raw_extent(struct extent_info *ext,
793 struct f2fs_extent *i_ext)
794 {
795 i_ext->fofs = cpu_to_le32(ext->fofs);
796 i_ext->blk = cpu_to_le32(ext->blk);
797 i_ext->len = cpu_to_le32(ext->len);
798 }
799
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)800 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
801 u32 blk, unsigned int len)
802 {
803 ei->fofs = fofs;
804 ei->blk = blk;
805 ei->len = len;
806 #ifdef CONFIG_F2FS_FS_COMPRESSION
807 ei->c_len = 0;
808 #endif
809 }
810
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)811 static inline bool __is_discard_mergeable(struct discard_info *back,
812 struct discard_info *front, unsigned int max_len)
813 {
814 return (back->lstart + back->len == front->lstart) &&
815 (back->len + front->len <= max_len);
816 }
817
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)818 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
819 struct discard_info *back, unsigned int max_len)
820 {
821 return __is_discard_mergeable(back, cur, max_len);
822 }
823
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)824 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
825 struct discard_info *front, unsigned int max_len)
826 {
827 return __is_discard_mergeable(cur, front, max_len);
828 }
829
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)830 static inline bool __is_extent_mergeable(struct extent_info *back,
831 struct extent_info *front)
832 {
833 #ifdef CONFIG_F2FS_FS_COMPRESSION
834 if (back->c_len && back->len != back->c_len)
835 return false;
836 if (front->c_len && front->len != front->c_len)
837 return false;
838 #endif
839 return (back->fofs + back->len == front->fofs &&
840 back->blk + back->len == front->blk);
841 }
842
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)843 static inline bool __is_back_mergeable(struct extent_info *cur,
844 struct extent_info *back)
845 {
846 return __is_extent_mergeable(back, cur);
847 }
848
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)849 static inline bool __is_front_mergeable(struct extent_info *cur,
850 struct extent_info *front)
851 {
852 return __is_extent_mergeable(cur, front);
853 }
854
855 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)856 static inline void __try_update_largest_extent(struct extent_tree *et,
857 struct extent_node *en)
858 {
859 if (en->ei.len > et->largest.len) {
860 et->largest = en->ei;
861 et->largest_updated = true;
862 }
863 }
864
865 /*
866 * For free nid management
867 */
868 enum nid_state {
869 FREE_NID, /* newly added to free nid list */
870 PREALLOC_NID, /* it is preallocated */
871 MAX_NID_STATE,
872 };
873
874 enum nat_state {
875 TOTAL_NAT,
876 DIRTY_NAT,
877 RECLAIMABLE_NAT,
878 MAX_NAT_STATE,
879 };
880
881 struct f2fs_nm_info {
882 block_t nat_blkaddr; /* base disk address of NAT */
883 nid_t max_nid; /* maximum possible node ids */
884 nid_t available_nids; /* # of available node ids */
885 nid_t next_scan_nid; /* the next nid to be scanned */
886 unsigned int ram_thresh; /* control the memory footprint */
887 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
888 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
889
890 /* NAT cache management */
891 struct radix_tree_root nat_root;/* root of the nat entry cache */
892 struct radix_tree_root nat_set_root;/* root of the nat set cache */
893 struct rw_semaphore nat_tree_lock; /* protect nat entry tree */
894 struct list_head nat_entries; /* cached nat entry list (clean) */
895 spinlock_t nat_list_lock; /* protect clean nat entry list */
896 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
897 unsigned int nat_blocks; /* # of nat blocks */
898
899 /* free node ids management */
900 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
901 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
902 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
903 spinlock_t nid_list_lock; /* protect nid lists ops */
904 struct mutex build_lock; /* lock for build free nids */
905 unsigned char **free_nid_bitmap;
906 unsigned char *nat_block_bitmap;
907 unsigned short *free_nid_count; /* free nid count of NAT block */
908
909 /* for checkpoint */
910 char *nat_bitmap; /* NAT bitmap pointer */
911
912 unsigned int nat_bits_blocks; /* # of nat bits blocks */
913 unsigned char *nat_bits; /* NAT bits blocks */
914 unsigned char *full_nat_bits; /* full NAT pages */
915 unsigned char *empty_nat_bits; /* empty NAT pages */
916 #ifdef CONFIG_F2FS_CHECK_FS
917 char *nat_bitmap_mir; /* NAT bitmap mirror */
918 #endif
919 int bitmap_size; /* bitmap size */
920 };
921
922 /*
923 * this structure is used as one of function parameters.
924 * all the information are dedicated to a given direct node block determined
925 * by the data offset in a file.
926 */
927 struct dnode_of_data {
928 struct inode *inode; /* vfs inode pointer */
929 struct page *inode_page; /* its inode page, NULL is possible */
930 struct page *node_page; /* cached direct node page */
931 nid_t nid; /* node id of the direct node block */
932 unsigned int ofs_in_node; /* data offset in the node page */
933 bool inode_page_locked; /* inode page is locked or not */
934 bool node_changed; /* is node block changed */
935 char cur_level; /* level of hole node page */
936 char max_level; /* level of current page located */
937 block_t data_blkaddr; /* block address of the node block */
938 };
939
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)940 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
941 struct page *ipage, struct page *npage, nid_t nid)
942 {
943 memset(dn, 0, sizeof(*dn));
944 dn->inode = inode;
945 dn->inode_page = ipage;
946 dn->node_page = npage;
947 dn->nid = nid;
948 }
949
950 /*
951 * For SIT manager
952 *
953 * By default, there are 6 active log areas across the whole main area.
954 * When considering hot and cold data separation to reduce cleaning overhead,
955 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
956 * respectively.
957 * In the current design, you should not change the numbers intentionally.
958 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
959 * logs individually according to the underlying devices. (default: 6)
960 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
961 * data and 8 for node logs.
962 */
963 #define NR_CURSEG_DATA_TYPE (3)
964 #define NR_CURSEG_NODE_TYPE (3)
965 #define NR_CURSEG_INMEM_TYPE (2)
966 #define NR_CURSEG_RO_TYPE (2)
967 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
968 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
969
970 enum {
971 CURSEG_HOT_DATA = 0, /* directory entry blocks */
972 CURSEG_WARM_DATA, /* data blocks */
973 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
974 CURSEG_HOT_NODE, /* direct node blocks of directory files */
975 CURSEG_WARM_NODE, /* direct node blocks of normal files */
976 CURSEG_COLD_NODE, /* indirect node blocks */
977 NR_PERSISTENT_LOG, /* number of persistent log */
978 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
979 /* pinned file that needs consecutive block address */
980 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
981 NO_CHECK_TYPE, /* number of persistent & inmem log */
982 };
983
984 struct flush_cmd {
985 struct completion wait;
986 struct llist_node llnode;
987 nid_t ino;
988 int ret;
989 };
990
991 struct flush_cmd_control {
992 struct task_struct *f2fs_issue_flush; /* flush thread */
993 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
994 atomic_t issued_flush; /* # of issued flushes */
995 atomic_t queued_flush; /* # of queued flushes */
996 struct llist_head issue_list; /* list for command issue */
997 struct llist_node *dispatch_list; /* list for command dispatch */
998 };
999
1000 struct f2fs_sm_info {
1001 struct sit_info *sit_info; /* whole segment information */
1002 struct free_segmap_info *free_info; /* free segment information */
1003 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1004 struct curseg_info *curseg_array; /* active segment information */
1005
1006 struct rw_semaphore curseg_lock; /* for preventing curseg change */
1007
1008 block_t seg0_blkaddr; /* block address of 0'th segment */
1009 block_t main_blkaddr; /* start block address of main area */
1010 block_t ssa_blkaddr; /* start block address of SSA area */
1011
1012 unsigned int segment_count; /* total # of segments */
1013 unsigned int main_segments; /* # of segments in main area */
1014 unsigned int reserved_segments; /* # of reserved segments */
1015 unsigned int ovp_segments; /* # of overprovision segments */
1016
1017 /* a threshold to reclaim prefree segments */
1018 unsigned int rec_prefree_segments;
1019
1020 /* for batched trimming */
1021 unsigned int trim_sections; /* # of sections to trim */
1022
1023 struct list_head sit_entry_set; /* sit entry set list */
1024
1025 unsigned int ipu_policy; /* in-place-update policy */
1026 unsigned int min_ipu_util; /* in-place-update threshold */
1027 unsigned int min_fsync_blocks; /* threshold for fsync */
1028 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1029 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1030 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1031
1032 /* for flush command control */
1033 struct flush_cmd_control *fcc_info;
1034
1035 /* for discard command control */
1036 struct discard_cmd_control *dcc_info;
1037 };
1038
1039 /*
1040 * For superblock
1041 */
1042 /*
1043 * COUNT_TYPE for monitoring
1044 *
1045 * f2fs monitors the number of several block types such as on-writeback,
1046 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1047 */
1048 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1049 enum count_type {
1050 F2FS_DIRTY_DENTS,
1051 F2FS_DIRTY_DATA,
1052 F2FS_DIRTY_QDATA,
1053 F2FS_DIRTY_NODES,
1054 F2FS_DIRTY_META,
1055 F2FS_INMEM_PAGES,
1056 F2FS_DIRTY_IMETA,
1057 F2FS_WB_CP_DATA,
1058 F2FS_WB_DATA,
1059 F2FS_RD_DATA,
1060 F2FS_RD_NODE,
1061 F2FS_RD_META,
1062 F2FS_DIO_WRITE,
1063 F2FS_DIO_READ,
1064 NR_COUNT_TYPE,
1065 };
1066
1067 /*
1068 * The below are the page types of bios used in submit_bio().
1069 * The available types are:
1070 * DATA User data pages. It operates as async mode.
1071 * NODE Node pages. It operates as async mode.
1072 * META FS metadata pages such as SIT, NAT, CP.
1073 * NR_PAGE_TYPE The number of page types.
1074 * META_FLUSH Make sure the previous pages are written
1075 * with waiting the bio's completion
1076 * ... Only can be used with META.
1077 */
1078 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1079 enum page_type {
1080 DATA,
1081 NODE,
1082 META,
1083 NR_PAGE_TYPE,
1084 META_FLUSH,
1085 INMEM, /* the below types are used by tracepoints only. */
1086 INMEM_DROP,
1087 INMEM_INVALIDATE,
1088 INMEM_REVOKE,
1089 IPU,
1090 OPU,
1091 };
1092
1093 enum temp_type {
1094 HOT = 0, /* must be zero for meta bio */
1095 WARM,
1096 COLD,
1097 NR_TEMP_TYPE,
1098 };
1099
1100 enum need_lock_type {
1101 LOCK_REQ = 0,
1102 LOCK_DONE,
1103 LOCK_RETRY,
1104 };
1105
1106 enum cp_reason_type {
1107 CP_NO_NEEDED,
1108 CP_NON_REGULAR,
1109 CP_COMPRESSED,
1110 CP_HARDLINK,
1111 CP_SB_NEED_CP,
1112 CP_WRONG_PINO,
1113 CP_NO_SPC_ROLL,
1114 CP_NODE_NEED_CP,
1115 CP_FASTBOOT_MODE,
1116 CP_SPEC_LOG_NUM,
1117 CP_RECOVER_DIR,
1118 };
1119
1120 enum iostat_type {
1121 /* WRITE IO */
1122 APP_DIRECT_IO, /* app direct write IOs */
1123 APP_BUFFERED_IO, /* app buffered write IOs */
1124 APP_WRITE_IO, /* app write IOs */
1125 APP_MAPPED_IO, /* app mapped IOs */
1126 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1127 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1128 FS_META_IO, /* meta IOs from kworker/reclaimer */
1129 FS_GC_DATA_IO, /* data IOs from forground gc */
1130 FS_GC_NODE_IO, /* node IOs from forground gc */
1131 FS_CP_DATA_IO, /* data IOs from checkpoint */
1132 FS_CP_NODE_IO, /* node IOs from checkpoint */
1133 FS_CP_META_IO, /* meta IOs from checkpoint */
1134
1135 /* READ IO */
1136 APP_DIRECT_READ_IO, /* app direct read IOs */
1137 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1138 APP_READ_IO, /* app read IOs */
1139 APP_MAPPED_READ_IO, /* app mapped read IOs */
1140 FS_DATA_READ_IO, /* data read IOs */
1141 FS_GDATA_READ_IO, /* data read IOs from background gc */
1142 FS_CDATA_READ_IO, /* compressed data read IOs */
1143 FS_NODE_READ_IO, /* node read IOs */
1144 FS_META_READ_IO, /* meta read IOs */
1145
1146 /* other */
1147 FS_DISCARD, /* discard */
1148 NR_IO_TYPE,
1149 };
1150
1151 struct f2fs_io_info {
1152 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1153 nid_t ino; /* inode number */
1154 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1155 enum temp_type temp; /* contains HOT/WARM/COLD */
1156 int op; /* contains REQ_OP_ */
1157 int op_flags; /* req_flag_bits */
1158 block_t new_blkaddr; /* new block address to be written */
1159 block_t old_blkaddr; /* old block address before Cow */
1160 struct page *page; /* page to be written */
1161 struct page *encrypted_page; /* encrypted page */
1162 struct page *compressed_page; /* compressed page */
1163 struct list_head list; /* serialize IOs */
1164 bool submitted; /* indicate IO submission */
1165 int need_lock; /* indicate we need to lock cp_rwsem */
1166 bool in_list; /* indicate fio is in io_list */
1167 bool is_por; /* indicate IO is from recovery or not */
1168 bool retry; /* need to reallocate block address */
1169 int compr_blocks; /* # of compressed block addresses */
1170 bool encrypted; /* indicate file is encrypted */
1171 enum iostat_type io_type; /* io type */
1172 struct writeback_control *io_wbc; /* writeback control */
1173 struct bio **bio; /* bio for ipu */
1174 sector_t *last_block; /* last block number in bio */
1175 unsigned char version; /* version of the node */
1176 };
1177
1178 struct bio_entry {
1179 struct bio *bio;
1180 struct list_head list;
1181 };
1182
1183 #define is_read_io(rw) ((rw) == READ)
1184 struct f2fs_bio_info {
1185 struct f2fs_sb_info *sbi; /* f2fs superblock */
1186 struct bio *bio; /* bios to merge */
1187 sector_t last_block_in_bio; /* last block number */
1188 struct f2fs_io_info fio; /* store buffered io info. */
1189 struct rw_semaphore io_rwsem; /* blocking op for bio */
1190 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1191 struct list_head io_list; /* track fios */
1192 struct list_head bio_list; /* bio entry list head */
1193 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1194 };
1195
1196 #define FDEV(i) (sbi->devs[i])
1197 #define RDEV(i) (raw_super->devs[i])
1198 struct f2fs_dev_info {
1199 struct block_device *bdev;
1200 char path[MAX_PATH_LEN];
1201 unsigned int total_segments;
1202 block_t start_blk;
1203 block_t end_blk;
1204 #ifdef CONFIG_BLK_DEV_ZONED
1205 unsigned int nr_blkz; /* Total number of zones */
1206 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1207 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1208 #endif
1209 };
1210
1211 enum inode_type {
1212 DIR_INODE, /* for dirty dir inode */
1213 FILE_INODE, /* for dirty regular/symlink inode */
1214 DIRTY_META, /* for all dirtied inode metadata */
1215 ATOMIC_FILE, /* for all atomic files */
1216 NR_INODE_TYPE,
1217 };
1218
1219 /* for inner inode cache management */
1220 struct inode_management {
1221 struct radix_tree_root ino_root; /* ino entry array */
1222 spinlock_t ino_lock; /* for ino entry lock */
1223 struct list_head ino_list; /* inode list head */
1224 unsigned long ino_num; /* number of entries */
1225 };
1226
1227 /* for GC_AT */
1228 struct atgc_management {
1229 bool atgc_enabled; /* ATGC is enabled or not */
1230 struct rb_root_cached root; /* root of victim rb-tree */
1231 struct list_head victim_list; /* linked with all victim entries */
1232 unsigned int victim_count; /* victim count in rb-tree */
1233 unsigned int candidate_ratio; /* candidate ratio */
1234 unsigned int max_candidate_count; /* max candidate count */
1235 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1236 unsigned long long age_threshold; /* age threshold */
1237 };
1238
1239 /* For s_flag in struct f2fs_sb_info */
1240 enum {
1241 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1242 SBI_IS_CLOSE, /* specify unmounting */
1243 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1244 SBI_POR_DOING, /* recovery is doing or not */
1245 SBI_NEED_SB_WRITE, /* need to recover superblock */
1246 SBI_NEED_CP, /* need to checkpoint */
1247 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1248 SBI_IS_RECOVERED, /* recovered orphan/data */
1249 SBI_CP_DISABLED, /* CP was disabled last mount */
1250 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1251 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1252 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1253 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1254 SBI_IS_RESIZEFS, /* resizefs is in process */
1255 };
1256
1257 enum {
1258 CP_TIME,
1259 REQ_TIME,
1260 DISCARD_TIME,
1261 GC_TIME,
1262 DISABLE_TIME,
1263 UMOUNT_DISCARD_TIMEOUT,
1264 MAX_TIME,
1265 };
1266
1267 enum {
1268 GC_NORMAL,
1269 GC_IDLE_CB,
1270 GC_IDLE_GREEDY,
1271 GC_IDLE_AT,
1272 GC_URGENT_HIGH,
1273 GC_URGENT_LOW,
1274 MAX_GC_MODE,
1275 };
1276
1277 enum {
1278 BGGC_MODE_ON, /* background gc is on */
1279 BGGC_MODE_OFF, /* background gc is off */
1280 BGGC_MODE_SYNC, /*
1281 * background gc is on, migrating blocks
1282 * like foreground gc
1283 */
1284 };
1285
1286 enum {
1287 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1288 FS_MODE_LFS, /* use lfs allocation only */
1289 };
1290
1291 enum {
1292 WHINT_MODE_OFF, /* not pass down write hints */
1293 WHINT_MODE_USER, /* try to pass down hints given by users */
1294 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1295 };
1296
1297 enum {
1298 ALLOC_MODE_DEFAULT, /* stay default */
1299 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1300 };
1301
1302 enum fsync_mode {
1303 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1304 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1305 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1306 };
1307
1308 enum {
1309 COMPR_MODE_FS, /*
1310 * automatically compress compression
1311 * enabled files
1312 */
1313 COMPR_MODE_USER, /*
1314 * automatical compression is disabled.
1315 * user can control the file compression
1316 * using ioctls
1317 */
1318 };
1319
1320 enum {
1321 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1322 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1323 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1324 };
1325
1326 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1327 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1328 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1329
1330 /*
1331 * Layout of f2fs page.private:
1332 *
1333 * Layout A: lowest bit should be 1
1334 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1335 * bit 0 PAGE_PRIVATE_NOT_POINTER
1336 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE
1337 * bit 2 PAGE_PRIVATE_DUMMY_WRITE
1338 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION
1339 * bit 4 PAGE_PRIVATE_INLINE_INODE
1340 * bit 5 PAGE_PRIVATE_REF_RESOURCE
1341 * bit 6- f2fs private data
1342 *
1343 * Layout B: lowest bit should be 0
1344 * page.private is a wrapped pointer.
1345 */
1346 enum {
1347 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1348 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1349 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1350 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1351 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1352 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1353 PAGE_PRIVATE_MAX
1354 };
1355
1356 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1357 static inline bool page_private_##name(struct page *page) \
1358 { \
1359 return PagePrivate(page) && \
1360 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1361 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1362 }
1363
1364 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1365 static inline void set_page_private_##name(struct page *page) \
1366 { \
1367 if (!PagePrivate(page)) { \
1368 get_page(page); \
1369 SetPagePrivate(page); \
1370 set_page_private(page, 0); \
1371 } \
1372 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1373 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1374 }
1375
1376 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1377 static inline void clear_page_private_##name(struct page *page) \
1378 { \
1379 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1380 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1381 set_page_private(page, 0); \
1382 if (PagePrivate(page)) { \
1383 ClearPagePrivate(page); \
1384 put_page(page); \
1385 }\
1386 } \
1387 }
1388
1389 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1390 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1391 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1392 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1393 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1394 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1395
1396 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1397 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1398 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1399 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1400 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1401
1402 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1403 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1404 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1405 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1406 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1407
get_page_private_data(struct page * page)1408 static inline unsigned long get_page_private_data(struct page *page)
1409 {
1410 unsigned long data = page_private(page);
1411
1412 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1413 return 0;
1414 return data >> PAGE_PRIVATE_MAX;
1415 }
1416
set_page_private_data(struct page * page,unsigned long data)1417 static inline void set_page_private_data(struct page *page, unsigned long data)
1418 {
1419 if (!PagePrivate(page)) {
1420 get_page(page);
1421 SetPagePrivate(page);
1422 set_page_private(page, 0);
1423 }
1424 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1425 page_private(page) |= data << PAGE_PRIVATE_MAX;
1426 }
1427
clear_page_private_data(struct page * page)1428 static inline void clear_page_private_data(struct page *page)
1429 {
1430 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1431 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1432 set_page_private(page, 0);
1433 if (PagePrivate(page)) {
1434 ClearPagePrivate(page);
1435 put_page(page);
1436 }
1437 }
1438 }
1439
1440 /* For compression */
1441 enum compress_algorithm_type {
1442 COMPRESS_LZO,
1443 COMPRESS_LZ4,
1444 COMPRESS_ZSTD,
1445 COMPRESS_LZORLE,
1446 COMPRESS_MAX,
1447 };
1448
1449 enum compress_flag {
1450 COMPRESS_CHKSUM,
1451 COMPRESS_MAX_FLAG,
1452 };
1453
1454 #define COMPRESS_WATERMARK 20
1455 #define COMPRESS_PERCENT 20
1456
1457 #define COMPRESS_DATA_RESERVED_SIZE 4
1458 struct compress_data {
1459 __le32 clen; /* compressed data size */
1460 __le32 chksum; /* compressed data chksum */
1461 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1462 u8 cdata[]; /* compressed data */
1463 };
1464
1465 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1466
1467 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1468
1469 #define COMPRESS_LEVEL_OFFSET 8
1470
1471 /* compress context */
1472 struct compress_ctx {
1473 struct inode *inode; /* inode the context belong to */
1474 pgoff_t cluster_idx; /* cluster index number */
1475 unsigned int cluster_size; /* page count in cluster */
1476 unsigned int log_cluster_size; /* log of cluster size */
1477 struct page **rpages; /* pages store raw data in cluster */
1478 unsigned int nr_rpages; /* total page number in rpages */
1479 struct page **cpages; /* pages store compressed data in cluster */
1480 unsigned int nr_cpages; /* total page number in cpages */
1481 void *rbuf; /* virtual mapped address on rpages */
1482 struct compress_data *cbuf; /* virtual mapped address on cpages */
1483 size_t rlen; /* valid data length in rbuf */
1484 size_t clen; /* valid data length in cbuf */
1485 void *private; /* payload buffer for specified compression algorithm */
1486 void *private2; /* extra payload buffer */
1487 };
1488
1489 /* compress context for write IO path */
1490 struct compress_io_ctx {
1491 u32 magic; /* magic number to indicate page is compressed */
1492 struct inode *inode; /* inode the context belong to */
1493 struct page **rpages; /* pages store raw data in cluster */
1494 unsigned int nr_rpages; /* total page number in rpages */
1495 atomic_t pending_pages; /* in-flight compressed page count */
1496 };
1497
1498 /* Context for decompressing one cluster on the read IO path */
1499 struct decompress_io_ctx {
1500 u32 magic; /* magic number to indicate page is compressed */
1501 struct inode *inode; /* inode the context belong to */
1502 pgoff_t cluster_idx; /* cluster index number */
1503 unsigned int cluster_size; /* page count in cluster */
1504 unsigned int log_cluster_size; /* log of cluster size */
1505 struct page **rpages; /* pages store raw data in cluster */
1506 unsigned int nr_rpages; /* total page number in rpages */
1507 struct page **cpages; /* pages store compressed data in cluster */
1508 unsigned int nr_cpages; /* total page number in cpages */
1509 struct page **tpages; /* temp pages to pad holes in cluster */
1510 void *rbuf; /* virtual mapped address on rpages */
1511 struct compress_data *cbuf; /* virtual mapped address on cpages */
1512 size_t rlen; /* valid data length in rbuf */
1513 size_t clen; /* valid data length in cbuf */
1514
1515 /*
1516 * The number of compressed pages remaining to be read in this cluster.
1517 * This is initially nr_cpages. It is decremented by 1 each time a page
1518 * has been read (or failed to be read). When it reaches 0, the cluster
1519 * is decompressed (or an error is reported).
1520 *
1521 * If an error occurs before all the pages have been submitted for I/O,
1522 * then this will never reach 0. In this case the I/O submitter is
1523 * responsible for calling f2fs_decompress_end_io() instead.
1524 */
1525 atomic_t remaining_pages;
1526
1527 /*
1528 * Number of references to this decompress_io_ctx.
1529 *
1530 * One reference is held for I/O completion. This reference is dropped
1531 * after the pagecache pages are updated and unlocked -- either after
1532 * decompression (and verity if enabled), or after an error.
1533 *
1534 * In addition, each compressed page holds a reference while it is in a
1535 * bio. These references are necessary prevent compressed pages from
1536 * being freed while they are still in a bio.
1537 */
1538 refcount_t refcnt;
1539
1540 bool failed; /* IO error occurred before decompression? */
1541 bool need_verity; /* need fs-verity verification after decompression? */
1542 void *private; /* payload buffer for specified decompression algorithm */
1543 void *private2; /* extra payload buffer */
1544 struct work_struct verity_work; /* work to verify the decompressed pages */
1545 };
1546
1547 #define NULL_CLUSTER ((unsigned int)(~0))
1548 #define MIN_COMPRESS_LOG_SIZE 2
1549 #define MAX_COMPRESS_LOG_SIZE 8
1550 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1551
1552 struct f2fs_sb_info {
1553 struct super_block *sb; /* pointer to VFS super block */
1554 struct proc_dir_entry *s_proc; /* proc entry */
1555 struct f2fs_super_block *raw_super; /* raw super block pointer */
1556 struct rw_semaphore sb_lock; /* lock for raw super block */
1557 int valid_super_block; /* valid super block no */
1558 unsigned long s_flag; /* flags for sbi */
1559 struct mutex writepages; /* mutex for writepages() */
1560
1561 #ifdef CONFIG_BLK_DEV_ZONED
1562 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1563 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1564 #endif
1565
1566 /* for node-related operations */
1567 struct f2fs_nm_info *nm_info; /* node manager */
1568 struct inode *node_inode; /* cache node blocks */
1569
1570 /* for segment-related operations */
1571 struct f2fs_sm_info *sm_info; /* segment manager */
1572
1573 /* for bio operations */
1574 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1575 /* keep migration IO order for LFS mode */
1576 struct rw_semaphore io_order_lock;
1577 mempool_t *write_io_dummy; /* Dummy pages */
1578
1579 /* for checkpoint */
1580 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1581 int cur_cp_pack; /* remain current cp pack */
1582 spinlock_t cp_lock; /* for flag in ckpt */
1583 struct inode *meta_inode; /* cache meta blocks */
1584 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */
1585 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1586 struct rw_semaphore node_write; /* locking node writes */
1587 struct rw_semaphore node_change; /* locking node change */
1588 wait_queue_head_t cp_wait;
1589 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1590 long interval_time[MAX_TIME]; /* to store thresholds */
1591 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1592
1593 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1594
1595 spinlock_t fsync_node_lock; /* for node entry lock */
1596 struct list_head fsync_node_list; /* node list head */
1597 unsigned int fsync_seg_id; /* sequence id */
1598 unsigned int fsync_node_num; /* number of node entries */
1599
1600 /* for orphan inode, use 0'th array */
1601 unsigned int max_orphans; /* max orphan inodes */
1602
1603 /* for inode management */
1604 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1605 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1606 struct mutex flush_lock; /* for flush exclusion */
1607
1608 /* for extent tree cache */
1609 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1610 struct mutex extent_tree_lock; /* locking extent radix tree */
1611 struct list_head extent_list; /* lru list for shrinker */
1612 spinlock_t extent_lock; /* locking extent lru list */
1613 atomic_t total_ext_tree; /* extent tree count */
1614 struct list_head zombie_list; /* extent zombie tree list */
1615 atomic_t total_zombie_tree; /* extent zombie tree count */
1616 atomic_t total_ext_node; /* extent info count */
1617
1618 /* basic filesystem units */
1619 unsigned int log_sectors_per_block; /* log2 sectors per block */
1620 unsigned int log_blocksize; /* log2 block size */
1621 unsigned int blocksize; /* block size */
1622 unsigned int root_ino_num; /* root inode number*/
1623 unsigned int node_ino_num; /* node inode number*/
1624 unsigned int meta_ino_num; /* meta inode number*/
1625 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1626 unsigned int blocks_per_seg; /* blocks per segment */
1627 unsigned int segs_per_sec; /* segments per section */
1628 unsigned int secs_per_zone; /* sections per zone */
1629 unsigned int total_sections; /* total section count */
1630 unsigned int total_node_count; /* total node block count */
1631 unsigned int total_valid_node_count; /* valid node block count */
1632 int dir_level; /* directory level */
1633 int readdir_ra; /* readahead inode in readdir */
1634 u64 max_io_bytes; /* max io bytes to merge IOs */
1635
1636 block_t user_block_count; /* # of user blocks */
1637 block_t total_valid_block_count; /* # of valid blocks */
1638 block_t discard_blks; /* discard command candidats */
1639 block_t last_valid_block_count; /* for recovery */
1640 block_t reserved_blocks; /* configurable reserved blocks */
1641 block_t current_reserved_blocks; /* current reserved blocks */
1642
1643 /* Additional tracking for no checkpoint mode */
1644 block_t unusable_block_count; /* # of blocks saved by last cp */
1645
1646 unsigned int nquota_files; /* # of quota sysfile */
1647 struct rw_semaphore quota_sem; /* blocking cp for flags */
1648
1649 /* # of pages, see count_type */
1650 atomic_t nr_pages[NR_COUNT_TYPE];
1651 /* # of allocated blocks */
1652 struct percpu_counter alloc_valid_block_count;
1653
1654 /* writeback control */
1655 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1656
1657 /* valid inode count */
1658 struct percpu_counter total_valid_inode_count;
1659
1660 struct f2fs_mount_info mount_opt; /* mount options */
1661
1662 /* for cleaning operations */
1663 struct rw_semaphore gc_lock; /*
1664 * semaphore for GC, avoid
1665 * race between GC and GC or CP
1666 */
1667 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1668 struct atgc_management am; /* atgc management */
1669 unsigned int cur_victim_sec; /* current victim section num */
1670 unsigned int gc_mode; /* current GC state */
1671 unsigned int next_victim_seg[2]; /* next segment in victim section */
1672
1673 /* for skip statistic */
1674 unsigned int atomic_files; /* # of opened atomic file */
1675 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1676 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1677
1678 /* threshold for gc trials on pinned files */
1679 u64 gc_pin_file_threshold;
1680 struct rw_semaphore pin_sem;
1681
1682 /* maximum # of trials to find a victim segment for SSR and GC */
1683 unsigned int max_victim_search;
1684 /* migration granularity of garbage collection, unit: segment */
1685 unsigned int migration_granularity;
1686
1687 /*
1688 * for stat information.
1689 * one is for the LFS mode, and the other is for the SSR mode.
1690 */
1691 #ifdef CONFIG_F2FS_STAT_FS
1692 struct f2fs_stat_info *stat_info; /* FS status information */
1693 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1694 unsigned int segment_count[2]; /* # of allocated segments */
1695 unsigned int block_count[2]; /* # of allocated blocks */
1696 atomic_t inplace_count; /* # of inplace update */
1697 atomic64_t total_hit_ext; /* # of lookup extent cache */
1698 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1699 atomic64_t read_hit_largest; /* # of hit largest extent node */
1700 atomic64_t read_hit_cached; /* # of hit cached extent node */
1701 atomic_t inline_xattr; /* # of inline_xattr inodes */
1702 atomic_t inline_inode; /* # of inline_data inodes */
1703 atomic_t inline_dir; /* # of inline_dentry inodes */
1704 atomic_t compr_inode; /* # of compressed inodes */
1705 atomic64_t compr_blocks; /* # of compressed blocks */
1706 atomic_t vw_cnt; /* # of volatile writes */
1707 atomic_t max_aw_cnt; /* max # of atomic writes */
1708 atomic_t max_vw_cnt; /* max # of volatile writes */
1709 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1710 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1711 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1712 #endif
1713 spinlock_t stat_lock; /* lock for stat operations */
1714
1715 /* to attach REQ_META|REQ_FUA flags */
1716 unsigned int data_io_flag;
1717 unsigned int node_io_flag;
1718
1719 /* For sysfs suppport */
1720 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1721 struct completion s_kobj_unregister;
1722
1723 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1724 struct completion s_stat_kobj_unregister;
1725
1726 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1727 struct completion s_feature_list_kobj_unregister;
1728
1729 /* For shrinker support */
1730 struct list_head s_list;
1731 int s_ndevs; /* number of devices */
1732 struct f2fs_dev_info *devs; /* for device list */
1733 unsigned int dirty_device; /* for checkpoint data flush */
1734 spinlock_t dev_lock; /* protect dirty_device */
1735 struct mutex umount_mutex;
1736 unsigned int shrinker_run_no;
1737
1738 /* For write statistics */
1739 u64 sectors_written_start;
1740 u64 kbytes_written;
1741
1742 /* Reference to checksum algorithm driver via cryptoapi */
1743 struct crypto_shash *s_chksum_driver;
1744
1745 /* Precomputed FS UUID checksum for seeding other checksums */
1746 __u32 s_chksum_seed;
1747
1748 struct workqueue_struct *post_read_wq; /* post read workqueue */
1749
1750 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1751 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1752
1753 /* For reclaimed segs statistics per each GC mode */
1754 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1755 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1756
1757 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1758
1759 #ifdef CONFIG_F2FS_FS_COMPRESSION
1760 struct kmem_cache *page_array_slab; /* page array entry */
1761 unsigned int page_array_slab_size; /* default page array slab size */
1762
1763 /* For runtime compression statistics */
1764 u64 compr_written_block;
1765 u64 compr_saved_block;
1766 u32 compr_new_inode;
1767
1768 /* For compressed block cache */
1769 struct inode *compress_inode; /* cache compressed blocks */
1770 unsigned int compress_percent; /* cache page percentage */
1771 unsigned int compress_watermark; /* cache page watermark */
1772 atomic_t compress_page_hit; /* cache hit count */
1773 #endif
1774
1775 #ifdef CONFIG_F2FS_IOSTAT
1776 /* For app/fs IO statistics */
1777 spinlock_t iostat_lock;
1778 unsigned long long rw_iostat[NR_IO_TYPE];
1779 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1780 bool iostat_enable;
1781 unsigned long iostat_next_period;
1782 unsigned int iostat_period_ms;
1783
1784 /* For io latency related statistics info in one iostat period */
1785 spinlock_t iostat_lat_lock;
1786 struct iostat_lat_info *iostat_io_lat;
1787 #endif
1788 };
1789
1790 struct f2fs_private_dio {
1791 struct inode *inode;
1792 void *orig_private;
1793 bio_end_io_t *orig_end_io;
1794 bool write;
1795 };
1796
1797 #ifdef CONFIG_F2FS_FAULT_INJECTION
1798 #define f2fs_show_injection_info(sbi, type) \
1799 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1800 KERN_INFO, sbi->sb->s_id, \
1801 f2fs_fault_name[type], \
1802 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1803 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1804 {
1805 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1806
1807 if (!ffi->inject_rate)
1808 return false;
1809
1810 if (!IS_FAULT_SET(ffi, type))
1811 return false;
1812
1813 atomic_inc(&ffi->inject_ops);
1814 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1815 atomic_set(&ffi->inject_ops, 0);
1816 return true;
1817 }
1818 return false;
1819 }
1820 #else
1821 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1822 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1823 {
1824 return false;
1825 }
1826 #endif
1827
1828 /*
1829 * Test if the mounted volume is a multi-device volume.
1830 * - For a single regular disk volume, sbi->s_ndevs is 0.
1831 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1832 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1833 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1834 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1835 {
1836 return sbi->s_ndevs > 1;
1837 }
1838
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1839 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1840 {
1841 unsigned long now = jiffies;
1842
1843 sbi->last_time[type] = now;
1844
1845 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1846 if (type == REQ_TIME) {
1847 sbi->last_time[DISCARD_TIME] = now;
1848 sbi->last_time[GC_TIME] = now;
1849 }
1850 }
1851
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1852 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1853 {
1854 unsigned long interval = sbi->interval_time[type] * HZ;
1855
1856 return time_after(jiffies, sbi->last_time[type] + interval);
1857 }
1858
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1859 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1860 int type)
1861 {
1862 unsigned long interval = sbi->interval_time[type] * HZ;
1863 unsigned int wait_ms = 0;
1864 long delta;
1865
1866 delta = (sbi->last_time[type] + interval) - jiffies;
1867 if (delta > 0)
1868 wait_ms = jiffies_to_msecs(delta);
1869
1870 return wait_ms;
1871 }
1872
1873 /*
1874 * Inline functions
1875 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1876 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1877 const void *address, unsigned int length)
1878 {
1879 struct {
1880 struct shash_desc shash;
1881 char ctx[4];
1882 } desc;
1883 int err;
1884
1885 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1886
1887 desc.shash.tfm = sbi->s_chksum_driver;
1888 *(u32 *)desc.ctx = crc;
1889
1890 err = crypto_shash_update(&desc.shash, address, length);
1891 BUG_ON(err);
1892
1893 return *(u32 *)desc.ctx;
1894 }
1895
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1896 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1897 unsigned int length)
1898 {
1899 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1900 }
1901
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1902 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1903 void *buf, size_t buf_size)
1904 {
1905 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1906 }
1907
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1908 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1909 const void *address, unsigned int length)
1910 {
1911 return __f2fs_crc32(sbi, crc, address, length);
1912 }
1913
F2FS_I(struct inode * inode)1914 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1915 {
1916 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1917 }
1918
F2FS_SB(struct super_block * sb)1919 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1920 {
1921 return sb->s_fs_info;
1922 }
1923
F2FS_I_SB(struct inode * inode)1924 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1925 {
1926 return F2FS_SB(inode->i_sb);
1927 }
1928
F2FS_M_SB(struct address_space * mapping)1929 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1930 {
1931 return F2FS_I_SB(mapping->host);
1932 }
1933
F2FS_P_SB(struct page * page)1934 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1935 {
1936 return F2FS_M_SB(page_file_mapping(page));
1937 }
1938
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1939 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1940 {
1941 return (struct f2fs_super_block *)(sbi->raw_super);
1942 }
1943
F2FS_CKPT(struct f2fs_sb_info * sbi)1944 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1945 {
1946 return (struct f2fs_checkpoint *)(sbi->ckpt);
1947 }
1948
F2FS_NODE(struct page * page)1949 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1950 {
1951 return (struct f2fs_node *)page_address(page);
1952 }
1953
F2FS_INODE(struct page * page)1954 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1955 {
1956 return &((struct f2fs_node *)page_address(page))->i;
1957 }
1958
NM_I(struct f2fs_sb_info * sbi)1959 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1960 {
1961 return (struct f2fs_nm_info *)(sbi->nm_info);
1962 }
1963
SM_I(struct f2fs_sb_info * sbi)1964 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1965 {
1966 return (struct f2fs_sm_info *)(sbi->sm_info);
1967 }
1968
SIT_I(struct f2fs_sb_info * sbi)1969 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1970 {
1971 return (struct sit_info *)(SM_I(sbi)->sit_info);
1972 }
1973
FREE_I(struct f2fs_sb_info * sbi)1974 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1975 {
1976 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1977 }
1978
DIRTY_I(struct f2fs_sb_info * sbi)1979 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1980 {
1981 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1982 }
1983
META_MAPPING(struct f2fs_sb_info * sbi)1984 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1985 {
1986 return sbi->meta_inode->i_mapping;
1987 }
1988
NODE_MAPPING(struct f2fs_sb_info * sbi)1989 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1990 {
1991 return sbi->node_inode->i_mapping;
1992 }
1993
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1994 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1995 {
1996 return test_bit(type, &sbi->s_flag);
1997 }
1998
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1999 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2000 {
2001 set_bit(type, &sbi->s_flag);
2002 }
2003
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2004 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2005 {
2006 clear_bit(type, &sbi->s_flag);
2007 }
2008
cur_cp_version(struct f2fs_checkpoint * cp)2009 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2010 {
2011 return le64_to_cpu(cp->checkpoint_ver);
2012 }
2013
f2fs_qf_ino(struct super_block * sb,int type)2014 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2015 {
2016 if (type < F2FS_MAX_QUOTAS)
2017 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2018 return 0;
2019 }
2020
cur_cp_crc(struct f2fs_checkpoint * cp)2021 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2022 {
2023 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2024 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2025 }
2026
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2027 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2028 {
2029 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2030
2031 return ckpt_flags & f;
2032 }
2033
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2034 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2035 {
2036 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2037 }
2038
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2039 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2040 {
2041 unsigned int ckpt_flags;
2042
2043 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2044 ckpt_flags |= f;
2045 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2046 }
2047
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2048 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2049 {
2050 unsigned long flags;
2051
2052 spin_lock_irqsave(&sbi->cp_lock, flags);
2053 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2054 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2055 }
2056
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2057 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2058 {
2059 unsigned int ckpt_flags;
2060
2061 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2062 ckpt_flags &= (~f);
2063 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2064 }
2065
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2066 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2067 {
2068 unsigned long flags;
2069
2070 spin_lock_irqsave(&sbi->cp_lock, flags);
2071 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2072 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2073 }
2074
f2fs_lock_op(struct f2fs_sb_info * sbi)2075 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2076 {
2077 down_read(&sbi->cp_rwsem);
2078 }
2079
f2fs_trylock_op(struct f2fs_sb_info * sbi)2080 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2081 {
2082 return down_read_trylock(&sbi->cp_rwsem);
2083 }
2084
f2fs_unlock_op(struct f2fs_sb_info * sbi)2085 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2086 {
2087 up_read(&sbi->cp_rwsem);
2088 }
2089
f2fs_lock_all(struct f2fs_sb_info * sbi)2090 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2091 {
2092 down_write(&sbi->cp_rwsem);
2093 }
2094
f2fs_unlock_all(struct f2fs_sb_info * sbi)2095 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2096 {
2097 up_write(&sbi->cp_rwsem);
2098 }
2099
__get_cp_reason(struct f2fs_sb_info * sbi)2100 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2101 {
2102 int reason = CP_SYNC;
2103
2104 if (test_opt(sbi, FASTBOOT))
2105 reason = CP_FASTBOOT;
2106 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2107 reason = CP_UMOUNT;
2108 return reason;
2109 }
2110
__remain_node_summaries(int reason)2111 static inline bool __remain_node_summaries(int reason)
2112 {
2113 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2114 }
2115
__exist_node_summaries(struct f2fs_sb_info * sbi)2116 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2117 {
2118 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2119 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2120 }
2121
2122 /*
2123 * Check whether the inode has blocks or not
2124 */
F2FS_HAS_BLOCKS(struct inode * inode)2125 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2126 {
2127 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2128
2129 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2130 }
2131
f2fs_has_xattr_block(unsigned int ofs)2132 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2133 {
2134 return ofs == XATTR_NODE_OFFSET;
2135 }
2136
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2137 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2138 struct inode *inode, bool cap)
2139 {
2140 if (!inode)
2141 return true;
2142 if (!test_opt(sbi, RESERVE_ROOT))
2143 return false;
2144 if (IS_NOQUOTA(inode))
2145 return true;
2146 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2147 return true;
2148 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2149 in_group_p(F2FS_OPTION(sbi).s_resgid))
2150 return true;
2151 if (cap && capable(CAP_SYS_RESOURCE))
2152 return true;
2153 return false;
2154 }
2155
2156 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2157 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2158 struct inode *inode, blkcnt_t *count)
2159 {
2160 blkcnt_t diff = 0, release = 0;
2161 block_t avail_user_block_count;
2162 int ret;
2163
2164 ret = dquot_reserve_block(inode, *count);
2165 if (ret)
2166 return ret;
2167
2168 if (time_to_inject(sbi, FAULT_BLOCK)) {
2169 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2170 release = *count;
2171 goto release_quota;
2172 }
2173
2174 /*
2175 * let's increase this in prior to actual block count change in order
2176 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2177 */
2178 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2179
2180 spin_lock(&sbi->stat_lock);
2181 sbi->total_valid_block_count += (block_t)(*count);
2182 avail_user_block_count = sbi->user_block_count -
2183 sbi->current_reserved_blocks;
2184
2185 if (!__allow_reserved_blocks(sbi, inode, true))
2186 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2187 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2188 if (avail_user_block_count > sbi->unusable_block_count)
2189 avail_user_block_count -= sbi->unusable_block_count;
2190 else
2191 avail_user_block_count = 0;
2192 }
2193 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2194 diff = sbi->total_valid_block_count - avail_user_block_count;
2195 if (diff > *count)
2196 diff = *count;
2197 *count -= diff;
2198 release = diff;
2199 sbi->total_valid_block_count -= diff;
2200 if (!*count) {
2201 spin_unlock(&sbi->stat_lock);
2202 goto enospc;
2203 }
2204 }
2205 spin_unlock(&sbi->stat_lock);
2206
2207 if (unlikely(release)) {
2208 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2209 dquot_release_reservation_block(inode, release);
2210 }
2211 f2fs_i_blocks_write(inode, *count, true, true);
2212 return 0;
2213
2214 enospc:
2215 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2216 release_quota:
2217 dquot_release_reservation_block(inode, release);
2218 return -ENOSPC;
2219 }
2220
2221 __printf(2, 3)
2222 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2223
2224 #define f2fs_err(sbi, fmt, ...) \
2225 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2226 #define f2fs_warn(sbi, fmt, ...) \
2227 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2228 #define f2fs_notice(sbi, fmt, ...) \
2229 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2230 #define f2fs_info(sbi, fmt, ...) \
2231 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2232 #define f2fs_debug(sbi, fmt, ...) \
2233 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2234
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2235 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2236 struct inode *inode,
2237 block_t count)
2238 {
2239 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2240
2241 spin_lock(&sbi->stat_lock);
2242 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2243 sbi->total_valid_block_count -= (block_t)count;
2244 if (sbi->reserved_blocks &&
2245 sbi->current_reserved_blocks < sbi->reserved_blocks)
2246 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2247 sbi->current_reserved_blocks + count);
2248 spin_unlock(&sbi->stat_lock);
2249 if (unlikely(inode->i_blocks < sectors)) {
2250 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2251 inode->i_ino,
2252 (unsigned long long)inode->i_blocks,
2253 (unsigned long long)sectors);
2254 set_sbi_flag(sbi, SBI_NEED_FSCK);
2255 return;
2256 }
2257 f2fs_i_blocks_write(inode, count, false, true);
2258 }
2259
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2260 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2261 {
2262 atomic_inc(&sbi->nr_pages[count_type]);
2263
2264 if (count_type == F2FS_DIRTY_DENTS ||
2265 count_type == F2FS_DIRTY_NODES ||
2266 count_type == F2FS_DIRTY_META ||
2267 count_type == F2FS_DIRTY_QDATA ||
2268 count_type == F2FS_DIRTY_IMETA)
2269 set_sbi_flag(sbi, SBI_IS_DIRTY);
2270 }
2271
inode_inc_dirty_pages(struct inode * inode)2272 static inline void inode_inc_dirty_pages(struct inode *inode)
2273 {
2274 atomic_inc(&F2FS_I(inode)->dirty_pages);
2275 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2276 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2277 if (IS_NOQUOTA(inode))
2278 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2279 }
2280
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2281 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2282 {
2283 atomic_dec(&sbi->nr_pages[count_type]);
2284 }
2285
inode_dec_dirty_pages(struct inode * inode)2286 static inline void inode_dec_dirty_pages(struct inode *inode)
2287 {
2288 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2289 !S_ISLNK(inode->i_mode))
2290 return;
2291
2292 atomic_dec(&F2FS_I(inode)->dirty_pages);
2293 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2294 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2295 if (IS_NOQUOTA(inode))
2296 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2297 }
2298
get_pages(struct f2fs_sb_info * sbi,int count_type)2299 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2300 {
2301 return atomic_read(&sbi->nr_pages[count_type]);
2302 }
2303
get_dirty_pages(struct inode * inode)2304 static inline int get_dirty_pages(struct inode *inode)
2305 {
2306 return atomic_read(&F2FS_I(inode)->dirty_pages);
2307 }
2308
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2309 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2310 {
2311 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2312 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2313 sbi->log_blocks_per_seg;
2314
2315 return segs / sbi->segs_per_sec;
2316 }
2317
valid_user_blocks(struct f2fs_sb_info * sbi)2318 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2319 {
2320 return sbi->total_valid_block_count;
2321 }
2322
discard_blocks(struct f2fs_sb_info * sbi)2323 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2324 {
2325 return sbi->discard_blks;
2326 }
2327
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2328 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2329 {
2330 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2331
2332 /* return NAT or SIT bitmap */
2333 if (flag == NAT_BITMAP)
2334 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2335 else if (flag == SIT_BITMAP)
2336 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2337
2338 return 0;
2339 }
2340
__cp_payload(struct f2fs_sb_info * sbi)2341 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2342 {
2343 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2344 }
2345
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2346 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2347 {
2348 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2349 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2350 int offset;
2351
2352 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2353 offset = (flag == SIT_BITMAP) ?
2354 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2355 /*
2356 * if large_nat_bitmap feature is enabled, leave checksum
2357 * protection for all nat/sit bitmaps.
2358 */
2359 return tmp_ptr + offset + sizeof(__le32);
2360 }
2361
2362 if (__cp_payload(sbi) > 0) {
2363 if (flag == NAT_BITMAP)
2364 return &ckpt->sit_nat_version_bitmap;
2365 else
2366 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2367 } else {
2368 offset = (flag == NAT_BITMAP) ?
2369 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2370 return tmp_ptr + offset;
2371 }
2372 }
2373
__start_cp_addr(struct f2fs_sb_info * sbi)2374 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2375 {
2376 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2377
2378 if (sbi->cur_cp_pack == 2)
2379 start_addr += sbi->blocks_per_seg;
2380 return start_addr;
2381 }
2382
__start_cp_next_addr(struct f2fs_sb_info * sbi)2383 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2384 {
2385 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2386
2387 if (sbi->cur_cp_pack == 1)
2388 start_addr += sbi->blocks_per_seg;
2389 return start_addr;
2390 }
2391
__set_cp_next_pack(struct f2fs_sb_info * sbi)2392 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2393 {
2394 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2395 }
2396
__start_sum_addr(struct f2fs_sb_info * sbi)2397 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2398 {
2399 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2400 }
2401
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2402 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2403 struct inode *inode, bool is_inode)
2404 {
2405 block_t valid_block_count;
2406 unsigned int valid_node_count, user_block_count;
2407 int err;
2408
2409 if (is_inode) {
2410 if (inode) {
2411 err = dquot_alloc_inode(inode);
2412 if (err)
2413 return err;
2414 }
2415 } else {
2416 err = dquot_reserve_block(inode, 1);
2417 if (err)
2418 return err;
2419 }
2420
2421 if (time_to_inject(sbi, FAULT_BLOCK)) {
2422 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2423 goto enospc;
2424 }
2425
2426 spin_lock(&sbi->stat_lock);
2427
2428 valid_block_count = sbi->total_valid_block_count +
2429 sbi->current_reserved_blocks + 1;
2430
2431 if (!__allow_reserved_blocks(sbi, inode, false))
2432 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2433 user_block_count = sbi->user_block_count;
2434 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2435 user_block_count -= sbi->unusable_block_count;
2436
2437 if (unlikely(valid_block_count > user_block_count)) {
2438 spin_unlock(&sbi->stat_lock);
2439 goto enospc;
2440 }
2441
2442 valid_node_count = sbi->total_valid_node_count + 1;
2443 if (unlikely(valid_node_count > sbi->total_node_count)) {
2444 spin_unlock(&sbi->stat_lock);
2445 goto enospc;
2446 }
2447
2448 sbi->total_valid_node_count++;
2449 sbi->total_valid_block_count++;
2450 spin_unlock(&sbi->stat_lock);
2451
2452 if (inode) {
2453 if (is_inode)
2454 f2fs_mark_inode_dirty_sync(inode, true);
2455 else
2456 f2fs_i_blocks_write(inode, 1, true, true);
2457 }
2458
2459 percpu_counter_inc(&sbi->alloc_valid_block_count);
2460 return 0;
2461
2462 enospc:
2463 if (is_inode) {
2464 if (inode)
2465 dquot_free_inode(inode);
2466 } else {
2467 dquot_release_reservation_block(inode, 1);
2468 }
2469 return -ENOSPC;
2470 }
2471
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2472 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2473 struct inode *inode, bool is_inode)
2474 {
2475 spin_lock(&sbi->stat_lock);
2476
2477 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2478 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2479
2480 sbi->total_valid_node_count--;
2481 sbi->total_valid_block_count--;
2482 if (sbi->reserved_blocks &&
2483 sbi->current_reserved_blocks < sbi->reserved_blocks)
2484 sbi->current_reserved_blocks++;
2485
2486 spin_unlock(&sbi->stat_lock);
2487
2488 if (is_inode) {
2489 dquot_free_inode(inode);
2490 } else {
2491 if (unlikely(inode->i_blocks == 0)) {
2492 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2493 inode->i_ino,
2494 (unsigned long long)inode->i_blocks);
2495 set_sbi_flag(sbi, SBI_NEED_FSCK);
2496 return;
2497 }
2498 f2fs_i_blocks_write(inode, 1, false, true);
2499 }
2500 }
2501
valid_node_count(struct f2fs_sb_info * sbi)2502 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2503 {
2504 return sbi->total_valid_node_count;
2505 }
2506
inc_valid_inode_count(struct f2fs_sb_info * sbi)2507 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2508 {
2509 percpu_counter_inc(&sbi->total_valid_inode_count);
2510 }
2511
dec_valid_inode_count(struct f2fs_sb_info * sbi)2512 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2513 {
2514 percpu_counter_dec(&sbi->total_valid_inode_count);
2515 }
2516
valid_inode_count(struct f2fs_sb_info * sbi)2517 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2518 {
2519 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2520 }
2521
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2522 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2523 pgoff_t index, bool for_write)
2524 {
2525 struct page *page;
2526
2527 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2528 if (!for_write)
2529 page = find_get_page_flags(mapping, index,
2530 FGP_LOCK | FGP_ACCESSED);
2531 else
2532 page = find_lock_page(mapping, index);
2533 if (page)
2534 return page;
2535
2536 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2537 f2fs_show_injection_info(F2FS_M_SB(mapping),
2538 FAULT_PAGE_ALLOC);
2539 return NULL;
2540 }
2541 }
2542
2543 if (!for_write)
2544 return grab_cache_page(mapping, index);
2545 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2546 }
2547
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2548 static inline struct page *f2fs_pagecache_get_page(
2549 struct address_space *mapping, pgoff_t index,
2550 int fgp_flags, gfp_t gfp_mask)
2551 {
2552 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2553 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2554 return NULL;
2555 }
2556
2557 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2558 }
2559
f2fs_copy_page(struct page * src,struct page * dst)2560 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2561 {
2562 char *src_kaddr = kmap(src);
2563 char *dst_kaddr = kmap(dst);
2564
2565 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2566 kunmap(dst);
2567 kunmap(src);
2568 }
2569
f2fs_put_page(struct page * page,int unlock)2570 static inline void f2fs_put_page(struct page *page, int unlock)
2571 {
2572 if (!page)
2573 return;
2574
2575 if (unlock) {
2576 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2577 unlock_page(page);
2578 }
2579 put_page(page);
2580 }
2581
f2fs_put_dnode(struct dnode_of_data * dn)2582 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2583 {
2584 if (dn->node_page)
2585 f2fs_put_page(dn->node_page, 1);
2586 if (dn->inode_page && dn->node_page != dn->inode_page)
2587 f2fs_put_page(dn->inode_page, 0);
2588 dn->node_page = NULL;
2589 dn->inode_page = NULL;
2590 }
2591
f2fs_kmem_cache_create(const char * name,size_t size)2592 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2593 size_t size)
2594 {
2595 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2596 }
2597
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2598 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2599 gfp_t flags)
2600 {
2601 void *entry;
2602
2603 entry = kmem_cache_alloc(cachep, flags);
2604 if (!entry)
2605 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2606 return entry;
2607 }
2608
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2609 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2610 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2611 {
2612 if (nofail)
2613 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2614
2615 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2616 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2617 return NULL;
2618 }
2619
2620 return kmem_cache_alloc(cachep, flags);
2621 }
2622
is_inflight_io(struct f2fs_sb_info * sbi,int type)2623 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2624 {
2625 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2626 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2627 get_pages(sbi, F2FS_WB_CP_DATA) ||
2628 get_pages(sbi, F2FS_DIO_READ) ||
2629 get_pages(sbi, F2FS_DIO_WRITE))
2630 return true;
2631
2632 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2633 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2634 return true;
2635
2636 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2637 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2638 return true;
2639 return false;
2640 }
2641
is_idle(struct f2fs_sb_info * sbi,int type)2642 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2643 {
2644 if (sbi->gc_mode == GC_URGENT_HIGH)
2645 return true;
2646
2647 if (is_inflight_io(sbi, type))
2648 return false;
2649
2650 if (sbi->gc_mode == GC_URGENT_LOW &&
2651 (type == DISCARD_TIME || type == GC_TIME))
2652 return true;
2653
2654 return f2fs_time_over(sbi, type);
2655 }
2656
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2657 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2658 unsigned long index, void *item)
2659 {
2660 while (radix_tree_insert(root, index, item))
2661 cond_resched();
2662 }
2663
2664 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2665
IS_INODE(struct page * page)2666 static inline bool IS_INODE(struct page *page)
2667 {
2668 struct f2fs_node *p = F2FS_NODE(page);
2669
2670 return RAW_IS_INODE(p);
2671 }
2672
offset_in_addr(struct f2fs_inode * i)2673 static inline int offset_in_addr(struct f2fs_inode *i)
2674 {
2675 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2676 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2677 }
2678
blkaddr_in_node(struct f2fs_node * node)2679 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2680 {
2681 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2682 }
2683
2684 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2685 static inline block_t data_blkaddr(struct inode *inode,
2686 struct page *node_page, unsigned int offset)
2687 {
2688 struct f2fs_node *raw_node;
2689 __le32 *addr_array;
2690 int base = 0;
2691 bool is_inode = IS_INODE(node_page);
2692
2693 raw_node = F2FS_NODE(node_page);
2694
2695 if (is_inode) {
2696 if (!inode)
2697 /* from GC path only */
2698 base = offset_in_addr(&raw_node->i);
2699 else if (f2fs_has_extra_attr(inode))
2700 base = get_extra_isize(inode);
2701 }
2702
2703 addr_array = blkaddr_in_node(raw_node);
2704 return le32_to_cpu(addr_array[base + offset]);
2705 }
2706
f2fs_data_blkaddr(struct dnode_of_data * dn)2707 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2708 {
2709 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2710 }
2711
f2fs_test_bit(unsigned int nr,char * addr)2712 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2713 {
2714 int mask;
2715
2716 addr += (nr >> 3);
2717 mask = 1 << (7 - (nr & 0x07));
2718 return mask & *addr;
2719 }
2720
f2fs_set_bit(unsigned int nr,char * addr)2721 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2722 {
2723 int mask;
2724
2725 addr += (nr >> 3);
2726 mask = 1 << (7 - (nr & 0x07));
2727 *addr |= mask;
2728 }
2729
f2fs_clear_bit(unsigned int nr,char * addr)2730 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2731 {
2732 int mask;
2733
2734 addr += (nr >> 3);
2735 mask = 1 << (7 - (nr & 0x07));
2736 *addr &= ~mask;
2737 }
2738
f2fs_test_and_set_bit(unsigned int nr,char * addr)2739 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2740 {
2741 int mask;
2742 int ret;
2743
2744 addr += (nr >> 3);
2745 mask = 1 << (7 - (nr & 0x07));
2746 ret = mask & *addr;
2747 *addr |= mask;
2748 return ret;
2749 }
2750
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2751 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2752 {
2753 int mask;
2754 int ret;
2755
2756 addr += (nr >> 3);
2757 mask = 1 << (7 - (nr & 0x07));
2758 ret = mask & *addr;
2759 *addr &= ~mask;
2760 return ret;
2761 }
2762
f2fs_change_bit(unsigned int nr,char * addr)2763 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2764 {
2765 int mask;
2766
2767 addr += (nr >> 3);
2768 mask = 1 << (7 - (nr & 0x07));
2769 *addr ^= mask;
2770 }
2771
2772 /*
2773 * On-disk inode flags (f2fs_inode::i_flags)
2774 */
2775 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2776 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2777 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2778 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2779 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2780 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2781 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2782 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2783 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2784 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2785 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2786
2787 /* Flags that should be inherited by new inodes from their parent. */
2788 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2789 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2790 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2791
2792 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2793 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2794 F2FS_CASEFOLD_FL))
2795
2796 /* Flags that are appropriate for non-directories/regular files. */
2797 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2798
f2fs_mask_flags(umode_t mode,__u32 flags)2799 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2800 {
2801 if (S_ISDIR(mode))
2802 return flags;
2803 else if (S_ISREG(mode))
2804 return flags & F2FS_REG_FLMASK;
2805 else
2806 return flags & F2FS_OTHER_FLMASK;
2807 }
2808
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2809 static inline void __mark_inode_dirty_flag(struct inode *inode,
2810 int flag, bool set)
2811 {
2812 switch (flag) {
2813 case FI_INLINE_XATTR:
2814 case FI_INLINE_DATA:
2815 case FI_INLINE_DENTRY:
2816 case FI_NEW_INODE:
2817 if (set)
2818 return;
2819 fallthrough;
2820 case FI_DATA_EXIST:
2821 case FI_INLINE_DOTS:
2822 case FI_PIN_FILE:
2823 case FI_COMPRESS_RELEASED:
2824 f2fs_mark_inode_dirty_sync(inode, true);
2825 }
2826 }
2827
set_inode_flag(struct inode * inode,int flag)2828 static inline void set_inode_flag(struct inode *inode, int flag)
2829 {
2830 set_bit(flag, F2FS_I(inode)->flags);
2831 __mark_inode_dirty_flag(inode, flag, true);
2832 }
2833
is_inode_flag_set(struct inode * inode,int flag)2834 static inline int is_inode_flag_set(struct inode *inode, int flag)
2835 {
2836 return test_bit(flag, F2FS_I(inode)->flags);
2837 }
2838
clear_inode_flag(struct inode * inode,int flag)2839 static inline void clear_inode_flag(struct inode *inode, int flag)
2840 {
2841 clear_bit(flag, F2FS_I(inode)->flags);
2842 __mark_inode_dirty_flag(inode, flag, false);
2843 }
2844
f2fs_verity_in_progress(struct inode * inode)2845 static inline bool f2fs_verity_in_progress(struct inode *inode)
2846 {
2847 return IS_ENABLED(CONFIG_FS_VERITY) &&
2848 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2849 }
2850
set_acl_inode(struct inode * inode,umode_t mode)2851 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2852 {
2853 F2FS_I(inode)->i_acl_mode = mode;
2854 set_inode_flag(inode, FI_ACL_MODE);
2855 f2fs_mark_inode_dirty_sync(inode, false);
2856 }
2857
f2fs_i_links_write(struct inode * inode,bool inc)2858 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2859 {
2860 if (inc)
2861 inc_nlink(inode);
2862 else
2863 drop_nlink(inode);
2864 f2fs_mark_inode_dirty_sync(inode, true);
2865 }
2866
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2867 static inline void f2fs_i_blocks_write(struct inode *inode,
2868 block_t diff, bool add, bool claim)
2869 {
2870 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2871 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2872
2873 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2874 if (add) {
2875 if (claim)
2876 dquot_claim_block(inode, diff);
2877 else
2878 dquot_alloc_block_nofail(inode, diff);
2879 } else {
2880 dquot_free_block(inode, diff);
2881 }
2882
2883 f2fs_mark_inode_dirty_sync(inode, true);
2884 if (clean || recover)
2885 set_inode_flag(inode, FI_AUTO_RECOVER);
2886 }
2887
f2fs_i_size_write(struct inode * inode,loff_t i_size)2888 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2889 {
2890 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2891 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2892
2893 if (i_size_read(inode) == i_size)
2894 return;
2895
2896 i_size_write(inode, i_size);
2897 f2fs_mark_inode_dirty_sync(inode, true);
2898 if (clean || recover)
2899 set_inode_flag(inode, FI_AUTO_RECOVER);
2900 }
2901
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2902 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2903 {
2904 F2FS_I(inode)->i_current_depth = depth;
2905 f2fs_mark_inode_dirty_sync(inode, true);
2906 }
2907
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2908 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2909 unsigned int count)
2910 {
2911 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2912 f2fs_mark_inode_dirty_sync(inode, true);
2913 }
2914
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2915 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2916 {
2917 F2FS_I(inode)->i_xattr_nid = xnid;
2918 f2fs_mark_inode_dirty_sync(inode, true);
2919 }
2920
f2fs_i_pino_write(struct inode * inode,nid_t pino)2921 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2922 {
2923 F2FS_I(inode)->i_pino = pino;
2924 f2fs_mark_inode_dirty_sync(inode, true);
2925 }
2926
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2927 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2928 {
2929 struct f2fs_inode_info *fi = F2FS_I(inode);
2930
2931 if (ri->i_inline & F2FS_INLINE_XATTR)
2932 set_bit(FI_INLINE_XATTR, fi->flags);
2933 if (ri->i_inline & F2FS_INLINE_DATA)
2934 set_bit(FI_INLINE_DATA, fi->flags);
2935 if (ri->i_inline & F2FS_INLINE_DENTRY)
2936 set_bit(FI_INLINE_DENTRY, fi->flags);
2937 if (ri->i_inline & F2FS_DATA_EXIST)
2938 set_bit(FI_DATA_EXIST, fi->flags);
2939 if (ri->i_inline & F2FS_INLINE_DOTS)
2940 set_bit(FI_INLINE_DOTS, fi->flags);
2941 if (ri->i_inline & F2FS_EXTRA_ATTR)
2942 set_bit(FI_EXTRA_ATTR, fi->flags);
2943 if (ri->i_inline & F2FS_PIN_FILE)
2944 set_bit(FI_PIN_FILE, fi->flags);
2945 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2946 set_bit(FI_COMPRESS_RELEASED, fi->flags);
2947 }
2948
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2949 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2950 {
2951 ri->i_inline = 0;
2952
2953 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2954 ri->i_inline |= F2FS_INLINE_XATTR;
2955 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2956 ri->i_inline |= F2FS_INLINE_DATA;
2957 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2958 ri->i_inline |= F2FS_INLINE_DENTRY;
2959 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2960 ri->i_inline |= F2FS_DATA_EXIST;
2961 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2962 ri->i_inline |= F2FS_INLINE_DOTS;
2963 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2964 ri->i_inline |= F2FS_EXTRA_ATTR;
2965 if (is_inode_flag_set(inode, FI_PIN_FILE))
2966 ri->i_inline |= F2FS_PIN_FILE;
2967 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2968 ri->i_inline |= F2FS_COMPRESS_RELEASED;
2969 }
2970
f2fs_has_extra_attr(struct inode * inode)2971 static inline int f2fs_has_extra_attr(struct inode *inode)
2972 {
2973 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2974 }
2975
f2fs_has_inline_xattr(struct inode * inode)2976 static inline int f2fs_has_inline_xattr(struct inode *inode)
2977 {
2978 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2979 }
2980
f2fs_compressed_file(struct inode * inode)2981 static inline int f2fs_compressed_file(struct inode *inode)
2982 {
2983 return S_ISREG(inode->i_mode) &&
2984 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2985 }
2986
f2fs_need_compress_data(struct inode * inode)2987 static inline bool f2fs_need_compress_data(struct inode *inode)
2988 {
2989 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2990
2991 if (!f2fs_compressed_file(inode))
2992 return false;
2993
2994 if (compress_mode == COMPR_MODE_FS)
2995 return true;
2996 else if (compress_mode == COMPR_MODE_USER &&
2997 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2998 return true;
2999
3000 return false;
3001 }
3002
addrs_per_inode(struct inode * inode)3003 static inline unsigned int addrs_per_inode(struct inode *inode)
3004 {
3005 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3006 get_inline_xattr_addrs(inode);
3007
3008 if (!f2fs_compressed_file(inode))
3009 return addrs;
3010 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3011 }
3012
addrs_per_block(struct inode * inode)3013 static inline unsigned int addrs_per_block(struct inode *inode)
3014 {
3015 if (!f2fs_compressed_file(inode))
3016 return DEF_ADDRS_PER_BLOCK;
3017 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3018 }
3019
inline_xattr_addr(struct inode * inode,struct page * page)3020 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3021 {
3022 struct f2fs_inode *ri = F2FS_INODE(page);
3023
3024 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3025 get_inline_xattr_addrs(inode)]);
3026 }
3027
inline_xattr_size(struct inode * inode)3028 static inline int inline_xattr_size(struct inode *inode)
3029 {
3030 if (f2fs_has_inline_xattr(inode))
3031 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3032 return 0;
3033 }
3034
f2fs_has_inline_data(struct inode * inode)3035 static inline int f2fs_has_inline_data(struct inode *inode)
3036 {
3037 return is_inode_flag_set(inode, FI_INLINE_DATA);
3038 }
3039
f2fs_exist_data(struct inode * inode)3040 static inline int f2fs_exist_data(struct inode *inode)
3041 {
3042 return is_inode_flag_set(inode, FI_DATA_EXIST);
3043 }
3044
f2fs_has_inline_dots(struct inode * inode)3045 static inline int f2fs_has_inline_dots(struct inode *inode)
3046 {
3047 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3048 }
3049
f2fs_is_mmap_file(struct inode * inode)3050 static inline int f2fs_is_mmap_file(struct inode *inode)
3051 {
3052 return is_inode_flag_set(inode, FI_MMAP_FILE);
3053 }
3054
f2fs_is_pinned_file(struct inode * inode)3055 static inline bool f2fs_is_pinned_file(struct inode *inode)
3056 {
3057 return is_inode_flag_set(inode, FI_PIN_FILE);
3058 }
3059
f2fs_is_atomic_file(struct inode * inode)3060 static inline bool f2fs_is_atomic_file(struct inode *inode)
3061 {
3062 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3063 }
3064
f2fs_is_commit_atomic_write(struct inode * inode)3065 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3066 {
3067 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3068 }
3069
f2fs_is_volatile_file(struct inode * inode)3070 static inline bool f2fs_is_volatile_file(struct inode *inode)
3071 {
3072 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3073 }
3074
f2fs_is_first_block_written(struct inode * inode)3075 static inline bool f2fs_is_first_block_written(struct inode *inode)
3076 {
3077 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3078 }
3079
f2fs_is_drop_cache(struct inode * inode)3080 static inline bool f2fs_is_drop_cache(struct inode *inode)
3081 {
3082 return is_inode_flag_set(inode, FI_DROP_CACHE);
3083 }
3084
inline_data_addr(struct inode * inode,struct page * page)3085 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3086 {
3087 struct f2fs_inode *ri = F2FS_INODE(page);
3088 int extra_size = get_extra_isize(inode);
3089
3090 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3091 }
3092
f2fs_has_inline_dentry(struct inode * inode)3093 static inline int f2fs_has_inline_dentry(struct inode *inode)
3094 {
3095 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3096 }
3097
is_file(struct inode * inode,int type)3098 static inline int is_file(struct inode *inode, int type)
3099 {
3100 return F2FS_I(inode)->i_advise & type;
3101 }
3102
set_file(struct inode * inode,int type)3103 static inline void set_file(struct inode *inode, int type)
3104 {
3105 F2FS_I(inode)->i_advise |= type;
3106 f2fs_mark_inode_dirty_sync(inode, true);
3107 }
3108
clear_file(struct inode * inode,int type)3109 static inline void clear_file(struct inode *inode, int type)
3110 {
3111 F2FS_I(inode)->i_advise &= ~type;
3112 f2fs_mark_inode_dirty_sync(inode, true);
3113 }
3114
f2fs_is_time_consistent(struct inode * inode)3115 static inline bool f2fs_is_time_consistent(struct inode *inode)
3116 {
3117 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3118 return false;
3119 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3120 return false;
3121 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3122 return false;
3123 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3124 &F2FS_I(inode)->i_crtime))
3125 return false;
3126 return true;
3127 }
3128
f2fs_skip_inode_update(struct inode * inode,int dsync)3129 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3130 {
3131 bool ret;
3132
3133 if (dsync) {
3134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135
3136 spin_lock(&sbi->inode_lock[DIRTY_META]);
3137 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3138 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3139 return ret;
3140 }
3141 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3142 file_keep_isize(inode) ||
3143 i_size_read(inode) & ~PAGE_MASK)
3144 return false;
3145
3146 if (!f2fs_is_time_consistent(inode))
3147 return false;
3148
3149 spin_lock(&F2FS_I(inode)->i_size_lock);
3150 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3151 spin_unlock(&F2FS_I(inode)->i_size_lock);
3152
3153 return ret;
3154 }
3155
f2fs_readonly(struct super_block * sb)3156 static inline bool f2fs_readonly(struct super_block *sb)
3157 {
3158 return sb_rdonly(sb);
3159 }
3160
f2fs_cp_error(struct f2fs_sb_info * sbi)3161 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3162 {
3163 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3164 }
3165
is_dot_dotdot(const u8 * name,size_t len)3166 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3167 {
3168 if (len == 1 && name[0] == '.')
3169 return true;
3170
3171 if (len == 2 && name[0] == '.' && name[1] == '.')
3172 return true;
3173
3174 return false;
3175 }
3176
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3177 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3178 size_t size, gfp_t flags)
3179 {
3180 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3181 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3182 return NULL;
3183 }
3184
3185 return kmalloc(size, flags);
3186 }
3187
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3188 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3189 size_t size, gfp_t flags)
3190 {
3191 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3192 }
3193
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3194 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3195 size_t size, gfp_t flags)
3196 {
3197 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3198 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3199 return NULL;
3200 }
3201
3202 return kvmalloc(size, flags);
3203 }
3204
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3205 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3206 size_t size, gfp_t flags)
3207 {
3208 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3209 }
3210
get_extra_isize(struct inode * inode)3211 static inline int get_extra_isize(struct inode *inode)
3212 {
3213 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3214 }
3215
get_inline_xattr_addrs(struct inode * inode)3216 static inline int get_inline_xattr_addrs(struct inode *inode)
3217 {
3218 return F2FS_I(inode)->i_inline_xattr_size;
3219 }
3220
3221 #define f2fs_get_inode_mode(i) \
3222 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3223 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3224
3225 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3226 (offsetof(struct f2fs_inode, i_extra_end) - \
3227 offsetof(struct f2fs_inode, i_extra_isize)) \
3228
3229 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3230 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3231 ((offsetof(typeof(*(f2fs_inode)), field) + \
3232 sizeof((f2fs_inode)->field)) \
3233 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3234
3235 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3236
3237 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3238
3239 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3240 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3241 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3242 block_t blkaddr, int type)
3243 {
3244 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3245 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3246 blkaddr, type);
3247 f2fs_bug_on(sbi, 1);
3248 }
3249 }
3250
__is_valid_data_blkaddr(block_t blkaddr)3251 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3252 {
3253 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3254 blkaddr == COMPRESS_ADDR)
3255 return false;
3256 return true;
3257 }
3258
3259 /*
3260 * file.c
3261 */
3262 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3263 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3264 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3265 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3266 int f2fs_truncate(struct inode *inode);
3267 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3268 struct kstat *stat, u32 request_mask, unsigned int flags);
3269 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3270 struct iattr *attr);
3271 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3272 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3273 int f2fs_precache_extents(struct inode *inode);
3274 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3275 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3276 struct dentry *dentry, struct fileattr *fa);
3277 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3278 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3279 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3280 int f2fs_pin_file_control(struct inode *inode, bool inc);
3281
3282 /*
3283 * inode.c
3284 */
3285 void f2fs_set_inode_flags(struct inode *inode);
3286 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3287 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3288 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3289 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3290 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3291 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3292 void f2fs_update_inode_page(struct inode *inode);
3293 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3294 void f2fs_evict_inode(struct inode *inode);
3295 void f2fs_handle_failed_inode(struct inode *inode);
3296
3297 /*
3298 * namei.c
3299 */
3300 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3301 bool hot, bool set);
3302 struct dentry *f2fs_get_parent(struct dentry *child);
3303
3304 /*
3305 * dir.c
3306 */
3307 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3308 int f2fs_init_casefolded_name(const struct inode *dir,
3309 struct f2fs_filename *fname);
3310 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3311 int lookup, struct f2fs_filename *fname);
3312 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3313 struct f2fs_filename *fname);
3314 void f2fs_free_filename(struct f2fs_filename *fname);
3315 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3316 const struct f2fs_filename *fname, int *max_slots);
3317 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3318 unsigned int start_pos, struct fscrypt_str *fstr);
3319 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3320 struct f2fs_dentry_ptr *d);
3321 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3322 const struct f2fs_filename *fname, struct page *dpage);
3323 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3324 unsigned int current_depth);
3325 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3326 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3327 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3328 const struct f2fs_filename *fname,
3329 struct page **res_page);
3330 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3331 const struct qstr *child, struct page **res_page);
3332 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3333 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3334 struct page **page);
3335 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3336 struct page *page, struct inode *inode);
3337 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3338 const struct f2fs_filename *fname);
3339 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3340 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3341 unsigned int bit_pos);
3342 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3343 struct inode *inode, nid_t ino, umode_t mode);
3344 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3345 struct inode *inode, nid_t ino, umode_t mode);
3346 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3347 struct inode *inode, nid_t ino, umode_t mode);
3348 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3349 struct inode *dir, struct inode *inode);
3350 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3351 bool f2fs_empty_dir(struct inode *dir);
3352
f2fs_add_link(struct dentry * dentry,struct inode * inode)3353 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3354 {
3355 if (fscrypt_is_nokey_name(dentry))
3356 return -ENOKEY;
3357 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3358 inode, inode->i_ino, inode->i_mode);
3359 }
3360
3361 /*
3362 * super.c
3363 */
3364 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3365 void f2fs_inode_synced(struct inode *inode);
3366 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3367 int f2fs_quota_sync(struct super_block *sb, int type);
3368 loff_t max_file_blocks(struct inode *inode);
3369 void f2fs_quota_off_umount(struct super_block *sb);
3370 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3371 int f2fs_sync_fs(struct super_block *sb, int sync);
3372 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3373
3374 /*
3375 * hash.c
3376 */
3377 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3378
3379 /*
3380 * node.c
3381 */
3382 struct node_info;
3383
3384 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3385 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3386 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3387 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3388 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3389 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3390 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3391 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3392 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3393 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3394 struct node_info *ni);
3395 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3396 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3397 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3398 int f2fs_truncate_xattr_node(struct inode *inode);
3399 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3400 unsigned int seq_id);
3401 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3402 int f2fs_remove_inode_page(struct inode *inode);
3403 struct page *f2fs_new_inode_page(struct inode *inode);
3404 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3405 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3406 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3407 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3408 int f2fs_move_node_page(struct page *node_page, int gc_type);
3409 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3410 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3411 struct writeback_control *wbc, bool atomic,
3412 unsigned int *seq_id);
3413 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3414 struct writeback_control *wbc,
3415 bool do_balance, enum iostat_type io_type);
3416 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3417 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3418 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3419 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3420 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3421 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3422 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3423 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3424 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3425 unsigned int segno, struct f2fs_summary_block *sum);
3426 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3427 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3428 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3429 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3430 int __init f2fs_create_node_manager_caches(void);
3431 void f2fs_destroy_node_manager_caches(void);
3432
3433 /*
3434 * segment.c
3435 */
3436 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3437 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3438 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3439 void f2fs_drop_inmem_pages(struct inode *inode);
3440 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3441 int f2fs_commit_inmem_pages(struct inode *inode);
3442 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3443 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3444 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3445 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3446 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3447 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3448 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3449 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3450 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3451 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3452 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3453 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3454 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3455 struct cp_control *cpc);
3456 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3457 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3458 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3459 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3460 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3461 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3462 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3463 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3464 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3465 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3466 unsigned int *newseg, bool new_sec, int dir);
3467 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3468 unsigned int start, unsigned int end);
3469 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3470 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3471 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3472 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3473 struct cp_control *cpc);
3474 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3475 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3476 block_t blk_addr);
3477 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3478 enum iostat_type io_type);
3479 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3480 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3481 struct f2fs_io_info *fio);
3482 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3483 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3484 block_t old_blkaddr, block_t new_blkaddr,
3485 bool recover_curseg, bool recover_newaddr,
3486 bool from_gc);
3487 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3488 block_t old_addr, block_t new_addr,
3489 unsigned char version, bool recover_curseg,
3490 bool recover_newaddr);
3491 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3492 block_t old_blkaddr, block_t *new_blkaddr,
3493 struct f2fs_summary *sum, int type,
3494 struct f2fs_io_info *fio);
3495 void f2fs_wait_on_page_writeback(struct page *page,
3496 enum page_type type, bool ordered, bool locked);
3497 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3498 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3499 block_t len);
3500 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3501 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3502 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3503 unsigned int val, int alloc);
3504 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3505 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3506 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3507 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3508 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3509 int __init f2fs_create_segment_manager_caches(void);
3510 void f2fs_destroy_segment_manager_caches(void);
3511 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3512 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3513 enum page_type type, enum temp_type temp);
3514 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3515 unsigned int segno);
3516 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3517 unsigned int segno);
3518
3519 /*
3520 * checkpoint.c
3521 */
3522 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3523 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3524 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3525 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3526 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3527 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3528 block_t blkaddr, int type);
3529 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3530 int type, bool sync);
3531 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3532 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3533 long nr_to_write, enum iostat_type io_type);
3534 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3535 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3536 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3537 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3538 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3539 unsigned int devidx, int type);
3540 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3541 unsigned int devidx, int type);
3542 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3543 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3544 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3545 void f2fs_add_orphan_inode(struct inode *inode);
3546 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3547 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3548 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3549 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3550 void f2fs_remove_dirty_inode(struct inode *inode);
3551 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3552 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3553 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3554 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3555 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3556 int __init f2fs_create_checkpoint_caches(void);
3557 void f2fs_destroy_checkpoint_caches(void);
3558 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3559 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3560 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3561 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3562
3563 /*
3564 * data.c
3565 */
3566 int __init f2fs_init_bioset(void);
3567 void f2fs_destroy_bioset(void);
3568 int f2fs_init_bio_entry_cache(void);
3569 void f2fs_destroy_bio_entry_cache(void);
3570 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3571 struct bio *bio, enum page_type type);
3572 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3573 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3574 struct inode *inode, struct page *page,
3575 nid_t ino, enum page_type type);
3576 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3577 struct bio **bio, struct page *page);
3578 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3579 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3580 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3581 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3582 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3583 block_t blk_addr, struct bio *bio);
3584 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3585 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3586 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3587 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3588 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3589 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3590 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3591 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3592 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3593 int op_flags, bool for_write);
3594 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3595 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3596 bool for_write);
3597 struct page *f2fs_get_new_data_page(struct inode *inode,
3598 struct page *ipage, pgoff_t index, bool new_i_size);
3599 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3600 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3601 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3602 int create, int flag);
3603 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3604 u64 start, u64 len);
3605 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3606 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3607 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3608 int f2fs_write_single_data_page(struct page *page, int *submitted,
3609 struct bio **bio, sector_t *last_block,
3610 struct writeback_control *wbc,
3611 enum iostat_type io_type,
3612 int compr_blocks, bool allow_balance);
3613 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3614 unsigned int length);
3615 int f2fs_release_page(struct page *page, gfp_t wait);
3616 #ifdef CONFIG_MIGRATION
3617 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3618 struct page *page, enum migrate_mode mode);
3619 #endif
3620 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3621 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3622 int f2fs_init_post_read_processing(void);
3623 void f2fs_destroy_post_read_processing(void);
3624 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3625 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3626
3627 /*
3628 * gc.c
3629 */
3630 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3631 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3632 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3633 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3634 unsigned int segno);
3635 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3636 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3637 int __init f2fs_create_garbage_collection_cache(void);
3638 void f2fs_destroy_garbage_collection_cache(void);
3639
3640 /*
3641 * recovery.c
3642 */
3643 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3644 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3645 int __init f2fs_create_recovery_cache(void);
3646 void f2fs_destroy_recovery_cache(void);
3647
3648 /*
3649 * debug.c
3650 */
3651 #ifdef CONFIG_F2FS_STAT_FS
3652 struct f2fs_stat_info {
3653 struct list_head stat_list;
3654 struct f2fs_sb_info *sbi;
3655 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3656 int main_area_segs, main_area_sections, main_area_zones;
3657 unsigned long long hit_largest, hit_cached, hit_rbtree;
3658 unsigned long long hit_total, total_ext;
3659 int ext_tree, zombie_tree, ext_node;
3660 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3661 int ndirty_data, ndirty_qdata;
3662 int inmem_pages;
3663 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3664 int nats, dirty_nats, sits, dirty_sits;
3665 int free_nids, avail_nids, alloc_nids;
3666 int total_count, utilization;
3667 int bg_gc, nr_wb_cp_data, nr_wb_data;
3668 int nr_rd_data, nr_rd_node, nr_rd_meta;
3669 int nr_dio_read, nr_dio_write;
3670 unsigned int io_skip_bggc, other_skip_bggc;
3671 int nr_flushing, nr_flushed, flush_list_empty;
3672 int nr_discarding, nr_discarded;
3673 int nr_discard_cmd;
3674 unsigned int undiscard_blks;
3675 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3676 unsigned int cur_ckpt_time, peak_ckpt_time;
3677 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3678 int compr_inode;
3679 unsigned long long compr_blocks;
3680 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3681 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3682 unsigned int bimodal, avg_vblocks;
3683 int util_free, util_valid, util_invalid;
3684 int rsvd_segs, overp_segs;
3685 int dirty_count, node_pages, meta_pages, compress_pages;
3686 int compress_page_hit;
3687 int prefree_count, call_count, cp_count, bg_cp_count;
3688 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3689 int bg_node_segs, bg_data_segs;
3690 int tot_blks, data_blks, node_blks;
3691 int bg_data_blks, bg_node_blks;
3692 unsigned long long skipped_atomic_files[2];
3693 int curseg[NR_CURSEG_TYPE];
3694 int cursec[NR_CURSEG_TYPE];
3695 int curzone[NR_CURSEG_TYPE];
3696 unsigned int dirty_seg[NR_CURSEG_TYPE];
3697 unsigned int full_seg[NR_CURSEG_TYPE];
3698 unsigned int valid_blks[NR_CURSEG_TYPE];
3699
3700 unsigned int meta_count[META_MAX];
3701 unsigned int segment_count[2];
3702 unsigned int block_count[2];
3703 unsigned int inplace_count;
3704 unsigned long long base_mem, cache_mem, page_mem;
3705 };
3706
F2FS_STAT(struct f2fs_sb_info * sbi)3707 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3708 {
3709 return (struct f2fs_stat_info *)sbi->stat_info;
3710 }
3711
3712 #define stat_inc_cp_count(si) ((si)->cp_count++)
3713 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3714 #define stat_inc_call_count(si) ((si)->call_count++)
3715 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3716 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3717 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3718 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3719 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3720 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3721 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3722 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3723 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3724 #define stat_inc_inline_xattr(inode) \
3725 do { \
3726 if (f2fs_has_inline_xattr(inode)) \
3727 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3728 } while (0)
3729 #define stat_dec_inline_xattr(inode) \
3730 do { \
3731 if (f2fs_has_inline_xattr(inode)) \
3732 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3733 } while (0)
3734 #define stat_inc_inline_inode(inode) \
3735 do { \
3736 if (f2fs_has_inline_data(inode)) \
3737 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3738 } while (0)
3739 #define stat_dec_inline_inode(inode) \
3740 do { \
3741 if (f2fs_has_inline_data(inode)) \
3742 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3743 } while (0)
3744 #define stat_inc_inline_dir(inode) \
3745 do { \
3746 if (f2fs_has_inline_dentry(inode)) \
3747 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3748 } while (0)
3749 #define stat_dec_inline_dir(inode) \
3750 do { \
3751 if (f2fs_has_inline_dentry(inode)) \
3752 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3753 } while (0)
3754 #define stat_inc_compr_inode(inode) \
3755 do { \
3756 if (f2fs_compressed_file(inode)) \
3757 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3758 } while (0)
3759 #define stat_dec_compr_inode(inode) \
3760 do { \
3761 if (f2fs_compressed_file(inode)) \
3762 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3763 } while (0)
3764 #define stat_add_compr_blocks(inode, blocks) \
3765 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3766 #define stat_sub_compr_blocks(inode, blocks) \
3767 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3768 #define stat_inc_meta_count(sbi, blkaddr) \
3769 do { \
3770 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3771 atomic_inc(&(sbi)->meta_count[META_CP]); \
3772 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3773 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3774 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3775 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3776 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3777 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3778 } while (0)
3779 #define stat_inc_seg_type(sbi, curseg) \
3780 ((sbi)->segment_count[(curseg)->alloc_type]++)
3781 #define stat_inc_block_count(sbi, curseg) \
3782 ((sbi)->block_count[(curseg)->alloc_type]++)
3783 #define stat_inc_inplace_blocks(sbi) \
3784 (atomic_inc(&(sbi)->inplace_count))
3785 #define stat_update_max_atomic_write(inode) \
3786 do { \
3787 int cur = F2FS_I_SB(inode)->atomic_files; \
3788 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3789 if (cur > max) \
3790 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3791 } while (0)
3792 #define stat_inc_volatile_write(inode) \
3793 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3794 #define stat_dec_volatile_write(inode) \
3795 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3796 #define stat_update_max_volatile_write(inode) \
3797 do { \
3798 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3799 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3800 if (cur > max) \
3801 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3802 } while (0)
3803 #define stat_inc_seg_count(sbi, type, gc_type) \
3804 do { \
3805 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3806 si->tot_segs++; \
3807 if ((type) == SUM_TYPE_DATA) { \
3808 si->data_segs++; \
3809 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3810 } else { \
3811 si->node_segs++; \
3812 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3813 } \
3814 } while (0)
3815
3816 #define stat_inc_tot_blk_count(si, blks) \
3817 ((si)->tot_blks += (blks))
3818
3819 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3820 do { \
3821 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3822 stat_inc_tot_blk_count(si, blks); \
3823 si->data_blks += (blks); \
3824 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3825 } while (0)
3826
3827 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3828 do { \
3829 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3830 stat_inc_tot_blk_count(si, blks); \
3831 si->node_blks += (blks); \
3832 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3833 } while (0)
3834
3835 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3836 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3837 void __init f2fs_create_root_stats(void);
3838 void f2fs_destroy_root_stats(void);
3839 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3840 #else
3841 #define stat_inc_cp_count(si) do { } while (0)
3842 #define stat_inc_bg_cp_count(si) do { } while (0)
3843 #define stat_inc_call_count(si) do { } while (0)
3844 #define stat_inc_bggc_count(si) do { } while (0)
3845 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3846 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3847 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3848 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3849 #define stat_inc_total_hit(sbi) do { } while (0)
3850 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3851 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3852 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3853 #define stat_inc_inline_xattr(inode) do { } while (0)
3854 #define stat_dec_inline_xattr(inode) do { } while (0)
3855 #define stat_inc_inline_inode(inode) do { } while (0)
3856 #define stat_dec_inline_inode(inode) do { } while (0)
3857 #define stat_inc_inline_dir(inode) do { } while (0)
3858 #define stat_dec_inline_dir(inode) do { } while (0)
3859 #define stat_inc_compr_inode(inode) do { } while (0)
3860 #define stat_dec_compr_inode(inode) do { } while (0)
3861 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3862 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3863 #define stat_update_max_atomic_write(inode) do { } while (0)
3864 #define stat_inc_volatile_write(inode) do { } while (0)
3865 #define stat_dec_volatile_write(inode) do { } while (0)
3866 #define stat_update_max_volatile_write(inode) do { } while (0)
3867 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3868 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3869 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3870 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3871 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3872 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3873 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3874 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3875
f2fs_build_stats(struct f2fs_sb_info * sbi)3876 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3877 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3878 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3879 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3880 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3881 #endif
3882
3883 extern const struct file_operations f2fs_dir_operations;
3884 extern const struct file_operations f2fs_file_operations;
3885 extern const struct inode_operations f2fs_file_inode_operations;
3886 extern const struct address_space_operations f2fs_dblock_aops;
3887 extern const struct address_space_operations f2fs_node_aops;
3888 extern const struct address_space_operations f2fs_meta_aops;
3889 extern const struct inode_operations f2fs_dir_inode_operations;
3890 extern const struct inode_operations f2fs_symlink_inode_operations;
3891 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3892 extern const struct inode_operations f2fs_special_inode_operations;
3893 extern struct kmem_cache *f2fs_inode_entry_slab;
3894
3895 /*
3896 * inline.c
3897 */
3898 bool f2fs_may_inline_data(struct inode *inode);
3899 bool f2fs_may_inline_dentry(struct inode *inode);
3900 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3901 void f2fs_truncate_inline_inode(struct inode *inode,
3902 struct page *ipage, u64 from);
3903 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3904 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3905 int f2fs_convert_inline_inode(struct inode *inode);
3906 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3907 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3908 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3909 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3910 const struct f2fs_filename *fname,
3911 struct page **res_page);
3912 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3913 struct page *ipage);
3914 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3915 struct inode *inode, nid_t ino, umode_t mode);
3916 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3917 struct page *page, struct inode *dir,
3918 struct inode *inode);
3919 bool f2fs_empty_inline_dir(struct inode *dir);
3920 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3921 struct fscrypt_str *fstr);
3922 int f2fs_inline_data_fiemap(struct inode *inode,
3923 struct fiemap_extent_info *fieinfo,
3924 __u64 start, __u64 len);
3925
3926 /*
3927 * shrinker.c
3928 */
3929 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3930 struct shrink_control *sc);
3931 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3932 struct shrink_control *sc);
3933 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3934 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3935
3936 /*
3937 * extent_cache.c
3938 */
3939 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3940 struct rb_entry *cached_re, unsigned int ofs);
3941 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3942 struct rb_root_cached *root,
3943 struct rb_node **parent,
3944 unsigned long long key, bool *left_most);
3945 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3946 struct rb_root_cached *root,
3947 struct rb_node **parent,
3948 unsigned int ofs, bool *leftmost);
3949 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3950 struct rb_entry *cached_re, unsigned int ofs,
3951 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3952 struct rb_node ***insert_p, struct rb_node **insert_parent,
3953 bool force, bool *leftmost);
3954 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3955 struct rb_root_cached *root, bool check_key);
3956 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3957 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3958 void f2fs_drop_extent_tree(struct inode *inode);
3959 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3960 void f2fs_destroy_extent_tree(struct inode *inode);
3961 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3962 struct extent_info *ei);
3963 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3964 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3965 pgoff_t fofs, block_t blkaddr, unsigned int len);
3966 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3967 int __init f2fs_create_extent_cache(void);
3968 void f2fs_destroy_extent_cache(void);
3969
3970 /*
3971 * sysfs.c
3972 */
3973 #define MIN_RA_MUL 2
3974 #define MAX_RA_MUL 256
3975
3976 int __init f2fs_init_sysfs(void);
3977 void f2fs_exit_sysfs(void);
3978 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3979 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3980
3981 /* verity.c */
3982 extern const struct fsverity_operations f2fs_verityops;
3983
3984 /*
3985 * crypto support
3986 */
f2fs_encrypted_file(struct inode * inode)3987 static inline bool f2fs_encrypted_file(struct inode *inode)
3988 {
3989 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3990 }
3991
f2fs_set_encrypted_inode(struct inode * inode)3992 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3993 {
3994 #ifdef CONFIG_FS_ENCRYPTION
3995 file_set_encrypt(inode);
3996 f2fs_set_inode_flags(inode);
3997 #endif
3998 }
3999
4000 /*
4001 * Returns true if the reads of the inode's data need to undergo some
4002 * postprocessing step, like decryption or authenticity verification.
4003 */
f2fs_post_read_required(struct inode * inode)4004 static inline bool f2fs_post_read_required(struct inode *inode)
4005 {
4006 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4007 f2fs_compressed_file(inode);
4008 }
4009
4010 /*
4011 * compress.c
4012 */
4013 #ifdef CONFIG_F2FS_FS_COMPRESSION
4014 bool f2fs_is_compressed_page(struct page *page);
4015 struct page *f2fs_compress_control_page(struct page *page);
4016 int f2fs_prepare_compress_overwrite(struct inode *inode,
4017 struct page **pagep, pgoff_t index, void **fsdata);
4018 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4019 pgoff_t index, unsigned copied);
4020 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4021 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4022 bool f2fs_is_compress_backend_ready(struct inode *inode);
4023 int f2fs_init_compress_mempool(void);
4024 void f2fs_destroy_compress_mempool(void);
4025 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4026 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4027 block_t blkaddr);
4028 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4029 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4030 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4031 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4032 int f2fs_write_multi_pages(struct compress_ctx *cc,
4033 int *submitted,
4034 struct writeback_control *wbc,
4035 enum iostat_type io_type);
4036 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4037 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4038 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4039 unsigned int c_len);
4040 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4041 unsigned nr_pages, sector_t *last_block_in_bio,
4042 bool is_readahead, bool for_write);
4043 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4044 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4045 void f2fs_put_page_dic(struct page *page);
4046 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4047 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4048 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4049 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4050 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4051 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4052 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4053 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4054 int __init f2fs_init_compress_cache(void);
4055 void f2fs_destroy_compress_cache(void);
4056 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4057 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4058 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4059 nid_t ino, block_t blkaddr);
4060 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4061 block_t blkaddr);
4062 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4063 #define inc_compr_inode_stat(inode) \
4064 do { \
4065 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4066 sbi->compr_new_inode++; \
4067 } while (0)
4068 #define add_compr_block_stat(inode, blocks) \
4069 do { \
4070 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4071 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4072 sbi->compr_written_block += blocks; \
4073 sbi->compr_saved_block += diff; \
4074 } while (0)
4075 #else
f2fs_is_compressed_page(struct page * page)4076 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4077 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4078 {
4079 if (!f2fs_compressed_file(inode))
4080 return true;
4081 /* not support compression */
4082 return false;
4083 }
f2fs_compress_control_page(struct page * page)4084 static inline struct page *f2fs_compress_control_page(struct page *page)
4085 {
4086 WARN_ON_ONCE(1);
4087 return ERR_PTR(-EINVAL);
4088 }
f2fs_init_compress_mempool(void)4089 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4090 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic)4091 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr)4092 static inline void f2fs_end_read_compressed_page(struct page *page,
4093 bool failed, block_t blkaddr)
4094 {
4095 WARN_ON_ONCE(1);
4096 }
f2fs_put_page_dic(struct page * page)4097 static inline void f2fs_put_page_dic(struct page *page)
4098 {
4099 WARN_ON_ONCE(1);
4100 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4101 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4102 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4103 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4104 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4105 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4106 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4107 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4108 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4109 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4110 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4111 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4112 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4113 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4114 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4115 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4116 nid_t ino) { }
4117 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4118 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4119 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4120 unsigned int c_len) { }
4121 #endif
4122
set_compress_context(struct inode * inode)4123 static inline void set_compress_context(struct inode *inode)
4124 {
4125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4126
4127 F2FS_I(inode)->i_compress_algorithm =
4128 F2FS_OPTION(sbi).compress_algorithm;
4129 F2FS_I(inode)->i_log_cluster_size =
4130 F2FS_OPTION(sbi).compress_log_size;
4131 F2FS_I(inode)->i_compress_flag =
4132 F2FS_OPTION(sbi).compress_chksum ?
4133 1 << COMPRESS_CHKSUM : 0;
4134 F2FS_I(inode)->i_cluster_size =
4135 1 << F2FS_I(inode)->i_log_cluster_size;
4136 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4137 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4138 F2FS_OPTION(sbi).compress_level)
4139 F2FS_I(inode)->i_compress_flag |=
4140 F2FS_OPTION(sbi).compress_level <<
4141 COMPRESS_LEVEL_OFFSET;
4142 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4143 set_inode_flag(inode, FI_COMPRESSED_FILE);
4144 stat_inc_compr_inode(inode);
4145 inc_compr_inode_stat(inode);
4146 f2fs_mark_inode_dirty_sync(inode, true);
4147 }
4148
f2fs_disable_compressed_file(struct inode * inode)4149 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4150 {
4151 struct f2fs_inode_info *fi = F2FS_I(inode);
4152
4153 if (!f2fs_compressed_file(inode))
4154 return true;
4155 if (S_ISREG(inode->i_mode) &&
4156 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4157 return false;
4158
4159 fi->i_flags &= ~F2FS_COMPR_FL;
4160 stat_dec_compr_inode(inode);
4161 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4162 f2fs_mark_inode_dirty_sync(inode, true);
4163 return true;
4164 }
4165
4166 #define F2FS_FEATURE_FUNCS(name, flagname) \
4167 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4168 { \
4169 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4170 }
4171
4172 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4173 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4174 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4175 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4176 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4177 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4178 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4179 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4180 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4181 F2FS_FEATURE_FUNCS(verity, VERITY);
4182 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4183 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4184 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4185 F2FS_FEATURE_FUNCS(readonly, RO);
4186
f2fs_may_extent_tree(struct inode * inode)4187 static inline bool f2fs_may_extent_tree(struct inode *inode)
4188 {
4189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4190
4191 if (!test_opt(sbi, EXTENT_CACHE) ||
4192 is_inode_flag_set(inode, FI_NO_EXTENT) ||
4193 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4194 !f2fs_sb_has_readonly(sbi)))
4195 return false;
4196
4197 /*
4198 * for recovered files during mount do not create extents
4199 * if shrinker is not registered.
4200 */
4201 if (list_empty(&sbi->s_list))
4202 return false;
4203
4204 return S_ISREG(inode->i_mode);
4205 }
4206
4207 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4208 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4209 block_t blkaddr)
4210 {
4211 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4212
4213 return test_bit(zno, FDEV(devi).blkz_seq);
4214 }
4215 #endif
4216
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4217 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4218 {
4219 return f2fs_sb_has_blkzoned(sbi);
4220 }
4221
f2fs_bdev_support_discard(struct block_device * bdev)4222 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4223 {
4224 return blk_queue_discard(bdev_get_queue(bdev)) ||
4225 bdev_is_zoned(bdev);
4226 }
4227
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4228 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4229 {
4230 int i;
4231
4232 if (!f2fs_is_multi_device(sbi))
4233 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4234
4235 for (i = 0; i < sbi->s_ndevs; i++)
4236 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4237 return true;
4238 return false;
4239 }
4240
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4241 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4242 {
4243 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4244 f2fs_hw_should_discard(sbi);
4245 }
4246
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4247 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4248 {
4249 int i;
4250
4251 if (!f2fs_is_multi_device(sbi))
4252 return bdev_read_only(sbi->sb->s_bdev);
4253
4254 for (i = 0; i < sbi->s_ndevs; i++)
4255 if (bdev_read_only(FDEV(i).bdev))
4256 return true;
4257 return false;
4258 }
4259
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4260 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4261 {
4262 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4263 }
4264
f2fs_may_compress(struct inode * inode)4265 static inline bool f2fs_may_compress(struct inode *inode)
4266 {
4267 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4268 f2fs_is_atomic_file(inode) ||
4269 f2fs_is_volatile_file(inode))
4270 return false;
4271 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4272 }
4273
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4274 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4275 u64 blocks, bool add)
4276 {
4277 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4278 struct f2fs_inode_info *fi = F2FS_I(inode);
4279
4280 /* don't update i_compr_blocks if saved blocks were released */
4281 if (!add && !atomic_read(&fi->i_compr_blocks))
4282 return;
4283
4284 if (add) {
4285 atomic_add(diff, &fi->i_compr_blocks);
4286 stat_add_compr_blocks(inode, diff);
4287 } else {
4288 atomic_sub(diff, &fi->i_compr_blocks);
4289 stat_sub_compr_blocks(inode, diff);
4290 }
4291 f2fs_mark_inode_dirty_sync(inode, true);
4292 }
4293
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4294 static inline int block_unaligned_IO(struct inode *inode,
4295 struct kiocb *iocb, struct iov_iter *iter)
4296 {
4297 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4298 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4299 loff_t offset = iocb->ki_pos;
4300 unsigned long align = offset | iov_iter_alignment(iter);
4301
4302 return align & blocksize_mask;
4303 }
4304
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4305 static inline bool f2fs_force_buffered_io(struct inode *inode,
4306 struct kiocb *iocb, struct iov_iter *iter)
4307 {
4308 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4309 int rw = iov_iter_rw(iter);
4310
4311 if (f2fs_post_read_required(inode))
4312 return true;
4313 if (f2fs_is_multi_device(sbi))
4314 return true;
4315 /*
4316 * for blkzoned device, fallback direct IO to buffered IO, so
4317 * all IOs can be serialized by log-structured write.
4318 */
4319 if (f2fs_sb_has_blkzoned(sbi))
4320 return true;
4321 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4322 if (block_unaligned_IO(inode, iocb, iter))
4323 return true;
4324 if (F2FS_IO_ALIGNED(sbi))
4325 return true;
4326 }
4327 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4328 return true;
4329
4330 return false;
4331 }
4332
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4333 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4334 {
4335 return fsverity_active(inode) &&
4336 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4337 }
4338
4339 #ifdef CONFIG_F2FS_FAULT_INJECTION
4340 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4341 unsigned int type);
4342 #else
4343 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4344 #endif
4345
is_journalled_quota(struct f2fs_sb_info * sbi)4346 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4347 {
4348 #ifdef CONFIG_QUOTA
4349 if (f2fs_sb_has_quota_ino(sbi))
4350 return true;
4351 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4352 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4353 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4354 return true;
4355 #endif
4356 return false;
4357 }
4358
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4359 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4360 {
4361 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4362 }
4363
4364 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4365 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4366
4367 #endif /* _LINUX_F2FS_H */
4368